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Abstract 19 

Shipboard measurements of microphysical and optical properties of marine boundary-layer 20 

aerosols were performed around the Korean Peninsula from 2 to 5 December 2009. The 21 

measurements were conducted aboard the Korean icebreaking research vessel Araon during 22 

cruise tracks in the East Sea of Korea near Busan and Pohang. This paper describes the 23 

results of optical aerosol measurements acquired with a DePolarization Lidar (DPL) and an 24 

Optical Particle Counter (OPC) and data on meteorological parameters. Backward trajectory 25 

analyses indicate that two different aerosol characteristics according to different pathways of 26 

air mass encountered during the cruise. We find a high correlation between wind speeds 27 

across the east coast of Korea and extinction coefficient, depolarization ratio and mass 28 

concentration with correlation coefficient (R2) of 0.57, 0.52 and 0.67, respectively. The 29 

increase of extinction coefficient, depolarization ratio and number concentration with wind 30 

speed may have been caused by the increase of sea-salt aerosol production and transport. 31 

Key words; lidar; aerosol; wind speed; marine boundary layer 32 

1. Introduction 33 

Aerosols play a significant role in air quality and atmospheric visibility. They affect the 34 

global climate because of their effect on the solar radiation. The so-called aerosol direct effect 35 

occurs when aerosols affect the radiation budget by scattering and absorbing solar radiation 36 

(Ayash et al., 2008; Ma et al., 2008). The aerosol indirect effect occurs when the optical 37 

properties of clouds are changed, e.g. cloud condensation and lifetime processes, because of 38 

the influence of microphysical and chemical characteristics of aerosol on cloud properties 39 

(Goodale and Mansfield, 1987; Twomey et al., 1984). 40 

The ocean is one of the major sources of natural aerosols. On the global scale, the total mass 41 

of natural aerosols is much higher than that of anthropogenic aerosols. Sea salt is the 42 
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strongest natural source of aerosol with a production rate of about 1000 - 10,000 Tg per year 43 

(Winter and Chýlek, 1997). Sea salt aerosols dominate the atmosphere clear-sky radiative 44 

forcing over the oceans (Grini et al., 2002; Ma et al., 2008). Sea salt aerosols act as cloud 45 

condensation nuclei (CCN) and modify the radiative properties and lifetime of clouds 46 

(Murphy et al., 1998; Pierce and Adams, 2006). Therefore, changes in marine aerosol 47 

properties are likely to have important climatological implications (Ayash et al., 2008; 48 

Murphy et al., 1998). 49 

The main mechanism leading to the production of sea salt aerosol is air bubbles bursting at 50 

the surface of the ocean as a result of wind stress (An et al., 1986; Blanchard, 1983). The 51 

bubbles are formed when breaking waves are lifted into the marine boundary layer (MBL) 52 

(Blanchard and Syzdek, 1988). Breaking waves create whitecaps and sea-spray droplets that 53 

consist of a large number of air bubbles, which is essential for the increased production of 54 

marine aerosols (Fairall et al., 1983). As the bubbles fall back to the surface they form 55 

whitecaps and burst, thus leading to the injection of sea water film and jet drops into the 56 

atmosphere (Resch et al., 1986; Wu, 1990). A correlation was found between surface wind 57 

speed and the aerosol concentration of sea salt (Latham and Smith, 1990; O'Dowd and Smith, 58 

1993). 59 

Despite their importance, marine aerosols remain one of the most poorly understood 60 

aerosols in the atmosphere. Particularly, the relation between marine aerosol optical 61 

properties and wind speed is difficult to quantify because it can be masked by the long-range 62 

transport of aerosols that originate from land-based sources (Smirnov et al., 1995; Villevalde 63 

et al., 1994) and get mixed into the marine boundary layer. 64 

The main objective of this paper is to investigate the relationship between microphysical 65 

and optical properties of marine aerosol along with their variation with wind speed. The 66 

paper is organized as follows: Section 2 presents the method and the measurements. Section 3 67 

discusses microphysical and optical properties of the marine aerosols observed in our study. 68 

Section 4 summarizes our findings. 69 
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2. Measurement and Method 70 

We used data from the ship-borne DePolarization Lidar (DPL), an Optical Particle Counter 71 

(OPC), and data obtained with hygrometer, thermometer, anemometer, and anemoscope. 72 

