
 

   
Abstract⎯The performance of sparsely-connected 

associative memories built from sets of perceptrons 
configured in a ring structure is investigated using different 
patterns of connectivity. Architectures based on uniform and 
linear distributions of restricted maximum connection length 
are compared to those based on Gaussian distributions and to 
networks created by progressively rewiring a locally-
connected network. It is found that while all four 
architectures are capable of good pattern-completion 
performance in sparse networks, the Gaussian, restricted-
linear and restricted-uniform architectures require lower 
mean wiring lengths to achieve the same results. It is shown 
that in order to achieve good pattern-completion at low wiring 
costs, connectivity should be localized, though not completely 
local, and that distal connections are not necessary. 

Index Terms⎯Associative memory, sparse connectivity, 
high performance, patterns of connectivity  

I. INTRODUCTION 

Associative memory models can be constructed from a 
lattice of units in which each node is connected to every 
other. In biological systems, however, such as the 
mammalian cortex, connectivity is relatively sparse, with 
each node connecting to only a small subset of other nodes 
[1]. In sparsely-connected associative memory models, 
loosely based on this notion, it is found that the pattern of 
connectivity of the network has a bearing on its 
performance [2]. In the extreme case in which the network 
is restricted to purely local connections, in which each node 
is connected to its k nearest neighbours, pattern-completion 
performance is relatively poor. In a randomly-connected 
network, on the other hand, in which the k connections to 
each node have an equal probability of being made to any 
other node in the network, performance is significantly 
improved. 

Yet this improvement in performance comes at a cost: 
the mean wiring length of the randomly-connected network 
is considerably higher than that of its locally-connected 
counterpart [3]. Clearly, the ‘length’ of wiring used in 
computer-based simulations is of little interest or import, 
but in physical systems, whether electronic or biological, 
wiring costs are likely to be an important  issue. Studies of 
the rat visual cortex for example, have revealed efficient 
wiring strategies in which the majority of the connections 
are relatively short range, with the probability of any two 
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neurons in the same area being connected, falling off in a 
Gaussian-like manner [4]. 

In the present study we are concerned with an 
examination of different connection architectures in 
sparsely-connected associative memory models in order to 
assess their pattern-completion ability, and at the same time 
to minimise the inherent wiring costs of the network. The 
starting point for our study is the seminal work by Watts 
and Strogatz  [5], who showed that the small-world class of 
sparsely-connected networks, in which the majority of 
nodes are connected to their nearest neighbours, but in 
which a proportion of connections are distal, exhibited 
interesting properties. In such networks, the degree of 
clustering (the extent to which nodes connected to any 
given node are also connected to each other) remains 
almost as high as that of a locally-connected network, while 
the distal connections of each node are sufficient to 
maintain a relatively low mean minimum path length across 
the network. 

Inspired by this work, Bohland and Menai [2], and more 
recently Davey et al. [6] have studied small-world effects in 
associative memory models by  introducing distal 
connections into an otherwise locally-connected network. 
In both cases, a one-dimensional lattice in the form of a 
ring was established as a sparsely-connected associative 
memory, and its performance was measured as the local 
afferent connections were progressively rewired to 
randomly selected nodes. Fig. 1 illustrates this general 
process.  It was found that the performance of such 
networks steadily increased with rewiring, up to the point 
where 40-50% of local connections had been rewired. 
Beyond this point, further rewiring had little additional 
effect on performance. 

 

 
Fig. 1.  A network of 25 units arranged in a ring with four connections per 
node.  Left: a locally connected network, centre: showing the effect of  
10% rewiring, and right: 100% rewiring.  Diagrams generated with the 
Pajek package [7]. 

 
Fig. 2 shows the connectivity distribution of a network of 

500 units, each with 50 connections, at three stages of 
rewiring: 0%, in which all connections are local, 50%, 
exhibiting a combination of local and random connections, 
and 100%, showing a randomly-connected network. 
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Fig. 2.  An illustration of the connectivity profile of a progressively-
rewired network of 500 units, each with 50 afferent connections, at three 
stages of rewiring: 0% rewiring, in which all connections are local, with 
connection distances less than or equal to 25; 50% rewiring in which 
approximately half of the connections to each unit are local; and 100% 
rewiring which equates to a random network. 

