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General Self-Motivation and Strategy Identification:
Case Studies based on Sokoban and Pac-Man

Tom Anthony, Daniel Polani, Chrystopher L. Nehaniv

Abstract—We use empowerment, a recently introduced biologi-
cally inspired measure, to allow an AI player to assign utility val-
ues to potential future states within a previously un-encountered
game without requiring explicit specification of goal states. We
further introduce strategic affinity, a method of grouping action
sequences together to form ‘strategies’, by examining the overlap
in the sets of potential future states following each such action
sequence. Secondly, we demonstrate an information-theoretic
method of predicting future utility. Combining these methods, we
extend empowerment to soft-horizon empowerment which enables
the player to select a repertoire of action sequences that aim to
maintain anticipated utility.

We show how this method provides a proto-heuristic for non-
terminal states prior to specifying concrete game goals, and
propose it as a principled candidate model for “intuitive” strategy
selection, in line with other recent work on “self-motivated agent
behaviour”. We demonstrate that the technique, despite being
generically defined independently of scenario, performs quite
well in relatively disparate scenarios, such as a Sokoban-inspired
box-pushing scenario and in a Pac-Man-inspired predator game,
suggesting novel and principle-based candidate routes towards
more general game-playing algorithms.

Index Terms—Artificial intelligence (AI), information theory,
Games

I. INTRODUCTION

A. Motivation

“Act always so as to increase the number of choices.”
- Heinz von Foerster

In many games, including some still largely inaccessible
to computer techniques, there exists for many states of that
game a subset of actions that can be considered ”preferable”
by default. Sometimes it is easy to identify these actions, but
for many more complex games it can be extremely difficult.
While in games such as Chess algorithmic descriptions of the
quality of a situation have led to powerful computer strategies,
the task of capturing the intuitive concept of the beauty of
a position, often believed to guide human master players,
remains elusive (1). One is unable to provide precise rules for
a beauty heuristic, which would need to tally with the ability
of master Chess players to appreciate the structural aspects of
a game position, and from this identify important states and
moves.

Whilst there exist exceedingly successful algorithmic so-
lutions for some games, much of the success derives from
a combination of computing power with human explicitly
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designed heuristics. In this unsatisfactory situation, the core
challenge for AI remains: can we produce algorithms able
to identify relevant structural patterns in a more general way
which would apply to a broader collection of games and
puzzles? Can we create an AI player motivated to identify
these structures itself?

Game tree search algorithms were proposed to identify good
actions or moves for a given state (2; 3; 4). However, it
has since been felt that tree search algorithms, with all their
practical successes, make a limited contribution in moving us
towards ‘intelligence’ that could be interpreted as plausible
from the point of view of human-like cognition; by using
brute-force computation the algorithms sidestep the neces-
sity of identifying how ‘beauty’ and related structural cues
would be detected (or constructed) by an artificial agent. John
McCarthy predicted this shortcoming could be overcome by
brute-force for Chess but not yet Go 1 and criticising that with
Chess the solutions were simply ‘substituting large amounts
of computation for understanding’ (5). Recently, games such
as Arimaa were created to challenge these shortcomings (6)
and provoke research to find alternative methods. Arimaa is a
game played with Chess pieces, on a Chess board, and with
simple rules, but normally a player with only a few of games
experience can beat the best computer AIs.

At a conceptual level, tree search algorithms generally rely
on the searching exhaustively to a certain depth. While with
various optimizations the search will not, in reality, be an
exhaustive search, the approach is unlikely to be mimicking a
human approach. Furthermore, at leaf nodes of such a search
the state is usually evaluated with heuristics hand-crafted by
the AI designer for the specific game or problem.

These approaches do not indicate how higher-level concepts
might be extracted from simple rules of the game, or how
structured strategies might be identified by a human. For
example, given a Chess position a human might consider two
strategies at a given moment (e.g. ‘attack opponent queen’
or ‘defend my king’) before considering which moves in
particular to use to enact the chosen strategy. Tree search
approaches do not operate on a level which either presupposes
or provides conceptual game structures (the human-made AI
heuristics may, of course, incorporate them, but this is then an
explicit proviso by the human AI designer).

More recently, Monte Carlo Tree Search (MCTS) algorithms
(7) have been developed which overcome a number of the
limitations of the more traditional tree search approaches.

1recent progress in Go-playing AI may render McCarthy’s pessimistic
prediction concerning performance moot, but, the qualitative criticism stands.
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MCTS algorithms represent an important breakthrough in
themselves, and lead us to a better understanding of tree
searching. However, whilst MCTS has significantly extended
the potential ability of tree search algorithms, it remains
limited by similar conceptual constraints as previous tree
search methods.

In the present paper we propose a model that we suggest
is more cognitively plausible and yet also provides first steps
towards novel methods which could help address the weak-
nesses of tree search (and may be used in alongside them).
The methods we present have arisen from a different line of
thought than MCTS and tree search in general. As this is - to
our knowledge - the first application of this train of thought
to games, at this early stage it is not intended to out-compete
state-of-the-art approaches in terms of performance, but rather
to develop qualitatively different, alternative approaches which
with additional research may help to improve our understand-
ing and approach to game playing AIs.

The model we propose stems from cognitive and biological
considerations, and for this purpose we adopt the perspective
of intelligence arising from situatedness and embodiment (8)
and view the AI player as an agent that is ‘embodied’ within
an environment (9; 10). The agent’s actuator options will
correspond to the legal moves within the game, and its sensors
reflect the state of the game (those parts available to that player
according to the relevant rules).

Furthermore, we create an incentive towards structured
decisions by imposing a cost on the search/decision process;
this is closely related to the concept of bounded rationality
(11; 12) which deals with decision making when working
with limited information, cognitive capacity, and time and
is used as a model of human decision-making in economics
(13). As natural cost functionals for decision processes, we use
information-theoretical quantities; there is a significant body
of evidence that such quantities have not only a prominent
role in learning theory (14; 15), but also that various aspects
of biological cognition can be successfully described and
understood by assuming informational processing costs being
imposed on organisms (16; 17; 18; 19; 20; 21; 22).

Thus, our adoption of an information-theoretic framework
in the context of decisions in games is plausible not only
from a learning- and decision-theoretic point of view, but also
from the perspective of a biologically oriented high-level view
of cognition where pay-offs conferred by a decision must be
traded off with the informational effort of achieving them.

Here, more specifically, we combine this “thinking in
informational constraints” with empowerment (23; 24), an-
other information-theoretic concept generalising the notion
of ‘mobility’ (25) or ‘options’ available to an agent in its
environment. Empowerment can be intuitively thought of as a
measure of how many observable changes an embodied agent,
starting from its current state, can make to his environment via
its subsequent actions. Essentially, it is a measure of mobility
that is generalized as it can directly incorporate randomness
as well as incomplete information without any changes to the
formalism. If noise causes actions to produce less controllable
results, this is detected via a lower empowerment value.

This allows one to treat stochastic systems, systems with in-

complete information, dynamical systems, games of complete
information and other systems in essentially the same coherent
way (26).

In game terms, this above technique could be thought of
as a type of ‘proto-heuristic’ that transcends specific game
dynamics and works as a default strategy to be applied,
before the game-specific mechanics are refined. This could
prove useful either independently or as heuristics from genesis
which could be used to guide an AI players behaviour in
a new game whilst game-specific heuristics were developed
during play. In the present paper we do not go as far as
exploring the idea of building game-specific heuristics on top
of the proto-heuristics, but focus on deploying the method
to generate useful behaviour primitives. We demonstrate the
operation of proto-heuristics in two game scenarios and show
that intuitively ‘sensible’ behaviours are selected.

B. Information Theory

To develop the method, we require Shannon’s theory of
information for which we give a very basic introduction. To
begin we introduce entropy, which is a measure of uncertainty;
the entropy of a variable A is defined as:

H(A) = −
∑
a∈A

p(a) log p(a). (1)

where p(a) is the probability that A is in the state a. The
logarithm can be taken to any chosen base; in our paper we
always use 2, and the entropy is thus measured in bits. If
S is another random variable jointly distributed with A, the
conditional entropy is:

H(S|A) = −
∑
a∈A

p(a)
∑
s∈S

p(s|a) log p(s|a). (2)

This measures the remaining uncertainty about the value of
S, if we know the value of A. This also allows us to measure
the mutual information between two random variables:

I(A;S) = H(S)−H(S|A)

=
∑
a∈A

∑
s∈S

p(a, s) log

(
p(a, s)

p(a) p(s)

)
(3)

Mutual information can be thought of as the reduction in
uncertainty about one random variable, given that we know
the value of the other. In this paper we will also examine the
mutual information between a particular value of a random
variable with another random variable:

I(a;S) = p(a)
∑
s∈S

p(s|a) log
(

p(a, s)

p(a) p(s)

)
. (4)

This can be thought of as the ‘contribution’ by a specific
action a to the total mutual information, and will be useful for
selecting a subset of A that maximises mutual information.