These instruments were installed aboard the research icebreaking Araon. Araon is operated by 73 

the Korea Polar Research Institute (KOPRI). The first cruise of Araon was mainly 74 

concentrated along the coast and lasted from 2 to 4 December 2009. Fig. 1 shows the cruise 75 

track of the Araon. We performed a backward trajectory analyses for aerosol transport 76 

characteristics. We identified air masses characteristic of clean marine conditions and air 77 

masses that were influenced by anthropogenic aerosols from East Asia.  78 

2.1 DePolarization Lidar (DPL) 79 

The DPL system is the first ship-borne lidar of Korea. The system was developed by KOPRI 80 

between March 2007 and April 2008. The lidar is installed on an optical table in a way that 81 

compensates for vibrations as much as possible. The lidar system is compact in size and it is 82 

installed in a container for deployments during cruises on Araon. The seatainer is 83 

weatherproof. A tilted, transparent glass roof protects the system against harsh environmental 84 

stress such as sea salt particles, exhaust from the Araon engine, ocean waves, precipitation, 85 

extreme humidity and temperature changes. The DPL system is operating without 86 

maintaining it each day. It can also be remote-controlled from other places through internet. 87 

The glass roof was cleaned by hand every few days and after rain during the campaign. 88 

Fig. 2 shows the sketch of the DPL. The DPL system measures profiles of the linear 89 

depolarization ratio (DPR, δ) and backscatter coefficients of atmospheric particles at 532 nm 90 

wavelength. The light source of the lidar is a pulsed Nd:YAG laser (Quantel CFR400) which 91 

operates at the wavelength of 1064 nm. A frequency-doubling crystal allows for generating 92 

linear-polarized laser light at 532 nm wavelength. The laser emits pulses of 170 mJ at 532 nm 93 

wavelength. The pulse repetition rate is 30 Hz. The laser beam is transmitted vertically into 94 

the atmosphere after it is expanded five-fold. This system has a coaxial configuration 95 
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between the expanded laser beam and the receiver telescope. The backscattered light is 96 

collected with an 8-inch Schmidt-Cassegrain telescope. After reflection from the secondary 97 

mirror of the telescope, the backscattered light is focused to a pinhole. After passing the 98 

pinhole, an achromatic lens collimates and transmits the light to an interference filter that 99 

transmits at 532 nm. The interference filter is placed in front of a polarizing beam splitter 100 

cube (PBC). The interference filter reduces the background noise from solar radiation. The 101 

PBC is used to separate the parallel from the cross-polarized signals of the depolarized 102 

backscatter signals. These two polarized beams then enter photomultiplier tubes (PMT) 103 

which generate electronic signals which are subsequently collected by the data acquisition 104 

system. The ratio of the gain of the two detectors was determined by rotating a half-105 

wavelength plate. The plate is located at the front end of the laser head. An analog-to-digital 106 

converter (ADC) is used to digitize the output from the PMTs. The sampling rate is 60MHz. 107 

Measurements were taken by collecting 3600 laser shots (2 minute time resolution) and a 108 

vertical resolution of 2.5 m. The lowest height of complete overlap of laser beam and field of 109 

view of the receiver telescope is 250 m.  110 

 The δ indicates if the scattering particles have non-spherical shape (Murayama et al., 2004; 111 

Sassen, 1991). The volume DPR (δv) is defined as the ratio of the cross–polarized lidar return 112 

signal with respect to the parallel-polarized backscatter signal (Freudenthaler et al., 2009; 113 

Murayama et al., 1999; Sugimoto and Lee, 2006). The δv describes the sum of two 114 

components, i.e., the molecular DPR (δm) and the particle DPR (δp). The δp can be defined by 115 

the following equation: 116 

δp = (R δ' – δm )/(R – 1)                         (1) 117 

where δ' = δ/(1 + δ) (Murayama et al., 1999). The term R denotes the backscatter ratio. We 118 

use a constant δm of 1.4 % (Cairo et al., 1999; Weber et al., 1967).  119 

The uncertainty of δp comes from the error of the particle backscatter coefficient of the δ 120 

calibration and systematic errors such as the incomplete separation of the linear polarization 121 

due to the receiving optics (Cairo et al., 1999; Freudenthaler et al., 2009; Mattis et al., 2009). 122 
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Using the derived error formulas and estimations of the basic errors (Freudenthaler et al., 123 