 
In a recent study [3], we have examined the effect of 

using alternative patterns of connectivity based on 
Gaussian and exponential distributions of connections to 
each node, and compared these to the progressively-rewired 
network illustrated above. It was found that the pattern-
completion performance of all three network types was 
comparable, but that the networks based on Gaussian and 
exponential distributions of connectivity exhibited much 
lower mean wiring lengths than their progressively-rewired 
counterpart. This performance differential was much more 
marked in networks of sparser connectivity. 

In the present study we compare the performance of two 
further network architectures, using the results for the 
Gaussian and progressively-rewired networks as a 
benchmark. 

II. NETWORK ARCHITECTURE 
The two architectures forming the subject of this study 

are based on uniform and linear distributions of 
connections to each node in which the maximum scope of 
the connections to any given unit is restricted to a fraction 
of the maximum connection length afforded by the network 
structure. It is hoped that by limiting the connection length 
in this way we might achieve good pattern-completion 
performance without incurring high wiring costs. 

In the case of the restricted-uniform architecture, the 
probability of finding a connection at a particular distance 
from any given node is the same for all connection 
distances up to a maximum specified connection length, 
expressed as a percentage of the greatest connection length 
afforded by the network (see Fig. 3). Thus a restricted-
uniform architecture with a connection limit of 50% will 
have a uniform probability of connection lengths up to a 
maximum value of N/4, where N is the total number of 
units in the network, since there are N/2 connections on 
either side of any node around the ring, and thus the 
maximum connection length afforded by the network is 
also N/2. The mean wiring length of such a network would 
simply be half of the maximum permitted connection 
length, or N/8. 

 

 
Fig. 3.  An illustration of the connectivity profiles of the restricted-
uniform and restricted-linear distributions, both set to a maximum 
permitted connection distance of 50% of the greatest connection distance 
afforded by the network, in a network with 500 units and 50 afferent 
connections per unit. 

 
In the case of the restricted-linear architecture, the 

probability of connection decreases linearly with distance 
from the host node, reaching zero at the maximum 
connection length. Again, the connection length maximum 
is expressed as a percentage of the greatest connection 
distance afforded by the network. Fig. 3 shows the 
connectivity distribution of a restricted-linear network with 
a connection limit of 50%. 

When testing these networks, measurements of pattern-
completion performance and mean wiring length were 
taken for a range of different values of the maximum 
permitted connection length, and the results compared to 
those of networks based on varying width Gaussian 
distributions, and with progressively-rewired networks of 
differing degrees of rewiring. 

III. NETWORK DYNAMICS AND TRAINING 
A network of perceptrons is arranged in a one-

dimensional ring structure, and is trained on sets of random 
patterns of length N, where N is the number of units in the 
network. The input of each unit is connected to the outputs 
of k other units, where the value of k is the same for each 
node. The networks used in the present studies have no 
symmetric weight requirement [8], and the recall process 
uses asynchronous random order updates, in which  the 
local field of unit i is given by:  

 
hi = wijS j

j≠i
∑

 
where wij is the weight on the connection from unit j to 

unit i, and S )1( ±=  is the current state. The dynamics of 

the network is given by the standard update:    )('
ii hS Θ= , 

where Θ  is the Heaviside function. Network training is 
based on the perceptron training rule [9], designed to drive 
the local fields of each unit the correct side of the learning 
threshold, T, for all the training patterns. Earlier work has 
established that a learning threshold of T = 10 gives good 
results [10]. 

