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Highlights

» Sixteen modeling groups from EU and NA simulatedd@ 2010 under AQMEII
phase 2

* A general model underestimation of surfageo@er both continents up to 22%

* Models tend to over/under estimate surfagenll regions during autumn/winter

* Boundary conditions influences@redictions especially during winter and autumn

* Models tend to under-predict highy @alues that are of concern for policy

Keywords: AQMEII, on-line coupled models, perforraranalysis, ozone, Europe, North
America

ABSTRACT

The second phase of the Air Quality Model Evaluati@ernational Initiative (AQMEII)
brought together sixteen modeling groups from Eerapd North America, running eight
operational online-coupled air quality models okzarope and North America on common
emissions and boundary conditions. With the adeénnline-coupled models providing new
capability to quantify the effects of feedback meses, the main aim of this study is to
compare the response of coupled air quality madetsmulate levels of Qover the two
continental regions. The simulated annual, seasooatinental and sub-regional ozone
surface concentrations and vertical profiles ferykar 2010 have been evaluated against a
large observational database from different measemn¢ networks operating in Europe and
North America. Results show a general model untierason of the annual surface ozone
levels over both continents reaching up to 18% &weppe and 22% over North America.
The observed temporal variations are successfefiyoduced with correlation coefficients
larger than 0.8. Results clearly show that the Eted levels highly depend on the
meteorological and chemical configurations usetthénmodels, even within the same
modeling system. The seasonal and sub-regionaysesashow the models’ tendency to
overestimate surface ozone in all regions durirtgran and underestimate in winter.
Boundary conditions strongly influence ozone predits especially during winter and
autumn, whereas during summer local production dates over regional transport. Daily
maximum 8-hour averaged surface ozone levels bB®®Oug m* are overestimated by all
models over both continents while levels over 1204lg m* are underestimated, suggesting
that models have a tendency to severely undergirkjh Q values that are of concern for
air quality forecast and control policy applicason
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1. Introduction

Tropospheric ozone @is an important secondary air pollutant producgghotochemical
oxidation of volatile organic compounds (VOC) amdon monoxide (CO) in the presence of
nitrogen oxides (NOXx). It has implications on climand health and therefore its levels are
subject to regulatory monitoring in Europe (EU) &hatth America (NA). The regulatorys0
levels are still exceeded in a number of cities amedespecially a concern in growing urban
areas (European Environmental Agency, 2013). Aaligumodels (AQMs) are valuable tools
to investigate the complex and dynamic interactioetsveen meteorology and chemistry
leading to @ pollution episodes at multiple temporal and spatales. In the last decade,
AQM development started shifting from off-line-cdeg models where the meteorological
forcing for chemistry was produced off-line by pamte meteorological model, to fully-
coupled online models, which are able to simulageféedbacks between chemistry and
meteorology, taking the advantage of increased ctaipnal power (Zhang, 2008; Baklanov
et al., 2014). The use of on-line models farpg@edictions is beneficial, as;@ot only

depends on emissions and chemistry but also oanalgiransport, clouds, photolysis and
vertical mixing in the boundary layer, all of whichn be more realistically represented in an
on-line model (Wong et al, 2012; Zhang et al, 20IBE impact of aerosols on the radiation,
and therefore temperatures and photolysis ratessigaificantly impact the gas-phase
chemistry affecting @and secondary aerosol formation (Kim et al., 2@08,1). Thus,
simulating these feedbacks can lead to more rigaldst NOx and aerosol levels that are
relevant to policy applications. The wide use @gfioeal AQMs for supporting policy,
abatement strategies and forecasting justifiegnitreased need for online models, which can
simulate feedback mechanisms, and especially atéouthe effect of aerosols on radiative
balance and photolysis (e.g. Hodzic et al., 2007).

The Air Quality Model Evaluation International lisitive (AQMEII) served to promote
policy-relevant research on regional air qualitydeloevaluation across the atmospheric
modeling communities in Europe and North Ameriqatigh the exchange of information on
current practices and the identification of reskeamgorities (Galmarini and Rao, 2011). As
part of this collaboration, standardized observetiand model outputs were made available
through the ENSEMBLE system (http://ensemble2 greeropa.eu/public/) that is hosted at
the Joint Research Centre (JRC). This web-interfidlogvs temporal and spatial analyses of
individual models as well as their ensemble opesatBianconi et al., 2004; Galmarini et al.,
2012). The first phase of AQMEII was focused onekialuation of off-line coupled
atmospheric modelling systems against large setsooitoring observations over Europe and
North America for the year 2006 (Solazzo et al]24b; Vautard et al., 2012; Solazzo et al.,
2013; Hogrefe et al., 2014). As summarized in Szle¢ral. (2012), the intercomparison
model results for @suggested a strong influence of chemical boundaingitions for ozone,
whose bias extends far into the interior of the elloady domains, especially during winter
months. The observed variance as well as the dadye cycle was underestimated by the
majority of models. Night-time, overcast, and statbnditions led to poor model skill in
reproducing ozone mixing ratios over both contiseBtable atmospheric boundary layers
have been notoriously difficult to simulate in nuioal weather prediction models (Holtslag

3
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et al. 2013), but they are highly relevant in tbatext of air quality modeling. Due to the
high sensitivity of air pollutants to the represiun of stable boundary layers, online
coupled modeling could be of great use to tackkhoblem in the future.

The second phase of AQMEII extends this model assest to on-line-coupled air quality
models. In this study, we analyzg €ncentrations provided by eight on-line-coupled
models, which have been run by sixteen indepergtentps from Europe and North America
(while a companion study is devoted to the analgé@articulate matter, Im et al., 2014).
The models made use of the same input emissionshemdical boundary conditions, in an
effort to reduce the impact of uncertainties oraging from these inputs to model results
among different groups. The goal of the study isualuate the performances of widely used
operational on-line coupled models in Europe andiNamerica in simulating ©levels on a
sub-regional and seasonal basis employing an erpetal set-up with common
anthropogenic emission and boundary conditions.shiniace levels and vertical profiles
simulated by the individual models as well as teasemble mean and median are compared
with the observational data provided by the ENSEMRlystem.