2009), the δp values have a mean relative uncertainty of 15%. 124 

The vertical optical profiles are derived on the basis of the Klett algorithm (Klett, 1985). 125 

Before applying the Klett algorithm, we performed signal smoothing by Savitsky–Golay 126 

filters for the random component of the error (Althausen et al., 2000; Whiteman, 1999). 127 

Signal smoothing lengths are 50 m for backscatter coefficient and δ. Radiosondes were 128 

launched two times a day (00:00 and 12:00 h, UTC) at Pohang (36.03° N, 129.38° E) which 129 

is about 20-50 km away from the pathway of the research vessel. The Klett method needs as 130 

input the lidar ratio and the reference value of the particle backscatter coefficient in a specific 131 

height in order to derive the profile of the particle backscatter coefficient. The calibration 132 

point of the backscatter profile of the raw signals was set in an altitude where no particles but 133 

only molecules contributed to the measured signals.  134 

The retrieval of the particle extinction coefficients from the elastic lidar signals significantly 135 

depends on the correct choice of the lidar ratio. The lidar ratio is defined as the ratio of the 136 

extinction coefficient to the backscatter coefficient. In general, the uncertainty of the profiles 137 

of the extinction coefficient that are derived with this type of lidar are larger than the 138 

uncertainty of the profiles of the backscatter coefficient. In that regard, we may use 139 

information on so-called aerosol types which can be distinguished according to their lidar 140 

ratio. We point out that the concept of using aerosol types can be used only as an 141 

approximation in the data analysis. A clear distinction among aerosol types may only be 142 

possible if these types occur in their pure form. Mixing of aerosol types, as it may easily 143 

happen in East Asia washes out the clear separation. In our study we used the constant lidar 144 

ratio of 23 sr (at 532 nm) for marine aerosols (Müller et al., 2007) . In view of the existing 145 

literature we acknowledge the possibility that this value may not be characteristic for all types 146 

of naturally occurring maritime aerosols. Furthermore, For calculation of backscatter 147 

coefficient based on the ‘Standard error propagation equation’ (Bevington and Robinson, 148 

1969), we consider signal noise and systematic errors (Ansmann et al., 1992; Gutkowicz-149 
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Krusin, 1993). The relative statistical error of the backscatter coefficients is on the order of 5-150 

10% (Althausen et al., 2000; Noh et al., 2009; Tesche et al., 2009).  151 

2.2 Optical Particle Counter (OPC) 152 

Aerosol size distributions and number concentrations were measured with an OPC (Grimm 153 

Model 265). The OPC was placed at the bottom of the radar master, 20 m above sea level. 154 

The OPC detects scattered laser-light at a mean scattering angle of 90o. The serial binary 155 

signals of the OPC were logged to a PC in the atmospheric lab room which was located on 156 

the upper deck of the research vessel. The OPC provided 5-min averaged data of the number 157 

size distribution binned into 31 different size ranges from 0.25 to 32 µm and above (all sizes 158 

given as optically equivalent diameter). The OPC performed continuous sampling of the 159 

aerosols from which the size distributions were determined and averaged for the 160 

measurement times of the lidar observations. Mass concentrations were calculated from the 161 

number size distributions (Burkart et al., 2010; Snider and Petters, 2008). The aerosol density 162 

of 2.2 g/cm3 for marine aerosol was used in the mass concentration calculation.(Fan and Toon, 163 

2010; Tang et al., 1997). Data from the DPL and the OPC measurements were acquired 164 

continuously during the cruise. The average time of the DPL and OPC was 10 and 5 minutes, 165 

respectively. Measurement data contaminated by the ship exhaust plume were excluded from 166 

the data analysis. For this purpose we used information on wind direction. The data were 167 

retained when the relative wind direction was within 120o to the left and 60o to the right of 168 

the ship heading. Wind directions and other meteorological data such as wind speed, air 169 

temperature and relative humidity (RH) were measured at the top of radar mast at 20 m 170 

height above sea level.  171 
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3. Result and Discussion 172 

3.1 Meteorological Conditions and Lidar Measurements 173 

Fig. 3 shows the time series of the profiles of the DPL data and the meteorological data. 174 

Fig. 3(a) and 3(b) show the time-height distributions of the range-corrected signals and the δm 175 

acquired during the entire observation period. Because of precipitation caused by low-level 176 

clouds, the lidar measurements were interrupted from 1250 UTC on 3 December to 0010 177 