Finally, we introduce the information-theoretic concept of
the channel capacity (27). It is defined as:

C(p(s|a)) = max
p(a)

I(A;S). (5)
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Fig. 1: Bayesian network representation of the perception-
action loop.

Channel capacity is measured as the maximum mutual
information taken over all possible input (action) distributions,
p(a), and depends only on p(s|a), which is fixed for a
given starting state st. This corresponds to potential maximum
amount of information about its prior actions an agent can later
observe. One algorithm that can be used to find this maximum
is the iterative Blahut-Arimoto algorithm (28).

C. Empowerment

Empowerment, based on the information-theoretic
perception-action loop formalism introduced in (24, 29), is a
quantity characterizing the “sensorimotor adaptedness” of an
agent in its environment. It quantifies the ability of situated
agents to influence their environments via their actions.

For the purposes of puzzle-solving and game-play, we
translate the setting as follows: consider the player carrying
out a move as a sender sending a message, and observing
the subsequent state on the board as receiving the response
to this message. In terms of Shannon information, when
the agent performs an action, it ‘injects’ information into
the environment, and subsequently the agent re-acquires part
of this information from the environment via its sensors.
Note that in the present paper, we discuss only puzzles and
games with perfect information, but the formalism carries over
directly to the case of imperfect information game.

For the scenarios relevant in this paper, we will employ
a slightly simplified version of the empowerment formalism.
The player (agent) is represented by a Bayesian network,
shown in Fig. 1, with the random variable St the state of the
game (as per the player’s sensors), and At a random variable
denoting the action at time t.

As mentioned above, we consider the communication chan-
nel formed by the action, state pair At, St+1 and compute
the channel capacity, i.e. the maximum possible Shannon
information that one action At can ‘inject’ or store into
the subsequent state St+1. We define empowerment as this
‘motori-sensor’ channel capacity:

E = C(p(s|a)) = max
p(a)

I(A;S). (6)

If we consider the game as homogenous in time, we can
for simplicity ignore the time index, and empowerment only
depends on the actual state st.

Instead of a single action, it makes often sense to consider
an action sequence of length n > 1 and its effect on the state.
In this case, which we will use throughout most of the paper,
we will speak about n-step empowerment. Formally, we first
construct a compound random variable of the next n actuations
(At, At+1, At+2, ... , At+n) = An

t . We now maximize the
mutual information between this variable and the state at time

t+n, represented by St+n. n-step empowerment is the channel
capacity between these:

E = C(p(st+n|ant )) = max
p(ant )

I(An
t ;St+n). (7)

It should be noted that E depends on St (the current state
of the world) but to keep the notation unburdened, we will
always assume conditioning on the current state St implicitly
and not explicitly write it.

In the present paper we will present two extensions to the
empowerment formalism which are of particular relevance
for puzzles and games. The first, discussed in section IV, is
impoverished empowerment; it sets constraints on the number
of action sequences an agent can retain, and was originally
introduced in (30). The second, presented in section VI,
introduces the concept of a soft horizon for empowerment
which allows an agent to use a ‘hazy’ prediction of the future
to inform action selection. Combined these present a model
of resource limitation on the actions that can be retained
in memory by the player and corresponds to formulating a
‘bounded rationality’ constraint on empowerment fully inside
the framework of information theory.

Prior to the present paper, and (30), empowerment as a
measure has solely been used as a utility applied to states
but in the present paper we introduce the notion of how
empowered an action is. In this case empowered corresponds
to how much a particular action of action sequence contributes
towards the empowerment of a state.

Note that we use the Bayesian network formalism in its
causal interpretation (31), as the action nodes have a well-
defined interventional interpretation — the player can select
its action freely. The model is a simpler version of a more
generic Bayesian network model of the perception-action
loop where the state of the game is not directly accessible,
and only partially observable via sensors. The empowerment
formalism generalizes naturally to this more general case of
partial observability, and can be considered both in the case
where the starting state is externally considered (“objective”
empowerment landscape) or where it can only be internally ob-
served (i.e. via context, i.e. distinguishing states by observing
sensor sequences for which empowerment values will differ
see 32; 26). In fact, the empowerment formalism could be
applied without change to the more generic Predictive State
Representation formalism (PSR, see 33)2.

Here, however, to develop the formalism for self-motivation
and strategy identification, we do not burden ourselves with
issues of context or state reconstruction, and we therefore
concentrate on the case where the state is fully observable.
Furthermore, we are not concerned here with with learning
the dynamics model itself, but assume that the model is given
(which is, in the game case, typically true for one-player
games, and for two-player games one can either use a given
opponent model or use, again, the empowerment principle to
propose a model for the opponent).

2Note that this relies on the actions in the entries of the system-dynamics
matrix as being interpreted interventionally (i.e. as freely choosable by the
agent) in PSR.
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Previous results using empowerment in Maze, Box Pushing,
and Pole Balancing scenarios demonstrate that empowerment
is able to differentiate the preferable (in terms of mobility)
states from the less preferable ones (24), correlates strongly
with the graph-theoretic measure of closeness centrality (34)
in compatible scenarios, and successfully identified the pole
being perfectly upright as amongst the most empowered states
in various balancing scenarios (26; 35).

II. RELATED WORK

The idea that artifical agents could derive “appropriate”
behaviour from their interaction with the environment was
implicit already in early work in cybernetics. However, con-
crete initiatives on how to make that notion precise arose as
a consequence of renewed interest in neural controllers, for
instance, in the first modern model of artificial curiosity (36).
The idea that AI could be applied to generic scenarios with
the help of intrinsic motivation models has led to a number of
approaches in the last decade. The autotelic principle aims at
identifying mechanisms which balance skill and challenge as a
mechanism for an agent to improve intrinsically (37). Concrete
realizations of that are incarnated as learning progress, where
the progress in acquiring a model of the environment is
considered as the quantity to maximize (38); Schmidhuber’s
compression progress framework (39) which bases its mea-
sure directly on the progress in compression efficiency in a
Kolmogorov-type framework as actions and observations of
an agent proceed through time, and which has been extended
towards Reinforcement Learning-like frameworks (AIXI, 40).

In (41), the model of intrinsic rewards emerging from
saliency detectors is adopted (which, in turn, may arise
in biological agents from evolutionary considerations), and
the infotaxis exploration model (considered in a biologically
relevant scenario) uses (Shannon) information gain about a
navigation target as driver for its exploratory behaviour (42).

The notion of predictive information is used in (43) to drive
the behaviour of autonomous robots; it is an information-
theoretic generalization of the homeokinesis principle as to
maintain a predictable, but rich (i.e. non-trivial) future be-
haviour. An overview over a number of principles important
for intrinsic motivation behaviours can be found in (44).

Most of the above principles for intrinsic motivation are
process-oriented, i.e. they depend both on the environment as
well as on the trajectory of the agent through the environment.
The latter, in turn, depends on the learning model. In the case
of compression progress and AIXI, the prior assumptions are
relatively minimal, namely a Turing-complete computational
model, but true independence from the learning model is only
achieved in the asymptotic case.

Infotaxis, as an explorational model, only relies on a model
of the environment to induce a locally information-optimal
behaviour. Similarly, empowerment does not require any as-
sumptions about learning models; it is not process-oriented,
but state-oriented: assume a particular world and agent em-
bodiment, and assume a given empowerment horizon; then,
a given state in the world has a well-defined empowerment
value, independently of how the agent travels through the

world. In particular, empowerment is emphatically not an
world exploration model. Though there are some exploration
algorithms for model building which are suitable to be plugged
into the empowerment computation, the model acquisition
phase is conceptually disparate from the empowerment prin-
ciple at present and we are not aware of a combined treatment
of both in a single coherent framework.

In this paper, we generally assume the world and world
dynamics to be essentially known. Similar to the intrinsic
reward principle by (41), there is the core assumption of
an evolutionary “background story” for the relevance of em-
powerment for a biological organism, but, different from it,
empowerment does not assume dedicated saliency detectors,
but works on top of the regular perception-action cycle.

III. GENERAL GAME PLAYING

In summary, the scenarios reviewed above indicate that
empowerment is able to provide a default utility which 1.
derives only from the structure of the problem itself and not
from an external reward 2. identifies the desirability of states
in way that matches intuition and 3. carries over between
scenarios of apparently different character.

