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ABSTRACT 

Finding efficient patterns of connectivity in sparse 
associative memories is a difficult problem.  It is, however, one 
that real neuronal networks, such as the mammalian cortex, 
must have solved.  We have investigated evolved 
computational models of sparsely connected associative 
memories and found that some patterns of connectivity produce 
both good performance and efficient use of resources. This 
could illuminate how real biological systems solve the problem.  
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INTRODUCTION 

In recent years much has been discovered about the pattern of 
connectivity of the neurons in real neuronal networks.  A good 
deal of this research has explored the way that specific neuronal 
circuits operate and how functional areas in the brain are 
connected.  Another approach, however, has been to examine 
the connectivity matrix at the level of individual neurons or of 
functional areas, and to look for patterns of connectivity 
familiar in other contexts.   This ties in with the large amount of 
current interest in small-world and scale-free networks.  In this 
paper we look at this second issue in the context of associative 
memory networks.  We summarize some of what is currently 
known about the connectivity matrix in real neuronal systems 
and show how the search for optimal patterns of connectivity in 
artificial associative memory models may shed light on some of 

the issues that real neuronal systems must deal with.   We use a 
genetic algorithm (GA) to evolve efficient patterns of 
connectivity.   Our major finding is that a Gaussian-like 
distribution of connection lengths gives networks with good 
performance and minimal wiring. 

CONNECTION STRATEGIES 
The connectivity in real neuronal systems, such as the 
mammalian cortex, is quite different from that found in most 
artificial neural networks.   Real neuronal systems have vast 
numbers of neurons connected to only a fraction of the other 
neurons.  For example the human cortex has about 1011 neurons 
with each connected to, on average, 10,000 other neurons.  In 
such sparse networks the connection strategy employed has to 
balance two competing goals.  Firstly the total amount of 
neuronal fiber should be minimized, both because it is 
biologically expensive and because increasing length implies 
increasing difficulty in finding physical paths for the fiber, in 
the brain.  Secondly, however, information needs to travel 
efficiently throughout the system for fast global computation to 
take place.  The connectivity satisfying both goals is therefore 
highly likely to be have been optimized by evolution and will 
be far from random.   

Non-Random Graphs 
Before looking at some of what is currently known about the 
actual connectivity strategy employed in real systems, we 
examine what is known about connection graphs in general. 
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There is a long history of research into the properties of random 
graphs, graphs in which the connectivity matrix is randomly 
configured, often with a specific probability of connectivity 
(Bollobas, 2001).  Recently, however, there has been an 
explosion of interest in networks with non-random connectivity 
graphs, such as small-world and scale-free networks.   
The seminal paper of Watts and Strogatz (Watts, and Strogatz, 
1998) formalised the notion of a small world network.  The 
idea was inspired by work in the Social Sciences showing that 
there appeared to be only roughly 6 degrees of separation (by 
acquaintance) between any two people in North America 
(Milgram, 1967); this despite the fact that most people have a 
cliquish group of acquaintances, in the sense that any two of 
their acquaintances are also likely to be acquaintances.   The 
Small World Effect is therefore characterised as a network with 
short path lengths (the minimum number of arc traversals to get 
from one node to another), between any pair of nodes.  The 
simplest sort of network that displays this characteristic is a 
random network.  In a regular random network of N nodes, with 
each node having k connections, the number of first order 
acquaintances is k, second order is about k2, third order k3 and 
so on.  So in general the number of degrees of separation, D, to 
reach all N nodes in the network is given by setting 

! 

k
D

= N , 

which gives 

! 