2. Materials and Methods
2.1. Participating models

In the context of AQMEII2, twelve modeling groupsr EU and four modeling groups from
NA (Table 1) have applied their modeling systemsimaulate hourly @concentrations for

the year 2010 over the EU and NA continental sdafeains (Fig.1). Among all participants,
seven groups from EU and two groups from NA appiiedsame model system (WRF-
CHEM), but with different settings such as diffearghortwave radiation schemes, gas-phase
chemical mechanisms and aerosol modules. The WREMCEbmmunity applied a common
horizontal grid spacing of 23 km over Europe an&k®6over North America. Other

modeling groups applied different grid spacingagiag from 12x12 krhto ~50%25 krfi as
seen in Table 1. The simulations were conducteddatinental-scale domains of Europe and
North America covering continental U.S., southeam&la and northern Mexico (Fig.1). To
facilitate the cross-comparison between modelsp#ngcipating groups interpolated their
model output to a common grid with 0.25° resolutionboth continents. Model values at
observation locations were extracted from the nagmodel output files for comparison to
observations (described below).

2.2. Emissions and boundary conditions

For the EU domain, the recently updated anthropiegamissions for the year 2009
(http://www.gmes-atmosphere.eu/; Kuenen et al.42@buliot et al., 2014) were applied by
all modelling groups and are based on the TNO-MAC@letherlands Organization for
Applied Scientific Research, Monitoring Atmosphe@iomposition and Climate — Interim
Implementation) framework. Annual emissions of naeth (CH), carbon monoxide (CO),
ammonia (NH), total non-methane volatile organic compounds ()\\(C), nitrogen oxides
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(NOx), particulate matter (PM, PM,s) and sulfur dioxide (S§) from ten activity sectors are
provided on a latitude/longitude grid of 1/8°x1/i@8olution. Emission inventories for the
NA domain were provided by US EPA and Environmeah&la. The 2008 National
Emission Inventory (http://www.epa.gov/ttn/chiefif2®08inventory.html) and the 2008
Emission Modeling Platform (http://www.epa.gov/thief/emch/index.html#2008) with year
specific updates for 2006 and 2010 were used ®IA portion of the modeling domain.
Canadian emissions were derived from the Canadaioial Pollutant Release Inventory
(http://www.ec.gc.calinrp-npri/) and Air PollutaBimissions Inventory
(http://www.ec.gc.cal/inrp-npri/donnees-data/ap/indien?lang=En) values for the year
2006. These included updated spatial allocation€anadian mobile emissions (Zhang et al,
2012) for the emissions of NHMakar et al, 2009), as well as other updatess(Sasl,

2010). Mexican emissions were 2008 projected favileom a 1999 inventory (Wolf et al,
2009). Seven pollutants (CO, NONHs, SO, PMyo PM, 5, and VOC) were used to develop
the model ready emission inventory. Further detild analyses of the anthropogenic
emissions used in both domains are provided ini®ced al. (2014). Annually-integrated
anthropogenic emissions for both domains are pteden Table 2 while the spatial
distribution of NQ emissions for the EU and NA domains are depiatdeig. 1. Table 2
shows that anthropogenic emissions pef knEU are larger than those in NA, except for
PMso. Particularly NQ and NH emissions in EU are more than a factor of twodathan
those in NA. Consistent temporal profiles (diurrtdy-of-week, seasonal) and vertical
distributions were also made available to maintainsistency among different groups.
NMVOC speciation factors were applied by all grouphividually with a recommendation to
follow the NMVOC speciation profiles for EU by Vidsedijk et al. (2007). The temporal
profiles for the EU anthropogenic emissions wevjaed from Schaap et al. (2005).
Chemical and temporal profiles for the EPA anthggoc emissions were based on the
2007v5 modeling platform (http://www.epa.gov/ttriffemch/index.html#2008).

Each modeling group used their own biogenic emissiodule as detailed in Table 1. The
majority of the models used the online MEGAN2 modébdel of Emissions of Gases and
Aerosols from Nature version 2; Guenther et alQ&0two groups used the BEIS v3.14
model (Biogenic Emission Inventory System; Schewetds., 2005) and one group (NL2)
used the Beltman et al. (2013) biogenic modehdiutd be noted that UK4 group used the
off-line simulated biogenic emissions provided bg Beltman et al. (2013) model. In
addition to the biogenic emissions algorithm usethe models, they may also differ in the
databases used for vegetation. Feedbacks may tegeificant influence on biogenic
emissions; reductions in biogenic isoprene emissair20% were found with the introduction
of the aerosol indirect effect (Makar et al., 2014de biogenic isoprene emissions
calculated on-line by each group show a large dityaas shown in Table 2 that may lead to
large differences in the simulated IBvels. Curci et al. (2009) showed that differeioigenic
emission models may lead to a factor of 2 diffeesimcdomain-integrated isoprene emissions
over Europe while difference can be up to a factd@-6 locally. They estimated that these
differences on average may lead to an increaseésqfigb in domain-mean surfacg IBvels

and up to 10-15 ppb locally in the Mediterraneaouity biomass burning emissions were
provided by the Finnish Meteorological InstitutéMly fire assimilation system



220  (http://is4fires.fmi.fi/; Sofiev et al., 2009). Medetails on the fire emissions and their

221  uncertainties are discussed in Soares et al. (20hé)fire assimilation system provides only
222  data for total PM emissions. Emissions of othecise(CO, NO, NH SQ, NMVOC) were
223  therefore deduced based on mass ratios relativ&itéollowing Andreae and Merlet (2001).
224 NMVOC speciation followed Wiedinmeyer et al. (20Ebmbined with the mapping to

225  different chemical mechanisms proposed by Emmoak €2010). Note that the ES2a model
226  does not include biomass burning emissions antddz®es not contain aerosols leading to a
227  lack of effect of aerosols on photolysis rate clatans and therefore producing

228 overestimated ©within the fire plumes (Badia and Jorba, 2014yhtning NQ is included
229 in the UK4 model (O’'Connor et al., 2014) as weliraghe global MACC model used for the
230 boundary conditions as described below.

