
Modalys-ER for OpenMusic (MfOM): virtual
instruments and virtual musicians

RICHARD POLFREMAN

Music Department, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB
E-mail: r.p.polfreman@herts.ac.uk

Modalys-ER is a graphical environment for creating
physical model instruments and generating musical
sounds with them. While Modalys-ER provides users with
a relatively simple-to-use interface, it has only limited
methods for mapping control data onto model parameters
for performance. While these are sufficient for many
interesting applications, they do not bridge the gap from
high-level specifications such as MIDI files or Standard
Western Notation (SWN) down to low-level parameters
within the physical model. With this issue in mind, a part
of Modalys-ER has now been ported to OpenMusic,
providing a platform for developing more sophisticated
automation and control systems that can be specified
through OpenMusic’s visual programming interface. An
overview of the MfOM library is presented and
illustrated with several musical examples using some
early mapping designs. Also, some of the issues relating to
building and controlling virtual instruments are discussed
and future directions for research in this area are
suggested. The first release is now available via the
IRCAM Software Forum.

1. INTRODUCTION

Software sound synthesis typically involves the config-
uration of some combination of units that together form
a system for generating sequences of sample values.
Direct specification of sample data would not only be
incredibly cumbersome (e.g. defining 44,100 16-bit
values per audio channel per second for CD-quality
sound), but also, other than for simple periodic wave-
forms, there is no readily perceivable connection
between the sample values and the sonic result. Solu-
tions to this problem are many and varied. Signal-based
models have been historically dominant, using tech-
niques such as additive and subtractive synthesis, ampli-
tude and frequency modulation, and waveshaping. More
recently, physical modelling (PM) techniques have
become increasingly popular for producing sounds more
acoustically plausible than those achieved via signal
models. In either approach, there are usually many para-
meters to be specified (although techniques such as FM
can produce rich timbres with relatively few), from ini-
tial configuration of the synthesis components (e.g. a
signal path or combination of objects and interactions in
a physical model) through to dynamically variable con-
trol values.

Organised Sound7(3): 325–338 2002 Cambridge University Press. Printed in the United Kingdom. DOI:10.1017/S1355771802003126

Today, sound synthesis performs many different roles:
as a replacement for acoustic instruments, for generating
‘synthetic sounds’ within an otherwise traditional music
context, for creating sound effects in film, television and
computer games, as a source of abstract timbres in
acousmatic music and sound art, etc. Software synthesis
tools can be directed towards particular fields, taking
advantage of users’ domain expertise, rather than being
left more open and typically requiring high levels of
application-specific technical knowledge in order to util-
ise them effectively. An example can be found in Propel-
lerheads’ ReasonTM software, which provides a system
heavily modelled on standard MIDI hardware based stu-
dios, using a virtual rack of devices (such as a mixer,
samplers, analogue synthesizers), with interconnecting
cables and user interfaces consisting of dials, buttons
and small displays. Most of the devices are pre-
configured to a large extent as with their hardware coun-
terparts. Anyone familiar with current project studios
can then readily apply their expertise to this system.
This article is concerned with PM synthesis and how

this can be used effectively by composers. Modalys
(Morrison and Adrien 1993) is a PM synthesis program
developed at IRCAM using modal modelling. This
involves the simulation of the vibration patterns in sys-
tems of interacting virtual objects (such as plates, strings
and tubes) in order to produce sound. One important
feature of the modal synthesis engine is that users can
define their own instruments with arbitrary numbers of
simple components described in physical terms, whereas
most waveguide systems available do not present such
flexibility in a simple way. The main cost of the modal
approach is in terms of processing speed – the engine is
not yet real-time and complex instruments can take some
time to synthesise. The Modalys user interface takes the
form of a Scheme (a Lisp dialect) interpreter and the
user must write a series of instructions in order to create
objects and establish connections between them. There
is little pre-defined structure above the object-interaction
level, although with use of object-oriented programming
techniques, higher-level entities can be defined and
manipulated. As such, Modalys is a very open system,
but can be awkward to utilise effectively in a musical
context.
Developed by the author in collaboration with



