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Abstract. The new NMMB/BSC-Dust model is intended
to provide short to medium-range weather and dust fore-
casts from regional to global scales. It is an online model
in which the dust aerosol dynamics and physics are solved
at each model time step. The companion paper (Pérez et al.,
2011) develops the dust model parameterizations and pro-
vides daily to annual evaluations of the model for its global
and regional configurations. Modeled aerosol optical depth
(AOD) was evaluated against AERONET Sun photometers
over Northern Africa, Middle East and Europe with corre-
lations around 0.6–0.7 on average without dust data assim-
ilation. In this paper we analyze in detail the behavior of
the model using data from the Saharan Mineral dUst ex-
periment (SAMUM-1) in 2006 and the Bodélé Dust Exper-
iment (BoDEx) in 2005. AOD from satellites and Sun pho-

tometers, vertically resolved extinction coefficients from li-
dars and particle size distributions at the ground and in the
troposphere are used, complemented by wind profile data
and surface meteorological measurements. All simulations
were performed at the regional scale for the Northern African
domain at the expected operational horizontal resolution of
25 km. Model results for SAMUM-1 generally show good
agreement with satellite data over the most active Saharan
dust sources. The model reproduces the AOD from Sun
photometers close to sources and after long-range transport,
and the dust size spectra at different height levels. At this
resolution, the model is not able to reproduce a large ha-
boob that occurred during the campaign. Some deficiencies
are found concerning the vertical dust distribution related to
the representation of the mixing height in the atmospheric
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part of the model. For the BoDEx episode, we found the
diurnal temperature cycle to be strongly dependant on the
soil moisture, which is underestimated in the NCEP analy-
sis used for model initialization. The low level jet (LLJ) and
the dust AOD over the Bod́elé are well reproduced. The re-
maining negative AOD bias (due to underestimated surface
wind speeds) can be substantially reduced by decreasing the
threshold friction velocity in the model.

1 Introduction

Mineral dust emitted from arid and semi-arid areas is one of
the most important sources of atmospheric aerosol mass and
significantly impacts the Earth’s climate system. Although
there has been significant progress in estimating and model-
ing the dust cycle in the last decades, the magnitude of the
dust net direct radiative forcing still remains uncertain vary-
ing between−0.56 and+0.1 W m−2 (IPCC, 2007). Neither
the annual global dust emission nor its spatial distribution is
sufficiently well quantified, with the first to be in the range of
1000–2150 Mt yr−1 (Zender et al., 2004; IPCC, 2007). Be-
sides changing the global and regional energy balance by
absorbing and scattering shortwave and longwave radiation
(Houghton et al., 2001), dust transported by winds modifies
atmospheric heating rates, temperatures and stability, influ-
ences the hydrological cycle (e.g.Sokolik and Toon, 1996;
Tegen, 2003; Myhre et al., 2003; Miller et al., 2004; Helmert
et al., 2007) and impacts human health (Yin et al., 2005),
particularly close to source areas.

In the last few decades numerical models have been de-
signed to reproduce the dust cycle allowing us to estimate
the influence of mineral dust on the climate system. Dust
models are also required for short to medium range air qual-
ity forecast applications. To this end, several models have
been developed with some of them providing daily fore-
cast products, e.g. the Dust REgional Atmospheric Model
(DREAM) (Nickovic et al., 2001), the SKIRON model (Kal-
los et al., 1997), CHIMERE-Dust model (Menut et al.,
2005), the Navy Aerosol Analysis and Prediction System
(NAAPS) (Christensen, 1997), the JMA-MASINGAR dust
model (Tanaka and Chiba, 2005), or the ECMWF-IFS (Mor-
crette et al., 2008). The DREAM model was further re-
fined and tested in the last years. The updated version BSC-
DREAM8b (Pérez et al., 2006a,b, 2007; Papayannis et al.,
2008; Haustein et al., 2009; Papanastasiou et al., 2010) is op-
erated at the Barcelona Supercomputing Center-Centro Na-
cional de Supercomputación (BSC-CNS;http://www.bsc.es/
projects/earthscience/DREAM).

In the companion paper (Pérez et al., 2011), we described
the NMMB/BSC-Dust, a new online multi-scale atmospheric
dust model, designed and developed at the BSC in collabo-
ration with NOAA/National Centers for Environmental Pre-
diction (NCEP), NASA Goddard Institute for Space Stud-

ies and the International Research Institute for Climate and
Society (IRI). The dust model is embedded into the Non-
hydrostatic Multiscale Model NMMB (Janjic et al., 2005;
Janjic and Black, 2007; Janjic et al., 2011) and will provide
short to medium-range dust forecasts for both regional and
global domains. InPérez et al.(2011), we evaluated monthly
and annual means of the global configuration of the model
against the AeroCom dust benchmark dataset for the year
2000 including surface concentration, deposition and aerosol
optical depth (AOD), as well as the daily AOD variability in a
regional domain at high resolution covering Northern Africa,
Middle East and Europe against the AErosol RObotic NET-
work (AERONET) (Holben et al., 1998) AOD for the year
2006. The NMMB/BSC-Dust provides us with a good de-
scription of the horizontal distribution and temporal variabil-
ity of the dust. Daily AOD correlations at the regional scale
were around 0.6–0.7 on average without dust data assimila-
tion. At the global scale the model lies within the top range
of AeroCom dust models in terms of performance statistics
for surface concentration, deposition and AOD.

In this contribution, we use the data from two field ex-
periments: SAMUM-1 (Heintzenberg, 2009) and BoDEx
(Washington et al., 2006a), complemented by in-situ remote-
sensing data and satellite retrievals to evaluate and analyze
the behavior of the model in Northern Africa. The data from
both campaigns have already been used for extensive model
evaluation (e.g.Tegen et al., 2006; Bouet et al., 2007; Todd
et al., 2007, 2008a; Haustein et al., 2009; Heinold et al.,
2009; Müller et al., 2009; Otto et al., 2009, 2011). The first
phase of SAMUM-1 took place in May/June 2006 at three
sites in Morocco accompanied by overflights of two research
aircraft as integral part of the campaign. The observational
dataset includes ground-based (Raman and backscatter) and
onboard High-Spectral-Resolution Lidar (HSRL) profiles,
surface and tropospheric dust size distribution, aerosol mass
concentration and chemical composition, dust sample micro-
scopic and optical properties, Sun photometer data as well as
basic meteorological parameters. The BoDEx experimental
campaign took place in March 2005 at the Bodélé Depression
(in the Djourab of northern Chad) which contributes well to
over half of the annual dust that is produced in West Africa
each year (Washington et al., 2003). Here, we mainly focus
on the ability of the model to represent the local meteorology,
notably the low-level jet feature (LLJ), and the dust emission
pattern in this prolific dust source.

The paper is organized as follows. We summarize the
model features presented inPérez et al.(2011) in Sect. 2. In
Sect. 3 we introduce the observational data from the two field
campaigns and those derived from ground based and satellite
remote sensing. Section 4 includes the results and discussion
and we conclude in Sect. 5.
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2 Model description

2.1 The NMMB/BSC-Dust model

A detailed description of the model can be found in the com-
panion paper (Pérez et al., 2011). This section summarizes
the main characteristics of the NMMB/BSC-Dust model.

The NCEP-NMMB is the evolution of the NCEP/Eta (Jan-
jic, 1990, 1994) and NCEP/WRF-NMME (Janjic et al., 2001;
Janjic, 2003) with updated meteorological core, built on
many decades of numerical weather prediction (NWP) ex-
perience. The model (Janjic and Black, 2006; Janjic et al.,
2010, 2011) provides an improved numerical environment
for the physical and dynamical schemes, essential to be able
to increase the model resolution, the forecast domain or the
number of incorporated physical and dynamical processes.
The model is unified for regional and global simulations
and has the non-hydrostatic option as add-on module (Jan-
jic and Black, 2006; Janjic et al., 2010). In contrast to the
WRF-NMME, it is now developed on the Arakawa B-grid
(Arakawa and Lamb, 1977) with regular latitude-longitude
coordinates for the global configuration and rotated latitude-
longitude coordinates for the regional configuration. The
Lorenz vertical staggered grid with pressure-sigma hybrid
coordinate is used.