231 3-D daily chemical boundary conditions were takemfthe MACC re-analysis (Inness et al,
232 2013). The MACC re-analysis (referred to as MAC@ehéter) has been produced by

233 assimilating satellite observations of, @O and NQin the coupled system IFS-MOZART
234  (Flemming et al., 2009). As pointed out in Innesale(2013), the assimilation of satellite-
235  corrected @greatly improved the ozone total columns and asgatteric profiles but did not
236 change significantly the surface levels becaugbefimited signal from this region in the
237 assimilated satellite observations. The chemicatigs available in the reanalysis included
238 O3, NGy, CO, CH, SO, NMVOCs, sea-salt, dust, organic matter, blackearand sulfate.
239 NMVOC species had to be lumped or disaggregateordicy to the individual models’

240 chemical speciation and particulate matter sizerdigation.

241  2.3. Observations

242  Measurements of hourly surfacg €ncentrations for the year 2010 in EU were tdkem

243  the European Monitoring and Evaluation ProgramméER; http://www.emep.int/) and the
244  European Air Quality Database (AirBase; http://a@ionet.europa.eu/databases/airbase/) and
245 in NA from the Canadian National Atmospheric ChamgigNAtChem) Database and

246  Analysis Facility operated by Environment Canadgp(hiwww.ec.gc.ca/natchem/) that

247  contains measurements from the Canadian Natiom@@lution Surveillance Network

248  (http://maps-cartes.ec.gc.ca/rnspa-naps/data.atex;anadian Air and Precipitation

249  Monitoring Network (http://www.ec.gc.ca/natchentfje U.S. Clean Air Status and Trends
250  Network (http://java.epa.gov/castnet/clearsessmnitie U.S. Interagency Monitoring of

251  Protected Visual Environments Network (http://viesira.colostate.edu/web/DataWizard/),
252  and the U.S. Environmental Protection Agency’s Q@irality System database for U.S. air
253  quality data (http://www.epa.gov/ttn/airs/airsagtéildata/downloadagsdata.htm). In the

254  AQMEIZ2, rural, urban and suburban background stetiwere extracted from the EMEP and
255  AirBase networks. Given the coarse native grid lggms used in different models (Table 1),
256  data from only rural background stations was usdtié comparisons. Stations that have

257  more than 90% data availability have been seleiciethe comparisons. Regarding the whole
258  simulation domains, hourly surface Gbservations were provided by 510 and 200 stations
259 EU and NA, respectively. A geographical break-domin four sub-regions for each

260 continent has also been defined based on the diagatal and source characteristics. The
261 geographical break-down of these stations ovenlatiol the annually-averaged anthropogenic

6
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NOy emissions is shown in Fig.1. Model evaluationistias were computed for the four sub-
regions separately. The European sub-region Edarmacterized by north-western European
sources with a transition climate between mariree@mtinental and hosts 102 stations. Sub-
region EU2 covers the north-eastern and centradfigusources as well as Germany with 277
monitoring stations. Sub-regions EU3 and EU4 aeratterized by a Mediterranean type
climate. Sub-region 3 covers south-western sounmisding Italy (30 stations) while sub-
region 4 covers the East Mediterranean with 10tlosiss The North American sub-region 1
(NA1) covers the western U.S. and south westerra@amvith 80 stations. It includes large
emission sources along the coast as well as pdlhaéespots like Los Angeles that are
characterized by poor air quality. NA2 consist&Jdb. plains and covers 36 monitoring
stations and is characterized by a continentalhamaid climate. NA3 consists of north
eastern NA and south central Canada and is chamstddy the largest emissions in North
America and contains 60 monitoring stations. FinAlA4 covers the south eastern part of
U.S., consisting of 24 monitoring stations.

To evaluate the capability of the modeling systéonsimulate the tropospheric distribution of
O3 concentrations, comparisons agaings@undings provided by the World Ozone and
Ultraviolet Radiation Data Centre (WOUDC: http://wwvoudc.org/) have been carried out.
Ozone concentration data from nine stations in BtJsax stations in NA have been used for
the comparisons. For an optimal comparison witkeolations, model profiles were
computed by averaging only over the available olzd@m hours. The participants were
required to provide their data at fixed heightsap8 km above the ground in order to be
comparable. However, due to the coarse verticaluen of some models in the upper
troposphere and not simulating the stratospheeentsiry, the analyses are performed only
for the first 9 km above ground.

2.4. Statistical analyses

To score the individual model performances as a®those of the ensemble mean and
median, the following statistical parameters hagerbcalculated: Pearson’s correlation
coefficient PCC: Eq.1), root mean square err®MSE: Eq.2); normalized mean standard
error NMSE: Eqg.3) and normalized mean biddB: Eq.4).

+3(0-0)r-?)

PCC = (Eq. 1)
0505
RMSE = J%Z(P o) (Eq. 2)
>(R-0OF
NMSE =2 — — %100 (Eq. 3)

NxPxO
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NMB =2 x100 (8.

whereP andO denote model predictions and observations, reseéctThePCC is a
measure of associativity and allows gauging whetteerds are captured, and it is not
sensitive to biadRMSE is a measure of accuracy and, because it is sfjuargensitive to
large departureNNMSE andNMB are normalised operators, useful for comparingesco
coming from time series of different lengths, asst produced over different areas and/or
with different time span. The comparison is perfedimdividually for the two domains and
their sub-regions for the whole year of 2010 ané&@easonal basis, in order to identify
which regions and/or seasons lead to systematicserr

3. Results and Discussion
3.1. Surface ozone analyses

Observed and simulated diurnal cycles of surfageddcentrations averaged over the whole
simulation period (2010) are shown in Fig. 2a,dBbrand NA, respectively. Models are
labelled by the ID of the respective modeling growjh each ID corresponding to a member
of the overall model ensemble. In the same figuressMACC IFS-MOZART global model
(MACC) and the ensemble mean and median are atserstNote that the MACC model is
not considered in the ensemble calculations.

