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Abstract – The paper presents both a numerical and an experimental approach to study the 

air flow characteristics of a novel small wind turbine and to predict its performance. The 

turbine model was generated based on impulse turbine principles in order to be employed in 

an omni-flow wind energy system in urban areas. The results have shown that the maximum 

flow velocity behind the stator can be increased by 20% because of a nozzle cascade from the 

stator geometry. It was also observed that a wind turbine with a 0.3 m rotor diameter achieved 

the maximum power coefficient of 0.17 at the tip speed ratio of 0.6 under the wind velocity of 

8.2 m/s. It was also found that the power coefficient was linked to the hub-to-tip ratio and 

reached its maximum value when the hub-to-tip ratio was 0.45.  It is evident that this new 

wind turbine has the potential for low working noise and good starting feature compared with 

a conventional horizontal axis wind turbine. 

Keywords: Wind energy; CFD; Wind tunnel test; Impulse wind turbine; Power coefficient  

1. Introduction 

Due to the limitation of fossil fuels and concerns over global warming, the wind energy 

technology has been developed greatly and become one of the mature technologies in the 

renewable energy field. Wind turbines as wind energy conversion devices can be divided into 

four categories by the rotor diameter [1]: i)micro-scale (rotor diameter < 0.1 m); ii)small-scale 

(0.1m <rotor diameter < 1m); iii)middle-scale (1m <rotor diameter < 5m) and iv) large-scale 

(rotor diameter > 5m). Small scale wind turbines have recently become attractive satisfying 

on-grid and off-grid applications [2]. In an urban area small scale wind turbines can be 

suitably constructed on the top of a building and could provide electricity directly to the 

building [3]. In urban areas, the wind velocity on the top of a building is higher than that near 

the ground. Rich wind energy can compensate electricity consumption of high buildings with 

wind turbines for both economic and environmental protection purposes. Limited by the rotor 

diameter, the power coefficient (CP) of a small scale horizontal axis wind turbine (HAWT) is 

normally in a range of 0.2 – 0.25 which is lower than that of a large-scale HAWT of over 0.45 

[4]. Kishore [5] compared fourteen small-to-middle scale HAWTs with the rotor diameter 

range from 0.234 m to 2 m and found that the minimum and maximum values of overall 

efficiency were about 12% and 26%. It appears that this range also applies to vertical axis 

wind turbines (VAWTs). Pope [6] gave a prediction about power coefficients of Savonius and 
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Zephyr VAWTs and reported that a Savonius turbine with 2m rotor diameter had the 

maximum CP of 0.18 and another one with 1.524 m rotor diameter only managed the 

maximum CP of 0.11. Howell [7] studied power performances of a Darrieus VAWT with a 

straight blade of 0.6 m diameter and reported that the maximum CP was about 0.2.  

An omni-flow wind energy system for urban areas has been developed [8, 9]. The 

shrouds and chambers of this wind energy system can take the entrance wind from different 

directions and convert the flow to a vertical exit where the turbine is located. The flow 

velocity at the outlet is increased during this process. However, due to structure features, the 

flow velocity distribution in front of a turbine blade is not uniform and the blade will 

experience four to five different flow velocities and the aerodynamic loads during one cycle 

of revolution [8]. Therefore a wind turbine with the conventional thin blades has difficulty to 

accommodate the flow conditions in the omni-flow wind energy system. A new type of wind 

turbine blade is needed. 

It has been reported that an impulse turbine has a potential to operate well under the 

variable air flow velocities in the marine energy field [10, 11]. Impulse turbines have been 

applied in an oscillating water column (OWC) for wave energy conversion [12, 13]. In wave 

energy, the impulse turbine has been proven as the best one in power generation, starting 

capability and so on [14]. Considering these features, the impulse turbine principles appear 

attractive for an omni-flow wind energy system. However, there is little information on 

impulse turbine principles applied to a wind turbine.  

In this paper, a model of a new wind turbine based on impulse turbine principles was 

presented. Both the experimental and computational investigations were carried out for the 

aerodynamic properties of a wind turbine under steady velocity wind. The effects of different 

parameters on the power coefficients and the other properties of this wind turbine were 

investigated. 

2. The turbine model 

As shown in Fig.1, a newly designed wind turbine consists of two parts: a stator with 

guide vanes and a rotor with blades. This wind turbine was located inside an exit chamber of 

an omni-flow wind energy system [8]. Fig. 1(a) shows the 3-D model of the turbine generated 

with CATIA, a Computer Aided Design (CAD) software package. Fig. 1(b) is a schematic 

view of guide vanes and blades. The guide vanes on the stator led wind to the rotor. Their 

setting angle was 20
o
. These guide vanes had thin plate geometry and were fixed on the 

surrounded wall of the exit chamber. The front part of the guide vane took the shape of an arc 

and the rear part was straight.  