326 Richard Polfreman

IRCAM, Modalys-ER (Polfreman 1999) attempts to pro-
vide a relatively simple-to-use environment for design-
ing and controlling physical model sound synthesis.
Employing the same synthesis engine as Modalys,
Modalys-ER gives users a graphical user interface and
provides some high-level organisation lacking in
Modalys. The original system, Modalyser, was a separ-
ate application that wrote Scheme files to be loaded into
Modalys, while Modalys-ER integrates the synthesis
functions directly into a single application. Recent ver-
sions (Modalys-ER 2.1 is the latest at the time of
writing) have upgraded the visual representations used,
simplified thetechniquesspecification, added an ‘Instru-
ment Wizard’ for aiding instrument construction, and
provided a system for plotting interaction behaviours for
debugging a synthesis.
A synthesis in Modalys-ER is specified using an

instrumentand ascore, a deliberately familiar division
separating a core synthesis specification from a set of
time-varying parameters applied at synthesis time. The
development of Modalys-ER was informed by wider
research involving task analysis (Johnson 1992) of
music composition (Polfreman 1999, Polfreman and
Loomes 2001). This work attempted to define a generic
model of the process of music composition, including
descriptions of subtasks, their interrelations and the tools
used (both in composition and for performance of a
work). The separation of instrument (from performer)
from score was used in this model as being widely
applicable to both acoustic and electronic/computer-
based situations. The role of the performer is designated
as interpreting a set of instructions (a score) into a series
of applied techniques involving an instrument, thus
giving a four-level model: score – performer – tech-
nique – instrument. In many computer music systems,
what is referred to as a ‘score’ may be considered as
actually the output of a performer in our model, since it
is a direct specification of instrument control values.
(This in fact applies to Modalys-ER since the ‘score’ is
at the performer level rather than a true score level.)
Much of this paper refers to a simplified two-level struc-
ture of instrument and score, but we return to the role of
performers later. While one can imagine a synthesis
system without this type of separation (for example in a
Max/MSP patch), it can be regarded as simply a con-
venient abstraction of all parameters that are likely to be
changed over (synthesis) time into a separate area, leav-
ing the central configuration static. The composer can
then concentrate on working with the evolution of con-
trol values and be no longer concerned with much of the
internal details of the synthesis process.
Modalys-ER adopted the instrument-score approach

for two main reasons. First, the PM paradigm of
Modalys provides a computer-based analogy of acoustic
instruments, and so the score–instrument model can aid
users by extending that analogy. Secondly, the design of

instruments can be quite challenging and score–instru-
ment separation allows re-use of existing instruments –
particularly useful for those users not wishing to involve
themselves in the technical details of instrument defini-
tion (re-use is also a more general aid to usability). The
recent addition of an ‘Instrument Wizard’ takes advant-
age of this separation, by providing automatic construc-
tion of instruments from a few user-defined parameters
which the composer can then utilise without much
detailed understanding of the instrument configuration.
Re-use should also apply in the opposite direction: a
given score (representing a particular musical idea or
gesture) should be capable of application to different
instruments. The low-level scoring system used in
Modalys-ER makes this relatively difficult at this time,
since the score envelope shapes required to invoke a par-
ticular excitation (moving a plectrum, pushing a bow)
are too closely associated with the physical excitation
mechanism. In future developments it is hoped to
resolve this issue.
Instrument–score separation has been used previously

in well-known software synthesis applications such as
Csound (Vercoe 1993), as well as forming the founda-
tion of MIDI. While the instrument–score approach may
be seen as simply following the traditional acoustic
music path, there is a variable division of labour between
the two (although perhaps not as much as in a system
such as Csound). For example, a Modalys-ER instru-
ment can be designed with no score controllable para-
meters, i.e. the instrument is self-contained and all key
synthesis parameters are defined within it. In this case,
a score is simply a tool to load the instrument, specify
the duration of the synthesis and commence processing –
making the score–instrument separation mainly redund-
ant. Alternatively, many instrument variables may be
mapped to score parameters, giving the score wide-
ranging control over the physical interactions that occur
during a synthesis. There are also different levels at
which score control can be applied. For example, it may
specify directly the position of plectrum over time in
order to cross and re-cross a string, or, a sine controller
may be used to achieve this motion and the score given
control over the frequency of this controller. In MfOM,
the score–instrument separation is important since it is
the mechanism by which internal parameters of the
instrument are exposed to the rest of the environment
and so can be algorithmically derived. The new OM
Modalys 2.0 library (see section 5) provides an alternat-
ive format for Modalys synthesis in OpenMusic without
necessarily using an instrument–score separation.
While a Modalys-ER score can be seen as simply a

collection of envelopes, the instrument is further divided
into construction and techniques. The construction
defines the make-up of the instrument in terms ofobjects
(plates, strings, masses, etc.) andconnections(such as
force, pluck, strike) that are linked together in a patch.
Parameters within the construction defined asdynamic