Dust is transported as the other tracers in the NMMB
model. Tracer advection is Eulerian, positive-definite and
monotonic. The Adams-Bashforth scheme is used for hor-
izontal advection and the Crank-Nicholson scheme for ver-
tical advection. For the horizontal diffusion the model uses
a second order scheme. Dust emission and vertical diffu-
sion, sedimentation, dry and wet deposition, and dust radia-
tive feedback are also represented in the model. The default
radiation scheme is the Geophysical Fluid Dynamics Labo-
ratory (GFDL) package with longwave radiation afterFels
and Schwarzkopf(1975) and shortwave radiation afterLacis
and Hansen(1974). In order to take into account the effects
of aerosols and mineral dust interactively, the rapid radia-
tive transfer model (RRTM) (Mlawer et al., 1997) was im-
plemented in the NMMB/BSC-Dust.

The dust emission scheme requires the calculation of the
horizontal saltation and the vertical dust flux. It includes
the threshold friction velocityu∗thr which is the minimum
friction velocity required to suspend soil particles in depen-
dence of land surface conditions, surface wind speed and soil
moisture (Bagnold, 1941; Iversen and White, 1982; Fécan
et al., 1999). In this contribution we use the aeolian surface
roughness over sand surfaces based on the roughness data
set at 1/4◦×1/4◦ spatial resolution provided byLaurent et al.
(2008). The smooth surface roughness is calculated accord-
ing to Marticorena and Bergametti(1995). For the saltation
dust flux, the parameterization suggested inMarticorena and
Bergametti(1995) with the horizontal flux formulation after
White (1979) is used. Four parent soil size categories fol-
lowing Tegen et al.(2002) are taken into account (clay, silt,

fine/medium sand, and coarse sand) covering a size range
from < 2 µm to 1000 µm. Soil mass fractions are calcu-
lated from the 12 top soil texture classes of the hybrid US
General Soil Map-UN Food and Agriculture Organization
(STATSGO-FAO) 1 km database (FAO-UNESCO, 1974).

The straight forward approach for the vertical flux after
Marticorena and Bergametti(1995) is used, with and em-
pirical horizontal-to-vertical-flux-ratio or sandblasting mass
efficiencyα. For sources we use the topographic preferen-
tial source approach afterGinoux et al.(2001) and the Na-
tional Environmental Satellite, Data, and Information Ser-
vice (NESDIS) vegetation fraction climatology (Ignatov and
Gutman, 1998). The vertical dust flux is distributed over
three log-normal size modes by means of a standard error
function reflecting the observed background aerosol distri-
bution over source regions (D’Almeida, 1987; Zender et al.,
2003b). These 3 bins are re-distributed over 8 transport
model size bins with effective radii of 0.15, 0.25, 0.45, 0.78,
1.3, 2.2, 3.8, 7.1 µm.

The dust dry deposition is based onZhang et al.(2001)
and includes simplified empirical parameterizations for the
deposition processes of Brownian diffusion, impaction, in-
terception and gravitational settling detailed inSlinn (1982).

Wet scavenging of dust by precipitation is computed sepa-
rately for convective and grid-scale precipitation. The model
includes parameterizations for in-cloud and sub-cloud scav-
enging. The standard cloud and precipitation schemes of
the NMMB model are the grid-scale cloud microphysical
scheme ofFerrier et al.(2002), and the convective adjustment
scheme of Betts-Miller-Janjic (BMJ) (Betts, 1986; Betts and
Miller , 1986; Janjic, 1994). For moist convective mixing it
is assumed that dust is mixed vertically analogously to mois-
ture, so that the reference vertical profile for dust preserves
similarity to that of moisture in the BMJ approach.

2.2 Model set-up

We performed regional simulations in a model domain cov-
ering Northern Africa, the Arabian Peninsula and south-
ern/central Europe (0 to 65◦ N and 25◦ W to 60◦ E) as
schematically illustrated in Fig.1. The model resolution was
set to 1/4◦×1/4◦ (about 25 km) with 40 vertical layers for
all simulations which is expected to be the regional forecast
model resolution. The model meteorology was reinitialized
every 24 h and the boundary conditions updated every 6 h
with global NCEP final analysis (FNL) data at 1◦

×1◦ res-
olution. A seven-day dust spin-up was performed for each
simulation. For the BoDEx period, we performed additional
simulations using soil moisture initial conditions from the
Global Land Data Assimilation System (GLDAS) (Rodell
et al., 2004).

The model backscatter coefficient is derived directly from
the extinction coefficient, applying an empirical extinction-
to-backscatter or lidar (LR) ratio. The LR is rather variable
and depends strongly on size, shape and complex refractive
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Fig. 1. Overview of all ground measurement stations within the
model simulation domain used in this paper. Red dots are the
SAMUM-1 field sites Ouarzazate (OUZ) and Zagora (ZAG), yel-
low dots are AERONET stations, the blue dot is the BoDEx field
site Chicha, and the green spots are EARLINET lidar stations. The
Falcon overflight path just south of Ouarzazate and Zagora is shown
in red.

index of the particle (Mishchenko et al., 1997). We use a
constant LR of 50 sr suggested byPapayannis et al.(2008)
after conducting a statistical analysis of dust events with data
from the European Aerosol Research LIdar NETwork (EAR-
LINET) (Bösenberg et al., 2003). This is in good agreement
with the mean LR of 54.8±6.7 sr at 532 nm found during
SAMUM-1 (Tesche et al., 2009). The model number size
distribution is diagnosed at the corresponding height levels
and is derived assuming sphericity and average dust particle
density of 2.6 g cm−3 (Hess et al., 1998).

3 Observational data

This section provides a brief introduction of the two field
experiments and describes the available observational in-situ
and remote sensing products. In Fig.1, the red dots refer to
the SAMUM-1 field sites at Ouarzazate Airport and Zagora
and the green and yellow dots indicate the AERONET and
EARLINET stations complementary used here for the same
period. The region where the Falcon overflight took place on
19 and 20 May 2006 is indicated with the red line. The blue
dot refers to the BoDEx field campaign site at Chicha in the
Bodélé Depression. The respective station names, acronyms
and locations are given in Table 1.

Table 1. Location of all AERONET and EARLINET stations in-
cluding the BoDEx station Chicha in the Bodélé Depression.

Acron. Location Altitude Latitude Longitude

PAL Palencia 743 m 41.99◦ N 4.51◦ W
SAA Saada 1890 m 31.63◦ N 8.16◦ W
OUZ Ouarzazate 1133 m 30.94◦ N 6.91◦ W
ZAG Zagora 730 m 30.33◦ N 5.84◦ W
BLI Blida 230 m 36.51◦ N 2.88◦E
LAM Lampedusa 50 m 35.52◦ N 12.63◦ E
TMR Tamanrasset 1400 m 22.79◦ N 5.53◦ E
BAN Banizoumbou 250 m 13.54◦ N 2.66◦ E
BOD Chicha 179 m 17.0◦ N 18.0◦ E
NAP Naples 118 m 40.84◦ N 14.18◦ E
THE Thessaloniki 60 m 40.63◦ N 22.95◦ E
ATH Athens 200 m 37.96◦ N 23.78◦ E

3.1 SAMUM-1 field experiment

SAMUM-1 took place from 11 May to 10 June 2006 in
southern Morocco, around Ouarzazate (1133 m a.s.l.), Tin-
fou (720 m a.s.l.) and Zagora (situated 150 km southeast of
Ouarzazate and next to Tinfou), accompanied by overflights
of two research aircraft.