3.1.1. Europe

Most models capture reasonably well the shapeeo&timual diurnal cycle over Europe as
seen in Fig.2. The temporal variations on all tsnales were captured successfully as seen in
Table 3 PCC>0.80), although the predicted @vels are generally underestimated by up to
18%. Only one group (UK4) slightly overestimates jlearly-averaged observed surfage O
levels by 2% while the other groups have underegtons up to 18%. The largest
underestimations are calculated for IT2 (by 16% @R 1 (by 18%) groups. Other groups
have mean normalized biases within the 5% to 1&8¢e suggested by Russell and Dennis
(2000). Fig.2a shows that the underestimationsrgéiyeccur both during day and night
hours, which is expected to some extent given tlaese horizontal resolution (Qian et al.,
2010). The exceptions are AT1, DE4, SI1 and UK4 ¢tvarestimate the night time levels.
The MACC model underestimates the nighttime leaslalso reported in Innes et al. (2013).
Overestimation of nighttime evels can be due to the overestimation of @hcentrations
under low-NQ conditions leading to overestimated €dncentrations (e.g. DE4). Fig.2a
shows that the underestimations generally occur doting day and night hours, which is
expected to some extent given the coarse horizoegalution (Qian et al., 2010). The
exceptions are AT1, DE3, DE4, Sl1, and UK4 thatresgémate the night time levels. The
MACC model underestimates the nighttime levelslss @eported in Innes et al. (2013). The
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small overestimation of nighttimez@evels for AT1 and SI1 can be attributed to the
underestimation of nocturnal ozone titration inamlareas with high NGemissions for the
QSSA solver that was applied for these simulatiéios.DE4, where a modified version of
this solver (Forkel et al., 2014) has been applieel overestimation of nighttime ozone can
be attributed to a general overestimation o, d@ncentrations under low-N@onditions.
This is also the case for the DE3 model duringnilgattime, where this overestimation is
probably related to difficulties of the meteorolcagimodel to simulate nighttime vertical
mixing accurately and, furthermore, to comparativehall dry deposition fluxes for{O
simulated by the model (see Table 3). It shoulddted that the ES2a model does not include
anthropogenic aerosols and secondary aerosol flammand neither aqueous chemistry,
leading to a more oxidized atmosphere. Furtherntbesheterogeneous formation of HNO
through NOs hydrolysis, which is an important sink of M@uring night, is not considered in
ES2a (Badia and Jorba, 2014). As a consequenceS®a model overestimated the annual
domain-mean N@levels by 15% while the rest of the models underege NO2 by 9% to
45%. The overestimation of surface l@vels by the ES2a model can also partly be duleeto
coarser vertical resolution of its first layer (@9 compared to other models (Table 1). The
general underestimation may be partly attributebidases in meteorological variables,
including an overestimation of surface wind spdggall models by up to 60% and a general
slight underestimation of surface temperaturesby than 1 K (Brunner et al., 2014). Such a
small temperature bias, however, will affect oztawels by no more than a few ppb (Sillman
and Samson, 1995). A common feature of all grospisat the daily maximum is simulated
earlier than the observed maximum. Differencesdpi@dictions between the WRF-CHEM
models suggest that the choice of the chemical aresim plays an important role in the
model performance. WRF-CHEM runs using RADM cheiinicachanism (AT1, ES1 and
SI1) produced higher concentrations than runs uBilWGM (IT2) and CBMZ (ES3 and IT1)
mechanisms (Baro et al., 2014). These differenagspartly be attributed to VOC emission
preprocessing. WRF-CHEM is designed to ingest V@1ssions for RADM2 and then, in
case of other mechanisms, the emissions are chignspacified to the final scheme,
possibly leading to a degradation of the reactivitthe VOC mixture. There are also
differences in the microphysics schemes amongitfereht WRF-CHEM configurations
used, leading to different cloudiness and theretodifferent temperature and radiation
acting on the @production (Brunner et al., 2014; Baro et al.,£0Makar et al. (2014a) and
Wang et al. (2014) found that models includinggimeulation of indirect effects tended to
have lower @ concentrations during the summer production pethaa those with the direct
effect only, or those with no feedbacks. Thisus tb the reduction of NOnixing ratios
during daytime and near-surface temperatures,tnegditom the reduction of solar radiation
(Wang et al., 2014). Dry deposition of B also investigated for the models that provided
deposition data (CH1, DE3, DE4, ES1, ES2a, ES3,NI[2 and SI1) in order to explain the
differences in simulated {devels among the models (Table 3).The results shoegative
relation between underestimation and dry depositienthe underestimation increases with
decreasing deposition, suggesting that other tesite from deposition were controlling the
O3 concentrations (chemistry, vertical diffusion gtc.



372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

390

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

413

The model performances are also assessed agaraisgbrved variability in box-and-whisker
plots of Fig.2b and e. The plot shows the frequetsiribution of observed and simulated
surface @ mixing ratios. The spread of the data in the Eaavpcase is largest in CH1, ES2a
and UK4 (Fig. 2b). The majority of other modelsshemuch lower spread, which also tends
to be lower than the observed spread. Data from MA€e associated with a larger spread
compared to the observations in both domains, stiggea better representation of local
processes by regional models as well as an indicati an exaggerated seasonal cycle
simulated by the MACC model. The larger spreacme models as compared to others is
partially related to the amplitude of the diurnaboe cycle, which tends to be larger in
models simulating a more stable and shallow noat®BL such as the global MACC model
(Innes et al., 2013). A larger amplitude may als@kpected for models with a higher vertical
resolution. TheNMB vs NMSE plot (also known as the soccer diagram) for Ed.(Ec)

shows that the models have mean biases below 3@%nastly below 15%. The geographical
analyses for the EU domain presented in Fig.3 ghaivfor the majority of models, the
underestimation is mainly originating from sub-mgEU2 (north Eastern Europe) while in
sub-region EU4 (East Mediterranean), most modetsastimate the observed mean. The
underestimation, particularly in EU1 and EU2 colddpartly due to the chemical boundary
conditions (Fig.3) as discussed in more detailantS3.3.