D =
lnN

ln k
, so that D increases logarithmically with 

the size of the network – the small world effect.  However, 
random networks are not cliquish and require a relatively large 
amount of wiring.  Watts and Strogatz gave a mechanism for 
constructing networks that showed the small world effect, from 
local networks.  Their idea was to begin with a local network 
and then to rewire a small proportion, p, of the connections to 
random targets. Even at very low levels of rewiring, the mean 
path length between any pair of nodes drops to a value 
comparable to that of a random network; the rewired 
connections act as shortcuts through the network.  We refer to 
networks constructed in this way as small-world networks. 
The cliquishness of a network can be formalised by its 
clustering coefficient, the average fraction of pairs of 
neighbours of a node, which are also neighbours.  Networks 
that show the small world effect, but which also have high 
clustering coefficients have been shown to be remarkably 
common.  Some examples include (Newman, 2000): networks 
of movie actors, where neighbours are defined by having been 
in the same movie, power grid networks, the Internet and from 
our point of view most interestingly, real neuronal networks. 
Other interesting networks that show the small world effect are 
so called Scale-Free networks (Barabasi, Albert, and Leong, 
1999; Keller, 2005).  These are network models where the 
distribution of connections follows a power law (that is the 
frequency of nodes with connectivity k falls off as 

! 

k
"# ).  This 

degree distribution is surprisingly close to that of the 
distribution of links in the World Wide Web.  Some nodes end 
up with very high levels of connectivity, and act as network 
hubs, that facilitate short path lengths.  Such networks can arise 
due to a preferential growth process in which nodes that are 
already well connected are favoured by new connections. 

Connectivity in Real Neuronal Networks 
The neuronal network of the nematode worm C. Elegans has 
been completely mapped.  It consists of 302 neurons and 
around 1000 connections   A recent analysis (Cherniak, 1994) 
of the optimality of the positioning of the neurons (for the given 
connectivity and physical position of actuators and sensors in 
the worm) with respect to the total length of wiring (the sum of 
the length of neuronal fibre) has shown that no better 
positioning can be found by exhaustive search; a remarkable 
triumph for evolutionary optimisation.  The network also 
displays short path lengths, an average of 2.65 steps between 
any two neurons, and a relatively high clustering coefficient of 
0.28 (as against 0.05 in an equivalent random network).  In 
(Shefi, Golding, Segev, Ben-Jacob, and Ayali2, 2002) cultured 
in-vitro neuronal networks are studied.  They vary in size from 
N = 104 to N = 240.  Once again the networks show the small 
world effect and are relatively highly clustered. 
Larger neuronal networks found in more sophisticated animals 
are not as well understood.  Nonetheless several studies have 
been undertaken into the positioning and connectivity of the 
neuronal systems.  Analysis of the mammalian cortex has been 
undertaken at two levels of granularity, firstly at the level of the 
positioning and connectivity of distinct functional areas such as 
V1 or V2 in the visual cortex.  And secondly at the level of 
individual neurons.  In the first case it has been shown once 
again that positioning is highly optimised to minimise 
connection length (Cherniak, Mokhtarzada, Rodriguez-Esteban, 
and Changizi, 2004; Hilgetag, and Kaiser, 2004; Laughlin, and 
Sejnowski, 2003).  It has also been shown that the connectivity 
gives both a small world effect and a high clustering coefficient 
(Sporns, and Zwi, 2004).  The question of whether these 
neuronal systems show the characteristics of scale-free 
networks is still open, with opinions differing (Eguiluz, 
Chialvo, Cecchi, Baliki, and Apkarian, 2005; Sporns et al., 
2004). 
At the level of individual neurons the connectivity pattern is so 
complex that only generalised statistics can be produced.  
These show that in the mouse cortex, for example, there are 
about 1.6 million neurons, with each connected to, on average, 
about 8000 other neurons (Braitenberg, and Schüz, 1998).  The 
density of connectivity is impressive, with approximately a 
billion synapses in each cubic millimetre of cortex.  Most of the 
connections are local, with the probability of any two neurons 
in the same area being connected falling off in a Gaussian-like 
manner (Hellwig, 2000), see Figure 1.  It is thought extremely 
unlikely that these intra-area connections are highly structured 
(Braitenberg et al., 1998) as they are added at the rate of about 
40,000 a second as the cortex matures.  Cortical connectivity is 
of particular interest, as it is likely that one major function of 
the cortex is to act as a very large associative memory 
(Braitenberg et al., 1998). 
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ASSOCIATIVE MEMORY MODEL 
In the work presented here we investigate how the connectivity 
in a simulated associative memory is affected by the spatial 
organization of the connections.  The model is a variant of the 
standard Hopfield network.  The networks are sparse, with 400 
units, each with incoming connections from 20 other units.  
Each unit is a simple perceptron, which fires when its net input 
is greater than zero.  The connectivity is not required to be 
symmetric, and in fact it is unlikely that any two units will be 
connected in both directions.  The networks are presented with 
training sets of random bipolar (± 1) 400-ary vectors to learn.  
The training is done using simple perceptron learning, an 
iterative procedure guaranteed to converge on a solution if one 
exists.  The network dynamics we employ is random 
asynchronous updates without replacement.  A full description 
of the technical aspects of the network can be found in (Davey, 
and Adams, 2004).   
 