In this study, we use profiles of the 532 nm extinction coef-
ficient from the six-wavelength aerosol lidar Backscatter Ex-
tinction lidar-Ratio Temperature Humidity profiling Appara-
tus (BERTHA) at Ouarzazate (Althausen et al., 2000; Tesche
et al., 2009). Profiles are available for heights between 1–
7 km and the lidar data have a temporal resolution of 30 s and
a vertical resolution of 60 m. The profiles shown in this work
are averaged over one to three hours (Tesche et al., 2009).
The airborne measurements taken aboard the Falcon aircraft
of the German Aerospace Center (DLR) combined HSRL
(Esselborn et al., 2009) at 532 nm with a variety of in-situ
instruments (Weinzierl et al., 2009) to probe the atmosphere
in the Ouarzazate area between 0–11 km height. The surface
size distribution was quasi-continuously measured by means
of a combination of a Differential Mobility Particle Sizer
(DMPS) and an Aerodynamic Particle Sizer (APS). The mo-
bility or aerodynamic size range was between 20 nm and
5 µm diameter, respectively (Schladitz et al., 2009). Large
particles between 4–500 µm were collected by two different
impactor types applying the method of impactor collection
on coated glass substrates once every day (Kandler et al.,
2009; Schladitz et al., 2009).

The upper level vertical aerosol size distribution was de-
rived on constant altitude sequences outside of clouds aboard
the Falcon aircraft over the Ouarzazate region (same flight
as for lidar measurements). It carried instrumentation for
measuring dust particle size distributions in the size range of
4 nm to 100 µm diameter using Condensation Particle Coun-
ters (CPCs) and several Optical Particle Counters (OPCs).
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Particles larger than 30 µm were present in∼ 50 % of the
cases (Esselborn et al., 2009; Weinzierl et al., 2009).

3.2 BoDEx field experiment

BoDEx took place from 28 February to 13 March 2005 and
represents the first and unique field study in the Bodélé De-
pression, which lies between the Tibesti Mountains and Lake
Chad in Mali. The observation site Chicha was located at
the eastern margin of the large diatomite deposit, originating
from the paleo-lake Mega-Chad. It is known to be one of
the global key source areas for mineral dust (Prospero et al.,
2002; Washington et al., 2003), exhibiting a pronounced dust
emission hot spot (Giles, 2005; Todd et al., 2007).

Time-height profiles of wind speed and direction were de-
rived from PIlot BALloon (PIBAL) ascents (Devara et al.,
1998; Egger et al., 2005). Nine ascents were made per day
with higher sampling frequency in the morning so that the
effects of surface heating on the wind field could be best re-
solved. The single theodolite method was used, with heights
calculated from the balloon’s buoyancy prior to release and
balloon elevation and azimuths recorded at minute intervals.
Wind speed and direction was averaged over 2 min intervals
so that the effect of turbulent eddies could be minimized.
Typical daytime tracks lasted 35 min and typical nighttime
tracks lasted 18 min. Wind field with PIBALs could not be
sampled in case of extreme dust events and too low visibil-
ity (Washington et al., 2006a). AOD was measured at the
Chicha ground station by means of CIMEL Sun photometer.
Also 2 m temperature was measured at Chicha (Todd et al.,
2008a,b).

3.3 Satellite remote sensing products and data

To qualitatively compare the spatio-temporal distribution of
the modeled extinction AOD, satellite based remote sensing
retrievals are used. The MSG infrared dust index is an RGB
(Red, Green, Blue) composite image based upon infrared
channel satellite data providing the dust aerosol information
by means of a pink colored contrast image. It is computed
from the brightness temperature differences of three SEVIRI
channels (IR 8.7, 10.8, 12.0) and is designed to monitor the
evolution of dust storms and hence a useful tool to identify
dust sources both at day and night (Schmetz et al., 2002).
For example, a dust source activation frequency map was de-
rived (Schepanski et al., 2007) and analyzed regarding the
sub-daily distribution as a function of meteorological pro-
cesses (Schepanski et al., 2009). Complementary, we use the
NASA’s SeaWiFS instrument that provides visible dust im-
ages (Hooker et al., 1992). It has been used in some studies
to identify the dust transport (e.g.Darmenova et al., 2005;
Antoine and Nobileau, 2006; Pérez et al., 2006a).

OMAERO is the standard product of the OMI sensor on
board of Aura satellite, based on the multi-wavelength UV-
VIS aerosol algorithm (Levelt, 2002; Torres et al., 2007) in

order to calculate AOD. The Aura platform circulates in a
sun-synchronous polar orbit with a local afternoon equator
crossing time at 13:45 local time, providing global cover-
age in one day. In this study, we use the daily level-3 AOD
product at 500 nm at 1◦×1◦ resolution. The data has to be
treated with particular caution due to its weak sensitivity to
boundary layer aerosol owing to high desert surface reflectiv-
ity (Martin, 2008; Badarinath et al., 2010), or cloud contam-
ination (Hsu et al., 1999). OMI also tends to indicate heavy
biomass burning in the Sahel (Basart et al., 2009; Cavalieri
et al., 2010) and it may overestimate the winter AOD relative
to MISR and MODIS (Ahn et al., 2008; Zhao et al., 2010).

The MODIS instruments onboard the Terra and Aqua
platforms have been used extensively for global mapping
of AOD. It measures backscattered solar radiation at seven
wavelength bands dedicated to aerosol retrieval. MODIS
AODs are most reliable over the ocean being moderately
biased over arid regions (Kinne et al., 2003; Remer et al.,
2005; Levy et al., 2007; Drury et al., 2008). Here we use the
MODIS Deep Blue (MODIS DB) product which is based on
an algorithm that uses multiple radiances (blue channels), in-
cluding the 412 nm channel derived from the MODIS instru-
ment onboard of the Aqua satellite (Hsu et al., 2004). just as
with Aura, it provides near-global daily information of op-
tical depth at 550 nm wavelength at about 10 km resolution
daily at local noon, allowing for the direct characterization
of the origin of individual aerosol sources even over highly
reflective sources such as deserts. Here, we use the MODIS
Terra and DB level-3 AOD products at 550 nm and 1◦

×1◦

resolution.

3.4 Ground based measurement data

For a quantitative validation, the model-derived AOD is ad-
ditionally compared with data from seven AERONET sta-
tions. This network of sky calibrated CIMEL Sun photome-
ters measures the direct solar radiance at eight wavelengths
and sky radiance at four of these wavelengths on a daily base
(Holben et al., 1998). Thereby, measurements are taken ev-
ery 15 min. It provides AOD at 440 or 500 nm andÅngstr̈om
exponent (440–870 nm) (Dubovik and King, 2000; Dubovik
et al., 2002b). For this study, level 2.0 data are used exclu-
sively, being quality-assured and cloud-screened. Note that
during the data processing from level 1.0 to 2.0, optically
thick dust clouds may occasionally disappear. Note also that
background aerosol might influence the retrieved values as
the Sun photometer measurements represent AODs of the to-
tal aerosol column (Heinold et al., 2009). The stations used
in this study are shown in Fig.1 (yellow dots) with their lo-
cation specified in Table 1. The AERONET data are sup-
plemented by AOD measurements taken during SAMUM-1
at Zagora ground station by means of Sun photometers/sky
radiometers (Hoyningen-Huene et al., 2009).