3.1.2. North America

The hourly Q temporal variability over the whole simulation joeris also well captured
(PCC>0.78) by all groups for the NA domain (Table 3heTCA2f model overestimates the
nighttime surface @concentrations and underestimates the daytiméslexth a slight

overall overestimation of 2% while other groups emestimate the nighttime levels (Fig.2d).
NMSE values are below 10% for all the groups wiNMB values are within £15% except for
the US8 model, which underestimates the surfadev@ls by 22%. The box plots for the NA
case (Fig. 2e) shows that the MACC model has thledst variability while CA2f is
characterized with the smallest spread. LargeebkiasUS7 and US8 can also be partly
attributed to their coarser resolution (36 km) caneol to other NA models (Table 1). In the
NA case, according to the soccer diagrams (Fig.a#ifgroups and sub-regions are
characterized with biases lower than 25% except/®8. The geographical break down
presented in Fig.4 shows that the US8 model untieraes in all sub-regions. The MACC
model also shows a general underestimation irulregions except for NA4. Regarding the
dry deposition of @(Table 3), the results suggest that the large wstienation by US8 can
be partly due to the relatively large @ry deposition simulated by the model, acting as a
significant sink. As analyzed in Yahya et al. (288) and Wang et al. (2014), other factors
that contribute to underpredictions of By the US8 model include large underpredictions of
afternoon temperatures, low MACC boundary condgiohQ, the overpredictions of the
NOx titration effects on @during nighttime, possible underestimates in bng® OCs and
wildfire emissions, and the inclusion of aerosdaliiact effects. The lower spread in CA2f
seems to be due to overpredicting the lower erntleo; range compared to the observations,
in regions NA3 and NA4.

3.2. Seasonal vs. geographical surface ozone iasat
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3.2.1. Europe

Inter-seasonal variations of surfacg@ncentrations are analyzed for each sub-region in
order to understand how the model bias varies dgpgron the region and season. The
results for the EU domain are depicted in Fig. tse Temporal variability in Europe is better
captured in all models in summer and autuP@(=0.8-0.9) than in winter and spring
(PCC=0.6-0.8). There is a systematic overestimaifdhe observed concentrations in
autumn by up to 35%, particularly by the DE4 modttelwinter (Fig. 5a), @mixing ratios in
EU2 are underestimated by more than 50% by thregpgr(CH1, ES2a and UK4), which
also underestimate systematically in other suberegiprobably due to the bias from the
boundary conditions from the MACC model. The MAC@del underestimates by largest
during winter (by 8% to 55%) and overestimatesargést in autumn (by 8% to 25%).
Regarding EU1, all groups are within the 30% b&awe. Spring and summeg @ixing

ratios (Fig. 5b,c) in all EU sub-regions are simijl@aeproduced by all groups, with error
below 30%. In autumn, the majority of the modeks lasiased high. In northern Europe (EU1
and EU2), the majority of the models underestin@téevels in all seasons with the DE4,
UK4, and ES2a models overestimating during sumiitegre is a general overestimation in
autumn in the EU1 sub-region by all models excepCH1 and IT2. The models NL2, DE4,
UK4 and ES2a overestimate the summertirgée@els in southern Europe. The East
Mediterranean region (EU4) is characterized by esttmated @levels, in particular during
autumn. The results show that the largest underatbns were calculated for the EU2
region, which is characterized with large anthragog emissions in the Eastern Europe that
may lead to overestimated-@tration by NQ.

3.2.2. North America

Inter-seasonal and geographical variations of thdets performances in NA are presented in
Fig.6. US8 underestimates the observations ireabens and in particular in winter and
spring, and much larger compared to other modelsulb-region NA1, US6 overestimates by
up to 9% while US8 underestimates by up to 22%lisemsons. CA2f slightly overestimates
the winter and autumn{Devels by 3% and 5%, respectively. In the subearegiNA2 and

NA3, there is a general underestimation of alirbwinter and spring and a general
overestimation in summer and autumn except fotX88 model. The winter and spring
underestimates may be the result of underpredetdafternoon temperatures and excessive
Og titration by NQ as NA3 can be characterized by the largest enmissiarces in NA. In

NA4, summertime @levels are overestimated by all models includhmegywS8 model.

Slightly lower correlation coefficientCC=0.7-0.9) are calculated for winter in NA while
other seasons are simulated WBC values of ~0.8-0.9, with slightly lower PCC values
calculated for US7 (not shown).

3.3. Influence of chemical boundary conditions

The influence of the chemical boundary conditionghe simulated surface;@vels has also
been investigated on a seasonal basis. The anayssried out for the EU2 (north Eastern
Europe) sub-region for Europe assuming that tésléast affected by the dominant westerly
transport and having large anthropogenic emissguggesting that Qevels are more
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strongly controlled by local processes than reditaasport, compared to the other sub-
regions. Following the same rationale, sub-regi&3Mas selected for the NA domain. The
results presented in Fig.7a show that in wintémaldels underestimates@vels along with
the MACC model that provides the boundary condgisnggesting that large scale
circulation and chemistry dominates over the |&aproduction. In spring and in summer
(Fig.7b,c), the regional production is more impottdan transport due to increased
photochemical activity. In autumn (Fig.7d), trandgmecomes more effective over local
production. The MACC model slightly overestimaties summer levelsNMB=1%), and
slightly underestimates the autumn levels (NMB=-%%h)le it underestimates the winter and
spring levels 55% and 21%, possibly leading tosiystematic overestimation of the regional
models in autumn. The impact of large-scale trarispeer NA is less pronounced compared
to Europe (Fig.8). The impact is the smallest dygammer when photochemical production
is the largest (Fig.8c). At the same time, it i®iasting to note that the MACC results in the
winter for NA1 are the lowest of the models showiirig.8a, with a deficit of 8 ppb relative
to the observations at 0 LST. The implicatiorhisttiocal chemistry, physics, model
resolution and/or emissions relative to the glabatiel all account for an increase in the
winter Qs levels for region NA1 of 8 ppb (28.5%), and thksml effects are captured by the
suite of regional models. This may be compardihtings from the HTAP experiment,
which suggest a 20% reduction in emissions in Er§outh Asia and East Asia would result
in a 0.9 ppb reduction in{n North America (Reidmiller et al, 2009). Hesanulated Q
levels seem to be much more sensitive to the IBgahemistry than to the boundary
conditions associated with long-range transpomigvibeing the dominant season for long-
range transport effects). Over both continentspighttime differences in all seasons are
particularly large, with the MACC model largely werdstimating the nighttimesOSimilar
results were reported by Solazzo et al. (2012 &i@2) for the first phase of the AQMEII
project. A more detailed analysis of the influent¢he MACC boundary conditions on a
range of simulated species is presented in Gioréaab (2014).