 
 
Figure 1:  The probability of a connection between any pair of 
neurons in layer 3 of the rat visual cortex against cell 
separation.  The horizontal axis is marked in µm. Taken from 
(Hellwig, 2000). 
 
Such a network can store up to 2k patterns (where k is the 
number of incoming connections to each unit), and this figure is 
independent of the specific pattern of connectivity (Davey, 
Calcraft, and Adams, 2005).  However, storing patterns is not 
the only functional requirement of an associative memory.  The 
other requirement is that the patterns in the training set should 
be recoverable from noisy versions of themselves: they should 
be attractors in the state space of the network.  As the results 
presented later show, the pattern of connectivity has a major 
bearing on this aspect of network performance.    

Connectivity in the Model 
In our model we need the units to have a geometry, so that 
there is a distance defined between any pair of units.  We take 
the simplest approach (as in the original small world model 
(Watts et al., 1998) and place the units in a 1-D ring.  The 
distance between any two nodes on the ring is simply the 

minimal number of steps along the ring to get from one to the 
other. 
As already explained there are 2 extremes of connectivity in 
such a network: local-only connections and random 
connectivity – see Figure 2. 
 

 
 
Figure 2:  Three types of connectivity, left a locally connected 
network, center a locally connected network with some random 
connections and right a randomly connected network. 
 

THE EXPERIMENTS 
As described earlier our aim in the experiments presented in 
this section is to evolve networks with efficient wiring 
schemes.   We present two approaches.  In the first experiment 
the genetic algorithm is given the full connection matrix of the 
network as the genome, and is therefore free to find any good 
connection matrix.  However, in this case the search space is 
enormous, which motivates the approach taken in our second 
experiment where the search space is much more constrained.   
 
Fitness Function 
We are interested in how well the networks trained using the 
perceptron style learning rule, described above, perform as 
associative memories.  The capacity of such networks is 
determined by the number of incoming connections (k) that 
each perceptron receives.  For random pattern sets a perceptron 
can learn up to 2k patterns (Hertz, Krogh, and Palmer, 1991).  
Assuming regular connectivity graphs (as is the case here) the 
capacity will be determined by the level of dilution and not the 
specific pattern of connections, and hence is not subject to 
empirical investigation.  These networks are often referred to as 
high capacity associative memories since, with full 
connectivity, the capacity is 2N (where N is the number of 
units) as against 0.14N for the standard Hopfield model. 
We are, however, interested in the pattern correction ability of 
the network and this is determined not only by loading but also 
by the nature of connectivity.  So we measure, R, the 
normalised mean radius of the basins of attraction, as a 
measure of attractor performance in these networks.  Details of 
the algorithm used can be found in (Davey, Hunt, and Adams, 
2004).  A value of R = 1 implies perfect performance and a 
value of R = 0 implies no pattern correction.   