This makes it a promising candidate to assign a proto-utility
to states of a given system, even before a utility (and a goal)
have been explicitly specified.

Importantly, empowerment is more than a naive mobility
measure; in calculating empowerment for a given state, it
incorporates the structure and dynamics of the agent’s world
and embodiment. In an abstract game scenario, it would be
in principle possible to attribute arbitrary labels to actions in
different states. However, in biology, there is some evidence
that available actions of an organism evolved to match the
ecological niche of the organism and simplify its interaction
with its environment (8; 45). We propose that a similar match
of action set and game dynamics may also be typical for games
that humans find attractive to play (similar to the issue of
predictability of games (46)); this hypothesis is the basis for
us transferring the empowerment formalism from biological
models to game-playing.

We believe that empowerment can help move towards a
method that could be used for game playing in general 3, there
are three primary issues we must first address:

1) There are reasons to suspect that the ability of biological
cognition to structure its decision-making process is
driven by the necessity to economize its information
processing (48). In other words, we postulate that suit-
able bounded rationality assumptions are necessary to
generate structured behaviour. We will represent these
assumptions entirely in terms of the language of our
information-theoretic framework, in terms of limited
‘informational bandwidth’ of actions. For games this
cognitive cost to processing the environment is espe-
cially true where we desire an AI player to play in real-
time or at least as fast as a human player.

3the problem of ”game playing in general” might include, but is not limited
to the Stanford AAAI General Game Playing competition (47)
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2) For n-step empowerment to be effective in most sce-
narios, including games, the reliance on a strict horizon
depth is problematic and needs to be addressed.

3) The action policy generated by empowerment should
identify that different states have different utilities. Naive
mobility-like empowerment does not account for the
fact that being able to reach some states can be more
advantageous that being able to reach others.

In sections IV we will address the first issue. As for issue
2 and 3, it turns out that they are very related to one another;
they will be discussed further in sections V and VI.

Finally, in section VII we will bring together all consider-
ations and apply it to a selection of game scenarios.

IV. IMPOVERISHED EMPOWERMENT

In the spirit of bounded rationality outlined above, we
modified the n-step empowerment algorithm to introduce
a constraint on the bandwidth of action sequences that an
agent could retain. We call this modified concept ‘impover-
ished empowerment’ (30). This allows us to identify possible
favourable trade-offs, where a large reduction in the bandwidth
of action sequences has little impact of empowerment.

While in the original empowerment definition, all possible
action sequences leading to various states are considered, in
impoverished empowerment, one considers only a strongly
restricted set of action sequences. Therefore, we need to
identify action sequences which are most empowering, i.e
those contributing most to the agent’s empowerment; how one
action sequence can be more empowering than another is a
function of the action sequence’s stochasticity (does it usually
get where it wanted to go), and whether other action sequences
lead to the same state (are there other ways to get there).

A. Scenario

To investigate the impoverished empowerment concept we
revisited the scenario from (24); a player is situated within a 2-
dimensional infinite gridworld and can select one of 4 actions
(North, South, East, and West) in any single time step. Each
action moves the agent by one space into the corresponding
cell, provided it is not occupied by a wall. The state of the
world is completely determined by the position of the agent.

B. Impoverished Empowerment Algorithm

This bandwidth reduction works by clustering the available
action sequences together into a number of groups, from which
a single representative action sequence is then selected. The
selected action sequences then form a reduced set of action
sequences, for which we can calculate the empowerment.

Stage 1
Compute the empowerment in the conventional way, obtain-

ing a empowerment-maximizing probability distribution p(ant )
for all n-step action sequences a (typically with n < 6).

Having calculated the empowerment we have two distribu-
tions: p(ant ) is the capacity achieving distribution of action
sequences and p(st+n|ant ) is the channel that represents the
results of an agent’s interactions with the environment. For
conciseness we will write A to represent action sequences.

Stage 2
In traditional empowerment computation, p(ant ) is retained

for all n-step sequences a. Here, however, we assume a
bandwidth limitation on how many such action sequences can
be retained. Instead of ‘remembering’ p(ant ) for all action
sequences a, we impoverish p(ant ). i.e. we are going to ‘thin
down’ the action sequences to the desired bandwidth limit.

To stay entirely in the information-theoretic framework, we
employ the so-called information bottleneck method (49; 50).
Here, one assumes that the probability p(st+n|ant ) is given,
meaning you need a model of what will be possible outcomes
for a given action by a player in a given state. In single player
games this is easily determined, whereas in multiplayer games
we need a model of the other players (we discuss this more
in section IX-A).

We start by setting our designed bandwidth limit by select-
ing a cardinality for a variable G where |G| ≤ |An

t |; we now
wish to find a distribution p(g|ant ), where g is a group of
action sequences with g ∈ G.

The information bottleneck algorithm (see appendix B) can
be used to produce this mapping, using the original channel
as an input. It acts to minimise I(G;An

t ) while keeping
I(St+n;G) constant; it can be thought of ‘squeezing’ the
information An

t shares with St+n though the new variable
G to maximize the information An

t shares with St+n whilst
discarding the irrelevant aspects. By setting a cardinality for
G and then running the information bottleneck algorithm we
obtain a conditional distribution p(g|ant ), which acts as a
mapping of actions to groups.

The result of this is action sequences that usually lead to
identical states are clustered together to into groups. However,
if the number of groups is less than the number of observed
states then beyond the identical state action sequences, the
grouping is arbitrary, as seen in Fig. 2. This is because there
is nothing to imply any relation between states, be it spatial
or otherwise - states are only consistently grouped with others
that lead to the same state.

Contrary to what might be expected, introducing noise into
the environment actually improves the clustering of actions to
those that are more ‘similar’ (in this case spatially). This is
due to the possibility to be ‘blown off course’, meaning the
agent sometimes ends up not in the expected outcome state but
in a nearby one which results in a slight overlap of outcome
states between similar action sequences. However, it is clear
that relying on noise for such a result is not ideal and a better
solution to this problem is introduced in section VI.

Stage 3
Because our aim is to select a subset of our original action

sequences to form the new action policy for the agent, we must
use an algorithm to ‘decompose’ this conditional distribution
p(g|ant ) into a new distribution of action sequences, which has
an entropy within the specified bandwidth limit.

We wish to maximize empowerment, so for each g we
select the action sequence which provides the most towards
our empowerment (i.e. the highest value of I(ant ;St+n|g)).
However, when selecting a representative action sequence for
a given g we must consider p(g|ant ) (i.e. does this action
sequence truly represent this group) so we weight on that;
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Fig. 2: Visualization of action sequence grouping using Im-
poverished Empowerment in an empty gridworld with 2-steps;
each two character combination (e.g. NW) indicates a 2-
step action sequence that leads to that cell from the center
cell. Lighter lines represent the grid cells, darker lines the
groupings.

Fig. 3: Typical behaviours where 4 action sequences were
selected from 46 possibilities. The agent’s starting location
is shown in green, and its various final locations in pink.

however in most cases the mapping between g and ant is a
hard partitioning so this is not normally important. This results
in collapsing groups to their ‘dominant’ action sequence.

C. Impoverishment Results

Figure 3 shows three typical outcomes of this algorithm;
in this example we have a bandwidth constraint of 2 bits
corresponding to 4 action sequences, operating on sequences
with a length of 6 actions; this is a reduction of 46 = 4096
action sequences down to 4. The walls are represented by
black, the starting position of the agent is the green center
square, and the selected trajectories by the thin arrowed lines
with a pink cell marking the end location of the sequence.
The result that emerges consistently for different starting
states is a set of ‘skeleton’ action sequences set extending
into the state space around the agent. In particular, note that
stepping through the doorway which intuitively constitutes an
environmental feature of particular salient interest is very often
found amongst the 4 action sequences.

Inspection reveals that a characteristic feature of the se-
quences surviving the impoverishment is the end points of
each sequence usually each have a single unique sequence (of
the available 46) that reaches them.

This can be understood by the following considerations: In
order to maintain empowerment whilst reducing bandwidth,
the most effective way is to eliminate equivalent actions first
since these ‘waste’ action bandwidth without providing a
richer set of end states. States reachable by only one action
sequence are therefore advantageous to retain during impov-
erishment; in Fig. 3, the last action sequences the agent will
retain are those leading to states that have only a single unique
sequence that reaches them. This is a consequence of selecting

the action from each group by I(ant ;St+n), and may or may
not be desirable; however, in the soft-horizon empowerment
model to follow we will see this result disappears.