Another important source of observational data is EAR-
LINET, providing systematic lidar observations of vertical
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a b d

e f

c

Fig. 2. Four hour average AOD from NMMB/BSC-Dust(a), MODIS Deep Blue and Terra(b), OMI AOD (c), model derived surface dust
concentration at 12:00 UTC(d), the SeaWiFS VIS image at 12:00 UTC(e), and the MSG dust image at 12:00 UTC(f) on 16 May 2006 are
displayed for the North African domain.

aerosol profiles over Europe on a coherent network basis.
Currently, 26 stations across Europe are deployed using elas-
tic backscatter and Raman lidar systems to measure the ver-
tical profiles of the aerosol backscatter and extinction co-
efficients at various wavelengths between 351 and 1064 nm
(Bösenberg et al., 2003). The EARLINET Raman lidar sys-
tems were quality assured performing direct intercompar-
isons (Matthias et al., 2004; Böckmann et al., 2004). The de-
rived data are finally stored in a central database after cloud
screening. Three stations in Southern Europe are chosen
for comparison during the SAMUM-1 period as specified in
Fig. 1 (green dots) and Table 1.

4 Results and discussion

4.1 SAMUM-1

4.1.1 Spatial dust distribution

We focus on the period 16–21 May 2006. The meteorolog-
ical situation including the observed spatio-temporal evolu-
tion of the dust plume over Northern Africa and Europe is
examined inKnippertz et al.(2009). Figures2 to 7 dis-
play the maps of model results and satellite products for this
period. For each day, we show a four hour model average
AOD which coincides with the passage of the satellite over
the region, i.e. between 11:00 and 15:00 UTC, the modeled

surface dust concentration at 12:00 UTC, a combined map
of MODIS DB (over arid and semi-arid areas) and Terra
AOD (over ocean and land), the OMI AOD, the modeled
10 m wind speed, and the SeaWiFS and MSG RGB image
at 12:00 UTC.

Satellite images outline the dust source activation in cen-
tral Algeria and a pronounced dust plume over Mali, Niger
and Chad on 16 May (see Fig.2b, c, e, f). The dust was
advected from Algeria in an easterly direction towards the
Moroccan coast and further driven anticyclonically along the
coastline towards the Iberian Peninsula. The model is gener-
ally consistent with MODIS DB over main activation spots,
although these are not always precisely located (Fig.2a,
d). The model reproduces the dust in the Bodélé Depres-
sion (Chad), at the border between Niger and Burkina Faso,
mostly over central Algeria, off the Moroccan coast and over
southern Saudi Arabia, in good agreement with MODIS DB,
SeaWiFS VIS and MSG. Over Niger, western Mali and Mau-
ritania, OMI AOD estimates are considerably higher than
those from the model and the MODIS DB product, likely due
to a mixture with biomass burning aerosols in OMI. Similar
mismatch is found over eastern Algeria.

While the model misses out the dust over the northern
part of Libya, the AOD over northwestern Sudan is overes-
timated. The MSG RGB image confirms the active sources
over central Algeria and Chad, but indicates – consistent with
OMI – dust activation over eastern Sudan which is missed by
the model. It is induced by convective activity over southeast
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a b d

e f

c

Fig. 3. The same as in Fig.2, but for 17 May 2006.

a b d

e f

c

Fig. 4. The same as in Fig.2, but for 18 May 2006.

Sudan in the morning hours of that day which the model fails
to resolve at 0.25◦×0.25◦ resolution. SeaWiFS and MSG
RGB indicate low dust concentrations off the coast of West-
ern Sahara and Mauritania which is not present in the model.
It is attributable to previously emitted dust which was ad-

vected at higher altitudes in the wake of the approaching
front and was hence partly outside the model domain.

On 17 May (see Fig.3a–f), the dust advected along
the Moroccan coast led to extensive dust loading over the
central and eastern Iberian Peninsula. The modeled AOD
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a b
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Fig. 5. The same as in Fig.2, but for 19 May 2006.

a b

e f

c d

Fig. 6. The same as in Fig.2, but for 20 May 2006.

corresponds well with MODIS DB and Terra. To the south
of the Iberian Peninsula, the model matches also the Sea-
WiFS image east of its overflight gap. Dust source activa-
tion in Chad (Bod́elé) is placed correctly in the model com-
pared with MODIS DB. The model also simulates the dust

emission from northern Sudan as visible in the MSG image.
The model AOD over eastern Libya is underestimated com-
pared to OMI, which itself overestimates when compared
with MODIS DB with weak correspondence in the MSG
image. Better agreement between OMI and MSG is found
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a b

e f

c d

Fig. 7. The same as in Fig.2, but for 21 May 2006.

in eastern Mali, where only minor dust source activation is
simulated. No clear conclusion can be drawn over the Ara-
bian Peninsula, given the rather strong disagreement between
MODIS DB and OMI AOD.

On 18 May (see Fig.4a–f) the model shows a dust plume
stretching over the western Mediterranean Sea and northern
Italy, as weakly indicated by MODIS Terra and OMI. Dust
production in Mali, Niger, Chad and Sudan is placed cor-
rectly in the model. Again, the moderate AOD over northern
Libya in the retrievals is not captured by the model. Poor
agreement is found between OMI and MODIS DB AOD in
Mauritania, where the MSG RGB retrieval suggests moder-
ate dust occurrence in the north (weak presence in MODIS
DB only), including a stretch of heavy dust in south-central
Algeria. The latter is adumbrated in the model, MODIS DB
and OMI. However, AOD over central Mauritania is clearly
underestimated in the model. In turn, OMI potentially over-
estimates the AOD compared to MODIS DB, especially in
the Niger/Chad border region including the Bodélé Depres-
sion.

The dust event over southern Europe covers the Mediter-
ranean Sea including large portions of Italy and the Balkan
Peninsula on 19 May (see Fig.5a–f). The simulated dust
pattern is consistent with MODIS DB, Terra and SeaWiFS
VIS product (over Sicily). It is partly obscured from clouds
in the MSG dust image, although identifiable along the Mo-
roccan coast. MSG also shows dust source activation in the
north and south of Mauritania, as well as in southern Algeria,
confirming the modeled surface dust concentration to a large

extent. As already seen on previous days, the model shows
that significant amounts of dust were liberated at the northern
tip of Mauritania, corresponding fairly well with OMI AOD
but not with MODIS DB.

In the late afternoon hours on 19 May, an interesting syn-
optic evolution was observed with deep moist convection
developing over north-eastern Mali. In the night of 19 to
20 May the induced precipitation due to convection and the
associated evaporational cooling caused the formation of a
large haboob, whose leading edge quickly spread north and
westwards (Knippertz et al., 2009). OMI AOD and MSG
RGB show dust mobilization mainly occurring over Mali, re-
sulting in an large dust plume over northern Mali, the south-
ern tip of Algeria, eastern Mauritania and western Chad at
noon on 20 May (see Fig.6a–f). The model is not able to
capture the intensity of the event due to an inaccurate rep-
resentation of the moist convection as discussed in previous
modeling studies (Haustein et al., 2009; Heinold et al., 2009)
and as evident in the simulated 10 m wind speed which is
rather smoothly distributed and not exceeding moderate ve-
locities (not shown). Nonetheless, the pattern of the modeled
AOD at least resembles the shape of dust plume in the DB re-
trieval. Over the Bod́elé, the modeled AOD agrees well with
MODIS DB, while the MSG dust image suggests rather low
AOD values.

Finally, the model, SeaWiFS and OMI consistently show
the Mediterranean dust outbreak. Although the model fails to
reproduce the intense moist convective event, dust is still lib-
erated intensively at the leading edge of the cold pool outflow
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Fig. 8. Model derived AOD (brownish line) versus AERONET
AOD (blue dots) and̊Angstr̈om exponent (black circles) for the pe-
riod of 16–22 May at Tamanrasset(a), Ouarzazate(b), Blida (c),
and Lampedusa(d).

over Mauritania and Mali on 21 May (see Fig.7a–f). As on
20 May, OMI shows a strong signal in terms of AOD while
MODIS DB is considerably less sensitive, indicating that the
model reproduces the shape of the dust plume over Mauri-
tania. Moreover, the high AOD values evident in the OMI
retrieval are not fully confirmed by the MSG dust image over
eastern Mauritania in particular. The model matches also the
MODIS DB AOD over the Bod́elé with slight overestimation
to its south.