UTC on 4 December. Temporal variations of the backscatter coefficient and the δp at the 178 

height of 300± 50 m are shown in Fig. 3(c). Note that calculation for the backscatter 179 

coefficient and the δp was temporally interrupted from 1500 to 2400 UTC on December 2 180 

and from 1250 UTC on 3 December to 0010 UTC on 4 December, because of the appearance 181 

of clouds. Fig. 3(d) and 3(e) show the temporal variations of the meteorological parameters. 182 

The total mass concentration of the aerosol particles is shown in Fig. 3(f). We categorized 183 

period I and period II according to the air mass pathways that are shown in Fig. 3 (see section 184 

3.2). 185 

3.2 Classification of the Atmospheric Conditions 186 

Backward trajectory was analyzed to understand the air mass transport pathway and the 187 

potential source regions encountered during the cruise. We analyzed the aerosol 188 

characteristics with respect to categorized back trajectories for our initial estimation of the 189 

sources of the aerosols. Four-days backward trajectories in the lower atmosphere were 190 

calculated using the HYSPLIT (HYbrid Single‐Particle Lagrangian Trajectory) model 191 

(Draxler and Rolph, 2003; Rolph, 2003). Air mass backward trajectories that ended along the 192 

cruise path were computed for heights of 300 m above sea level (see Fig. 4). 193 
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 Period I denotes air masses that originated from the Chinese continent, passed across the 194 

Korean Peninsula and then entered the measurement pathway across the line defined by 195 

Busan, Pohang and Ulsan (these cities are the biggest harbor and industrial cities in Korea). 196 

Period II denotes air masses that originated from the north of China and Siberia and entered 197 

the measurement pathway along the east coast of the Korean Peninsula.  198 

Fig. 4 (c) and (d) show the MODIS-retrieved AOD at 550 nm obtained by the modified 199 

GSTAR algorithm (Lee et al., 2006a; Lee et al., 2006b) for 2 and 4 December 2009. Areas 200 

where clouds or sun-glint was present or areas where there was an orbital gap in the data are 201 

shown in white. The MODIS AOD over southeast coast of Korean peninsula (near the cruise 202 

track of Araon; see Fig. 1) during period I shows higher values than the AOD that describes 203 

period II. 204 

3.3 Microphysical and Optical Properties 205 

3.3.1 Vertical Profiles 206 

Fig. 5(a) shows the vertical distributions of temperature, virtual potential temperature, and 207 

RH obtained from radiosonde data. Fig. 5(b) shows calculated vertical profiles of aerosol 208 

backscatter coefficients and the δp at 532 nm. The height of the MBL can be determined from 209 

the vertical profiles of the aerosol backscatter coefficient (Drobinski et al., 1998), and the 210 

base of inversion layer from the radiosonde data (Barnes et al., 1980; Zeng et al., 2010). The 211 

region where the aerosol backscatter coefficient sharply decreases and the potential 212 

temperature lapse rate changes can be used as an indicator of the top of the MBL. The slope 213 

of the relative humidity profile and the virtual potential temperature profile sharply changes 214 

between 1.3 and 1.7 km, which can also be used for identifying the top of the MBL. The 215 

aerosol backscatter coefficient profiles show that the top of the MBL was at around 1.5 km 216 

above sea level.  217 

The height differences of the MBL that we obtain from the two methods can be caused by 218 

different definitions that use different measurement parameters (Baars et al., 2008; Haeffelin 219 
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et al., 2012). The height of the MBL determined from the temperature profiles measured with 220 

radiosonde was in good agreement to the MBL height determined from the aerosol profiles 221 

measured with the DPL. 222 

3.3.2 Relationship Between Wind Speed and Aerosol Optical Properties 223 

Fig. 6 indicates a slight dependence of the δp with increasing wind speed. Regarding the 224 

increase of the δp with increasing wind speed, the following causes are possible candidates: 225 

(1) soil or dust particles transported from the continent, which can be seen from the back 226 

trajectory analysis (see Fig. 4), may be mixed into the MBL; (2) sea-salt particles crystallize 227 

by the strong sea breeze. 228 

Soil and sea-salt particles are non-spherical and should increase the δ. Sea-salt particles are 229 

hygroscopic. On the one hand, they do not markedly change their shape through uptake of 230 

water until 75% RH is reached. On the other hand, humidified sea-salt particles can exist in a 231 

supersaturated droplet phase until RH drops below 45–48% (Tang et al., 1977; Tang, 1996; 232 