3.4. Multi-model mean and median

The combination of concentrations simulated by svaodels can enhance the skill when
compared to those from individual models (Galmaeiral., 2004a,b), which has also been
demonstrated by Solazzo et al. (2012) in the firstse of the AQMEII project. In the present
study, we provide simple multi-model mean and mediaalyses. Therefore, the calculated
multi-model mean and median presented in TableaBebin Fig.2-11 can only provide a
basic distribution of all models with respect te thbservations and should not be treated as
multi-model ensemble analyses as they represetidiseoriginating from each individual
model. As shown in Solazzo et al. (2012, 2013b)kodtsioukis and Galmarini (2014),
introducing correlated biases into ensembles aatysis of the redundancy of the datasets is
essential. As detailed multi-model ensemble angligsnot the scope of this paper, further
analyses have been performed by Kioutsioukis ¢R@all4) for the EU case using the multi-
model data presented in the present paper.

3.5. Regulatory analysis based on 8-hour maximunfiace Q
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Observed and simulated daily maximum 8-hour averageface @levels during the ©
season (May-September), which is a regulatory mated in EU and NA, are compared in
order to understand how the model biases vary @itlevels. The results are shown in Fig.9
(note that in Fig.9, observed concentrations agseumted by /10). Over EU, all models
overestimate @concentrations below 50y m* by ~40% to ~80% while they underestimate
values above 14fig m®except for the UK4 model that overestimates theleabove 16Qg
m3. Most models follow the MACC model up to a concation of 200ug m* with

increasing variability towards higher concentrasioNL2 and UK4 models overestimate the
230-240ug m* concentration bin where the spread is also la@@sing other models. The
UK4 model defines the upper boundary while T2 nesi the lower boundary of the envelope
until 200ug m* while above that, the highest differences areutated for IT1. The CH1
model, which together with the IT2 model showedl#drgest negative biases in annual mean
values, is more consistent with other models wiaaTsiclering 8-hour maximum values.
Above a concentration of 7@y m®, ES2a, NL2 and UK4 models are associated witHigesi
deviations from the MACC model while other modeis below the MACC-simulated levels.
Results show that depending on the station, thrererderestimations by up to >2a§ m>.

Over NA (Fig.9b), the biases are lower compareduo Note that for NA the values are
reported in volume mixing ratios (ppb) rather tikancentrationsyg/n). The surface ©

levels below 30 ppb are overestimated by all modgls15-25% and levels above 60 ppb are
underestimated by all models by up to ~80%.Theekstrgiases are calculated for US8 except
for the 120-130 ppb bin where US7 has the largest VS8 has the smallest bias below 50
ppb. The results show that models have a tendensgvierely underpredict high; @alues
which are of concern for air quality forecast andtcol policy applications. Further
improvement of model treatments (e.g., gas-phasmigtry, Q dry deposition and processes
affecting afternoon temperature predictions) amaiis (e.g., boundary conditions, biogenic
VOCs and wildfire emissions) as well as a bettetanstanding of interplays among on-line-
coupled atmospheric processes (e.g., the impatrosol indirect effects ong@rmation)

are urgently needed.

3.6. Vertical ozone profiles

The model results from each group as well as tkerable mean and median are compared
with O; soundings obtained from WOUDC for the EU and NAndms up to 9 km height
above the ground. Figs.10 and 11 show the obsem@dimulated vertical Qevels at fixed
heights over the EU and NA domains, respectivelijjevfables 4 and 5 present the
normalized mean biadlMB) for all the models and ensemble mean and me@araverage,
most models underestimate the observed verticilggdy up to 22% over EU. The DE4
model generally has smaller biases compared ta gtbeps except for the station STN156
where it overestimates by ~12% (Fig.10). The ensemizan/median improves the results
compared to the majority of the models dependintherstation. The ensemble mean results
in smaller biases compared to the median. OverN@g 11), the CA2f model underestimates
the vertical Q levels at all stations by10-17% (Table 5). US6 Bi&¥ have the smallest
biases in most stations but with overestimations486 and 5%, respectively, at STN457. The
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US8 model underestimates at all stations by 4-168@berestimates at STN457 by 2%. The
ensemble mean and median lead to improved resutipared to CA2f at all stations above
~1000-2000 m and to US8 at STN107 and STN456 b2@@0-3000 m. Over Europe, among
others, STN318 station (Valentia Observatory, hid)acan be considered as a site that is
largely impacted by long-range transport and is@ased with the largest underestimation
(NMB =-11%) by the MACC model (not shown), suggestimat boundary conditions can
partly contribute to the underestimated verticalfigs by a majority of the models. Results
also show that the tropospheric biases in the MA@@el (Fig.10,11) are less pronounced
than the surface bias as also shown by Inness @04l3).

4. Summary and Conclusions

An operational evaluation of simulated ozong)(l®vels over Europe (EU) and North
America (NA) in 2010 using eight different on-liceupled air quality models from sixteen
groups has been conducted in the context of the Bproject. Seven groups from EU and
two groups from NA applied the WRF-CHEM model, kth different settings.
Anthropogenic emissions and chemical boundary ¢mmdi were prescribed while biogenic
emissions were calculated online by each individwalip. All groups interpolated their
model output to a common output grid and a comnebireceptor locations and uploaded
the data to the ENSEMBLE system. The results aatuated against surface and sounding
observations, which are provided by operational &t and NA, at continental and sub-
regional levels on annual and seasonal basis.

All models capture, reasonably well, the shapdefdomain-averaged annual diurnal cycle
of Oz over both domains, while the sub-regional tempeaailability are simulated from
moderate to good depending on the season andlthegion that the particular model is
configured for. There is a general underestimadiotine annual surfaces®y up to 18% and
22% over EU and NA, respectively. Differences inf@enance among models can be
attributed partly to the chemical mechanism usetiénmodels, partly to VOC preprocessing
and different biogenic emissions, and partly todfiferences in the microphysics, leading to
different cloudiness and therefore to differenttohgsis, temperature and radiation acting on
the G production. The sub-regional analyses highlightittiluence of the anthropogenic
emissions while the seasonal analyses show a steodgncy to overestimate the autumn
surface levels. The temporal variation and magesuaie much better captured during
summer compared to other seasons. The winter@mjsinderestimations may be resulting
from underprediction of afternoon temperaturesessgive Q titration by too much NQas

well as biases from the chemical boundary condsti@oundary condition analyses show that
wintertime levels are mostly driven by transpothea than local production due to limited
photochemistry. The global MACC model providing timundary conditions to the regional
models largely underestimate the surface ozondsi@agticularly in winter, leading to a
negative bias in the regional model simulationsjevin most sub-regions, it largely
overestimates the autumn @vels in winter, leading to the systematic ovenesgtions of
surface autumn gevels by the regional models. The inclusion abael indirect effects in
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some online-coupled models also contributes intpattie underpredictions of;@nixing
ratios. On average, most models underestimateltbereed vertical profiles by up to 22%
over EU and up to 17% over NA.

