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Abstract 

The use of de-icing chemicals at airport runways has been shown to produce oxides and 

carbonates of sodium, potassium and calcium which catalyse the oxidation of carbon-carbon 

composite aircraft brakes leading to an increase of the oxidation rate by an order of 

magnitude. This review reports on studies that have characterised the catalytic oxidation and 

discusses the mechanism of the catalytic reaction based on investigations that were carried 

out with both C-C composites and carbon as a fossil fuel. The alkali metal oxides/carbonates 

are more active catalysts and in their case, the redox reaction between the monoxides and the 

peroxides has been identified as the most likely catalysis mechanism. In order to reduce or 

eliminate the problem of catalysis, doping with boron or phosphorus compounds has been 

investigated by a number of researchers. The effect of these along with the use of protective 

coatings is also reviewed. 
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1. Introduction 

Carbon-carbon composites have found use as friction materials in the aerospace industry and 

in motorsport and are candidate materials for structural applications at temperatures in excess 

of 2000°C. A typical C-C composite application where friction properties are important is the 

use of these materials as friction brakes in aircraft. Following their introduction to aircraft in 

the 1970s [1], the function of C-C brakes has been (i) to decelerate and stop aircraft after 

landing by transforming kinetic energy into heat via friction and (ii) to dissipate away the 

resulting heat. In addition, aircraft brakes must be able to efficiently stop an aircraft during an 

aborted take-off. The reasons that have led to the use of C-C composites for aircraft braking 

applications in place of steel brakes include the ability of the former to maintain a stable 

coefficient of friction and to dissipate heat while maintaining dimensional stability at high 

temperatures (by having a lower coefficient of thermal expansion than steel). Other factors 

including the absence of fatigue problems and the low density of carbon (about three times 

less dense than steel) are also important. By combining the lower density advantage with the 

higher specific heat capacity of carbon over steel, a 60% weight saving is achieved for a 

similar brake temperature-operating range [1]. In real terms, this corresponds to about 500kg 

for each commercial aircraft [2]. Compared to steel, C-C discs are more cost-effective and 

can deliver an average of about 3000 landings, a figure which is about twice as high as that 

achieved with steel brakes [3]. In commercial aircraft, the high braking demand requires the 

sliding interface areas to dissipate approximately 450 kJ.mm
-2

 of kinetic energy per unit area 

to heat in about 30 seconds [1]. This can lead to high levels of heat generation which has 

been reported to result in temperatures around 1000°C [3] and up to 1400°C particularly 

during an aborted take-off [4]. At such high temperatures, the C-C brakes can suffer 

oxidation and therefore, the lifetime of aircraft brakes is dependent on the rate of oxidation. 

Thanks to the fast dissipation of heat by the C-C composites and the effective anti-oxidation 

measures taken by aircraft-brake manufacturers, initially there was little cause for concern. 

However, the introduction of alkali-based runway de-icing chemicals in the 1990s in place of 

the traditional urea- and glycol-based de-icers resulted in a drastic increase in the rate of 

oxidation of carbon-carbon brakes through catalysis of the oxidation reaction. The aim of this 

paper is to review the research work that has been conducted to date on the catalytic 

oxidation of C-C composites in the presence of acetates and/or alkali and alkaline earth metal 

oxides/carbonates. In addressing the mechanism of catalysis, some relevant studies that were 

conducted using solely carbon powder (rather than fibres or composite material) for 
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gasification are also reviewed. Finally some of the proposed mechanisms to reduce or 

eliminate the catalytic -effect are reviewed. 

1.1 C-C composite brake manufacture 

The microstructure of a typical C-C brake is presented in fig. 1 which shows the presence of 

carbon fibres embedded within a carbon matrix. The manufacture of carbon fibres has been 

reported extensively in the past [5, 6]; carbon fibres can be made from different precursors 

including pitch, rayon and polyacrilonitrile (PAN). In the case of C-C brakes, PAN fibres are 

needled together in three directions to form a cloth which then undergoes carbonization in an 

inert atmosphere. The carbonized cloth is then cut to a specific mould and several layers are 

laid on top of each other to form a carbon pre-form disc with a specified weight for 

production for a specific type aircraft. Several discs are compressed onto a jig and loaded into 

a predetermined position in a furnace which is heated inductively to about 1000ºC. Natural 

gas is then introduced which infiltrates the disc preforms and deposits carbon in the gaps 

between the carbon fibres. The discs go through multiple infiltration cycles until target 

density is achieved. The discs are finally machined to the desired size using computer-

controlled equipment.  