Modalys-ER for OpenMusic (MfOM) 327

can then be accessed by the techniques, each of which
maps an envelope control from the score onto one or
more dynamic controls in the construction. The main
purposes of this mapping system are: to allow a single
score value to control more than one instrument para-
meter; to allow parameter mappings to change according
to other parameter values (e.g. changing a pitch value
may cause an excitation technique to move from driving
a mass plucking one string to a mass on another string);
to enable switching of techniques (e.g. have an instru-
ment change from bowing to plucking); and to allow
score reuse with a range of instruments – which as stated
earlier has not yet been properly realised.
Figure 1 shows a Modalys-ER instrument and figure

2 a score for controlling it. In the instrument amassis
used as a reed and is linked via areedconnection (which
simulates the mouthpiece and breath control) to a tube.
Two pickup connections made to the tube are used to
produce the output sound, while ahole connection
allows us to open and close a hole in the tube. The addi-
tional connection to the mass is aposition connection
that is needed in order to clamp one end of the reed in
place.
Two parameters in the construction have been made

dynamic and appear at the top of the techniques area –
the hole radius and the breath pressure. These are then
mapped to the techniquespitch andbreathrespectively,
whose behaviours can be dependent on individual pitch
ranges. The breath technique uses a single pitch range
(i.e. is independent of pitch), while the pitch technique
uses two ranges – in one of which it opens the hole and
in the other closes it. Each technique is then controlled
by its own envelope in the score. The grey line across
the pitch envelope indicates the pitch value at which the
hole switches from closed to open.

Figure 1. A Modalys-ER reed instrument with construction at
the top, techniques at the bottom.

OpenMusic (Assayag, Rueda, Laurson, Agon and
Delerue 1999) is a visual programming environment
built on top of Digitool’s Macintosh Common Lisp
(MCL), using graphical entities for representing pro-
gramming concepts such as classes, instances and func-
tions. While OpenMusic can be used purely for writing
object-oriented Lisp (CLOS) programs, music-specific
libraries are provided for generating, editing and manip-
ulating musical information. Programmers can also
create their own libraries that can be added to the
system. While in the past the system has been much used
for algorithmic composition of notated music, the more
recent addition of the omChroma library (Agon, Stroppa
and Assayag 2000) has enabled effective control of
sound synthesis through the generation of parameters
that are then delivered to an external software synthes-
izer. This is typically carried out by sending system
messages and/or text files to another application (e.g.
Csound or IRCAM’s Chant library). OpenMusic uses a
patch notation for representing a program, with intercon-
nected functions and class instances forming an algo-
rithm that when evaluated produces some result – for
synthesis usually a sound file. Figure 3 shows an omCh-
roma patch generating sound using Csound. The central
box displaying envelopes is an event class for a given
Csound instrument. The instrument in this case is a
simple oscillator that uses table f1 (here a sine wave) for
the oscillator waveform and f11 (an exponential decay)
for the amplitude envelope. The event class is given lists
of amplitude, frequency and duration values and will
generate a single note layering partials from the different
values on top of each other, here giving a bell-like
sound.

2. MfOM OVERVIEW

MfOM is a new OpenMusic library for generating
sounds with physical model synthesis using the same
synthesis engine as Modalys-ER and Modalys. Since
Modalys-ER was developed using MCL, some of the
code was directly ported to OpenMusic, although many
important changes were necessary in order to success-
fully integrate Modalys-ER functionality within the
OpenMusic structure. In particular, various technical
issues had to be solved in order to provide stable integra-
tion of the Modalys synthesis engine, which is loaded as
a shared library.
In MfOM, the classModInstrepresents a Modalys-ER

instrument. A ModInst instance (or a factory – a box
that instantiates objects of a given class) can be opened
by double-click and edited in a similar way to a
Modalys-ER instrument, the difference being that there
is no techniques area, only construction. External control
of the instrument is again by means of assigning
dynamic controls within the construction. Once an
instrument has been built, it must be connected to the



328 Richard Polfreman

Figure 2. A Modalys-ER score for controlling the reed instrument shown in figure 1.