IV. PERFORMANCE MEASUREMENT 
Network performance is determined by measuring the 

Effective Capacity [11], and results have been verified 
against the mean radius of the basins of attraction [12] as 
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an alternative performance indicator. Effective Capacity is 
a measure of the number of patterns which a network can 
restore under a specific set of conditions. The network is 
first trained on a set of random test patterns. Once training 
is complete, the patterns are each randomly degraded by 
flipping 30% of their bits, before presenting them to the 
network. After convergence is complete, a calculation is 
made of the degree of overlap between the output of the 
network, and the original learned pattern. This is repeated 
for each pattern in the set, and a mean overlap for the 
whole pattern set is calculated. The Effective Capacity of 
the network is the highest pattern loading at which this 
mean overlap is 95% or greater. If a degraded pattern, by 
chance, is closer to another of the stored memories in the 
network, this degraded pattern is rejected, and another 
generated. This measure affords certain advantages over the 
radius of the basins of attraction, not the least of which is 
its lack of upper bound, and its proportionality to the 
underlying maximum theoretical capacity of a network for 
large networks [11] [13]. 

In physical systems, whether biological or electronic, the 
length of wiring between nodes will be an important issue, 
and we take account of this in our measurements of 
network performance by plotting the network’s pattern 
restoring capability, as measured by Effective Capacity, 
against the mean wiring length of the network. From such 
graphs it will immediately be clear which networks achieve 
the best pattern-completion performance at the lowest mean 
wiring length.  

V. RESULTS AND DISCUSSION 

A. Networks with 5000 units and 50 afferent connections 
A network of 5000 units, each with 50 afferent 

connections was set up as a one-dimensional lattice, and 
trained on sets of random patterns using perceptron training 
rules. Measurements of Effective Capacity were made as 
the network was progressively rewired. The network was 
then rebuilt with a Gaussian connectivity architecture, and 
measurements of Effective Capacity were made for 
progressively tighter Gaussian distributions. This process 
was then repeated for the two architectures under test: 
namely the linear and the uniform distributions of restricted 
scope. In both cases, measurements of Effective Capacity 
were made as the scope of connectivity was increased in 
stages from a starting point of 2% of the maximum 
connection distance of the network, to 100%. 

Fig. 4 shows a plot of Effective Capacity against mean 
wiring length for the four networks described. As may be 
seen, all four architectures are capable of attaining the same 
maximum value of Effective Capacity of 23. But the 
Gaussian, the restricted-uniform and restricted-linear 
distributions considerably outperform the progressively-
rewired network, since they reach this value at a much 
lower wiring length. The results for these three networks 
track each other very closely indeed. The lowest point on 
the graph, corresponding to an Effective Capacity of just 
5.9, represents a completely local network (this is the 
progressively-rewired network, at a stage of zero rewiring). 
It also has the lowest mean wiring length of just 13. 
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Fig. 4.  Effective Capacity against wiring length for a network of 5000 
units, each with 50 afferent connections (connectivity 1%). Plots are 
shown for the Gaussian architecture, the progressively-rewired 
architecture, and the restricted uniform and restricted-linear architectures. 
Results are averages over 4 runs for each connectivity distribution. 

 
A set of comparable measurements of the mean radius of 

the basins of attraction, R, were made on these same 
networks to provide a check on our findings. Plots of R 
against mean wiring length revealed a similar performance 
curve for the four networks to that of Fig. 4, with the 
Gaussian, the restricted-uniform and restricted-linear 
distributions tracking each other very closely, and 
considerably outperforming the progressively-rewired 
network. 

To shed light on the pattern-completion performance of 
the four architectures, we examine the connectivity 
distribution profile of each network at a point 
corresponding to the same value of Effective Capacity in 
the graph of Fig. 4. The value chosen is an Effective 
Capacity of 20 (since it corresponds to a horizontal guide 
line on our graph, though other values are equally valid), 
and Fig. 5a depicts the connectivity profile of the four 
architectures at this point. Fig. 5b shows a detail from Fig. 
5a. From this we can see the considerable similarity in 
shape of the Gaussian and restricted-linear distributions. 
This would explain their apparently identical pattern-
completion performance. In the case of the profile of the 
restricted-uniform network, its shape is clearly quite 
different from that of the Gaussian and restricted-linear 
profiles, and in view of this it is surprising to see how 
closely its pattern-completion performance mirrors that of 
its Gaussian and restricted-linear counterparts. 