 

Fig. 1 SEM micrograph of a partially oxidised C-C composite showing carbon fibres in a 

matrix of carbon. 
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1.2 De-icing chemicals and their application 

The use of de-icing chemicals has become essential in order to maintain safe-operating 

conditions both in-flight and at airport runways. The formation of ice on the aerodynamic 

surface of an aeroplane can affect in-flight handling, while icy runways are hazardous to 

aircraft as ice reduces the friction coefficient significantly and the aircraft tyres cannot ‘grip’ 

the runway surface. Anti-icing fluids are therefore sprayed directly onto aircraft to prevent ice 

formation, while de-icing chemicals are used to remove ice from runways. Traditionally these 

products were made from glycol and urea; while glycol products are still being used for 

aircraft deicing, the runway deicing fluids (based on urea) were substituted by alkali metal 

formates and acetates during the 1990s  owing to the high aquatic toxicity and high values of 

both biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of urea. The 

COD value for urea de-icer has been reported to be 2.1 kg O2/kg compared to 0.7 and 0.3 kg 

O2/kg of de-icer for sodium and potassium acetates respectively [7]. While the introduction of 

the new de-icers led to improvements to the operational and environmental quality of winter 

maintenance activities at airports, several reports began to emerge highlighting some 

unexpected detrimental effects that included the catalytic oxidation of C-C brakes, cadmium 

coating corrosion, corrosion of airfield electrical and ground support equipment as well as 

degradation of asphalt and concrete [8]. Concerns arising from such observations led to the 

establishment of the Airport Cooperative Research Programme (ACRP) which collected and 

reviewed data on the damage caused by the new de-icers. According to the findings of the 

programme as summarised by Friedman et al [8], analysis of C-C brakes that were returned 

for service in the winter months indicated that brakes from aircraft operating in northern 

Europe had suffered more oxidation compared to those used in aircraft around the 

Mediterranean area. In addition, the brakes that came from aircraft operating in northern 

Europe displayed greater contamination from potassium as a result of the more extensive use 

of de-icing chemicals. Effectively, the catalytic oxidation of C-C brakes was the culprit. It 

was also reported that even cooler parts of the brakes were suffering from catalytic oxidation.  

At the temperature levels that develop as a result of friction, the sodium, potassium and 

calcium acetates and formates from the deicers decompose to the equivalent carbonates or 

oxides which are well-known for their catalytic effects on carbon-based reactions. 
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2. Catalytic oxidation of C-C composites; kinetics and mechanism of catalysis 

C-C composite discs in aircraft have been reported to reach temperatures around 1000°C [3] 

during normal landing operations and up to 1400°C in extreme cases such as an aborted take-

off [4]. Exposure to such high temperatures leads to thermal oxidation which is reported to be 

the main cause of degradation of C-C composites [8]. Whilst material loss occurs as a result 

of friction, according to Chang and Rusnak [9], at least 60% of the total weight loss is due to 

thermal oxidation. In another study by Chang [10] on the correlation between wear and 

oxidation of C-C composites, good agreement has been reported between the activation 

energy for the oxidation of carbon (122kJ mol
-1

) and for material loss due to wear on non-

frictional surfaces (113kJ mol
-1

). Thus it was proposed that the mechanism of the wear loss is 

due to oxidation. In addition to the oxidation of the carbon matrix and fibres, this process also 

attacks the fibre-matrix interface and weakens the overall integrity of the composite [11]. As 

with graphite, C-C composites are thought to start oxidising at a temperature of around 400°C 

[12]. Oxidation becomes progressively more severe with further temperature increase [11]. 

As can be expected, studies on the kinetics of the oxidation of graphite, coal and coke (as 

fossil fuel materials) have been conducted extensively in the past. The problem of C-C 

composite oxidation is also beginning to attract attention owing to the problems that are being 

addressed by the aerospace industry. The potential use of this type of material in alternative 

high-temperature applications is likely to yield even more investigations in the future. A 

comprehensive study of the kinetics of the oxidation of C-C composites is indeed a complex 

task due to the various forms in which such a material can be manufactured and due to the 

variation in the resulting microstructure.  