function get-modalyser-instrument, which when evalu-
ated defines a new synthesis event class for that instru-
ment, whose name is of the formMO-EVT-
instrumentName.This new class is similar in behaviour
to other omChroma classes for controlling Csound and
other synthesis systems. It can be thought of as con-
taining a copy of the instrument used to generate it, and
also a set of inputs that specify values for the dynamic
controls over synthesis time. An instance of the event
class (or the class factory) can be opened, giving the
user editable envelopes for each dynamic parameter.
However, using these directly does not achieve any
advance in control over that of Modalys-ER. The real
gain is by using OpenMusic classes and functions to
generate these values in some way and connect them to
the inputs of the event to control it. In doing this it is

possible to build systems for mapping high-level repres-
entations onto the synthesis control.
As stated earlier, the role of translating a score into a

series of (parallel) physical actions involving an instru-
ment is undertaken by a performer or musician, thus here
the attempt is to construct some form of ‘virtual musi-
cian’ in order to play our ‘virtual instrument’. SWN can
be seen as a relatively poor representation for controlling
instruments directly simply because it has evolved with
a reliance on musicians’ interpretation, but since SWN
remains such a pervasive visual representation for
music, it is useful to provide such mappings.
Once an event class has been defined and control

values set, it is then connected to the generic function
synthesizewhich is also given various global parameters
for the synthesis – duration, number of audio channels,



Modalys-ER for OpenMusic (MfOM) 329

Figure 3. An omChroma patch defining a bell-like sound using Csound – from the omChroma tutorial.

sample rate and output file name. When this function is
evaluated, the synthesis process begins and a sound file
is generated.

3. A SIMPLE EXAMPLE

In this example a simple percussion instrument is made,
consisting of a mass used to strike a tuned circular plate
(figure 4). Since a force is applied to control the move-
ment of the plate, a second plate (rectangular) is
included, again linked to the mass by a strike connec-
tion, such that the mass is trapped between the two
plates. This means that even if an upward (positive)
force is applied for some time to the mass, it will always
be kept within a limited distance from the intended strike
target, and so only take a short time to impact when an
appropriate downward force is used. Figure 4 shows the
instrument construction. Here the force value (in
Newtons) is set to ‘dynamic’ so that it can be controlled
from OpenMusic functions. Figure 5 shows the items
used to define an event class for this instrument.
In the figure, there is a ModInst factory containing the

instrument. A text string is connected to the right input
to name the instrument, while the left output is con-
nected to get-modalyser-instrument in order to define the

Figure 4.An MfOM struck plate instrument with a ‘backstop’.



330 Richard Polfreman

Figure 5. A ModInst factory connected to the get-modalyser-
instrument function to define the event class.

event class for this instrument. After evaluating this
function, the new event class can be used in a synthesis
(and in fact the original ModInst is no longer required).
Figure 6 shows a patch using the new event class. At

the top is a breakpoint function (bpf) factory that speci-
fies the force values for the hammer. Thex values of the
bpf are treated as equal sub-divisions of the total dura-
tion specified in the synthesise function. This is con-
nected to an event factory for our instrument, together
with a number specifying the number of points in the
control envelope. The left output of the event factory is
then connected to the synthesise function, together with
various parameters for setting up the synthesis (as
labelled). Clicking on the left most input of the synthes-
ise function gives a pop-up menu for selecting the syn-
thesis engine to use – for our library it ismfom. The
output of the synthesise function is connected to asound
factory. Evaluating this box will trigger evaluation of the
entire chain, synthesising the sound and then loading the
resulting sound file into the sound factory as shown.

Figure 6. Breakpoint function control of a simple struck plate
instrument.

4. MAPPING HIGH-LEVEL EVENTS

4.1. Mapping rhythm

This example uses a similar instrument to the one above,
but now a mapping of high-level information onto the
rhythmic control of the instrument is included (figure 7).
A voice factory is added for our initial representation,
giving us a simple rhythm in SWN. For convenience of
calculation the voice is converted to achord-seq, which
provides simple access to the note onset times, durations
and velocity values. It is a simple matter to map a MIDI
file on to chord-seq, so this example can be easily modi-
fied for MIDI control. The chord-seq is passed to a sub-
patch (hitevents) that converts this information into a bpf
specifying the hammer force over time. A simple sub-
patch is also used to calculate the duration of the syn-
thesis from the maximum value in the onset list (which
is the total duration) plus a half second to allow for some
decay time. This duration is used by the synthesise func-
tion.
Figure 8 shows the contents of the hitevents sub-

patch. The mapping task is broken down into several
key steps, each involving a loop sub-patch that carries
out an iterative process. The loopinstxpointssimply pro-
duces a list of numbers from 0 to (number-of-points –
1), number-of-points being the total number of values to
use in the bpf – 100 in this example. These numbers are
the x coordinates for the bpf. The loopinststrikepoints
calculates thex–ycoordinates for each note onset, using
the onset times and MIDI velocity values from the
chord-seq. Thex coordinates are found by equating the
ratios x : (number of points) and (onset time) : (total
duration). The y coordinates are derived from linearly
scaling MIDI velocity to negative force value, where the
maximum velocity (127) is equivalent to−9.0 Newtons.
The list output from this loop is sorted to ensure that the
coordinates are in time order (which is not guaranteed
prior to this point) and then passed to the loopinstypo-
ints. This loop uses the event coordinates to generate a
sequence of number-of-points values for the hammer
force. Since this instrument is un-damped, the durations
of events are not used and an arbitrary time for a note’s
down-force is selected. From trial and error, two points
at the down-force value is used here for a note trigger,
but this value should be made dependent on the duration
of the sequence and the number of points used in the
control. The up-force used is+2.0 Newtons which is
exerted at all times that an event is not being triggered.
While this mapping can be effective, the relatively