4.1.2 Aerosol optical depth

In Figs. 8 and 9 we show the comparison of AOD be-
tween eight stations (seven AERONET stations including the
additional Sun photometer measurements taken during the
SAMUM-1 campaign at Zagora) and NMMB/BSC-Dust for
the period 16–22 May 2006.
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Fig. 9. The same as in Fig.8, but at Banizoumbou(a), Palencia(b),
Zagora(c), and Saada(d).

Ångstr̈om exponent values>0.6 indicate significant influ-
ence of fine-mode anthropogenic aerosols while values<0.6
are typical for coarse-mode dust aerosols (Dubovik et al.,
2002a; Basart et al., 2009). For example, in Lampedusa an-
thropogenic aerosol was dominant on 16–18 May, while a
dust event beginning on 19 May was observed and success-
fully simulated in the model. It also reproduces the dust
AOD close to dust sources (Tamanrasset) and away from
sources (Lampedusa and Palencia). Only on 16 May at Saada
the model overestimates the AOD. In general there is a sat-
isfactory agreement at Ouarzazate, Zagora and Saada sta-
tions between model and observations. Notice also, that the
model simulates a weak diurnal dust cycle at Ouarzazate and
Zagora. The impact of the large haboob on 20 May is not
observed in the in-situ measurements due to their location.
In Banizoumbou, the model overestimates the AOD, which
remains rather constant at values between 0.7 and 0.8 during
the period due to a (potentially overestimated) persistent dust
transport by trade winds from Saharan sources.
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4.1.3 Vertical dust distribution

Data from BERTHA and HSRL lidar taken during the field
campaign are complemented by EARLINET data. The loca-
tion of the stations is given in Fig.1 and Table 1. Figures10
and 11 show measured (blue) and model-derived (brown)
vertical profiles of the extinction coefficient in chronological
order. Also the modeled dust load is provided. The altitude
is relative to sea level and the model profiles over Ouarzazate
are truncated at 1.7 km height due to model topography. The
relative uncertainties provided for the HSRL lidar extinction
coefficient are 8–22 % and those for the BERTHA lidar, esti-
mated from the backscatter coefficients, are 10–20 % (Tesche
et al., 2009).

As discussed inKnippertz et al.(2009), an upper-level
ridge present over northwestern Africa transported dust from
eastern and central Algeria along the Moroccan coast to-
wards the Iberian Pensinsula and from there further across
southern Europe to Greece where the dust plume arrived
on 20 May. While high dust load is observed continuously
over Ouarzazate, Saada and Zagora (see Figs.8 and9), it is
present over Palencia on 17 May and arrives at Lampedusa
on 19 May. Backward trajectories calculated on 19 May for
the four Italian EARLINET stations (not shown) confirm the
anticyclonic track from western Algeria across the Iberian
Peninsula (Müller et al., 2009). The dust was then prevail-
ing over Italy and Greece. Backward trajectories calculated
on 21 May for Athens and Thessaloniki show a path simi-
lar to those arriving at the Spanish and Italian stations, but
the corresponding airmass is delayed by about 2 or 4 days
depending on the station (Müller et al., 2009).

At noon on 17 May (Fig.10a), BERTHA indicates a well
mixed planetary boundary layer (PBL) over Ouarzazate, be-
tween the surface and 5 km, which is consistent with the
vertical humidity profile taken at 10:35 UTC as shown in
Fig. 12a. While both lidar and radiosonde profiles consis-
tently show the mixing height (MH) to be at∼4.6 km, it is
underestimated by the model whose simulated PBL does not
show any tendency to grow before late afternoon. At lower
levels between 2 and 3 km, the model overestimates the dust
extinction by almost a factor of 2. Since a layered structure
of the PBL was repeatedly observed during the field cam-
paign, the small secondary peak at 4.5 km height could well
be an indication of a residual layer from the previous day.
The layering is generated when the previous day mixed layer
becomes decoupled from the surface due to nocturnal cooling
and remains as residual layer until eroded by the formation
of the new mixed layer (Heinold et al., 2009; Knippertz et al.,
2009).

The next day at 11:00 UTC (Fig.10b), the model exhibits
a layer between 4 and 5 km height not visible in the lidar
profile and overestimates the extinction at lower levels. The
vertical profile over Naples at 19:00 UTC (Fig.10c) is qual-
itatively captured by the model, however slightly overesti-
mated above 3 km and mixed too high up to mid-tropospheric

levels. The latter cannot be explained by strong vertical mo-
tion due to high lapse rates, since no distinct deep convection
takes place in the model on that particular day. The vertical
profile over Ouarzazate at 21:00 UTC (Fig.10d) shows that
the model captures the height of the dust layer, but it over-
estimates the BERTHA extinction coefficient by more than a
factor of 2, reaching values as high as 140 Mm−1.

On 19 May at 11:00 UTC (Fig.10e), again the model un-
derestimates the MH and overestimates the low level extinc-
tion due to weak vertical mixing. The model profile three
hours later at 14:00 UTC (orange dashed line) agrees bet-
ter with the observations with the MH being placed between
4 and 5 km height. As on 18 May, the modeled dust and
the humidity profiles (Figs.10e and12c) are very similar.
Note also that Fig.12 includes complementary wind profiles
(radiosonde and model) over Ouarzazate which show model
overestimation close to the ground but good overall agree-
ment at higher levels, where the wind field is not influenced
by orography.

As shown for Naples on 18 May, dust is transported to-
wards Greece and the eastern Mediterranean mainly between
3–7 km altitude. The eastern edge of the dust plume reaches
Thessaloniki on 20 May, as illustrated by the modeled ex-
tinction profile (Fig.11a) with a maximum at 3 km height.
Terra AOD confirms the arrival of the dust plume. However
the lidar observation shows a lesser vertical extension and a
lower maximum plume height. Note that higher low level
extinction coefficients in the lidar profiles (first 2 km above
ground) over Athens and Thessaloniki (particularly obvious
in Fig. 11d) are due to anthropogenic aerosols.

On 21 May at 14:00 UTC, the model strongly overesti-
mates the dust plume in Athens (Fig.11b). Satellite observa-
tions indicate that the dust plume had moved further south.
The orange dashed line depicts the modeled vertical dust dis-
tribution at 18:00 UTC which better matches the lidar pro-
file. Hence the spatial mismatch between model and obser-
vation can also interpreted as a temporal mismatch of a few
hours. At 19:00 UTC the same day (Fig.11c) the model cap-
tures the observed vertical distribution while the dust slowly
moved south. The remaining dust can be seen over Athens
at 11:00 UTC on 22 May (Fig.11d) with a peak altitude be-
tween 2 and 3 km which is captured by the model. At lower
levels the lidar signal is strongly affected by anthropogenic
aerosols.

Beginning on 20 May over Morocco, a second dust event,
induced by low pressure over Tunisia, Algeria and Libya
and accompanied by strong southwesterly mid-level winds
over the Iberian Peninsula and the western Mediterranean,
advected a plume over the Mediterranean Sea, Corsica and
Sicily towards Italy, where it arrived in the late hours of
22 May. Over Naples (Fig.11e), the model overestimates
the dust at∼ 3 km height. The respective dust extinction
cross-section (not shown) revealed that the upwind-induced
vertical transport of the dust layer across the Apennines was
accelerated in the model, which led to the advection of an
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ca b

Fig. 12.Vertical profile of wind speed (blue, brown), specific humidity (red), and mixing ratio (orange) over Ouarzazate between 17–19 May
2006 is shown(a–c). Comparison of simulated winds versus that derived from morning radiosonde launch.
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Fig. 13. Vertical cross-section of dust backscatter coefficient during the Falcon overflight from Casablanca to Ouarzazate on 19 and 20 May
2006. Lidar data from Falcon flight measurements(a, b) versus model-derived backscatter coefficient at 550 nm(c, d) are shown. Arrows
on the longitude/latitude axis indicate changes in the flight direction of the aircraft. The model coordinates(c, d) correspond with those from
the overflight.

optically thin dust plume towards the south, affecting Naples
such that the simulated model result does not match the ob-
served lidar profile. It is thus a local mesoscale phenomenon
of short duration, highly influenced by the model topography.