The oxidation of carbon can lead to formation of CO and CO2 and mixtures of these and is 

summarized by the following reactions: 

2C + O2  2CO       (1) 

C + O2  CO2        (2) 

In the presence of water (in the form of steam), additional reactions as shown below may 

occur: 

C + H2O(g)  CO + H2      (3) 
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C + 2H2O(g)  CO2 + 2H2      (4) 

The use by the present authors of chemical thermodynamic data as compiled by Turkdogan 

[13], has shown that reactions 3 and 4 are possible only at temperatures above 667°C and 

623°C respectively. As suggested by Savage [14] these reactions are probably not relevant 

for the case of C-C composite brakes as they are typically used in air and not in steam; 

moreover, the frictional heat is thought to lead to evaporation of any water that may be 

present. However, according to Blanco [3], the presence of adsorbed water within the C-C 

composite structure can be highly detrimental as it can enhance the polarity of active sites 

that contribute to carbon degradation during oxidation. This observation was further 

supported by evidence presented by Duvivier et al [15] who investigated the effect of 5% 

water vapour in air on the oxidation of C-C composite disc samples in the presence of K2CO3 

catalyst at temperatures between 500°C and 650°C. Their results showed that the presence of 

water vapour could enhance the kinetics of oxidation by an order of magnitude.  

The oxidation of carbon is characterised by several intermediate reactions. Some oxygen 

atoms are not immediately oxidised and remain bonded to the carbon surface in a variety of 

ways, partaking to the attempt of the carbonaceous surface to anneal the defects caused by the 

removal of carbon atoms by the oxygen. Carbon monoxide and dioxide are then formed via a 

sequence of reactions involving mobile surface oxygen complexes at active sites [3]. 

According to Bacos [16], the oxidation of carbon unfolds according to the following steps: 

1. Oxygen diffusion through the boundary layer. 

2. Oxygen diffusion through the cracks and pores of the carbonaceous surface. 

3. Chemical reaction between carbon and oxygen and formation of oxidation products. 

4. Gaseous product diffusion through the cracks and pores of the carbonaceous surface. 

5. Gaseous diffusion of the products through the boundary layer. 

Since it involves gaseous products and reactants, the oxidation reaction rate is expected to be 

influenced by both pressure and temperature conditions. Different levels of temperature and 

pressure can determine which of the five steps presented above becomes rate-limiting. Using 

a series of micrographs, Bacos [16] has shown that at low temperatures, the slowest and thus 

rate-determining step is the chemical reaction between carbon and oxygen, while the fastest 

step is the oxygen and product diffusion through the boundary layer. However, the 

temperature where the change in the mechanism took place is not given in that investigation. 
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In fact, no kinetic data were presented either and these deductions on the rate-controlling 

mechanisms were based entirely on observations using sectioned samples. At low 

temperatures, it was shown that the oxidation process occurs mainly within the bulk of the 

material. Two types of porosity were identified; (i) transverse cracks and fibre-matrix de-

bonding both of which contributed mainly to mass transport and (ii) pores within fibre 

bundles affecting mainly the chemical reaction. The oxygen molecules are able to penetrate 

into the pores of the material and they facilitate the formation of crevices within the bulk. 

These crevices then become longitudinal channels reducing the bulk to a highly porous 

skeleton where effectively only the fibre reinforcement remains. This observation implies that 

at low oxidation temperatures there is little or no shrinkage of the composite until the latter 

parts of oxidation. At high temperatures, the slowest step has been reported to be the oxygen 

diffusion through the boundary layer and the fastest is the chemical reaction. Additional 

support for this observation has been provided by Yasuda et al [17] who reported that the 

rate-controlling step changes from chemical reaction-control to diffusion-control of the 

gaseous species through the boundary layer at higher temperatures. Kinetic data presented by 

these authors [17] showed that as the temperature of oxidation increased, the relationship 

between weight loss with time changed from linear to parabolic at temperatures between 

662°C and 770°C. This indicated that the rate-limiting step changed from chemical reaction 

control to diffusion-control of oxygen through the boundary layer at the surface of the 

composites at these temperatures.  

Micrographs presented by Bacos [16] show that the oxidation process at higher temperatures 

affected only the surface of the material. This implies that the oxidation process at high 

temperatures results in shrinkage of the composite due to carbon loss from the surface. In this 

case the oxidation triggers the formation of cracks in the matrix as well as bundle/matrix and 

bundle/bundle de-bonding followed by cracks within orthogonal bundles. The precise means 

by which the C-C composite degradation unfolds at low or high temperatures depends also on 

the reactivity of the matrix and the fibres. However, this can vary considerably in accordance 

to the manufacturing process employed to produce the C-C composite. [3]. In their 

investigation, Yasuda et al [17] reported that the matrix oxidation rate occurred at a higher 

rate than the fibres. 