V. THE HORIZON

Identifying the correct value for n, for n-step empowerment
(i.e. the empowerment horizon depth) is critical for being able
to make good use of empowerment in an unknown scenario.
A value of n which is too small can mean that states are not
correctly differentiated from one another as some options lie
beyond the agents horizon. By contrast a value of n which is
too large (given the size of the world) can allow the agent to
believe all states are equally empowered (30).

Furthermore, it is unlikely that a static value of n would be
suitable in many non-trivial scenarios (where different parts
of the scenario require different search horizons), and having
a ‘hard’ horizon compounds this.

A. Softening the horizon

We understand intuitively that, when planning ahead in
a game, a human player does not employ a hard horizon,
but instead probably examines some moves ahead precisely,
and beyond that has a somewhat hazy prediction of likely
outcomes.

In the soft-horizon empowerment model we use a similar
‘softening’ of the horizon, and demonstrate how it also helps
identify relationships between action sequences which allows
the previously presented clustering process to operate more
effectively. It allows us to group sets of action sequences
together into ‘alike’ sequences (determined by the overlap in
their potential future states), with the resulting groups of action
sequences representing ‘strategies’ . This will be shown later
to be useful for making complex puzzles easier to manage for
agents. Furthermore, we will show that this horizon softening
can help to estimate any ongoing utility we may have in future
states, having followed an action sequence. We acknowledge
that some future states may be more ‘empowered’ than others
(i.e. lead on to states with more empowerment).

VI. ‘SOFT-HORIZON’ EMPOWERMENT

Soft-horizon empowerment is an extension of the impov-
erished empowerment model and provides two significant
improvements: the clustering of action sequences into groups
is enhanced such that the clusters formed represent strategies,
and it allows an agent to roughly forecast future empower-
ment following an action sequence. We will show that these
features also suggest a solution to having to pre-determine the
appropriate horizon value, n, for a given scenario.

A. Split the horizon

Again, we designate a set of actions A, which an agent can
select from in any given time step. For convenience we label
the number of possible actions in any time step, |A|, as c.

We form all possible action sequences of length n, repre-
senting all possible action ‘trajectories’ a player could take in
n time steps, such that we have cn trajectories.
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From here, we can imagine a set of cn possible states the
agent arrived in corresponding to the trajectory the agent took,
St+n. It is likely that there are less than cn unique states,
because some trajectories are likely commutative, the game
world is Markovian and also because the world is possibly
stochastic, but for now we proceed on the assumption that cn

trajectories leads to cn states (we show how to optimize this
in section (30)).

Next, we consider from each of these cn states what the
player could do in an additional m time steps, using the same
action set as previously.

We now have for every original trajectory cn, a set of cm

possible ongoing trajectories. From the combination of these
we can create a set of states that represents the outcomes of
all trajectories of n+m steps, and label this St+n+m.

We can form a channel from these states and actions;
traditional empowerment’s channel would be p(st+n|ant ), cor-
responding colloquially to ‘what is the probability of ending
up in a certain state given the player performed a certain
action’. With the two trajectories we could form the channel
p(st+n+m|an+m

t ), which would be equivalent to if we had
simply increased n by m additional steps.

Instead, we create a channel p(st+n+m|ant ), corresponding
colloquially to ‘what is the probability of ending up in a certain
state in n+m steps time if the player performs a given action
sequence in the first n steps’. Essentially we are forecasting
the potential ongoing future that would follow from starting
with a given n-step action sequence.

To do this we need to aggregate and normalise the various
distributions of St+n+m for those which stem from the same
original n-step action sequence, ant (their common ‘ancestor
sequence’). We can calculate this channel:

p(st+n+m|ant ) =

∑
Amt+n

p(st+n+m|ant , amt+n)∣∣Am
t+n

∣∣ (8)

where

p(st+n+m|an+m
t ) ≡ p(st+n+m|ant , amt+n) (9)

The result of this ‘folding back’ to ancestor sequences is
that the channel now incorporates two important aspects of
the initial n-step sequences:

1) each value for ant now has a rough forecast of its future
which can be used to approximate a ‘future empower-
ment’ value, i.e. what is a players empowerment likely
to be after completing the given n-step action sequence,
ant .

2) the distribution of potential future states, St+n+m|ant ,
for different values of ant can be used to compare the
potential overlap in the possible futures that follow from
those values of ant . This corresponds to how similar they
are in terms of strategy, which we call strategic affinity.

Point 1 empowers us to differentiate between possible action
sequences in terms of utility; naive empowerment is simply
counting states whereas this model acknowledges that some
potential states will not be as empowered as others. We show

Fig. 4: An example grouping of action sequences, shown here
by the colouring of their final states.
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Fig. 5: Visualization of the action sequence grouping from
Fig. 2 when the grouping is performed with soft-horizon
empowerment. The action sequences now cluster together into
‘strategies’ formed of similar action sequences that could
potentially lead to the same future states.

how to calculate this forecast of ongoing empowerment in
section VI-C.

B. Strategic Affinity

The overlap between the potential futures of each n-step
sequence of actions causes them to be grouped together when
this channel is fed into the impoverishment algorithm outlined
in section IV-B, which brings about the emergence of strategies
instead of arbitrary groups previously seen.

The effect of this clustering of action sequences, by their
strategic affinity, can be illustrated easily in a gridworld as
in such an scenario it corresponds closely to geographically
close states (see Fig. 5); with more complex worlds such a
visualization breaks down but the effect of clustering ‘nearby’
states remains. An example of such a mapping can be seen in
Fig. 4. For many games, this grouping already gives an insight
into how tasks may be simplified; either by acting as a coarse
representation of the problem or as a tool to identify separate
local sub-problems that could be dealt with separately.

Selecting an appropriate bandwidth limit (cardinality) for
the number of strategies to be selected is a question not
explored in the current paper; we suggest there is rarely
a ‘correct’ answer as selecting a different granularity of
strategies will have various different trade-offs.

While soft-horizon empowerment neatly encapsulates strate-
gic affinity, we note that the concept of strategic affinity can be
incorporated into other game-playing models, such as MCTS,
outside of the empowerment formalism. Combined with a
method such as k-means clustering, which does not specify the
number of cluster, we hypothesise it would also be possible
to use strategic affinity to identify ‘natural’ strategies.
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Fig. 6: End states of the 4 action sequences selected to
represent the ‘strategies’ seen in Fig. 4; each is distant from
the walls to improve their individual ongoing empowerment.

C. Reducing strategies to actions

We wish to retain only a subset of actions and will use this
clustering of action sequences into strategy groups to select
a subset of our original action sequences to form the new
action policy for the player. To reduce these strategy groups
to single action sequences, we select an action sequence from
each strategy group that we predict will lead to the most
empowered state. We will roughly approximate this forecasted
empowerment without actually fully calculating the channel
capacity that follows each action sequence.

Earlier we formed the channel p(st+n+m|ant , amt+n) from
two separate stages of action sequences, the initial n-steps and
the subsequent m-steps. We calculate the channel capacity of
this channel which provides a capacity achieving distribution
of action sequences p(an+m

t ). We now break this channel up
into separate channels based on all those where ant is identical,
i.e. one channel for each case in which the first n steps are
identical.

We now have a set of channels, corresponding to each
set of m-step sequences that stem from common ancestor
sequences. For each of these ‘sub-channels’ we sum the
mutual information for each sequence an+m

t in this sub-
channel with St+n+m, using the capacity achieving distri-
bution of action sequences calculated above. More formally,∑

amt+n∈Amt+n
I(ant , a

m
t+n;St+n+m) where an+m

t ≡ ant , a
m
t+n.

This gives us an approximation of the (n +m)-step empow-
erment for each sequence of n-steps; we can now select, from
within each strategy group, those that are most empowered.

As before we must weight this by their likelihood to map
to that g (i.e. the highest value of p(g|ant ) for the given g),
although once again usually these mappings are deterministic
so this is unnecessary.

For the mapping shown in Fig. 4 this leads to the selection
of action sequences with the end states shown in Fig. 6.

It can be seen that this results in collapsing strategies to
the action sequences which are forecast to lead to the most
empowered states. Without any explicit goal or reward, we
are able to identify action sequences which represent different
strategies, and that are forecast to have future utility. The
complete soft-horizon empowerment algorithm is presented
appendix A.

D. Single-step iterations to approximate full empowerment

One major problem of the traditional empowerment com-
putation is the necessity to calculate the channel capacity
in view of a whole set of n-step actions. Their number

Fig. 7: A Sokoban inspired gridworld scenario. Green repre-
sents the player, and purple represents the pushable box, which
is blocking the door.

grows exponentially with n and this computation thus becomes
infeasible for large n.