As already described, we also attempt to minimize the mean 
wire length per unit, L.  In the fitness function  used for the GA 
we try to find networks with low L and high R.  
Experimentation showed the fitness function 5L

Rf RL = gave the 

appropriate balance between L and R for the networks used 
here.  The reason for the large power of L relative to R needed 
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in this function is that it is the rates of change of these 
quantities that matter and not their actual size.  Since R has a 
fairly large variance in its values, the L value needs to be 
increased in importance so that we do not to just evolve an 
ability to track the best R variation. 
 
 
Experiment 1 
In the first experiment, networks of size 400 are evolved.  Each 
unit has 20 incoming connections, and this is maintained 
throughout the evolutionary procedure.  This however is the 
only constraint: the GA can choose to locate the source of these 
afferent connections anywhere in the network. 
Initially a population of 50 randomly configured networks is 
created, so that each network has a different random 
connectivity graph (subject to the constraints of 20 incoming 
connections and no self-connections).  Each network is then 
trained on a different randomly created training set, and the R 
and L values are calculated.  This is repeated five times and the 
average value of R is reported for each network.  The fittest 
networks are then selected as the basis for the next generation.  
Crossover in the GA is constrained so that each unit in the 
offspring will still have 20 incoming connections – this is 
maintained by restricting crossover to occur only at boundaries 
representing complete sets of input connections to a unit (see 
Figure 3).  Any mutation that takes place is also constrained to 
maintain the same overall pattern of connections. 
The details of the GA used are as follows.  Rank-based 
selection is used, with a structure length of 16000 bits (400 × 
400).  The crossover rate is 0.6 and the mutation rate is 0.001, 
dropping by 0.95 every 1,000 generations.  Replacement uses 
single element elitism.  Typical runs of the GA showed the 
fitness level stabilizing after about 60,000 generations, a 
runtime of several months.  The process is summarized as: 
 
1. Create a population of 50 random networks. 
2. Train each network 5 times with random training sets. 
3. Evaluate L and the mean R for each network. 
4. Select, crossover and mutate to form a new population. 
5. Repeat from 2. 
 
It is important to note here that only the pattern of connectivity 
is being evolved.  A successful network will have a pattern of 
connectivity that can function well with any random training 
set.  The networks are thus not evolving to perform well with a 
single, specific, set of training patterns. 
 
Results 
Table 1 shows the final evolved values of L and R together with 
the corresponding initial values in a random network and a 
completely local network.   
It can be seen that the GA has been successful in finding a 
pattern of connectivity that almost halves the total amount of 
wiring whilst maintaining good pattern-correction performance. 

The histogram of connection length against frequency can be 
seen in Figure 4.  The distribution is similar to an Exponential 
or possibly Gaussian one. 
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Crossover

 
 
Figure 3:  
a) Two possible networks: one with random connectivity and 
one with local connectivity. Connections to unit 1 are drawn. 
The corresponding connection matrices are given under the 
network.  Note that the top row (the crosshatched squares) 
indicates the connections for unit 1, and the L value given is 
also for unit 1. 
b) A possible crossover is shown between two connection 
matrices.  Crossover is constrained to take place only at the 
boundaries of complete unit connections as shown. 
 
 
Table 1. The mean wiring length, L, and R value for local and 
random connectivity patterns on a 400-unit network with 8 
patterns. 

 Random Local Evolved 
L 100.4 5.5 51.2 
R 0.93 0.04 0.91 
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Figure 4. A histogram of the final connection lengths of a 400-unit network optimized for both low L and high R.  A trend line has 
been added to guide the eye and shows that the distribution is similar to an Exponential or possibly Gaussian one. 
 