During aircraft operation, alkali-metal salts from marine environments and de-icing fluids can 

access the surface of the C-C composite materials within the aircraft braking system and act 
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as catalysts for the oxidation reaction and dramatically accelerate the oxidation rate [12]. 

Catalysts based on sodium and potassium salts have been reported to be more effective and 

can lead to oxidation increases in excess of an order of magnitude. This is highly alarming 

when considering the fact that oxidation experiments in the presence of K2CO3 catalyst have 

shown a large drop in the compression strength even after weight loss values of 2.5% and 5% 

[15]. The study by Duvivier et al [15] has also demonstrated that the increase in the rate of 

oxidation as a result of catalysis with K2CO3 is dependent on the catalyst content up to about 

0.08%; above this figure, the rate of oxidation remains more or less constant. Therefore since 

only a small amount of these catalyst compounds is sufficient to cause a significant increase 

in the oxidation rate [4, 15], it is of paramount importance to gain as detailed as possible, an 

understanding of the catalytic oxidation reaction mechanism in order to devise the means to 

slow down, inhibit or prevent the catalytic oxidation. The enhancement of carbon 

gasification/oxidation has been the object of extensive studies in the last few decades owing 

to its use as a fossil fuel. Important insights were thus gained from these earlier studies on the 

catalytic effect of alkali-metals on the oxidative process. The catalytic effect of the oxides or 

carbonates of potassium, sodium and calcium on the oxidation of C-C composites and carbon 

as a fossil fuel has been reported by several investigators [4, 18. 19]. Some other important 

papers related to fossil fuel carbon are also reviewed here as they bear relevance to the 

understanding or the evolution of the understanding of the catalytic mechanism. 

Adjorlolo and Rao [20] investigated the catalytic effect of K2CO3 and Na2CO3 during the 

gasification of metallurgical coke in CO2. The effectiveness of both catalysts throughout the 

oxidation reaction implied that some mechanism existed for the fast inward diffusion of the 

catalysts. In fact this observation is very similar to the behaviour of the catalysts during the 

oxidation of C-C composites. Since the melting point of the carbonates/oxides and of the 

constituent metals had not been exceeded, the authors adopted the following vapour-cycle 

mechanism originally proposed by Fox and White [21] to interpret the catalytic mechanism: 

M2CO3(s) + 2C  2M(g) + 3CO(g)   (5) 

2M(g) + 2CO2(g)  M2CO3(s) + CO(g)   (6) 

whereby the alkali metal (M) vapour is produced at catalyst/carbon junctions and gets 

reconverted to the carbonate upon contact with CO2. This mechanism involves formation of 

gaseous sodium or potassium and can mechanistically explain the movement of the catalyst 
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deeper into the carbon samples or the C-C composite. Thus it can explain why the catalyst 

can remain active throughout the entire period of oxidation. At the same time, it would be 

reasonable to also gradually expect some loss of the catalyst due to vapourisation of the 

corresponding metals. Rao et al [22] also calculated the respective thermodynamic driving 

force for catalysis for each carbonate by obtaining the difference in the partial pressures of 

sodium and potassium for the two reactions above that were proposed to be involved in the 

mechanism of catalysis. The higher difference for potassium led them to propose that K2CO3 

was a more effective catalyst than Na2CO3.  However, according to their activation energy 

calculations from the experimental data of the coke gasification, the catalytic effect of 

Na2CO3 was observed to lead to a lower activation energy value than K2CO3. This 

observation is rather unusual as in virtually all of the other investigations, K2CO3 has been 

observed to have a greater catalytic effect. As metallurgical coke by nature varies in 

composition and also contains several other oxides/carbonates and metals that may have a 

catalytic effect on gasification, it is possible that a more oxidising synergistic effect may have 

been active in the case of Na2CO3 in their investigation. In another study, Zahedi and Miller 

[23] discussed various potential mechanisms to explain the catalytic gasification route for 

carbon in the presence of K2CO3. These included the redox cycle involving decomposition 

and reformation of the carbonate on the carbon surface and involved alkali oxides and 

hydroxides as intermediate compounds similar to the mechanism proposed by Adjorlolo and 