In (30), we therefore introduced a model whereby we itera-
tively extend the empowerment horizon by 1 step followed by
an impoverishment phase that restricts the number of retained
action sequences to be equal to the number of observed
states. Colloquially this is summed up as ‘only remember
one action sequence to reach each state’. This is usually
sufficient to ensure the player retains full empowerment whilst
significantly improving the computational complexity. With
this optimisation the computational bounds on empowerment
grow with the number of states (usually linear) instead of with
the number of action sequences (usually exponential). Space
restrictions prevent us from including the algorithm here, but
we have used it for the n-phase of empowerment calculations.

E. Alternative Second Horizon Method

An alternative approach, not explored in the present paper,
to using the second horizon to predict the future empowerment
is to use an equi-distribution of actions over the m-steps
forming the second horizon, as opposed to calculating the
channel capacity (step in appendix sec:algoappendix). This ap-
proximation is algorithmically cheaper, but at the usually at the
expense of a less accurate forecast of future empowerment, as
well as a less consistent identification of strategies. However,
it may prove to be one path to optimising the performance of
soft-horizon empowerment.

VII. GAME SCENARIOS AND RESULTS

A. ‘Sokoban’

Many puzzle games concern themselves with arranging
objects in a small space to clear a path, towards a ‘good’
configuration. Strategy games often are concerned with route
finding and similar such algorithms, and heuristics for these
often have to be crafted carefully for a particular game’s
dynamics.

As an example of such games, we examine a simplified
box-pushing scenario inspired by Sokoban. In the original
incarnation, each level has a variety of boxes which need to be
pushed (never pulled) by the player into some designated con-
figuration; when this was completed, the player completes the
level and progresses to the next. Sokoban has received some
attention for the planning problems it introduces (51; 52), and
most pertinent approaches to it are explicitly search-based and
tuned towards the particular problem.

We are changing the original Sokoban problem insofar as
that in our scenario there are no target positions for the boxes,
and in fact there is no goal or target at all. As stated, we
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(a) 48.1% (b) 47.2%

(c) 2.0% (d) 2.7%
m=3

(e) 92.7% (f) 4.4%

(g) 1.4% (h) 1.5%
m=5

Fig. 8: The distribution of final game states following the
selected 4-step action sequences selected by an AI player
constrained to 2 action sequences, aggregated from 1000 runs.
The pink cells indicate the player’s final position.

postulate a critical element for general game playing is self-
motivation that precedes the concretization of tasks, thus we
adapted the game accordingly.

Figure 7 shows the basic scenario, with a player and a
pushable box. Similarly to the earlier gridworlds, the player
can move North, South, East and West in any timestep (there
is no ‘stand still’ option). Should the player move into a
neighbouring cell occupied by the box, then the box is pushed
in the same direction into the next cell; should the destination
cell for the box be blocked then neither the player or the
box move and the time step passes without any change in the
world.

Our intuition would be that most human players, if presented
with this scenario and given 4 time steps to perform a sequence
of actions on the understanding that an unknown task will
follow in the subsequent time steps, would first consider moves
that move the box away from blocking the doorway. Humans,
we believe, would understand instinctively from observing the
setup of the environment, that the box blocks us from the other
room and thus moving it gives us more options in terms of
places (states) we can reach.

However, it is not obvious how to enable AI players, without
explicit goals and no hand-coded knowledge of their environ-
ment, to perform such basic tasks as making this identification.
Here we approach this task with the fully generic soft-horizon
empowerment concept. We use the following parameters: n=4
and m=3, and a bandwidth constraint limiting the player to

selecting 2 action sequences from amongst the 4n = 44 = 256
possible. This constraint was originally selected to see if the
AI player would identify both choices for clearing a pathway
to the door, and to allow for a possible contrast in strategies.

In Fig. 8 we can see the distribution of final states that were
reached. We represent the final states rather than the action
sequences that were selected as there are various paths the
player can take to reach the same state.

In Fig.8.(a) and Fig.8.(b) we can see the cases that result the
majority of the time (95.3%); in one case the box is pushed
to the left or right of the door and in the other case the
box is pushed into the doorway. The variants in Fig.8.(c) and
Fig.8.(d) are almost identical, just the player has moved away
from the box one cell.

We can see that two clear strategies emerged; one to clear
the path through the door for the player, and a second to push
the box through the door (blocking the player from using the
doorway). The two options for clearing a path to the doorway
(box pushed left or right of the door) are clustered as being
part of the same strategy.

However, it is clear that the types of strategy that can arise,
and the ways that action sequences are clustered together, is
dependent upon the horizon. If we revisit the same scenario
but now adjust the second horizon to be longer, setting m = 5
then we can see the results change.

The second row of Fig. 8 show the altered results, and in
Fig. 8.(e) we can see that there is a single set of results states
that now form the majority of the results (92.7%). We can see
that clearing the box to the left or right of the door no longer
is part of the strategy; now the player has a horizon of 5 steps
it prefers to retain the option of being able to move the box to
either the left or the right of the door, rather than committing
to one side from the outset. Inspection reveals that occupying
the cell below the (untouched) box provides the player with
an empowerment of E = log238 = 5.25 bits rather than E =
log231 = 4.95 bits that would be achieved by clearing the
door (in either direction) immediately. The choices that clear
the door continue to be clustered together, but the scenario
is now ‘represented’ by the higher empowerment option that
emerges with the increased horizon.

Figure 9 shows a more complex scenario, with multiple
boxes in the world, all ‘trapped’ in a simple puzzle. Again,
there is no explicit goal; for each of the 3 boxes there exists
a single unique trajectory that will recover the box from
the puzzle without leaving it permanently trapped. Note that
trapping any box immediately reduces the player’s ability to
control its environment and costs it some degrees of freedom
(in the state space) afforded by being able to move the box.

The scenario is designed to present multiple intuitive
‘goals’, which are attainable only via a very sparse set of
action sequences. With a horizon of 14 steps there are 268
million possible action sequences (leading to 229 states), of
which 13 full retrieve a box. Note that box 2 (top right) cannot
be fully retrieved (pass through the doorway) within 14-steps,
and that box 1 (top left) is the only box that could be returned
to its starting position by the player.

Table I shows the results when allowing the AI player to
select 4 action sequences of 14-steps with an extended horizon
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(a) Scenario (b) Box 1 (c) Box 2 (d) Box 3

Fig. 9: A second Sokoban scenario, with multiple boxes in purple and the player’s starting position in green. Solutions shown
represent the fullest possible recovery for the 3 boxes, along with example action-sequences for recovery. Being 1-step short
of these solutions is considered partial recovery (not shown).

Box 1 Box 2 Box 3

Full 81% 43% 69%

Partial/Full 93% 53% 82%

TABLE I: Percentage of runs in which each of the boxes
was recovered. We can see the importance of a long enough
horizon; box 2 (which cannot be retrieved completely from
the room) is recovered less often than the other boxes.

of m=5 steps, averaged over 100 runs. An explicit count of
the different paths to the doorway for each box’s puzzle room
reveals that there are only 6 action sequences that fully retrieve
the box to the main room for each of the top 2 boxes, and
only one still for the bottom box.

The results indicate the ability of soft-horizon empowerment
to discover actions that lead to improved future empowerment.
Furthermore, in every run all 3 boxes were moved in some
way, with 35% of cases resulting in all 3 boxes are retrieved,
and in 58% at least two boxes are retrieved, leading to indica-
tions that the division of the action-sequences into strategies
is a helpful mechanism towards intuitive goal identification.

B. Pac-Man-inspired Predator-Prey Maze Scenario

Pac-Man and its variants have been studied previously,
included using a tree search approach (53), but the aim of
the current paper is not to attempt to achieve the performance
of these methods but rather to demonstrate that, notwithstand-
ing their genericness, self-motivation concepts such as soft-
horizon empowerment are capable of identifying sensible goals
of operation in these scenarios on their own and use these to
perform the scenario tasks to a good level.

Thus, the final scenario we present is a simplified predator-
prey game based on a simplified Pac-Man model; rather than
having pills to collect, and any score, the game is simplified
to having a set of ghosts that hunt the player and kill him
should they catch him. The ‘score’, which we will measure, is
given simply by the time-steps that the player survives before
he is killed; however it is important to note that our algorithm
will not be given an explicit goal, rather the implicit aim is
simply survival. If humans play the game for a few times, it is

plausible to assume (and we would also claim some anecdotal
evidence for that) that they will quickly decide that survival
is the goal of the game without being told. Choosing survival
as your strategy is a perfectly natural decision; assuming no
further knowledge/constraints beyond the game dynamics, and
a single-player game, anything that may or may not happen
later has your survival in the present as its precondition.