 
Experiment 2 
The second experiment modified the search space by 
constraining the type of connectivity that the networks could 
use.  In other, related work (Calcraft, Adams, and Davey, 
2006), we have investigated the performance of the associative 
memory models with a variety of handcrafted connection 
strategies, including small-world, exponential and restricted 
linear distributions.  The latter two distributions are illustrated 
in Figure 5.   In the exponential distribution the probability of a 
connection at distance x is given by: 

! 

p(x) = e
" #x

$
 where λ 

controls the tightness of the distribution and ν normalizes it.  In 
the restricted linear distribution the probability of a connection 

of length x is given by: 

! 

p(x) = max " #
"

µ
x ,0

$ 

% 
& 

' 

( 
)  where µ is the 

maximum connection length and, once again, ν normalizes the 
distribution.  
We have found that both the exponential and the restricted 
linear distributions gave very good performance, much better 
than a small-world distribution.   We therefore decided to allow 
the artificial neurons in our networks to have one of four 
connectivity patterns for their incoming, afferent, connections: 
 

A) Local only 
B) Random 
C) Exponential  
D) Restricted Linear 
 

 

 
Figure 5: The four types of connection possibilities used in 
Experiment 2.  The Linear distribution here is restricted to a 
connection distance of 100.  

 
All the units of type C or D in a particular network have the 
same distribution: they all have the same λ or µ respectively.  
In this case, therefore, a 400-unit network is defined by a 
genome that identifies the type of each neuron (A, B, C or D) 
and contains two real numbers, λ and µ that specify the specific 
probability distribution for neurons of type C and D 
respectively.  The GA was therefore searching through a 
solution space in which the proportion, position and nature of 
neurons of differing types can be varied.  Once again an initial 
population of fifty, 400-unit networks were created.   For each 
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network, 100 units were randomly assigned to class A, 100 to 
class B, 100 to class C and 100 to class D.  Random values of λ 
and µ (within an appropriate range) were also assigned to each 
network. 

The specific process can be described as: 
 

1. Create a population of 50 random network descriptions. 
2. Generate 50 networks with the described connectivity 
distributions. 
3. Train each network 5 times with random training sets. 
4. Evaluate L, the mean R and consequently the fitness of each 
network. 
5. Select, crossover and mutate to form a new population. 
6. Repeat from 2. 
 
Note that when compared with Experiment 1 an extra step 
(Step 2) is needed, since the genome here does not include the 
connectivity matrix that is present in Experiment 1. 
 
Results 
The GA was run for 10,000 generations.  The search was 
stopped when no improvement in the fitness of the population 
was taking place. 
From Table 2 it can be seen that, once again, the GA manages 
to significantly reduce the mean wiring length, whilst 
maintaining the original pattern correction capability.  Figure 6 
indicates how the proportions of the different types of unit (A to 
D) have changed in the best-of-generation network.  The graph 
is plotted at points when there is a change in the best-of-

generation network, so that the x-axis is not measuring 
generations, but 34 change points.   It can be seen that the 
number of random, class B, units has been significantly 
reduced, from 100 to about 25.  This corresponds to an increase 
in the number of class C and D units with about 135 of these in 
each case.  The number of local, class A, units has remained 
fairly constant throughout the run.    
 
Table 2. The mean wiring length, L, and R-value for the best 
initial and final connectivity patterns on a 400-unit network 
with 5 patterns, found after 10,000 generations. 

 Initial Evolved 
L 36.8 17.4 
R 0.56 0.57 

 
 
Perhaps the most interesting finding of this experiment is the 
nature of the exponential and restricted linear distributions that 
were favored in the evolved network.  Recall that the specific 
slope of the exponential and the cut-off of the linear 
distribution are parameters that the GA was attempting to 
optimize.  The actual distributions evolved are shown in Figure 
7.  Both distributions are relatively tight: the linear distribution 
has no connections of length greater than 50.  The final 
configuration in this most successful network is therefore an 
interesting mixture of many local connections, a number of 
fairly local connections (from the exponential and linear units) 
and a few distal connections from the random units.  The actual

 

 
Figure 6. The number of units connected by each of four different connection strategies starting with equal numbers of all four (ie 
100).  The network has 400 units and the GA was optimising both high R and low L. The number of input connections is maintained at 
20 for each unit. 
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position of the four types of unit is shown in Figure 8.  Here it 
is apparent that the various types of unit are distributed 
reasonably evenly around the ring. 
 