Considering these three architectures together, an 
important fact emerges. In this large sparsely-connected 
network of 5000 units with just 50 afferent connections per 
node, the Gaussian, the restricted-uniform and the 
restricted-linear architectures all achieve the same very 
respectable Effective Capacity of 20 for a very economical 
mean wiring length of about 70. And yet they do so with 
little or no distal connections. 

In this respect, the restricted-uniform and restricted-
linear architectures are both particularly worthy of note. 
They have a pattern-completion performance closely 
matching that of their Gaussian counterpart, but their 
connectivity distributions are subject to a very sharply 
defined connection length cut-off. At our point of 
equivalent Effective Capacity of 20, for example, each 
node of the restricted-uniform network is connected to 
neighbours no further away than 6% of the full connection 



 

length afforded by the network. In other words the 50 
afferent connections of each node are connected to nodes 
no further than 160 units away in a network in which there 
are 2500 possible connection points either side of the 
source node, sited around the network ring. This is clearly 
very far from being a random graph, and yet it achieves 
excellent pattern-completion performance, as measured by 
Effective Capacity, and it does so at a low wiring cost. The 
figures for the restricted-linear network are 8%, and 200 
units maximum distance. 

 

 
Fig. 5a.  Connectivity histogram for a network of 5000 units, each with 50 
afferent connections, comparing four architectures at the point where 
Effective Capacity = 20: Gaussian, progressively-rewired, restricted-
uniform and restricted-linear. 

 

 
Fig. 5b.  Detail from Fig. 5a. Connectivity histogram for a network of 
5000 units, each with 50 afferent connections, comparing four 
architectures at the point where Effective Capacity = 20: Gaussian, 
progressively-rewired, restricted-uniform and restricted-linear. 
 

Clearly there seems to be little need for the Gaussian’s 
asymptotic tail in order to achieve good pattern-completion 
performance of the network at a low wiring cost. Indeed 
there appears to be no need for any distal connections 
whatsoever, from this perspective. 
 

B. Networks with 500 units and 50 afferent connections 
In order to see how performance is affected by 

connectivity levels we have made a similar set of 
measurements of Effective Capacity for a network of 500 
units with 50 afferent connections per unit: ten times the 
connectivity ratio of the previous networks. The results are 
represented in Fig. 6, and are broadly similar to those of 
Fig. 4. The performance of the restricted-linear network 
again closely follows that of the Gaussian. That of the 
restricted-uniform network is marginally poorer than the 
Gaussian, while that of the progressively-rewired network 

shows a considerable relative improvement. 
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Fig. 6.  Effective Capacity against wiring length for a network of 500 
units, each with 50 afferent connections (10% connectivity). Plots are 
shown for the Gaussian architecture, the progressively-rewired 
architecture, and the restricted-uniform and restricted-linear architectures. 
Results are averages over 50 runs for each connectivity distribution. 

 
If we take points of similar Effective Capacity from this 

graph, we can again compare connectivity distributions. 
We will use the points corresponding to an Effective 
Capacity close to 16 (16.1 on the Gaussian network, 15.9 
on the progressively-rewired network, 16.1 on the 
restricted-uniform network, and 15.7 on the restricted-
linear network). These points have corresponding mean 
wiring lengths of 33.8, 43.3, 38.0 and 33.7 respectively. 
The connectivity distributions for these architectures are 
shown in Fig. 7. The close similarity of the Gaussian and 
the restricted-linear profiles again makes clear why these 
two distributions share the same pattern-completion 
performance. 

 

 
Fig. 7.  Connectivity histogram for a network of 500 units, each with 50 
afferent connections (10% connectivity), comparing the four architectures 
at the point where Effective Capacity is close to 16: Gaussian, 
progressively-rewired, restricted-uniform and restricted-linear. 