Rao [20]. Mims and co-workers [24-26] were the first to suggest that mechanisms that 

involved the formation of C-O-K complexes on carbonaceous surfaces were an essential step 

of catalysis as this could determine the activity of the catalyst. Other authors [27, 28] 

proposed the formation of a non-stoichiometric oxide with excess alkali metals that attracted 

oxygen from gaseous reactants and electrons from the carbon matrix to enhance the reaction 

of the adsorbed atoms. Further studies [29] affirmed the presence of oxygen on the carbon 

surface to be essential for keeping the catalyst active, thus suggesting oxygen to be involved 

with the catalytic process. In their investigation, Zahedi and Miller [23] also proposed surface 

oxygen groups to be of paramount importance to the catalytic process, thus suggesting the 

interactions between the catalyst and carbon to be the dominating steps during the carbon 

gasification process. According to Mims and co-workers [30] who studied the potassium-

catalysed gasification of graphite, potassium salts reacted readily with the carbon to form 

surface salt complexes. K2CO3 was found to spread across the surface of graphite in its active 

mode. The same authors [30] also reported a strong interaction between the catalyst and the 

graphitic edges, this being comparable with cohesive bonding within the bulk of the material. 
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Such strong interfacial forces were thought to be responsible for the observed dispersion of 

the catalyst along the graphitic active edges. The oxidation of graphite was reported to 

proceed by recession of the layer planes. Most of these studies show evidence of some sort of 

interaction or bonding between the carbon and the potassium and sodium carbonate catalysts. 

This is also evident in the case of the catalytic oxidation of C-C composites. Fig. 2 is from the 

work of the present authors during catalytic oxidation of C-C blocks at 600°C and shows 

adhesion of K2CO3 particles on carbon fibres. In addition, Fig. 2 also reveals that the K2CO3 

particles had melted or were generated from a molten phase even though the temperature of 

oxidation was well below the melting points of K2CO3 and K2O. With this in mind, it is 

important to consider the research of McKee and Chatterji [31] who investigated the 

reactions between alkali metal carbonates and oxides with graphite in oxygen, carbon dioxide 

and helium atmospheres via the use of thermogravimetric (TGA) and differential thermal 

analysis (DTA) over a temperature range between 25°C and 1000°C. The alkali metals 

studied included rubidium, caesium, lithium, potassium and sodium all of which were found 

to catalyse the oxidation reaction of graphite. Catalytic activity commenced well below the 

melting point of the corresponding metal monoxide and interestingly around the melting 

point of their respective peroxides. Scanning electron microscopy (SEM) indicated the  

 

Fig. 2 Potassium carbonate particles attached to carbon fibres following oxidation of a C-C 

composite for 3 hours at 600°C. 
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presence of carbonate particles on the graphite. The carbonate particles appeared to have 

undergone melting even though again the oxidation temperature was below the melting 

temperature of the carbonate. By using thermogravimetry, McKee and Chatterji [31] also 

showed that the dissociation of the metal carbonate to its oxide could not take place at 

temperatures below 500°C. However, when the metal carbonate was mixed with graphite, the 

reaction  

M2CO3 + C + O2  M2O + 2CO2   (7) 

became favourable. These authors also observed the conversion of the monoxides to 

peroxides by means of an exothermic reaction which was followed by peroxide melting 

below 500°C. By using chemical thermodynamic data as compiled by Turkdogan [13], it can 

be shown that the dissociation of the carbonate at temperatures below 600°C is only possible 

in the presence of carbon. The conversion of the monoxide to the peroxide can also be shown 

to be possible at similar temperatures. The observed catalytic effect of the alkali metals could 

not be attributed to the oxide-metal-oxide type of cycle that was proposed by Fox and White 

[21] and by Adjorlolo and Rao [20] due to the higher chemical thermodynamic stability of 

the peroxides at temperatures between 400°C and 500°C in comparison to the monoxides. By 

combining these observations, McKee and Chatterji [31] proposed the following three-step 

redox cycle to account for the catalysed oxidation of graphite:      

1. Carbon-induced decomposition of the metal carbonate: 

M2CO3 + C + O2  M2O + 2CO2   (8) 

2. Oxidation of the metal oxide to a peroxide: 

M2O + nO2  M2O1+2n    (9) 

3. Reduction of the metal peroxide to the oxide: 

M2O1+2n + 2nC  M2O + 2nCO   (10) 

In the case of the alkali metals the value of n is 0.5. The catalytic effect was observed to 

increase going down the group in the Periodic Table due to the respective increased tendency 

to form the peroxide.  