In the original Pac-Man game, each ghost uses a unique
strategy (to add variation and improve the gameplay) and they
were not designed to be ruthlessly efficient; the ghosts in our
scenario are far more efficient and all use the same algorithm.
Here, in each timestep, the player makes a move (there is
no ‘do nothing’ action, but he can indirectly achieve it by
moving towards a neighbouring wall), and then the ghosts,
in turn, calculate the shortest path to his new location and
move. Should multiple routes have the same distance, then
the ghosts randomly decide between them. They penalise a
route which has another ghost already on it by adding d
extra steps to that route; setting d = 0 results in the ghosts
dumbly following one another in a chain which is easy for
the player. Increasing the value makes the ghosts swarm the
player more efficiently. For the present results we use d = 8
which is a good compromise between ghost efficiency and
giving the player sufficient chance to survive long enough to
allow different values for n and m to differentiate.

The maze setup we used is shown in Fig. 10, and the
location of the 3 ghosts can be seen. Having only 3 ghosts
is another compromise for the same reasons as above; using
4 ghosts usually resulted in the player surviving not long
enough to get meaningful variance in the results generated
with different parameter sets.

The player has a model of the ghosts’ algorithm and thus can
predict their paths with some accuracy, and is being allowed 4
samples of their possible future positions (which are stochastic
given the possibility that for one or more ghosts the path
lengths coincide) for a given move of his. However, once no
equal routes are present then 1 sample is perfect information,
but once one or more ghosts has one or more equal length
paths, then the sampling becomes less accurate and may lose
information about the possible future ghost moves.

The game begins with the player’s first move, and continues
until he is caught by any of the ghosts; at this point the player
is ‘dead’ and is no longer allowed to move. However, there is
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Fig. 10: Pac-Man-inspired scenario, showing the three possible
starting positions of the player (yellow) in the center, and of
the starting positions of each of the 3 ghosts (red).
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Fig. 11: The player’s ‘score’ for different parameter sets,
averaged over 3 different starting positions for the player, and
100 games per data point. It highlights that with no second
horizon (m=0) performance does not improve as the first
horizon (n) increases.

no special ‘death’ state in our model; once caught, the player
is no longer allowed to move but can still observe the game
state (which quickly stops changing anyway, as the ghosts,
having swarmed the player, no longer move).

Using the above algorithm, with a cardinality of strategies
set to 1 to pick a single action sequence, we observe that
the player flees from the ghosts once they come into his
horizon; this result from the fact that his future control over
the state of the game would drop to zero should he be caught.
Death translates directly into the empowerment concept by a
vanishing empowerment level. Figure 11 shows the results for
various parameter sets, for 3 different starting positions; for
each combination of starting position, n value and m value
we ran 100 games, then averaged the number of time steps
survived over the starting positions for a final average ‘score’
for each combination of n and m.

Firstly, it can be seen that for m = 0, which is equivalent
to ‘standard’ empowerment (23; 24) and does not make use
of any features of the algorithm presented that increasing the
value of n has no impact on the player’s performance. Without
a second horizon and thus some measure of his control over
the game in the future (beyond the first horizon) there is no
pressure to maintain that control. Colloquially, we could say
the player only cares about his empowerment in the present

moment, not at all about the future. Being able to reach a
future state in which he is dead or trapped seems just as good
as being able to reach a future state in which he still has a
high empowerment; the result is he does not even try to avoid
the ghosts and is easily caught.

Once the player has even a small ongoing horizon with
m = 1 it is easy to see the increase in performance, and
with each increase in m performance improves further as
the player is better able to predict his future state beyond
what action sequence he plans to perform next. For all cases
where m > 0 it can be seen there is a general trend that
increasing n is matched with increasing performance, which
would be expected; planning further ahead improves your
chances to avoiding the ghosts and finding areas of continued
high empowerment.

Note that n = 2 performs well and outside of the fit of the
other results; this seems, from inspection of individual runs,
to be an artefact of the design of the world and the properties
of one of the three starting positions, and does not persist that
strongly when the starting position is changed. This highlights
how a given structure or precondition in a world, which is not
immediately observable, could be exploited by specific, hand-
crafted AI approaches unique to that exact situation but would
be difficult to transfer to other scenarios. The results are shown
again, separately for each m value in Fig. 12.

One interesting non-trivial behaviour that consistently
emerged from the soft-horizon empowerment algorithm in this
scenario was a kiting technique the player would use to ‘pull
ghosts in’; his employed strategy favoured having a ghost
in the immediate cell behind him (this makes that particular
ghosts behaviour completely predictable and not only reduces
the players’s uncertainty about the future but also increases
his ability to control it - this includes having a persistent
option to commit suicide in a controlled manner at any point).
Therefore, the player could often be observed moving back
and forth between two cells waiting for a nearby ghost to get
to such a position; however, in our observations this did not
happen when other ghosts are nearby which would result in
the danger of the player being surrounded. This behaviour is
not something that would seem intuitive to a human player in
this scenario (but humans employ kiting as a method in other
games), and whether skirting danger in such a way is desirable
in other scenarios is hard to predict.

VIII. COMPARISON TO MOBILITY

In order to highlight some important differences between
soft-horizon empowerment and a greedy mobility algorithm
of similar complexity, we present a brief example from the
gridworld scenario seen earlier. We created a simple algorithm
that samples the world in the same way, and operates with the
same goal as soft-horizon empowerment: to select a specified
number of actions to maximise utility. The algorithm works
thus:

1) Sample the results of performing all possible n-step
actions sequences to produce p(st+n|ant )

2) From all reachable states (St+n), calculate the average
mobility (denoted U(St+n)) (by sampling) from that
state achievable in m-steps
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Fig. 12: Boxplot showing quartiles,medians, maximum and minimums for scores across 100 games per pair of horizon values
(n,m) for the starting position indicated in Fig 10. The whiskers show 1.5x the interquartile range. It can be observed that a
combined horizon of 3-4 is necessary to survive, and then there is a trend towards improved scores as m increases, but as n
becomes larger this trend plateaus as performance no longer significantly improves.

Fig. 13: Gridworld scenario. The green cell represents the
starting position of the player; the player starts atop a wall.

3) For each value of ant , calculate the average mobility the
player would achieve, p(st+n|ant ) · U(St+n)

4) Select, according to a specified cardinality, those actions
with the highest expected mobility (where there are mul-
tiple actions with equally maximal expected mobility,
pick a subset randomly)

This results in a set of n-step actions sequences that have an
expected mobility over n+m-steps in a similar fashion to soft-
horizon empowerment, and like empowerment can operate in
stochastic scenarios.

A. Gridworld scenario

This gridworld scenario we present here, shown in Fig. 13,
operates identically to the gridworld scenarios earlier, but in
this instance there is no box for the agent to manipulate. The
player starts on a wall along which it cannot move; the player
can move east or west and ‘fall’ into the room on either side,
but it cannot then return to the wall. Whilst on the wall the
player can effectively stay still by trying to move north or
south.

We ran both soft-horizon empowerment and the greedy
mobility algorithm with n = 2, m = 2 and an target
action sequence cardinality of 1, such that the output of
each algorithm would be a 2-step action sequence selected to
maximise empowerment or mobility. For each method, 1000
runs were performed and the results are shown in table II.

All of the actions selected by the greedy mobility algorithm
have an expected mobility of 9 moves, and all those moves
also lead to a state where E = 3.17 bits. However, due to

Action Empowerment Greedy Mobility

EE 51.8% 7.4%

WW 48.2% 7.7%

NN/SS/NS/SN - 34.2%

EN/ES - 25.0%

WN/WS - 25.7%

TABLE II: Distribution of action sequences selected by each
method (each over 1000 runs). Action sequences leading to
the same state have been grouped. No noise.

Action Empowerment Greedy Mobility

EE - 7.4%

WW 100.0% 8.8%

NN/SS/NS/SN - 35.5%

EN/ES - 18.1%

WN/WS - 30.2%

TABLE III: Distribution of action sequences selected by each
method (each over 1000 runs), with noise in the eastern room.

the way in which the soft-horizon empowerment algorithm
forecasts future empowerment (in the second horizon), it
favours moving away from the wall.

We now introduced some noise into the environment; mak-
ing it so in the eastern room there was a 50% chance that,
for any run, all directions are rotated (N→S, S→E, E→W,
W→N). Again, 1000 runs were performed and the results are
shown in table III.