Winkler and Junge, 1971). In this study, during the two-measurement periods, RH was above 233 

40% and below 75% which thus could have allowed for sea-salt particles being more in their 234 

crystallized phase and/or more in their droplet phase.  235 

We investigated the correlation of the aerosol extinction coefficient retrieved for the 236 

altitude of 300± 50 m in dependence of the wind speed for the two measurement periods I 237 

and II, respectively, see Fig. 7. We assume that the wind speeds at two different 238 

measurement heights between extinction coefficient retrieval height at 300± 50 m and wind 239 

speed measurement height at 20 m above sea level are almost equal in the MBL in view of 240 

the small roughness lengths over water (Stull, 1988). We used the constant lidar ratio of 23 241 

sr (at 532 nm) for marine aerosols. The following relationship holds for the data shown in 242 

the scatter plots of Fig. 7: 243 

Period I: 17.020.86 +×=  Uα                        (2) 244 

Period II: 2.481.32 +×=  Uα                        (3) 245 
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where α is the extinction coefficient, and U is the wind speed. These equations explain that 246 

the aerosol extinction coefficients increase with increasing wind speed. However, The air 247 

mass pathway during period I has high chance to contain pollutions compared to period II air 248 

mass because of different air mass origin and path way as shown in Fig. 4(a) and (b). These 249 

differences induce the differences of constant which indicate background aerosol loading as 250 

17.02 and 2.48 in Eq. (2) and (3), respectively. In that reason, the aerosol extinction 251 

coefficients obtained during period I is higher than period II at the same or similar wind 252 

speed. The scatter of the extinction coefficients in dependence of wind speed is considerably 253 

smaller in period II compared to the scatter of data points that describe period I.  254 

The slope between the aerosol extinction coefficient and wind speed of period II is about 255 

1.5 times higher compared to the slope for period I. For period I we find an extinction 256 

coefficient of ~15 Mm-1 for wind speed 0 m/s. In contrast, extinction coefficient seems to be 257 

significantly lower for wind speed 0 m/s in period II. Though the regression line indicates a 258 

value of 0 Mm-1, we note that extinction coefficient seems to level out to a value of ~5–10 259 

Mm-1 for wind speeds below ~5 m/s. The lack of data points below 5 m/s does not allow us to 260 

make a clear conclusion on this point. We note, however, that this value of 5–10 Mm-1 would 261 

result in an optical depth of 0.005–0.01 for a 1 km shallow, clean MBL and thus would 262 

indicate background conditions. Such values have also been reported by Zielinski and Pflug 263 

(2007) and Lehahn et al. (2010). 264 

In the case of period I we find a high number concentration of aerosols compared to period 265 

II (see Fig. 3(f), 4(c) and (d). The reason for this difference could be caused by the “purity” 266 

of the marine aerosols in the sense that period I was characterized by the influence of 267 

continental aerosols, see also the discussion given by Zielinski and Pflug (2007).  268 

More work is required to further homogenize our data. In order to make sure that pure sea-269 

salt is responsible for the observed high DPRs and extinction coefficients at high wind speeds, 270 

we need more filter samples and chemical analyses (Mayol-Bracero et al., 2002). 271 

3.3.3 Wind Speed Dependent Mass Concentration 272 
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The OPC was used to investigate the relationship between aerosol concentration and wind 273 

speed over the Korean coastal area. The generation mechanism of wind-driven sea-salt 274 

particles is strongly related to wind speed (Blanchard and Woodcock, 2008; O'Dowd and 275 

Smith, 1993). Mass concentrations of sea salt aerosols (C) are expressed by the following 276 

equation (Kulkarni et al., 1982; O'Dowd et al., 1997; Wai and Tanner, 2004):  277 

b  a   +×=  U ln(C)                               (4) 278 

The term U is the wind speed, and “a” and “b” are constants. The constant “b” describes the 279 

background sea-salt loading or the sea-salt concentration when wind speed reaches zero. This 280 

equation implies that the sea salt concentrations are taken from air masses of pure marine 281 

origin. Like in previous studies, we find a strong correlation between aerosol concentration 282 

and wind speed during period II which describes the situation of a clean marine atmosphere 283 