A type of the aerofoil from a unidirectional impulse turbine was employed for the blades 

on the rotor since this type of blade aerofoil had the best power performance compared with 

the other blade aerofoils in wave energy [15]. Based upon the sketch from Maeda et al [16], a 
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further change of the blade aerofoil has been made. The amount of this aerofoil camber takes 

a 36% of the chord length and it is greater than 4 – 6% of NACA aerofoils which have been 

widely used on the wind turbine blades. 

 

(a)                                               (b) 

Fig. 1. (a) 3D view of the turbine model and (b) schematic view of guide vanes and blades 

3. Experimental apparatus 

All lab tests were carried out in a closed return wind tunnel in the School of Engineering 

and Technology at the University of Hertfordshire. The tunnel had a test section of 1.14 m 

(width)   0.84 m (height), with a maximum wind velocity of 25 m/s. A wind turbine test rig 

was located at the centre of the test section within the tunnel. Fig. 2(a) shows the photograph 

of the stator with 20 guide vanes inside a cylindrical flow chamber. This wind turbine was 

produced by rapid manufacturing technology with ABS plastics. As shown in Fig. 2(b), it had 

20 blades with a rotor diameter of 300mm. The hub diameter of this turbine was 135 mm. 

Both stator and rotor had an identical hub diameter. The hub-tip-speed ratio was 0.45 which 

was defined as the ratio between the hub diameter and rotor diameter. In this study the 

dimensionless hub-to-tip ratio was used to represent the hub diameter for a wind turbine. This 

wind turbine was installed inside a 200 mm long cylinder chamber and the thickness of this 

chamber was 12 mm. The guide vanes were fixed on the chamber wall. There was a clearance 

of 2 mm between the blade tip and wall.  

Fig. 3 shows the wind turbine test rig together with its primary measurement system 

utilized in this study. A torque transducer was employed to measure the shaft torque from 0 to 

10 Nm with an accuracy of 0.1% and its maximum rotational speed was 5000 rpm. A DC 

motor was connected to the other end of this torque transducer through a pair of gears to 

apply a load. The applied load was adjusted by changing the current in the motor. In all tests, 

an energy loss caused by the bearing and gears was considered. Both Pitot-tube and pressure 
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meter were used to measure both flow pressure and velocity at the selected positions in the 

wind tunnel test section.   

 

                                        (a)                                                              (b) 

Fig. 2. The wind turbine prototype produced by rapid manufacturing technology: (a) the stator 

with 20 guide vanes inside a cylinder flow chamber; (b) the rotor with 20 blades 

 

Fig. 3. Test rig within the wind tunnel test section 

4. A computational model 

A series of computational fluid dynamics (CFD) simulations for this wind turbine were 

carried with STAR-CCM+, a CFD software package. Fig. 4 shows a schematic view of the 

computational domain and the position of the wind turbine model inside the domain. The 

computational wind turbine model had the same dimensions as the experimental prototype 

shown in Fig.2. The test domain was 16 times as long as the length (L) of the chamber in the 

axial direction, and both the domain width and height were 20 times as long as the rotor 

diameters (D) of the wind turbine respectively. Both velocity inlet and pressure outlet 

boundaries were defined as shown in Fig.4. A uniform wind speed profile was specified at the 



 

5 

 

entrance of this domain. The rotor part of this wind turbine was inside a separated region with 

a moving reference frame which included the rotating speed and axial definition. The slip 

conditions were assigned on both the top and bottom boundaries. 

 

Fig. 4. Schematic view of the domain setup in simulations 

Polyhedral grids were employed for the complex geometries of the turbine as shown in 

Fig. 5. Thin layer grids were employed to surround guide vanes surfaces and blades surfaces. 

Six different grid numbers were studied in order to check the grid dependency of results. As 

seen in Fig.6, when the grid number exceeded about 6000000, the difference between the 

results with various grid numbers was less than 0.1%. Thus it was assumed that the effect of 

the grid dependency was too small to be considered when the grid number was over 6000000. 

Steady solution and the Reynolds Averaged Navier-Stokes (RANS) equations with Realizable 

K-Epsilon turbulence model were chosen. A broadband noise source model with Efowcs 

Williams-Hawkings equations was added into the simulations to estimate the noise 

distribution around the wind turbine with reasonable results in this numerical approach [17].  