The change can be seen clearly; empowerment immediately
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adapts and switches to always favouring the western room
where it has more control, whereas greedy mobility does
not significantly change the distribution of actions it selects.
This behaviour is a critical advantage of empowerment over
traditional mobility; the rotation of actions does nothing to
decrease mobility as each action within a specific run is
deterministic. When beginning a new run it is impossible
to predict whether the actions would be inverted or not, so
whilst there is no decrease in mobility, there is a decrease in
predictability which negatively impacts empowerment.

Whilst empowerment can be intuitively thought of as a
stochastic generalization of mobility, it is actually not ex-
actly the case in many instances; it is possible to encounter
stochasticity with no reduction in mobility, but stochasticity
is reflected in empowerment due to its reducing of a players
control (over their own future).

IX. DISCUSSION

The presented soft-horizon empowerment method exhibits
two powerful features, both of which require no hand-coded
heuristic:
• the ability to assign sensible ‘anticipated utility’ values to

states where no task or goal has been explicitly specified.
• accounting for the strategic affinity between potential

action sequences, as implicitly measured by the overlap in
the distribution of their potential future states (naively this
can be thought of as how many states that are reachable
from A are also reachable from B within the same
horizon). This allows a player to select a set of action
sequences that fit within a specific bandwidth limit whilst
ensuring that they represent a diversity of strategies.

This clustering of action-sequences allows strategic prob-
lems to be approached with a coarser grain; by grouping sets
of actions together into a common strategy, different strategies
can be explored without requiring that every possible action
sequence is explored. We believe that such a grouping moves
towards a ‘cognitively’ more plausible perspective which
groups strategies a priori according to classes of strategic
relevance rather than blindly evaluating an extremely large
number of possible moves. Furthermore, by modifying the
bandwidth, the concept of having strategies with differing
granularities (i.e. ‘attack’ versus ‘attack from the north’ and
‘attack from the south’ etc.) emerges; it has previously been
shown that there is a strong urge to compress environments
and tasks in such a way (54).

Before, however, we go into a more detailed discussion of
the approach in the context of games, some comments are
required as to why a heuristic which is based only on the
structure of a game and does not take the ultimate game
goal into account, can work at all. This is not obvious
and seems, on first sight, to contradict the rich body of
work on reward-based action selection (grounded in utility
theory/reinforcement learning etc.).

To resolve this apparent paradox, one should note that for
many games, the structure of the game rules already implicitly
encodes partial aspects of the ultimate tasks to a significant
degree (similarly to other tasks (55)). For instance, Pac-Man by

its very nature is a survival game. Empowerment immediately
reflects survival, as a ‘dead’ player loses all empowerment.

A. Application to Games

In the context of tree search, the ability to cluster action-
sequences into strategies introduces the opportunity to imbue
game states and corresponding actions with a relatedness
which derives from the intrinsic structure of the game and is
not externally imposed by human analysis and introspection
of the game.

The game tree could now be looked at from a higher
level, where the branches represent strategies, and the nodes
represent groups of similar states. It is possible to foresee
pruning a tree at the level of thus determined strategies rather
than individual actions, incurring massive efficiency gains.
More importantly, however, these strategies emerge purely
from the structure of the game rather than from an externally
imposed or assumed semantics.

In many games, it is reasonable to assume having perfect
knowledge of transitions in the game state given a move.
However, note that the above model is fully robust to the
introduction of probabilistic transitions, be it through noise,
incomplete information or simultaneous selection of moves
by the opponent. The only precondition is is the assumption
that one can build a probabilistic model of the dynamics of the
system. Such opponent or environment models can be learned
adaptively (35; 56). The quality of the model will determine
the quality of the generated dynamics, however, we do not
investigate this here further.

We illustrated the efficacy of this approach using two scenar-
ios. Importantly, the algorithm was not specifically crafted to
suit the particular scenario, but is generic and transfers directly
to other examples.

In the Pac-Man-inspired scenario, we demonstrated that act-
ing to maintain anticipated future empowerment is sufficient to
provide a strong generic strategy for the player. More precisely,
the player, without being set an explicit goal, made the ‘nat-
ural’ decision to flee the ghosts. This behaviour derives from
the fact that empowerment is by its very nature a ‘survival-
type’ measure, with death being a ‘zero-empowerment’ state.
With the second horizon’s forecast of the future, the player
was able to use the essential basic empowerment principle to
successfully evade capture for extended periods of time.

We presented several Sokoban-inspired scenarios; the first,
smaller, scenario presented a doorway that was blocked by a
box, with human intuition identifying clearing the doorway
as a sensible idea. We saw that soft-horizon empowerment
identified clearing the doorway as a good approach for max-
imising future utility, and also selected an alternative strategy
of pushing the box through the doorway. It was interesting
to see that soft-horizon empowerment identified clearing the
door with the box to the left or to the right as part of the
same strategy, as opposed to pushing the box through the door.
This scenario also highlighted how the algorithm differently
differentiates strategies based on its horizon limitations.

The second scenario presented 3 trapped boxes each requir-
ing a 14-step action sequence to ‘retrieve’ from the trap. A
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human introspecting the problem could deduce the desirable
target states for each box (freeing them so they could be moved
into the main room). With a total of 268×106 possible action
sequences to choose from, and lacking the a priori knowledge
determining which states should be target states, the algorithm
reliably selects a set of action sequences which includes an
action sequence for retrieving each of the boxes. Not only are
the target states identified as being important but the possible
action sequences to recover each of the different boxes are
identified as belonging to a different strategy.

The importance of this result lies in the fact that, while
again, the approach used is fully generic, it nevertheless
gives rise to distinct strategies which would be preferred also
based on human inspection. This result is also important for
the practical relevance of the approach. The above relevant
solutions are found consistently, notwithstanding the quite
considerable number and depth of possible action sequences.
We suggest that this may shed additional light on how to
construct cognitively plausible mechanisms which would allow
AI agents to preselect candidates for viable medium-term
strategies without requiring full exploration of the space.

The final Sokoban example introduced noise into the en-
vironment and compared empowerment to a simple mobility
algorithm. It highlighted a distinct advantage of empowerment
over mobility in that empowerment identifies a reduction in
control and is able to respond appropriately.

B. Relation to Monte-Carlo Tree Search

The presented formalism could be thought of, in certain
circumstances as just dividing a transition table into two halves
and using forecasts of probabilities of encountering states in
the second half to differentiate those states in the first half and
assign them some estimated utility. The information-theoretic
approach allows this to be quantifiable and easily accessible to
analysis. However, we believe the technique presented would
work using other methodologies and could be combined with
other techniques in the medium-term. One important example
of where it could be applied would be in conjunction with
a Monte-Carlo Tree Search approach, and we would like to
discuss below how the formalism presented in this paper may
provide pathways to address some weaknesses with MCTS.

MCTS has been seen to struggle with being a global search
in problems with a lot of ‘local structure’ (57). An example
for this is a weakness seen in the Go progam Fuego, which
is identified as having territorially weak play (58) because of
this problem. Some method which clusters of action sequences
into strategies, where the stategic affinity ‘distance’ between
the subsequent states is low, might allow for the tree search
to partially operate at the level the strategies instead of single
actions and this could help in addressing the problem.

The second aspect of MCTS which has led to some criticism
is that it relies on evaluating states to the depth of the terminal
nodes they lead to in order to evaluate a state. It is possible
that the ‘folding back’ model of empowerment presented in
this paper could be used as a method to evaluate states in
an MCTS, which may operate within a defined horizon when
no terminal states appear within that horizon. In this way the

search could be done without this terminal state requirement,
and this might allow a better balance between the depth of the
search versus its sparsity. This, of course, would make use of
the implicit assumption of structural predictability underlying
our formalism.

C. Computational Complexity

We are interested in demonstrating the abilities of the soft-
horizon method, but in the present paper we did not aim yet
for an optimization of the algorithm. As such, the unrefined
soft-horizon algorithm is still very time-consuming.

Previously the time complexity of empowerment was expo-
nential with respect to the horizon, n, until the impoverish-
and-iterate approach was introduced in (30) (which is linear
with the respect to the number of states encountered).

The present paper introduces soft-horizon empowerment
and a second horizon m, and currently the time complexity
of the soft-horizon algorithm is exponential with respect to
m. We have not yet attempted to apply the iterative im-
poverishment approach to soft-horizon empowerment, but we
expect that this or a similar approach would provide significant
improvements.

In continuous scenarios, where early empowerment studies
used to be extremely time-consuming, recently developed
approximation methods for empowerment allowed to reduce
computation time by several orders of magnitude (59).