primitive design has problems when interpreting
dynamics, i.e. variations in MIDI velocity. First, it is not
clear that a linear mapping of MIDI velocity to force is
correct – since there is a non-linear relationship between
force and velocity under Newton’s Laws. An alternative
would be to use aspeedconnection in the instrument
(but this has other problems) or a more sophisticated
calculation of the force values. Secondly, varying the



Modalys-ER for OpenMusic (MfOM) 331

Figure 7. Control of a simple struck plate instrument with standard notation.

force necessarily changes the timing of the strikes,
which is not taken into account in this example, thus low
velocity (hence absolute force) events sound later than
they should. While in human musical performance there
may be a relationship between accent indications and
variation of onset times from strictly as written, the vari-
ations here are too great. The solution would be to take
the relationship of force to timing into account and so
shift the down-force onset for softer notes to be earlier
than for louder notes.

4.2. Mapping pitch and rhythm

While MfOM offers the user the ability to build what-
ever mapping algorithm they choose, using the visual
programming capabilities of OpenMusic, it was felt that
it would be useful to provide some initial mapping utilit-
ies. There are now a set of functions designed to map
from OpenMusic’s music classes (chord-seq, voice, etc.)

to envelope shapes specifying different types of control
values. There are two for producing pitch controls, a
uni-dimensional one for finger on fingerboard positions
and ‘melting’ between pitched objects, and a multi-
dimensional function for opening and closing holes in a
tube. There are also four excitation mapping functions
for the following situations: plectrum position, bow
speed (across string) and position (down onto string),
reed breath pressure, and hammer (strike) force. A final
function for use with these mappings is one which splits
a polyphonic source into a set of monophonic chord-
seq’s, one for each pitch present in the original. This is
useful for xylophone or piano-like instruments, where a
separate input is required for controlling each pitched
component. These functions are in their first imple-
mentation and are quite basic, providing a few controls
over their behaviour and giving naı¨vely calculated out-
puts. One issue is the explicit separation of pitch control
from other parameters for ease of reuse, while in actual



332 Richard Polfreman

Figure 8.Mapping a chord-seq to a breakpoint function controlling force in a struck plate instrument.

fact there should be some interaction between these ele-
ments. For example, the breath pressure applied to a reed
in a clarinet-like instrument should vary according to the
pitch being played. However, it is believed these func-
tions serve as a useful starting point.
A bowed string instrument is used in this example

(figure 9), with a finger–fingerboard combination for
controlling the instrument’s pitch. Figure 10 shows two
of the predefined mapping functions in use –seq->
bowpos&speedandseq->linepitch. The first of these is
given the music source (here avoice), a number of points
to use in its output, a total duration time, the (vertical)
position of the bowed object, the maximum down posi-
tion of the bow (which must be lower than the bowed
object position in order to press the bow against the
bowed object) and the maximum (horizontal) bow
speed. Both the bow position and peak bow speed will

be varied according to MIDI note velocity from the
input. In the figure, the output envelopes from this func-
tion can be seen in the event class. The central envelope
gives the bow speed, which varies sinusoidally across
the string, alternating direction between notes. The
bottom envelope is the bow position, pushing down onto
the string for each note. These shapes are a very primit-
ive interpretation of the notation into bow action, with
little input from actual performer behaviour, but can
achieve reasonable results. The pitch control mapping is
again given the music data, number of points and total
duration, but is then given a base pitch, a maximum
pitch (not used here, as this is for the situation where an
object is morphed from one pitch to another) and a list
of delta points. These govern the number of points over
which pitch changes occur. Since it is a list, one can
insert variable glissandi, which cannot be derived from



Modalys-ER for OpenMusic (MfOM) 333

Figure 9. A bowed string instrument, using the top mass as
the bow and the bottom mass as a finger with a fingerboard

connection for pitching the string.

an input voice or chord-seq object. This pitch function
then calculates the distance along the string, using the
well-tempered rule that an increase in pitch ofn semi-
tones implies a frequency multiple of 2ˆ(n/12), and the
fact frequency is inversely proportional to length for a
string – the base pitch provided must therefore be the
frequency of the open string. In the figure, the finger
position envelope is shown at the top of the event class.
A particular issue with a fingerboard system for pitch-

ing is that care is needed with the timing of the move-
ment of the finger with respect to the movement of the
bow, which can sometimes lead to loud artefacts
(scrapes or knocks). Due to the normalisation of the
output sound, these are problematic. In this case much
‘tweaking’ of the values used in the mapping functions
may be necessary in order to gain adequate results.
Again, a combined function mapping both pitch and
excitation parameters may be able to automatically
reduce these artefacts.