Residuals in all simulations in this study were lower than 1E-4 after 1600 iterations. 

 

Fig. 5. A part of meshed wind turbine model with polyhedral cells 
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Fig. 6. Torque values under different grid numbers 

5. Results  

5.1 The effect of guide vanes on the passing air flow 

Fig.7(a) shows a group of selected test points near the rear of a guide vane. At each point 

a radius from the centre of the rotor was employed to define its position on the guide vane as 

shown in Fig. 7(a). Fig. 7(b) presents the wind speed ratios obtained at the selected test points 

by both CFD simulations and wind tunnel tests when free-stream wind velocity was 5 m/s.  

  

                      (a)                                                                           (b) 

Fig. 7. Wind speed ratios near the rear of a guide vane: (a) selected test points near the rear of a 

guide vane; (b) wind speed ratios versus selected positions 
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Wind speed ratio was used to estimate the velocity change and was defined by u/U, where u 

was wind velocity at a select position and U was the free-stream wind velocity. As shown in 

Fig. 7(b), the results from both lab tests and computational simulations correlated well. The 

discrepancies could be caused by the surface roughness and error about the test position. It is 

evident that the value of most wind speed ratios was greater than 1 except at points close to 

the chamber wall. The value of maximum wind velocity ratio was about 1.2 at a radius of 90 

mm. Wind velocity ratio exceeded 1.1 on points from the radius of 70 mm to 112.5 mm 

(occupies about 28 % of the guide vane radius) but was greater than 1 on points from the 

radius of 70 mm to132.5 mm (which occupies about 42 % of the guide vane radius).  

 

  

             (a)                                                                   (b) 

Fig. 8. Distribution of the flow velocity and the pressure change along the centre line of the flow 

passage: (a) schematic view of the flow passage between two guide vanes; (b) flow velocity and 

pressure change along the centre line of the flow passage at r = 100mm 

 

Fig. 8(a) shows a schematic view of the flow passage between two guide vanes and the 

selected test points on the centre line. From the entrance to the exit of the flow passage, the 

cross area of the flow passage decreased continuously (the entrance area of flow passage, A1 

  the exit area of flow passage, A2) and it acted as a nozzle cascade. Fig. 8(b) presents 

velocity and pressure distributions on the centre line of the flow passage at a selected radius 

of 0.1 m. These results were obtained from the CFD simulations, when the velocity of the 

free-stream wind was 5 m/s. It can be seen that at the entrance of the flow passage, the air 

flow had the highest pressure and lowest velocity. Due to the influence of the nozzle cascade 

the air flow pressure continued to reduce. By contrast, the flow velocity continued to increase 

as shown in Fig.8(b). The highest flow velocity was about 5.8 m/s at the exit of the flow 

passage. Where the distance was less than 15 mm from the entrance of the flow passage, the 
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flow velocity changed slowly. From a distance of 15 mm to 30 mm both the flow velocity and 

the pressure had their changes with large slopes due to a sharp reduction of the cross area of 

the flow passage. Beyond a distance of 30 mm the air flow left the guide vanes and the flow 

direction was changed which was decided by the setting angle of guide vanes.  

 

5.2 The key properties of the wind turbine 

Two parameters, the power coefficient and torque coefficient, are essential to validate the 

performance of a wind turbine. Generally, the power coefficient is used to estimate the 

capability of power generation for a wind turbine and is defined as the ratio of the shaft power 

from the wind turbine to the power available from the wind [18]: 

                ⁄                                                                                     (1) 

where T is shaft torque,   is rotational angular speed,   is air density, and R is rotor radius. It 

is well known that the power is proportional to the square of the rotor radius and cube of the 

free-stream wind velocity. The tip speed ratio ( ) of the wind turbine is defined as the ratio 

between the blade tip velocity and free-stream wind velocity, 

    ⁄                                                                             (2)

where V is the blade tip velocity. 

 

Fig. 9. Power coefficient versus tip speed ratio under various wind velocities 
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In the wind tunnel tests, both torques and rotational speeds of the small wind turbine 

were obtained under various wind velocities. The relationship between the power coefficient 

and   is shown in Fig. 9 where the vertical bars represent the experimental scatters. It can be 

seen that the power coefficient increased with   until a maximum value at the middle of   

range and then it decreased and finally became zero when the turbine attained its constant 

maximum rotational speed. As shown in Fig. 9, with an increase of the entry wind velocity 

from 3.5 m/s to 8.2 m/s, the maximum power coefficient was increased from about 0.08 to 

0.17. Above a wind velocity of 5 m/s, the maximum power coefficients lay in the range of 

0.14 to 0.17 and the optimum tip speed ratios were in the range of 0.5 – 0.6.  