X. CONCLUSION

We have proposed soft-horizon empowerment as a candidate
for solving implicit ‘problems’ which are defined by the envi-
ronment’s dynamics without imposing an externally defined
reward. We argued that these cases are of a type that are
intuitively noticed by human players when first exploring a
new game, but which computers struggle to identify.

Importantly, it is seen that this clustering of action sequences
into strategies determined by their strategic affinity, combined
with aiming to maintain a high level of empowerment (or naive
mobility in simpler scenarios) brings about a form of ‘self-
motivation’. It seems that setting out to maximize the agent’s
future control over a scenario produces action policies which
are intuitively preferred by humans. In addition, the grouping
of action sequences into strategies ensures that the ‘solutions’
produced are diverse in nature, offering a wider selection
of options instead of all converging to micro-solutions in
the same part of the problem at the expense of other parts.
The philosophy of the approach is akin to best preparing the
scenario for the agent to maximize its influence so as to react
most effectively to an as yet to emerge goal.

In the context of general game-playing, to create an AI that
can play new or previously un-encountered games, it is critical
to shed its reliance on externally created heuristics (e.g. by
humans) and enable it to discover its own. In order to do this,
we propose that it will need a level of self-motivation and a
general method for assigning preference to states as well as
for identifying which actions should be grouped into similar
strategies. Soft-horizon empowerment provides a starting point
into how we may begin going about this.
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APPENDIX A
SOFT-HORIZON EMPOWERMENT COMPLETE ALGORITHM

The soft-horizon empowerment algorithm consists of two
main phases. This appendix presents the complete algorithm.
In order to make it somewhat independent and concise, it
introduces some notation not used in the main paper.

Phase 1 is not strictly necessary, but acts as a powerful op-
timization by vastly reducing the number of action sequences
that need to be analysed. The main contributions presented in
this paper are within phase 2.

A. Setup

1) Define a set A as the list of all possible single-step
actions available to the player.

2) Set n = 0. Begin with an empty set containing a list of
action sequences, An.

B. Phase 1

Phase 1 serves to create a set of action sequences An that,
most likely, will reach all possible states within n-steps, but
will have very few (0 in a deterministic scenario) redundant
sequences. In stochastic scenarios that have heterogeneous
noise in the environment it may be that those areas are avoided
in preference to staying within more stable states, and in these
cases you will find there may be some redundancy in terms
of multiple action sequences to the same state.

In a deterministic scenario phase 1 can be entirely skipped;
the same optimization can be achieved by selecting at random
a single action sequence for each state reachable within n-
steps (i.e. for each state s select any single action sequence
where p(s|ant ) = 1).

3) Produce an extended list of action sequences by forming
each possible extension for every action sequence in An

using every action in A; the number of resultant action
sequences should equal |An| · |A|. Replace An with this
new list and increment n by 1.

i. Using the channel/transition table, p(st+n|ant ),
note the number of unique states (labelled σ)
reachable using the action sequences in An, always
starting from the current state.

4) Produce p(ant ) from An, assuming an equi-distribution
on An. Using this, combined with p(st+n|ant ), as inputs
to the Information Bottleneck algorithm (we recommend
the implementation at (50), pp. 30, see Appendix B).
For G, our groups of actions (labelled T in (50)),
we set |G| to be equal to σ, such that the number of
groups matches the number of observed states. This will
produce a mapping, p(g|ant ), which will typically be a
hard mapping in game scenarios. Select a random value
of a from each G (choosing argmaxant p(g|a

n
t ) in cases

where it is not a hard mapping). Form a set from these
selected values, and use this set to replace An.

5) Loop over steps 3 and 4 until n reaches the desired
length.

C. Phase 2
Phase 2 extends these base n-step sequences to extended

sequences of n+m-steps, before collapsing them again such
that we retain only a set of n-step sequences which can forecast
their own futures in the following m-steps available to them.

6) Produce a list of action sequences,M, by forming every
possible m-step sequence of actions from the actions in
A.

7) Produce an extended list of action sequences, An+m,
by forming each possible extension for every action
sequence in the final value of An using every action
sequence in M.

8) Create a channel p(st+n+m|an+m
t ) (where an+m

t ∈
An+m) by sampling from the environmental dynamics
for our current state (using the game’s transition table).
For environments with other players, one can use any
approximation of their behaviour available and sample
over multiple runs or, lacking that, model them with
greedy empowerment maximisation based on a small
horizon.

9) Calculate the channel capacity for this channel using the
Blahut-Arimoto algorithm, which provides the capacity
achieving distribution of action sequences, p(an+m

t ).
10) Now collapse p(st+n+m|an+m

t ) to p(st+n+m|ant ) by
marginalizing over the equally distributed extension of
the action sequences:

p(st+n+m|ant ) =

∑
amt+n

p(st+n+m|ant , amt+n)∣∣Am
t+n

∣∣
where

p(st+n+m|an+m
t ) ≡ p(st+n+m|ant , amt+n)

11) Apply the Information Bottleneck (as in (50), pp. 30,
see Appendix B) to reduce this to a mapping of action
sequences to strategies, p(g|ant ) where G are our groups
of action sequences grouped into strategies. Cardinality
of G sets how many strategy groups you wish to select.

12) We now need to select a representative action, a(rep),
from each group g that maximises approximated future
empowerment (and weight this on how well the action
represents the strategy, p(g|ant ), which is relevant if
p(g|ant ) is not deterministic):

a(rep)(p(st+n+m|ant , amt+n), g
)
=

argmax
ant

p(g|ant ) · ∑
amt+n∈Amt+n

I(ant , a
m
t+n;St+n+m)


Where an+m

t ≡ ant , a
m
t+n, and using the capacity

achieving distribution of action sequences, p(an+m
t ),

calculated in step 9 above. Note that the mutual infor-
mation there requires the full channel, but sums over
those parts of the channel with the identical n-steps, so
algorithmically it is advisable to calculate and store these
mutual information values as whilst doing the channel
collapse above.
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We can now form a distribution of n-step action sequences
from the set of values of a(rep) from each action group; these
represent a variety of strategies whilst aiming to maximise
future empowerment within those strategies.

APPENDIX B
INFORMATION-BOTTLENECK ALGORITHM

The Information Bottleneck algorithm is a variation of rate-
distortion, in which the compressed representation is guided
not by a standard rate-distortion function but rather through
the concept of relevancy through another variable. We wish
to form a compressed representation of the discrete random
variable A, denoted by G, but we acknowledge that different
choices of distortion would result in different representations
but it is likely that we have some understanding of what
aspects of A we would like to retain and which could be dis-
carded. The Information Bottleneck method seeks to address
this by introducing a third variable, S, which is used to specify
the relevant aspects of A.

More formally, we wish to compress I(G;A) while main-
taining I(G;S). We are looking to retain the aspects of A
which are relevant to S, whilst discarding what else we
can. We introduce a Lagrange multiplier, β, which controls
the trade-off between these two aspects, meaning we seek a
mapping p(g|a) which minimises:

L = I(G;A)− βI(G;S)

The iterative algorithm we present here is from (50).
Input:

1) Joint distribution p(s, a)
2) Trade-off parameter β
3) Cardinality parameter σ and a convergence parameter ε

Output:

A mapping p(t|a), where |G| = σ. For the scenarios in this paper
this typically a hard mapping, but it is not necessarily so.

Setup:

Randomly initialise p(g|a), then calculate p(g) and p(s|g) using
the corresponding equations below.

Loop:

1)P
(m+1)

(g|a) ←
P (m)(g)

Z(m+1)(a, β)
e
−βDKL[p(s|a)‖p(s|g)]

, ∀ g ∈ G, ∀ a ∈ A.

2)P
(m+1)

(g) ←
∑
a
p(a)P

(m+1)
(g|a), ∀ g ∈ G.

3)P
(m+1)

(s|g) =
1

P (m+1)(g)

∑
a
P

(m+1)
(g|a)p(a, s), ∀ g ∈ G, ∀ s ∈ S.

Until:

JS(P (m+1)(g|a), P (m)(g|a)) ≤ ε

Where JS is the Jensen-Shannon divergence, based on D,
the Kullback–Leibler divergence:

JS(P ‖ Q) =
1

2
D(P ‖M) +

1

2
D(Q ‖M)

A. Parameter Values

In the present paper, for all scenarios β = 3, and ε =
0.0000001.

The algorithm is based on a random initialisation of p(t|a),
so it is usually beneficial to use multiple runs of the algorithm
and select that with the best result. Throughout the present pa-
per we used 200 runs of the Information Bottleneck algorithm
in each instance it was used.