after a precipitation event, see the condition shown in Fig. 8.  284 

According to equation (4) we obtain a log-linear dependence of the sea-salt concentration 285 

with wind speed, i.e.,   286 

2.23  0.21   +×=  U ln(C)                           (5) 287 

The values of ‘‘a’’ and “b” from this work are within the range of values found from 288 

previous studies, see Table 1 and Fig. 9. There are several reasons that may influence the 289 

constants “a” and “b”. (1) Different meteorology such as wind speed history, air/ sea 290 

temperature, salinity and precipitation with geographic location will result in different 291 

patterns for sea-salt generation and removal (Gong et al., 1997; Lovett, 1978). (2) The 292 

measurement equipment and techniques that are used, such as the sampling time, measured 293 

particle size ranges, altitude above sea level of the measurements and measurement sites 294 

(Exton et al., 1985).  295 

The value of slope “a” of our study is not significantly different from all other values 296 

reported for “a” in previous studies; note the outlier reported by Tsunogai et al. (1972). In 297 
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contrast, the value ‘‘b’’ may vary across a rather wide range of numbers. The value we 298 

obtained for “b” in our study is at the upper end of values reported in literature. The reason 299 

for high value ‘‘b’’ is considered to be as follows: (1) We preformed measurement on a 300 

moving ship, which may generate sea-salt particles (Lovett, 1978); (2) large particles which 301 

contribute significantly to the sea salt concentration are easy to detected on the surface of the 302 

ocean compared to inland measurement (Gong et al., 1997). Because residence time of the 303 

larger sea salt particles is so short than small particles due to gravitational sedimentation 304 

(Reid et al., 2001; Smith et al., 1993); (3) Sea-salt concentrations are higher in winter than 305 

during the other seasons (Gong et al., 1997). 306 

4. Conclusion   307 

Measurements of the optical properties of aerosols in the MBL were carried out along the 308 

east coast of Korea during the Araon cruise. We used a DePolarization Lidar (DPL), an 309 

optical particle counter (OPC) and meteorological instruments. The cruise was from 2 to 5 310 

December 2009.  311 

Different aerosol characteristics were observed and classified according to backward 312 

trajectory analyses. The characteristics of aerosol microphysical and optical properties we 313 

found during the measurement period are summarized as follows. 314 

(1) We identified two periods that are characterized by two different air mass types. Air 315 

masses of period I originated from China and crossed the Korean Peninsula. Accordingly, the 316 

air masses were influenced by pollution before they were advected out over the East Korean 317 

coastline. In contrast, the air mass of period II passed along the east coast of Korea. In 318 

addition this air mass was encountered after a precipitation event.   319 

(2) The lidar vertical profiles show that the backscatter coefficients increase with 320 

decreasing height until the overlap region of the lidar is reached. 321 
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(3) We reconfirm a log-linear variation of the aerosol number concentration versus wind 322 

speed for Period II. In addition, we find that the particle depolarization ratio increases with 323 

aerosol number concentration.  324 

(4) The aerosol extinction coefficients increase with increasing wind speed. A linear 325 

relationship with a comparably high correlation coefficient is found for wind speed versus 326 

particle depolarization ratio in period II.  327 

We find different aerosol optical properties during the different periods, in period I, the 328 

aerosols are composed of both natural and anthropogenic material. Aerosols of continental 329 

origin may have been present in the marine boundary layer. In contrast, the aerosols of period 330 

II were comprised mainly of particles of marine origin, i.e. sea salt particles.  331 

In summary, further studies of the scattering properties of sea-salt aerosols under natural 332 

conditions with known wind speeds are needed in order to estimate more precisely the net 333 

global radiative forcing caused by these aerosol particles. 334 
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Fig. 1. Cruise track of Araon. The blue numbers Julian day in 2009 denote the position of the 502 
vessel.    503 

Fig. 2. Schematic layout of the lidar system. 504 
Fig. 3. Temporal changes of the lidar data and the sea surface meteorological data taken 505 

between 0000 UTC on 2 December and 1200 UTC on 4 December 2009. We show 506 
(a) vertical profiles of the range corrected backscatter signal, (b) the δv, (c) the 507 
temporal changes of the δp and the backscatter coefficients at 300± 50 m above sea 508 
level, (d) temperature (Black line) and relative humidity (Blue line), (e) wind speed 509 
and direction, and (f) PM2.5 and PM10 concentrations. Periods I and II are 510 
identified on the basis of backward trajectory analysis, as discussed in section 3.2. 511 
The gap in the data in Fig. 3(a), (b), (c) and (f) indicate the missing data period 512 
caused by precipitation. 513 