 
Figure 7. Histograms for the exponential and linear units in 
the final best network. 
 
 

 
 
Figure 8: The spatial arrangement of the four different types of 
unit in the most successful network.  The ring of four hundred 
units is laid out in 8 rows of 50.   The random nodes are 
coloured red, the local nodes blue, exponential grey and 
restricted linear green.  
 

DISCUSSION 
As discussed earlier, the pattern of connectivity in real neuronal 
networks is likely to be highly optimized to make best use of 
expensive resources.  We have shown here how a GA can be 
used to optimize resource use in an artificial neural network 
performing as an associative memory.   Our main result is that 
distributions of connections that fall rapidly with distance, such 
as those in an exponential or restricted linear fashion perform 
best with low resource usage.  Both evolutionally experiments 
found such distributions, surprisingly similar to those found in 
real neuronal systems (see Figure 1).  Further work will 
investigate the precise nature of the optimal distribution. 
 

REFERENCES 
 

Barabasi, A., Albert, R., and Leong, H. (1999). Scale-free 
characteristics of random networks: the topology of 
the world wide web. Physica A: Statistical Mechanics 
and its Applications 272, 173-187. 

Bollobas, B. (2001). Random Graphs. Cambridge University 
Press. 

Braitenberg, V., and Schüz, A. (1998). Cortex: Statistics and 
Geometry of Neuronal Connectivity. Springer-Verlag, 
Berlin. 

Calcraft, L., Adams, R., and Davey, N. (2006). Gaussian and 
Exponential Architectures in Small World Associative 
Memories, Bruge. 

Cherniak, C. (1994). Component placement optimization in the 
brain. J. Neurosci. 14, 2418-2427. 

Cherniak, C., Mokhtarzada, Z., Rodriguez-Esteban, R., and 
Changizi, K. (2004). Global optimization of cerebral 
cortex layout. PNAS 101, 1081-1086. 

Davey, N., and Adams, R. (2004). High Capacity Associative 
Memories and Connection Constraints. Connection 
Science 16, 47-66. 

Davey, N., Hunt, S. P., and Adams, R. G. (2004). High capacity 
recurrent associative memories. Neurocomputing 62, 
459-491. 

Davey, N., Calcraft, L., and Adams, R. (Year). "Associative 
Memories with Small World Connectivity." Paper 
presented at the ICANNGA, Coimbra, 2005. 

Eguiluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M., and 
Apkarian, A. V. (2005). Scale-Free Brain Functional 
Networks. Physical Review Letters 94,  

Hellwig, B. (2000). A quantitative analysis of the local 
connectivity between pyramidal neurons in layers 2/3 
of the rat visual cortex. Biological Cybernetics 82, 
111. 

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to 
the Theory of Neural Computation. Addison-Wesley 
Publishing Company, Redwood City, CA. 

Hilgetag, C., and Kaiser, M. (2004). Clusetered Organization of 
Cortical Connectivity. Neuroinformatics 2, 353-360. 

Keller, E. F. (2005). Revisiting "scale-free" networks. 
BioEssays 27, 1060-1068. 

Laughlin, S. B., and Sejnowski, T. J. (2003). Communication in 
Neuronal Networks. Science 301, 1870-1874. 

Milgram, S. (1967). The Small World Problem. Psychology 
Today 60-67. 

Newman, M. E. J. (2000). Models of the Small World. Journal 
of Statistical Physics 101, 819-841. 

Shefi, O., Golding, I., Segev, R., Ben-Jacob, E., and Ayali2, A. 
(2002). Morphological characterization of in vitro 
neuronal networks. Physical Review E 66,  

Sporns, O., and Zwi, J. D. (2004). The small world of the 
cerebral cortex. Neuroinformatics 2, 145-62. 

Watts, D., and Strogatz, S. (1998). Collective Dynamics of 
'small-world' networks. Nature 393, 440-442. 