Torque coefficient (CT) was used to assess the mechanical torque generated by the wind 

turbine. Wind turbines with higher value of CT could start and work at lower wind velocity [5]. 

Torque coefficient is defined as [19] 

             ⁄                                                                                                          (3) 

Fig. 10 shows the relationship between a torque coefficient and a tip speed ratio. It can 

be seen that the CT –  curves are nearly linear. When the wind turbine was stationary, the 

maximum torque coefficient was obtained. The torque coefficient achieved the maximum 

value of 0.7 and then decreased to zero gradually. Similar to the power coefficients, a larger 

torque coefficient was obtained with the higher wind velocity. 

 

 

 

Fig. 10. Torque coefficient against tip speed ratio under various wind velocities 
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Fig. 11. Relationship between the mechanical power and rotational speed under various wind 

velocities 

 

Fig. 11 shows the relationship between mechanical power and rotational speed of the 

shaft. Mechanical power is defined as P = T  . It can be seen clearly that the higher wind 

velocities result in the greater power. This wind turbine generated 1.5 W at a wind velocity of 

6 m/s.  Power was increased to 4.5 W at a wind velocity of 8.2 m/s. The maximum power 

occurred at a half of the maximum rotational speeds, such as 4.5 W at 350 rpm. With the wind 

velocity increasing, the rotational speed corresponding to the maximum power output was 

increased from 80 rpm to 350 rpm.  

5.3 The effect of wind turbine hub-to-tip ratio 

The effect of large hub-to-tip ratio on the power coefficient was investigated. A wind 

turbine model with 0.45 hub-to-tip ratio was simulated at a high wind velocity of 8.2 m/s and 

the computational results were compared with the experimental results as shown in Fig. 12 in 

which the vertical bars represents the experimental scatters. It is suggested that the results 

from both methods are correlated well in trends. The difference between experimental and 

computational results could be caused by the wind tunnel blockage effect and mechanical 

friction of the rig in the wind tunnel.  
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Fig. 12. Comparison of power coefficients from tests and CFD simulations at U = 8.2m/s 

 

Fig. 13. Comparison of power coefficients under three hub-to-tip ratios at U = 8.2m/s 

Fig. 13 shows the values of the power coefficients from the wind turbine with different 

hub-to-tip ratios under the same domain and conditions. CP –  curves under the three hub-to-

tip ratios, 0.35, 0.45 and 0.6, were compared. It can be seen that the wind turbine with 0.45 

hub-to-tip ratio has the best values of power coefficient. There was an increase of 12% in 
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maximum power coefficient of the turbine with the hub-to-tip ratio of 0.45, compared with 

that with the hub-to-tip ratio of 0.6. Of the three ratios, the optimal tip speed ratios for the 

wind turbine were 0.6 and the maximum values were about 1.25.  

 

6. Discussion 

It is well known that the power of wind is the cube of the wind flow velocity. Therefore, 

it is one of the key approaches to provide a slight increase of the wind velocity in order to 

gain much more power. In this study, the stator of this new wind turbine is employed to 

increase the wind velocity and change the wind direction when the wind flow passes the 

blades. The results of the study have shown that the stator can increase the free-stream wind 

velocity up to 1.2 times as great as its original velocity with a reduction of the blade swept 

area. 

As shown in Fig. 9, this wind turbine normally operated at a tip speed ratio between 0 to 

1.2 while a general HAWT operates at a tip speed ratio higher than 4 [18]. Due to the 

definition of the tip speed ratio,     ⁄ , under the same wind velocity a smaller range of tip 

speed ratios means that a wind turbine works with lower blade tip velocities. It is suggested 

that this wind turbine works with lower blade tip velocities compared with general HAWTs. 

The lower blade tip velocities for a wind turbine are generally associated with lower working 

noise [20], therefore, it is suggested that this novel wind turbine works with a low noise level. 