Comparison of observed and simulated daily maxirBdmour averaged surface @vels
during the Q@ season (May-September), which is a regulatoryimesed in EU and NA,
show that over Europe,s@oncentrations below 58y m* are overestimated by up to 80%
while levels above 14Qg nmi® areunderestimated. Over NA the surfacelévels below 30
ppb are overestimated by all models by up to 258levels above 60 ppb are
underestimated by all models by up to 80%. Thisitmgdications for air quality forecast and
policy applications.

Overall, the results show a slight improvementia surface ozone level predictions over EU
by the models that participated in the second pbas&€MEIl compared to those that
participated in the first phase. TN&B calculated for the whole domain and simulation
period in the first phase ranged from -24% to 9%enin this second phase, thiMB range
was calculated to be -18% to 2%. On the other loaved NA, there is a significant change
between the two phases of the project: the ovenasitin of 3% to 22% in the first phase
shifted to a\NMB range of -22% to 3%. These results, however, shooi be considered as
solely the difference between on-line and off-lmedels as different simulation years,
different emissions, different sets of models, ipafarly for the NA case, and different
boundary condition data should be taken into accaditionally, as the results presented in
this paper are temporally and spatially averagases where feedback mechanisms are of
importance must be further studied and evaluated.
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Table 1. Modelling systems participated to AQMEAI their configurations

First layer

Groups | Domain Model Grid Spacing height (m) Biogenic Model Gas Phase Photolysis Model Reference
M1 AT1 EU WRF-CHEM 23 km 24 MEGAN RADM?2 Fast-3* Grell et al., 2005
M2 CH1 EU COSMO-ART 0.22 24 Gunter et al., 1998 2K GRAALS+STAR Vogel et al., 2009
M3 DE3 EU COSMO-MUSCAT 0.25 20  Guntheretal.,399 RACM-MIM23 Fast-J Wolke et al., 201
M4 DE4 EU WRF-CHEM 23 km 24 MEGAN RADM2 modifiéd Fast-J| Grell et al., 2005; Forkel et al., 20
M5 ES1 EU WRF-CHEM 23 knj 24 MEGAN| RADM Fastl Gwlal., 2005
M6 ES2a EU NMMB-BSC-CTM 0.20 45 MEGAN CBbH Fast-J Jorba et al., 201
M7 ES3 EU WRF-CHEM 23 knj 24 MEGAN| CBMZ Fast-J Grell et al., 200
M8 IT1 EU WRF-CHEM 23 km 24 MEGAN CBMZ Fast Grellal., 2005
M9 IT2 EU WRF-CHEM 23 km 24 MEGAN RACK Fast-J Grell et al., 200
M10 NL2 EU| RACMO LOTOS-EUROS 0.5° x0.2%° 25  Belimet al., 2013  CB-IV modifiéd Poppe et al., 1996 Sauter et al., 2(
M11 si1 EU WRF-CHEM 23 km 24 MEGAN RADM] Fast Gt al., 2005
M12 UK4 EU MetUM-UKCA RAQ 0.22° 20 TNQ UKCA RAY Fast-J Savage et al., 20
M13 CA2f NA GEM-MACH 15 km 20.66 BEIS ADOM-1P Dave, 1972 Makar et al., 20144
M14 uUse NA WRF-CMAQ 12 km 19 BEIS3.14 CcBO05-¥U Binkowski et al., 2007 Wong et al., 201
M15 us7 NA WRF-CHEM 36 km 55-60 MEGAN| MOZART fTuv Grell et al., 2005
M16 uss NA WRF-CHEM 36 km 34 MEGAN CBO fTU Gradt al., 2005; Wang et al., 201

1 Stockwell et al. (1990); 2 Vogel et al. (2009K & et al. (2006); 4 Forkel et al. (2014); 5 Yad et al. (2005); 6 Zaveri et al. (1999); 7 Stoekwt al. (1997); 8 Sauter et al. (2012); 9 Savetga. (2013);
10 Lurmann et al. (1986); 11 Whitten et al., 2038rwar et al., 2011; 12 Emmons et al. (2010); Kebt. (2013); 13 Wild et al., 2000; 14 Tie et 2003



Table 2. Annual anthropogenic emissions (kton& k1) provided by TNO-MACC-II
inventory and biogenic isoprene emissions (ktonZ 1) integrated over the EU and NA
domains.

Species EU NA

CO 614 478
NO, 277 120
NMVOC 230 85
NH; 109 31
SO, 109 70
PM, .« 49 29
PMg 69 76
ISOP” 2.4-24.9] 0.02-8.1

* Only anthropogenic NOX is reported.

**The groups that provided isoprene emissions aré ACH1, DE3, IT2, NL2 and UK4 for the EU domairdan
CA2f, US6 and US7 for the NA domain.



Table 3. Statistical comparisons of observed amiilsited annual domain-mean hourly
surface Q and domain- and annually-integrateglddy deposition over EU and NA in 2010.

Members | r | NMSE (%) | NMB (%) | RMSE | Dry Deposition (Tg kmi?)
M1/AT1 0.86 2.66 -4.92 9.57 NP
M2/CH1 0.82 8.03 -18.30 15.42 0.28
M3/DE3 0.68 6.37 -2.12 15.02 0.13
M4/DE4 0.83 3.17 -1.64 10.62 2.24
M5/ES1 0.86 4.08 -11.41 11.44 2.18
M6/ES2a 0.83 6.37 7.71 14.59 2.79
M7/ES3 0.86 4.29 -12.07 11.69 1.82
M8/IT1 0.85 4.57 -12.45 12.03 NP
M9/IT2 0.84 6.21 -15.80 13.76 1.77
M10/NL2 0.89 2.83 -4.34 9.90 0.14
M11/SI1 0.87 2.38 -3.78 9.10 1.91
M12/UK4 0.85 7.88 2.30 17.08 NP
EU Mean 0.86 3.22 -7.70 10.37
EU Median | 0.86 3.23 -8.69 10.33
M13/CA2f | 0.85 1.45 2.43 4.02 0.09
M14/US6 0.84 2.15 1.14 4.85 0.10
M15/US7 0.78 4.36 -4.56 6.72 0.15
M16/US8 0.88 8.11 -22.36 8.26 3.05
NA Mean 0.83 3.70 -11.98 5.94
NA Median | 0.87 2.62 -9.51 5.07

" RMSE is in units ofug m® for EU and ppb for NA.