Fig. 4. Four-day backward trajectory of air masses computed with the NOAA/ARL 514 
HYSPLIT model for (a) the measurement period I and (b) the measurement period II. 515 
Each line represents backward trajectories of two-hour time intervals arriving along 516 
the cruise track at 300 m above sea level. The MODIS-derived spatial distribution of 517 
aerosol optical depth in (c) on 2 December (period I) and (d) 4 December (period II) 518 
is shown, too.     519 

Fig. 5. DPL analysis and radiosonde results obtained (a) and (b) on 2 December 2009, 1200 520 
UTC (Period I), and (c) and (d) 4 December 2009, 0000 UTC (Period II). We show 521 
backscatter coefficients and δps based on DPL measurements at 532 nm (b) and (d), 522 
and temperature T, virtual potential temperature ϴv, dew point Td, and relative 523 
humidity RH values measured by radiosonde (a) and (c). The error bars indicate 524 
15% error for the backscatter profiles and for the δp. 525 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Fig. 6. Variations of the δp (532 nm) at 300± 50 m height above sea level in dependence of 526 
wind speed (U). The open blue circles describe period I; the open red squares 527 
describe period II. The bold lines illustrate the linear regression lines of the two 528 
periods. The error bars indicate an error of 15% for the δp. N and R2 are the number 529 
of measurement points and the correlation coefficients, respectively. 530 

Fig. 7. Dependence of the extinction coefficient (532 nm) at 300± 50 m height above sea 531 
level versus surface wind speed. The bold black line illustrates the linear regression; 532 
the equation and correlation coefficients (R) for the regressions are also shown. 533 

Fig. 8. Scatter plot of the PM10 concentration (µg/m3) on a logarithmic scale versus wind 534 
speed (m/s) of period II.  535 

Fig. 9. Comparison of sea-salt mass concentration as a function of wind speed and location of 536 
measurement site. 537 

Table 1. Values of a, b in Eq. (1) obtained from previous studies 538 
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Reference 

Woodcock, 1953 

Exton et al., 1985 

Lovett, 1978 

Marks, 1990 

This study 

Kulkarni et al., 1982 

Wai and Tanner, 2004 

Tsunogai et al., 1972 

Gras and Ayers, 1983 

Exton et al., 1985 

Lovett, 1978 

Measuremen

t time 

1952 

1980/1983 

September 1974 

to July 1975 

October-

November1986 

Dec-09 

June-September 

1977 and June-

August 1978 

 

1995–1999 

 

May, 1964 

February 1978 

to May 1980 

Region 

Cloud base over Pacific Ocean 

The island of South Uist in the Outer 

Hebrides North Sea, on Platform 

Atlantic Ocean, on ship  

Noordwijk in the North Sea, 

on the research platform (51  S, 4  E) 

East sea of Korea 

(36   , 129° E) 

1.8km inland of Western Indian coast 

Central Western 

(residential, location 22.1  N, 114.8  E) 

Sham Shui Po 

(mixed residential, commercial, industrial,  

22.2  N, 114.9  E) 
Yuen Long 

(residential with fairly rapid urban 

development, 22.2  N, 114. 1  E) 

Pacific Ocean 

Cape Grim, Tasmaniat Cape Grim 

(41  S, 145  E) 

sampling 

height 

600 m 

15 m 

5–15 m 

12 m 

20m 

1.2 m 

77 m; 

16 m 

24 m 

12–14 m 

94 m 

b, 

(µg/m
3
) 

2.57 

13.3 

4.26 

1.13 

9.23 

5.35 

0.64 

0.87 

0.45 

0.33 

2.52 

a (s/m) 

0.16 

0.16 

0.16 

0.23 

0.21 

0.27 

0.17 

0.13 

0.19 

0.62 

0.12 
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� Shipborne depolarization aerosol lidar measurements near Korean peninsula. 

� Characterization of sea-salt particles with lidar in the eastern Pacific region. 

� Correlation of sea-salt optical properties with wind speed provides parameterization. 

� Correlation may be caused by with duration of transport over the ocean, too. 

� Our results are comparable to correlation parameters reported in literature. 