This suggestion is reflected by the simulation results. It was noted in the numerical study that 

the maximum noise at the blade tip was 49 dB when the wind turbine reached the maximum 

power coefficient under a wind speed of 8.2 m/s. It was also observed that the noise level was 

decreased to about 20 dB at 1m away from the turbine. As shown in Fig. 12, the tip speed ratio 

varies from 0 to 1.2. It has been observed that the tip speed ratio is also in the same range 

from 0 to 1.2 at the different number of blades and that the effect of the blade number on the 

noise is not significant. However, a reduction of blade number from 20 to 15 will decrease the 

maximum power coefficient up to 20% [21]. It is suggested that a reduction of blade number 

from 20 has more negative effect on power output but less effect on a noise level.  

As shown in Fig. 10, the maximum torque coefficient CT is about 0.7 which is greater 

than that of some HAWTs [5, 22, 23] when the wind turbine stood still. It is evident that a 

great torque coefficient allows the wind turbine to start at low wind velocities. Therefore, it is 

suggested that this novel wind turbine has the potential in good starting capability. The 

employed aerofoil resulted in good starting capability. Fig. 14 shows pressure distributions 

around the blade aerofoil. As shown in Fig. 14(a), this blade had the maximum pressure 

difference at the smallest tip speed ratio. This pressure difference resulted in the aerodynamic 

forces and led to a great torque coefficient and good starting capability.  



 

13 

 

With an increase of the tip speed ratios, the pressure difference level decreased as shown 

in Figs. 14(b, c). With increasing the tip speed ratio to 0.94, the upper surface on the front part 

of this aerofoil had higher pressure than the lower surface as shown in Fig. 14(d). So, the 

generated aerodynamic force on the front part hindered the blade rotating and resulted in a 

reduction of power coefficient as shown in Fig. 9. Therefore, it is feasible to optimize the 

front part of this aerofoil for better performance on power in future.  

In urban areas there are requirements about the noise level and wind has low velocities 

[24]. It can be seen that this wind turbine has two unique features, the low working noise and 

good starting capability. This suggests that this wind turbine is suitable to be applied in an 

urban area.   

 

 

 

                                (a)   = 0.19 (CP = 0.095)                (b)   = 0.47 (CP = 0.164) 

 

                                (c)   = 0.66 (CP = 0.176)                (d)   = 0.94 (CP = 0.122)                              

Fig. 14. Pressure distributions around the blade at the radius of 0.13 m under the wind velocity of 

8.2 m/s and different tip speed ratios 

 

As shown in Figs. 7 and 12, the comparisons between the CFD results and wind tunnel 

test results show that the CFD simulations were in good agreement with the experimental 

measurements. Therefore, it is suggested that the CFD approach in this study can provide 

reasonable results. One of the advantages using the CFD simulation is that CFD simulation 

can provide more detailed information and visual indication of flow across the turbine blades, 

such as the pressure distributions around blades as shown in Fig. 14. It is suggested that this 

numerical approach can help to understand aerodynamic behaviour of the wind turbine and 
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contribute to the optimisation of this new wind turbine. Typically, with the validated CFD 

approach, the effect of wind turbine hub-to-tip ratios on power coefficients was studied. 

Among three compared hub-to-tip ratios, the 0.45 ratio hub has the optimum balance between 

the wind velocity and the blade swept area to achieve the best value of CP. The hub with the 

hub-to-tip ratio of 0.6 limited the blade swept area and reduced the capacity to harvest the 

available wind energy, even the wind velocity had an increase. On the hub with the hub-to-tip 

ratio of 0.35 the crowed roots of blades impeded wind flow passing and nearly no torque was 

generated near the region of blade roots to improve CP. 

7. Conclusions 

A new novel small wind turbine based upon the impulse turbine principles has been 

investigated with both a numerical approach and wind tunnel testing. Based on the above 

results and discussion, the following conclusions can be drawn: 

 It is evident that impulse turbine principles can be employed for an omni-flow wind 

energy system and an application of the principles has the potentials to improve the 

performance of this novel wind energy system.  

 The employment of a stator with guide vanes has provided a new approach to 

accelerate the wind velocity of free-stream for the omni-flow wind energy system. 

The results have showed that the maximum wind velocity behind the stator can be 

increased up to 1.2 times. Typically, the wind turbine achieved the maximum power 

coefficient of 0.17 at   of 0.6 under a wind velocity of 8.2m/s.  

 It is evident that this novel wind turbine has good starting capability and low working 

noise. 

 Hub-to-tip ratio is an important factor in this new wind turbine. This wind turbine of 

0.45 hub-to-tip ratio has the best value of power coefficient, CP.  

 With a validation of wind tunnel testing, the CFD simulation, a numerical approach, 

in this study has provided the acceptable results and this numerical approach can be 

used in future investigation.  
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