Table 4. NMB calculated for vertical ©profiles for each model group and ensemble medmaadian for the WOUDC stations in EU.

Stations Station Name Country Lat/Lon ATl CH1 DE3 ED ES1 ES23 ES3B ITL ITR NLP Si1 UK4 Mean  Med
STNO043 Lerwick United Kingdoni 60.1/-1.2 -8.40 -1 -27.80| -2.39 -9.82 -11.4p -7.86 -6.91 -9J05 -3132 -8.16 -11.13 -10.4G -7.4
STNO053 UCCLE Belgium 50.8/4.4 -4.11  -10.09 -14/08 .803 -6.02 -7.46 -4.14 -4.58 -7.23 -1.96 -3/95 -4186 -5.50 -3.56
STNO099 Hohenpeissenberg Germany 47.8/11.0 -10.651.942 -23.98| -2.04 -12.15 -11.98 -8.96 -9.55 -11.47 0.17 -10.39 -8.43 -11.62 -9.4
STN156 Payerne Switzerland 46.5/6.6 1)18 -19.06 .74l 11.77 -0.63 1.84 2.51 2.43 0.51 2]70 1.44 3.94 0.64 2.52
STN242 Prahg Czech Rep. 50.0/14.5 -8.55 -16.18  -26.48 -1.72 -11.38 -8182 .986 -6.97 -8.68| -4.77 -7.8p -5.06 -9.50 -7,
STN308 Barajag Spain 40.5/-3|7 -6.p2 -14{29 -983 911 -7.72 -4.77 -6.74 -6.3R -7.83 0.21 -567 -1161 -5.95 -5.01
STN316 De Bilt Netherlands 52.1/5|2 -4.57 -5/83 829, 3.62 -6.14 -4.24 -4.99 -5.08 7.29 115 -4137 590 -4.23 -3.76
STN318 Valentia Ireland 51.9/-1043 -6.51 -1056 .495 -0.44 -8.01 -9.3( -6.0p -2.93 -6.85 -5[74 -6/43 -5.97 -7.01 -5.04
STN348 Ankara Turkey 40.0/32)9 -11.48 -16[13  -12.945.76 -13.38 -4.28 -10.9p -11.32 -15.p4 0J55 -11.36 2.41 -8.66 -9.74

Table 5.NMB calculated for vertical ©profiles for each model group and ensemble mednradian for the WOUDC stations in NA.

Stations| Station Name Country Lat/Lon| CA2f| US6| US7| US8| Mean| Median
STNO21 Stony Plain| Canada 53.4/-114.1 -9.82| 1.58|-2.29| -4.71| -3.81| -2.85
STN107| Wallops Island ~ USA | 37.9/-75.5/ -10.19| 1.77|-1.17|-13.52| -5.78| -6.30
STN338 Bratts Lake] Canada 50.2/-104.8 -14.29| 0.27|-3.26| -9.46| -6.68| -4.47
STN456 Egbert| Canada 44.2/-79.8) -16.78| -1.40| -3.95| -15.01| -9.28| -8.54
STN457 Kelowna| Canaddq 49.9/-119.4{ -10.09| 13.61| 4.95| -0.62| 1.96 2.05
STN458 Yarmouth| Canaddq 43.9/-66.1| -17.76| -1.17| -5.95| -15.27| -10.04| -10.20




Figure Captions

Fig.1. Annua NOy emissions (tonnes/grid) overlaid with the rural monitoring stations used

for model performance evaluation in EU (@) and in NA (b). Thered circles show EU1/NA1,
yellow diamonds show EU2/NA2, green squares show EU3/NA3 and black triangles show

EU4/NAA4.

Fig.2. Observed and simulated annual mean diurnal profiles (a,d), box plots (b,e) and soccer
diagrams (c,f) for surface levels ozone mixing ratios in EU (upper panel) and NA (lower
panel). Mn and Md represent the mean and median ensembles, respectively. EUO and NAO
represent the two respective continents. Different colors represent the different sub-regions.
Note the differencesin scales.

Fig.3. Geographica distributions of observed and simulated annual surface level ozone
mixing ratios in EU. Note the differencesin scales.

Fig.4. Geographical distributions of observed and simulated annual surface level ozone
mixing ratios in NA. Note the differencesin scales.

Fig.5. Soccer diagrams for the seasonal and geographical model performancesin EU: a)
winter, b) spring, ¢) summer and d) autumn. Mn and Md represent the mean and median
ensembles, respectively. EUO and NAO represent the continental levels. Different colors
represent the different sub-regions. Note the differences in scales.

Fig.6. Soccer diagrams for the seasonal and geographical model performancesin NA: a)
winter, b) spring, ¢) summer and d) autumn. Mn and Md represent the mean and median
ensembles, respectively. EUO and NAO represent the continental levels. Different colors
represent the different sub-regions. Note the differences in scales.

Fig.7. Observed and simulated seasonal diurnal O3 profilesin @) winter, b) spring, ¢) summer
and d) autumn over EU2.

Fig.8. Observed and simulated seasonal diurnal O3 profilesin a) winter, b) spring, ¢) summer
and d) autumn over NA3.

Fig.9. Observed surface Oz concentration bins against mean bias for the EU and NA domains
for the O3 season (M ay-September).

Fig.10. Observed and simulated (models, mean and median) vertical O3 profiles averaged
over 2010 in the EU domain. Note the differencesin scales.

Fig.11. Observed and simulated (models, mean and median) vertical O3 profiles averaged
over 2010 in the NA domain. Note the differencesin scales.
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