4.3. Parameterised instruments

While a gain in sophistication of control over Modalys-
ER’s system has already been shown, MfOM also pro-
vides tools for simplifying the construction of complic-
ated instruments that are not present in Modalys-ER.
This is done through a system ofparameterisation.
Having constructed a simple instrument, the user can
pass lists of parameter values to get-modalyser-
instrument which will make duplicates of the instrument
inside the newly defined event class, each using a differ-
ent parameter setting from the list. A common applica-
tion of this is to automatically generate a polyphonic
instrument from a monophonic template. The next

example does exactly that, taking the struck plate instru-
ment from earlier as a template. Figure 11 shows the
patch for this synthesis. A MIDI file is used as the source
data, and it is converted into a chord-seq for display
purposes. (Note that the chord-seq object does not dis-
play the durations of notes, just pitch and onset timing.
The notes in this example have various durations, but in
the chord-seq they all appear as crotchets.)
From the chord-seq, a list of all of the pitches that are

present is derived, duplicates are removed, the remainder
sorted into ascending order and converted to frequen-
cies. This task is carried out by theunique-freqssub-
patch (detail not shown). These values are then used by
get-modalyser-instrument so that our event class can
play all of the notes present without the synthesis time
overhead (and complexity of our Modalys-ER patch)
that would arise from making the 127 duplicates
required in order to cover all possible MIDI pitches. In
order to specify how these values are to be used, the
function is also given a list containing the object and
parameter names to use – here ‘New plate’ refers to the
plate to strike andmo::pitch sets the pitch property for
the plate. There are utility functions in the MfOM library
for discovering the available properties for different
object types. Although here only the pitch for each
duplicate is changed, it is possible to specify any number
of parameters in this way (for example, randomly
selecting the material for each plate as well as setting
each pitch).
After evaluating the get-modalyser-instrument func-

tion, an event class is defined for this parameterised
instrument. Notice (in figure 11) that this class has five
control inputs, one for each hammer force, where each
hammer strikes a differently pitched plate. The system
prepends a number of asterisks to the name of each key-
word input according to position in the list of parameters
given to get-modalyser-instrument. Since the frequen-
cies were sorted into ascending order, the lowest pitch
hammer has no asterisks, the next pitch up one, the next
two, etc.
In order to map the music data onto control informa-

tion, the functionseq->strikeforceis used, which, given
a series of music events, will produce a control envelope
suited to applying (positive and negative) forces to a
hammer. Since there are several pitches in the source
material, the functionseq->monseqsis added to split the
initial phrase into a set of chord-seqs, one for each pitch.
This set is then passed as a list to the mapping function,
which will output a control envelope for each one. The
lisp functions first, second, third, and so on, then extract
these envelopes and send them on to the event class.
Clearly the ordering is important here, so that the correct
notes arrive at the correct event input. This is ensured
by the fact that both the unique-freqs subpatch and the
seq->monoseqs function order by pitch from lowest to
highest.
The parameter system is particularly useful since the



334 Richard Polfreman

Figure 10.Control of a bowed string with variable pitch using standard notation.

process of creating large numbers of sets of objects in
an instrument can be lengthy, particularly when changes
need to be made to each set of objects after duplication.
Using parameters, as many or as few duplicates as
necessary can be created for a specific synthesis, the
parameter values may be algorithmically derived in vari-
ous ways (rather than by hand) and changes to the single
original are passed on to all the copies. While the poly-
phonic application is simple for tuned percussion instru-
ments, it would be more difficult to apply to a cello-like
instrument. First, choices have to be made as to what
pitch each duplicate should have (e.g. every interval of
a fifth from the lowest note present) and in fact how
many duplicates should be made. Secondly, once the
instrument has been created, the control system must
then select an appropriate string on which to play a given
note – since in most cases the same pitch could be
achieved on more than one of the strings (using different
finger positions). Typically this last process is context
dependent for a human performer, but in the synthetic
case the limitations of finger spans and other aspects of

human dexterity, which impact on the performer’s cho-
ices, are not present. It is therefore not clear what rules
one should apply in this case.