Figure 13 shows two backscatter lidar profiles acquired
during two Falcon overflights in the morning hours of 19 and

20 May (see red line over the Ouarzazate and Zagora area
in Fig. 1). Both profiles are characterized by a well mixed
structure of the dust layer (Weinzierl et al., 2009). For the
evaluation of the backscatter coefficient, we assume a ver-
tically constant LR of 50 sr although it can vary with time
and height considerably (Esselborn et al., 2008; Tesche et al.,
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2009). The HSRL cross-section illustrates a homogeneous
dust layer on 19 May, with a rather constant backscatter co-
efficient from the surface up to 5 km height, attributable to a
well mixed turbulent PBL topped by a strong inversion. The
corresponding vertical profile is shown in Fig.10e, revealing
that the model slightly underestimates the height of the PBL.
The same pattern is found in the model cross-section, which
appears more heterogeneous with higher dust concentration
in the lowermost layers. Fairly good agreement can be seen
further north over the Atlas Mountains, both regarding MH
and stratification.

No clouds disturb the measurements on 19 May. In con-
trast, some cirrus cloud at 6 km height obscured the underly-
ing aerosol layer on 20 May. On 20 May, the HSRL cross-
section illustrates an elevated dust layer, centered at 5–6 km
height to the southeast of the Atlas Mountains.Knippertz
et al. (2009) suggest differential advection during the night
and subsequent mixing as a possible mechanism to explain
this distribution. The pronounced dust layer to the northwest
of the Atlas Mountains at∼ 2 km height is reproduced by the
model, although overestimated. Over the mountain range,
the dust is transported vertically due to mountain waves in
the model. The dust layer is thicker and appears at a lower
altitude than in the observations that were made to the south-
east of the Atlas Mountains. The top height of the mixed
PBL at 5.5 km is well captured by the model, but the rather
stratified well mixed dust layer does not match the observa-
tion. Given the moderate overestimation over the Maurita-
nia/Morocco border region in terms of AOD in the model,
too much dust is persistently transported to the southwest of
the Atlas Mountains compared to the satellite imagery (see
Fig. 6a–c).

4.1.4 Particle number size distribution

The surface size distribution at Tinfou (from a combined
DMPS and APS measurement) and the particle size distribu-
tion over Ouarzazate on 19 (11:00 UTC) and 20 May 2006
(13:00 UTC) at 3.2 km and at∼5 km height are shown in
Fig. 14a–f. On both occasions, the heights correspond with
the 520 and 670 hPa level in Fig.14g–k, which shows the
modeled longitudinal and latitudinal dust extinction cross-
sections at the time of the Falcon overflights. It illustrates
the influence of the orography upon the modeled spatial dust
distribution.

Apart from very large particles, the dust size spectra near
the surface are well captured. This is also true for the results
we obtain in the free troposphere, except at 4.8 km height
on 19 May, when the model underpredicts the number con-
centration due to a low dust MH (see Fig.10e). The MH is
higher in the small band of high extinction coefficients visi-
ble at 6◦ E between 550–600 hPa in Fig.14j, which is placed
just east of the overflight track in the model. Nonetheless, the
simulated size spectrum agrees with the observations on 19
and 20 May, demonstrating that the model is able to repro-

duce the dust particle size distribution. Very large particles
(>10 µm) at the surface are underestimated from the model
since their limited atmospheric residence time prevents them
from being further uplifted due to gravitational settling. This
feature cannot be fully resolved by the model given its verti-
cal resolution with the first layer being representative for the
lowermost 80 m in our case. Hence, the average dust particle
size does not entirely reflect the measured surface size dis-
tribution as discussed inHaustein et al.(2009). Moreover,
highly variable surface wind speeds may have affected the
measurements implying uncertainties as discussed inSchla-
ditz et al.(2009) andKandler et al.(2009). Particles<0.2 µm
in diameter are most likely not related to dust, rather than to
other aerosol species (Scḧutz et al., 1981), thus being not
considered in the model. Also, particles>20 µm in diam-
eter are not taken into account as they are contributing to
long-range transport only to a minor degree (Middleton et al.,
2001).

4.2 BoDEx

In this section, we analyze the period 1–11 March 2005 over
the Bod́elé. The dust annual cycle in this region follows a
semi-annual pattern with peaks in the boreal spring and fall
(Washington et al., 2006a,b). The considered early spring
case is characterized by days with and without dust source
activation, but with generally lower emission rates than in
late spring. Days 10 and 11 of March 2005 were substan-
tial dust emission days with strongly restricted surface vis-
ibility over the measurement site in Chicha, accompanied
by other moderate events on 3–7 and 9 March. The syn-
optic pattern during this episode was mainly characterized
by a negative March North Atlantic Oscillation (NAO) in-
dex, favoring a weak Azores anticyclone, which in turn fea-
tured a precession of low-pressure systems from southwest
to northeast across the Mediterranean and a blocking anticy-
clone west of the British Isles as observed at the beginning
of the month. Between 9-12 March, the blocking anticyclone
over the northeastern Atlantic suddenly migrated eastward,
extending a very strong ridge of high pressure across North-
ern Africa in the form of a redeveloped Libyan high (Wash-
ington et al., 2006a).

Several dust modeling studies have been conducted using
the BoDEx dataset (e.g.Tegen et al., 2006; Bouet et al., 2007;
Todd et al., 2008a). Tegen et al.(2006) tested several in-
put parameters in their emission scheme with a box model,
and compared dust emissions calculated with the observed
wind speeds to those calculated with wind speeds from their
regional model. Todd et al. (2008b) compared five re-
gional dust atmospheric models including BSC-DREAM8b,
in terms of meteorology, dust emission and transport. Among
other results,Todd et al.(2008b) reported strong near-surface
wind speed underestimations, an unresolved out-of-phase re-
lationship of the diurnal cycles of the LLJ and the surface
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Fig. 14.Measured (blue line) and model derived particle size distribution (brownish line) at 19 and 20 May 2006 over Ouarzazate at 5 km(a,
b) and 3 km(c, d) altitude, and at the surface in Tinfou(e, f). Notice the truncated ordinate, causing the largest model size class to be out of
range(a, b). Complementary, the latitudinal(g, h) and the longitudinal(j, k) model extinction cross-section and wind bars are shown. The
location of the Tinfou/Ouarzazate region is marked with the dotted line.
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Fig. 15. Model derived AOD(a, b), 10 m wind speed(c) and 2 m temperature(d) (brown and orange solid lines) over the Bodélé versus
AOD from Sun photometer(a, b) (blue dots) and wind speed(c) and temperature at the surface(d) from meteorological observations (grey
solid line) at Chicha for the period 1–11 March 2005. The dashed cyan and pink lines refer to the alternative model setup as indicated in the
legend(b).

winds in most models and an order of magnitude difference
in the AOD among models.

Below we evaluate and analyze the skills of the
NMMB/BSC-Dust to reproduce the meteorology and the
dust patterns in this prominent dust source. We also detail
the performed model experiments, which were all initialized
using 1◦×1◦ NCEP FNL analysis atmospheric data.