 
Looking at the connectivity profile of the progressively-

rewired network we can see that its shape is closer to those 
of the Gaussian and restricted-linear architectures than it 
was in the 5000 unit network with 1% connectivity, shown 
in Fig. 5. This rapprochement of the rewired connectivity 
profile to those of the other three is reflected in the 
improved relative performance of the rewired network, 
though it is still less efficient than the other networks in 
terms of high Effective Capacity for a low wiring length. 

Turning now to the restricted-uniform network, there 
appears to be a small degradation in performance between 
the networks of 1% connectivity and those of 10%, yet the 
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profile of this connectivity distribution, relative to the 
Gaussian profile appears to be the same. If it were 
necessary to explain the change in performance, we might 
be tempted to suggest that the effect of the lower number of 
very short distance connections and of the larger number of 
longer connections must simply be more noticeable in 
smaller or more fully connected networks. This notion is 
supported by additional tests on larger networks with 
50,000 units with 50 connections per node, in which the 
restricted-uniform network performed identically to the 
Gaussian and restricted-linear networks, but in which the 
progressively-rewired network performed poorest of all, 
with a mean wiring length more than 30 times that of the 
other networks. 

It now seems clear that in order to achieve good pattern-
completion in sparsely-connected networks, at low wiring 
cost, the precise connectivity distribution of the network 
does not appear to be critical. It is essential, however, that 
connectivity is not purely local, but that it is localised. And 
the importance of this increases in sparser networks. 

VI. CONCLUSION 
We have previously reported that Gaussian and 

Exponential connectivity distributions exhibit significantly 
better pattern-completion performance at low wiring costs 
than networks formed by progressively rewiring a locally-
connected sparse network. In the present paper we have 
used the Gaussian and progressive rewiring results as a 
benchmark against which to compare the performance of 
two networks in which the maximum wiring length is 
subject to an upper limit: the restricted-uniform and 
restricted-linear connectivity distributions. Tests were 
carried out at connectivity levels of 1% and 10%, using 
networks of 5000 units with 50 afferent connections per 
node, and of 500 units, again with 50 afferent connections 
per node. 

It was found that in networks of  both 1% and 10% 
connectivity, the restricted-linear distribution performed 
identically to that of the Gaussian, with high values of 
Effective Capacity and short mean wiring lengths. The 
network with restricted-uniform connectivity achieved a 
similar performance in the 1% connectivity network, and 
displayed a small decrease in relative performance in the 
10% connectivity network. This contrasts strongly with the 
performance of the progressively-rewired network, which 
shows the opposite tendency. Its performance is relatively 
poor, though improves considerably on moving to the less-
sparse network: a fact which can be understood in terms of 
its change in profile between these two networks relative to 
the other distributions.  

One very interesting result comes from an examination 
of the performance of the restricted-linear connectivity 
network. Firstly, this gives an apparently identical pattern-
completion performance to the Gaussian distribution, in 
both the low and the higher connectivity networks. 
Importantly, it achieves this without any distal connections 
whatsoever. In the 1% connectivity example sited above, it 
achieves an Effective Capacity of 20 at a mean wiring 
length of 67.0, when connection lengths between nodes are 
limited to a maximum of just 8% of the maximum 
connection distance afforded by the network. In other 

words, even in the relatively demanding case of a network 
with only 1% total connectivity, it has excellent pattern-
completion performance at a low wiring cost, and yet has 
no distal connections whatsoever. 

It is thus not necessary for an associative memory model 
to include distal connections in order to achieve good 
pattern-completion performance. And when performance 
takes into account wiring costs, networks with few distal 
connections, or none at all achieve the best results. 

Our results also suggest that the precise pattern of 
connectivity may be of little importance when 
implementing sparsely-connected associative memories. In 
order to achieve good pattern-completion with a low wiring 
cost, the chief consideration is that the scope of connections 
should be strictly limited (though not local). The precise 
extent of this limit varies with connectivity, and possibly 
also with network size; and future work will be undertaken 
to establish this relationship. We will also explore the effect 
of connectivity patterns on network convergence times. 
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