4.4. Automatic instrument construction

In addition to instrument parameterisation, the MfOM
function build-instrumentcan derive instruments algo-
rithmically and so again adapt instruments to the high-
level events that they are designed to play. This function
is similar to the ‘Instrument Wizard’ in Modalys-ER,
and given a few parameters will assemble the instrument
components accordingly. The function arguments are:
resonator type (string, circular membrane, etc.), interac-
tion type (e.g. strike, pluck, reed), list of pitches that the
instrument should be able to play, material (to make the
resonator from) and number of modes in the resonator
(i.e. the number of vibration modes that will be used in
calculating the motion of the object, with more modes
giving higher quality results but extending calculation
time). The detail of the instrument (a ModInst instance)



Modalys-ER for OpenMusic (MfOM) 335

Figure 11.Automatic parameterisation of pitch in a struck plate instrument.

produced will depend mainly upon the first three para-
meters, while the last two specify single parameters. For
example, if a tube resonator is used with several pitches,
a series of dynamically resizable holes will be positioned
appropriately along its length. If a strike interaction is
specified, a mass will be created to strike the resonator,
together with a dynamically controlled force for moving
it and a ‘backstop’ to constrain its distance from the
resonator. Figure 12 shows a patch using build-
instrument, while figure 13 shows the bowed string
instrument created. The first two inputs are set to string
and bow, but are not visible (they have been selected
from pop-up menus). The unique-freq subpatch is again
used to find all the required frequencies, which is then
used as an input to build-instrument and as before to the
seq->linepitch function. In this case, build-instrument
will ignore all but the lowest frequency and use that to
set the pitch of the string. A more sophisticated solution
should examine the highest frequency also and use that
to ensure that the bow position on the string is kept fur-
ther along the string than the finger position required to

reach this pitch. The constructed instrument is passed to
get-modalyser-instrument, and the control side of the
patch is much as before. Again, a key advantage of using
the build-instrument is that the instrument will be auto-
matically adjusted to deal with the music information it
is being required to play. While here, setting the pitch is
a relatively simple task; for more complex cases such as
tubes that use holes for tuning and pitching, this system
can greatly enhance usability.

5. OM MODALYS

As mentioned previously, there is another OpenMusic
library for use with modal synthesis – OM Modalys
(Lanza 2002). In its latest form (version 2.0 for
October 2002 release) it provides a close mapping of
Modalys’ Scheme programming interface into
OpenMusic (since Scheme is a Lisp-like language, this
almost direct correlation is practical). This has some
advantages, particularly for current Modalys users, but
also means that OM Modalys patches are generally



336 Richard Polfreman

Figure 12.Using the build-instrument function.

Figure 13.A bowed string instrument (with fingerboard) pro-
duced by build-instrument: (from left to right) speed and posi-
tion connections to a mass (the bow); a bow connection to the
string; a fingerboard connection and mass (acting as a finger),
with a force connection (representing finger pressure on the
fingerboard); two pickup connections (to convert the string

vibrations to sound).

much more complex and lack MfOM’s more struc-
tured approach and enforced syntactic correctness. This
last point is to say that MfOM attempts to guarantee
that a meaningful Modalys program is produced and,
for example, limits parameter values to valid ranges.
Also, the OM Modalys library requires the Modalys
application for synthesis (much as the original

Modalyser did) since its output consists of text files
containing Modalys code. Further work on the com-
munication between the internal Modalys synthesis
engine and OpenMusic should allow the OM Modalys
library to internally synthesise sounds also – the limit-
ing issue currently being error handling. This library
is seen as complementary to MfOM, providing another
level of synthesis specification for more technically
advanced users. As such, a translation function which
allows automatic conversion of an MfOM instrument
to an OM Modalys patch has been developed. Figure
14 shows a patch illustrating the different levels at
which a Modalys synthesis can be now specified,
while figure 15 shows a part of the instrument con-
verted to OM Modalys (the patch is too large to show
fully). It is now possible to go all the way from
build-instrument, requiring only a few parameters, to
ModInst and its graphical editor, through to OM
Modalys and its detailed representation, and finally
back to Modalys’ Scheme programming.



Modalys-ER for OpenMusic (MfOM) 337

Figure 14. Instrument definition at multiple levels: build-instrument, ModInst, OM Modalys patch, Modalys Scheme.

Figure 15.Part of a ModInst instance converted to an OM Modalys patch.