4.2.1 Surface meteorology and dust emission

Time series of modeled and observed dust AOD, 10 m wind
speed and 2 m temperature for the period 1–11 March at
Chicha are displayed in Fig.15. For reference, Chicha is
located in western Chad south of the Tibesti Mountains (blue
dot in Fig.1).

The first model experiment (NCEP-FNL) was initialized
with NCEP FNL analysis soil moisture and soil temperature
fields. In this case, the comparison with observations reveals

a strong AOD underestimation over the entire period, partic-
ularly on days 4, 9, and 11 (Fig.15a). AOD measurements
are not available on 10 March due to the reduced visibility as-
sociated with the heavy dust storm (Washington et al., 2006a;
Todd et al., 2007). On 11 March, the model underestimates
the AOD peak and shows a temporal delay with respect to the
observed AOD in the afternoon. As shown in Fig.15c the
model underestimates the daily maximum surface wind up
to 50 % while it usually overestimates the nighttime winds.
We also found a systematic cool temperature bias during the
day as strong as 10 K (Fig.15d), which suggests a poor soil
moisture initialization. We tested the latter hypothesis in a
second experiment (NCEP-GLDAS) by running the model
using soil initial conditions from the Global Land Data As-
similation System (GLDAS) calculated with the Noah Land
Surface Model (Ek et al., 2003).

In general, NCEP-GLDAS captures the amplitude of the
2 m temperature due to a more realistic (drier) soil moisture
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respresentation over the region for this case.Zender et al.
(2003a) already reported that NCEP soil moisture is usu-
ally too high over active dust emission regions all year long,
which hampers its use in dust models. NCEP-GLDAS under-
estimates the minimum temperature on 1, 2, 10 and 11 March
and the maximum temperature on 7 and 8 March. Since
our simulations do not explicitly account for dust radiative
effects, the high dust loading on 10 and 11 March, which
should inhibit outgoing LW radiation to reach higher levels,
may at least partly explain the observed nocturnal tempera-
ture difference. Also the slight overestimation of the max-
imum temperature on 10 March may be an indicator of the
neglected dust SW radiative cooling effect in the simulation.
The drier soil moisture in NCEP-GLDAS has consequences
over the simulated dust as it reduces the threshold wind fric-
tion velocity and as it slightly increases the maximum daily
wind speed with respect to NCEP-FNL (Fig.15c). The lat-
ter is due to an increased mixing of momentum down to the
ground driven by an enhanced surface sensible heat flux. In
comparison to NCEP-FNL, NCEP-GLDAS shows a slightly
higher dust AOD on the 9, 10 and 11 March and a signif-
icantly higher AOD on 4 March, which is closer to obser-
vations. However, the AOD underestimation remains very
strong over the study period due to the underestimated winds
in the model.

Tegen et al.(2006) performed simulations at 7 km resolu-
tion with a regional model. While the use of higher reso-
lution helped developing stronger daily winds compared to
our 25 km resolution simulation, the daily wind peaks re-
mained underestimated and nighttime wind speeds overesti-
mated with respect to observations. In their study, the use of a
Weibull probability distribution to account for sub-gridscale
variability of surface winds resulted in a better AOD agree-
ment over the 3–7 March period, but also in an unrealistically
high AOD (above 100) for the 9–11 period.

Motivated by the shortcoming of the model to reproduce
the maximum surface wind speeds at this resolution, ob-
served particularly on 5–7 and 9 March, we conducted three
additional experiments. First, we increased the horizontal-
to-vertical-flux-ratio (α) in the emission scheme by a factor
that minimized the AOD model error. In our model we fol-
low an empirical relationship by which the vertical dust flux
is proportional to the horizontal sand flux.α is the coeffi-
cient of proportionality reflecting the availability of dust in
the soil, which is calculated as the sum ofα of each soil pop-
ulation class weighed by their mass fraction in the soil (Pérez
et al., 2011). α in the model for the Bod́elé is estimated to
be 3.6× 10−6 cm−1. In this experiment we multiplyα by
1.605, the factor which gives lowest bias in comparison with
Sun photometer AOD. In two other experiments we reduced
the threshold friction velocity by 30 and 50 %, which is ap-
proximately the range of underestimation when we compare
the modeled and observed diurnal wind speeds. The results
are displayed in Fig.15b. On 4 March, the three experiments
overestimated the AOD in the morning hours. As expected,

all three experiments are generally closer to the observations
over the rest of the period. In particular, the reduction of the
threshold friction velocity by 50 % significantly helps reduc-
ing the bias of the model for the period of 5–9 March. Also,
the model emits more dust on 10 and 11 March in the three
experiments. However, the delay of the model on 11 March
hampers any definite conclusion about the modeled intensity
for this event.

In Fig. 16 we show model and satellite dust distribu-
tions centered over the Bodélé for 4, 10 and 11 March. As
expected, MODIS DB (Fig.16d) places the highest AOD
over the Bod́elé and features significant dust activity in sur-
rounding regions. The model captures qualitatively many
of the dust patterns observed from the satellite observations
(Fig. 16a). The differences among the model experiments
are mainly quantitative and there are no remarkable differ-
ences in the qualitative patterns (Fig. 16a–c). The improve-
ments achieved by increasing the value of the horizontal-to-
vertical-flux-ratio or reducing the threshold friction velocity
are also confirmed by comparison with satellite data.

The model clearly captures the shape and extent of the
main dust plume emitted from the Bodélé. On 4 March the
model reproduces the dust activity in southern Libya, north-
ern Chad and Nigeria visible in the satellite maps. The model
does not show much of the freshly emitted dust over central
Sudan - due to a southward progressing front or density cur-
rent – as clearly visible in the MSG RGB product (Fig.16e).
The significant dust load in Niger highlighted in MODIS DB
is not represented in the model. This roughly coincides with
the presence of clouds in the MSG RGB product, which sug-
gests cloud contamination in the MODIS DB AOD retrieval.
On 10 and 11 March very high AOD values are present over
the Bod́elé. On 10 March the model captures the extent of
the Bod́elé dust plume and reproduces the dust activity in
northern Niger close to the border with Chad and Libya and
at the Niger-Algeria-Mali border crossing. On 11 March,
MODIS DB and MSG RGB indicate that the dust plume ex-
tends further south as far as Cameroon and Nigeria. The
model agrees well on both days, only significantly underpre-
dicting the AOD over southwestern Niger on 11 March.

4.2.2 Bod́elé Low Level Jet

The Bod́elé Depression is dominated by the northeasterly
Harmattan winds of Northern Africa in all months except
July and August, when the intertropical convergence zone
moves sufficiently far north to bring light and variable winds
over the Bod́elé (Washington et al., 2006a). These northeast-
erly winds are likely to be accelerated between the Tibesti
and Ennedi Massifs (Koren and Kaufman, 2004), supporting
a pronounced easterly LLJ, evident also in the wind data from
NCEP reanalysis with maximum wind speeds at 925 hPa
overlying the Bod́elé area (Washington and Todd, 2005; Todd
et al., 2008b) (not shown). Usually, this LLJ feature is
clearly present until May, when it is partly superimposed and
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Fig. 16.Four hour average of model AOD for the 3 experiments: NCEP-FNL(a), NCEP-GLDAS(b), NCEP-GLDAS with reduced threshold
friction velocity (c). MODIS DB AOD (d) and MSG dust image at 12:00 UTC(e) on 4, 10, 11 March 2005 are displayed for the limited
regional domain (5◦ N to 27◦ N and 0◦ W to 30◦ E).
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Fig. 17.Time-height profile of wind speed (m s−1) at Chicha as de-
rived from PIBAL balloon data(a), NCEP analysis 1◦×1◦ data(b)
and NMMB/BSC-Dust initialized with NCEP analysis and GLDAS
soil conditions(c) for the period from 1–11 March 2005. Note that
height units are either given inm or hPa.

weakened by the African Easterly Jet over the Sahel. It is ab-
sent to the west and weakens to the south. It disappears south
of 10◦ N and north of 22◦ N as described byWashington and
Todd(2005). During the BoDEx campaign, the Bodélé LLJ
with its pronounced diurnal cycle was evident under dusty
as well as dust-free conditions (Washington et al., 2006a).
Wind speeds are at maximum in the midmorning hours with
calm conditions at night when the vertical turbulent flux is at
minimum due to absent surface heating. Although wind was
peaking at 10 m s−1 at dust-free days, it was not high enough
to cause dust deflation. At dusty days, the amplitude of the
diurnal cycle was similar to dust-free days but with winds
speeds peaking well above 14 m s−1. According toWashing-
ton et al.(2006a), the corresponding wind speed threshold
coinciding with deflation, suspension and saltation of dust is
12 m s−1. Winds in excess of 12 m s−1 were observed during
the Bod́elé dust outbreak between 9–12 March.