338 Richard Polfreman

6. DISCUSSION AND FURTHER RESEARCH

OpenMusic with the MfOM library provides an integ-
rated system for physical modelling sound synthesis
with sophisticated facilities for developing performance
control. A synthesis is carried out via a two-stage pro-
cess: an instrument design stage followed by perform-
ance specification. This provides a clear demarcation of
roles and fits well with the existing omChroma library
for generic synthesis specification within OpenMusic.
However, the aspect of synthesis control remains a com-
plex problem. While the construction of a virtual instru-
ment is relatively simple, where users can apply their
existing knowledge and experience of acoustic musical
instruments, direct specification of physical interaction
parameters, such as forces and finger positions, is an
unfamiliar experience for most composers. In these
examples, some of the potential for constructing map-
ping systems from typical high-level musical representa-
tions down to the physical control level has been illus-
trated. The design of such mappings requires a
reasonable level of Lisp programming knowledge, and
so some initial mapping functions have been provided
that can, with some patience, produce reasonable results.
Given that these functions are relatively unsophisticated,
the development of truly effective systems remains a
challenge. This is particularly so when taking into
account aspects of musical interpretation. That is, not
just a literal mapping of notation as written, but inclu-
sion of the subtle variations in timing, dynamic and
timbre imposed by human performers when playing
according to a particular genre. Much research in this
field has already been undertaken (e.g. Desain and
Honing 1997) and results from such work may provide
valuable data for application here. Physical modelling
synthesis controlled from a Lisp-based algorithmic
environment has also been carried out by Laursonet al.
with ENP, PWSynth and the Patchwork environment
(e.g. Laurson and Kuuskankare 2001). However, their
work has concentrated on precise simulation of tradi-
tional acoustic instruments (using waveguide models)
and their associated score interpretation. ENP provides
standard Western notation with useful extensions that
are not available within OpenMusic. For example,score
bpfs, which provide break point functions aligned to a
particular stretch of score. Such an extended notation
system would be useful for future development of this
work, but the problem of handling notation mapping for
arbitrary user-defined instruments will remain. The con-
straints systems used by Laurson (performance rules)
may be usefully adapted for application here, but this
has yet to be investigated.

More desirable than the basic mapping functions
described in this article (which only cover a limited
range of control situations) would be an intelligent
system that, given an instrument and some form of
score, would automatically derive an effective mapping
between the two (where possible) – a true ‘virtual musi-
cian’. While in the immediate term the aim is to continue
development of the set of mapping functions to accom-
pany the library, over the longer term it is hoped to
pursue research into intelligent systems. OpenMusic
should provide an effective tool for this as Lisp has as a
common platform for AI applications. Given that
Modalys-ER and OpenMusic are developed using the
same programming tools, it should be possible to port
any such system back into Modalys-ER, so that control
of synthesis from SWN or MIDI could be provided
within a dedicated synthesis environment that does not
require the level of programming knowledge associated
with OpenMusic.

REFERENCES

Agon, C., Stroppa, M., and Assayag, G. 2000. High level
musical control of sound synthesis in OpenMusic.Proc. of
the ICMC Berlin 2000. ICMA.

Assayag, G., Rueda, C., Laurson, M., Agon, C., and Delerue,
O. 1999. Computer assisted composition at Ircam: Patch-
Work & OpenMusic.Computer Music Journal23(3): 59–
72. MIT Press.

Desain, P., and Honing, H. 1997. Structural Expression Com-
ponent Theory (SECT), and a method for decomposing
expression in music performance. InProc. of the Society
for Music Perception and Cognition Conference38. MIT
Press.

Johnson, P. 1992.Human Computer Interaction: Psychology,
Task Analysis and Software Engineering. McGraw-Hill.

Laurson, M., and Kuuskankare, M. 2001. PWSynth: a Lisp-
based bridge between computer assisted composition and
sound synthesis. InProc. of the ICMC Havana 2001.
ICMA.

Morrison, J. D., and Adrien, J.-M. 1993. MOSAIC: a frame-
work for modal synthesis.Computer Music Journal17(1):
45–56. MIT Press.

Polfreman, R. 1999. A task analysis of music composition and
its application to the development of Modalyser.Organised
Sound4(1): 31–43. CUP.

Polfreman, R., and Loomes, M. J. 2001. A TKS framework
for understanding music composition processes and its
application in interactive system design. InProc. of the
AISB’01 Symp. on Artificial Intelligence and Creativity in
Arts and Science, pp 75–83. SSAISB, York.

Vercoe, B. 1993.Csound: A Manual for the Audio Processing
System and Supporting Programs with Tutorials. MIT
Press.