In Figure17, the temporal evolution of the vertical wind
profile over Chicha is shown as measured from PIBAL (a),
derived from NCEP FNL analysis (b) and simulated from the
model with NCEP FNL atmospheric analysis and GLDAS
soil conditions (c). While NCEP reanalysis data intrinsi-
cally underestimates the surface wind during daytime hours
by more than 60 % on occasion (Koren and Kaufman, 2004;
Todd et al., 2008b), the NCEP analysis underestimation of
the low level wind is still more than 50 % (see Fig.17b).
The poor resolution of the diurnal wind cycle is probably due
to difficulties of the NCEP model to resolve smaller bound-
ary layer features at the given vertical and spatial resolution.
Taking into account the clear underestimation of the vertical
NCEP wind field, the model reproduces the observed wind
speeds surprisingly well. Although lower, the model peak
winds of approximately 20 m s−1 are much closer to the ob-
served wind maxima which reach wind speeds in excess of
24 m s−1 at night. The general pattern – with highest wind
speeds observed on 4 March and during the Bodélé dust out-
break – is well reproduced with some underestimation on
6 and 7 March. The midmorning Bodélé LLJ is captured
not only in its vertical extension but also regarding the diur-
nal temporal evolution. However, as shown at the surface,
the model misses the peak wind speeds mostly on 5–7 and
9 March. Apart from the weaker LLJ at those days, the
PIBAL data also suggest that the potential momentum pro-
vided by the LLJ was not transported down to the surface.
However, it is effectively mixed down by turbulence espe-
cially on 4, 10 and 11 March, consistent with modeled sur-
face wind speeds (compare Fig.16). At 25 km resolution,
the model reproduces the typical LLJ over the Bodélé and
satisfactorily simulates the diurnal wind cycle at the surface,
although it underestimates the peak wind velocities at days
with moderate average wind speeds.

5 Conclusions

In the companion paper (Pérez et al., 2011), we described
the new NMMB/BSC-Dust model and we presented a gen-
eral evaluation of the model at global and regional scales for
years 2000 and 2006, respectively. In this paper we have
evaluated and analyzed in detail the behavior of the model
making use of the data provided by two of the most important
and recent dust experimental campaigns in Northern Africa.
All the simulations presented in this contribution were run at
25 km resolution, which is expected to be the standard model
resolution for dust forecasting at BSC.

For the SAMUM-1 campaign investigated in this study,
we examined the model’s capability to reproduce the dust
spatial and vertical distribution, and the dust size spectra at
different height levels. For the second campaign investigated
in this study, BoDEx, we focused on the model behavior to
represent the meteorology and the dust patterns in the Bodélé
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Depression, which is probably the most prolific dust source
on Earth.

During the SAMUM-1 period (16–21 May 2006), the
model describes fairly well the general dust patterns in
Northern Africa. On 19 May, the strong dust deflation trig-
gered by deep moist convection developed over Mali and
Mauritania is, to a large extent, not reproduced by the model.
The transport path towards Europe and the Mediterranean is
in good qualitative agreement particularly with MODIS DB.
In terms of dust deflation, inefficiently active dust sources
are identified over eastern Mauritania and portions of central
Niger, even though the surface winds seem to be higher than
the threshold friction velocity required for the initiation of
the dust emission process in the model. As discussed inPérez
et al.(2011), the topographic preferential source map used in
the model does not reflect the Mali/Mauritania border source
leading to underestimation of the emissions in that region. A
more comprehensive analysis regarding the dust sources in
the model will be the object of a forthcoming study. Close to
the Sahel, disagreement between OMI and MODIS DB AOD
hampers the validation of the model. OMI generally tends to
provide higher AOD values than MODIS DB.

The AERONET comparison during the SAMUM-1 pe-
riod reveals that the model reproduces the dust quantita-
tively well close to the sources. For this period, we found a
weak daily cycle close to dust sources (Ouarzazate, Zagora),
rather constant values in the Sahel (Banizoumbou) and north
of the main sources regions (Tamanrasset), and dust long-
range transport to Europe (Palencia) and the Mediterranean
(Lampedusa) associated with distinguished dust episodes.
The comparison with lidars revealed model deficiencies in
the vertical distribution. We found temporal disagreement in
two cases, strong overestimation in one case and mismatch
regarding the MH in another four cases, particularly over
Ouarzazate on 17 and 18 May. The latter is related with
the PBL simulated by the model, which shows equal mis-
match when comparing the observed WV mixing ratio pro-
file (radiosonde data) and the modeled profile of the specific
humidity. The difficult orographic situation over Ouarzazate
and its proximity to downstream sources may introduce con-
siderable modeling errors. In this context we would like to
stress that the 3-D atmospheric variables of the model act
very sensitively upon changes in the initial meteorology data
which hence are an additional source of uncertainty.

The particle number size distribution is well captured by
the model, although large particles remain underestimated.
Nonetheless, the simulated size spectra agrees well with the
observations, at the surface as well as at 3 and 5 km altitude.

We performed several model experiments for the BoDEx
period between 1–11 March 2005. We showed the impor-
tance of accurate initial soil moisture conditions in the model
to reproduce the amplitude of the 2 m temperature and to bet-
ter represent the intensity of the diurnal winds in the model.
NCEP FNL analysis underestimates the soil water content
which led to a substantial cold bias of up to 10 K. When us-

ing GLDAS soil moisture data to initialize the model, the
diurnal surface temperature range is consistently reproduced
with a positive effect upon dust emission over the Bodélé.

At the working resolution of 25 km, the model underesti-
mates up to 50 % the daily maximum wind speed and thus
significantly underestimates the dust emission and AOD.
However, the persistent dust source activation period peaking
over the Bod́elé on 10 and 11 March is simultaneously shown
by the model and the satellite retrievals. Additional experi-
ments with an increased horizontal-to-vertical-flux-ratio or a
reduction of the threshold friction velocity up to 50 % signifi-
cantly improved the skills of the model. We restricted the soil
moisture analysis to the BoDEx period, since the SAMUM-1
field site in Morocco is not directly located within the main
source region which would complicate the attribution of po-
tential changes in the simulated spatio-temporal dust distri-
bution. The applied initial soil data may also be subject to
annual changes or updates which hamper their interannual
comparability.

The wind speed over the Bodélé was evaluated with spe-
cific regard to the typical wind pattern which features a per-
sistent diurnal cycle with peak wind velocity between 0.5 m
and 1 km above ground in the late morning hours: the Bodélé
LLJ which was measured during BoDEx with the PIBAL
sonde. NMMB/BSC-Dust succeeds to place the maximum
wind field correctly in terms of vertical extension and tem-
poral development. Highest wind speeds measured with the
PIBAL sonde on 4 and 9–11 March correspond well with
maximum wind speeds simulated by the model, showing that
the model reproduces the Bodélé LLJ.
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