The catalytic effect of potassium oxide/carbonate on the oxidation of C-C composites from 

actual aircraft brakes was investigated by Carabiniero et al [32] who compared the weight 

loss between new, used and potassium oxide/carbonate-impregnated C-C samples at a 
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temperature range between 500°C and 900°C in air. The potassium oxide/carbonate-

impregnated samples exhibited the highest weight loss at all temperatures tested indicating a 

strong catalytic effect. By employing in-situ electron microscopy, they observed the presence 

of liquid-like particles on the surface of the carbon fibres at around 650°C. In-situ X-Ray 

diffraction (XRD) revealed the presence of potassium oxide and/or peroxide. Their results 

therefore substantiated the operation of the three-step redox cycle through the formation of 

peroxides as postulated by McKee and Chatterji [31]. The in-situ investigation also showed 

that the XRD peaks of the potassium oxide/peroxide particles tended to attenuate above 

700°C, indicating the formation of a thin film on the surface of the carbon as observed by in-

situ microscopy. The attenuation of the peaks suggested that the peroxides were becoming 

amorphous. At 700°C, the formation of these particles was observed to be followed by rapid 

oxidation of carbon. According to Carabiniero et al [32], the oxidation of the fibres was more 

enhanced than that of the matrix. As for the un-impregnated samples, both new and used C-C 

composite samples showed negligible weight loss at 500°C. However, when subsequently 

tested at higher temperatures, the new C-C samples showed more prominent weight loss than 

the used ones. This effect became more enhanced with increasing temperature. The authors 

explained this finding by arguing that the most active carbon sites had already undergone 

gasification in the used samples. They also observed within the used C-C samples the 

presence of phosphorous compounds which are known to inhibit the carbon oxidation by 

forming an adsorbed layer that acts as a protective barrier. 

The mechanistic aspects of alkali metal-catalysed carbon oxidation were explored by Mul et 

al [33] who studied the molecular interactions between potassium and partially oxidised 

carbon black using Fourier Transform Infrared Spectroscopy (FTIR). Infrared absorption 

bands located around 1100 cm
-1

 were attributed to the presence of a potassium phenoxide 

(C6H5KO) complex; the possible presence of the compound C6(OK)6 was also theorized  to 

justify the presence of similar absorption bands. Further bands located between 1300 and 

1600 cm
-1 

were attributed to a bi-carbonate species. The authors then conducted in-situ 

analysis of catalytic carbon black oxidation using Diffuse Reflectance Infrared Fourier 

Transform Spectroscopy (DRIFTS). They postulated that potassium salts including K2CO3 act 

as precursors for the formation of potassium oxide compounds. They attributed the 

absorption bands found at 1120 and 620 cm
-1

 to chemisorbed CO2, which formed during 

carbon black oxidation and strongly interacted with potassium oxide clusters. Previous 

studies [29, 34] had suggested that dispersed potassium oxide was bound to the carbonaceous 
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surface via oxygen linkages and that above 500°C the interaction of CO2 with the species 

formed after decomposition of carbonates resulted in the formation of infrared absorption 

bands around 1110 cm
-1

. 

Strelko and co-authors [35] assumed that the catalytic gasification of carbon was the result of 

electron exchanges between a metal and the carbon matrix, leading to the formation of oxides 

of carbon and metal-carbon complexes. In particular, carbon dioxide which was liberated by 

the thermal decomposition of K2CO3 effectively activated the carbon material creating a 

porous structure. In other studies [36] the catalytic effect of carbonate salts was attributed to 

the interaction of cations with terminal proton-donor groups on the graphitic planes of 

carbonaceous materials. Catalytic oxidation unfolded in the presence of a porous (activated) 

structure, which was efficiently oxidised to form ion exchange (proton-donor) groups. 

Following impregnation of carbon cloth in K2CO3 solution, Strelko and co-authors [35] 

observed that the ideal temperature for activation and oxidation of the carbon material was 

300°C, while at 350°C there was intensive burn-off. It was suggested that the initial carbon 

oxidation favoured the inclusion of potassium ions into the inter-planar space of carbon 

microcrystallites, enhancing their reactivity with an oxidant. The interaction between 

isotopically-labelled K2
13

CO3 and surface oxides bound on carbon was studied by Saber and 

co-authors [29] using Temperature Programmed Reaction (TPR). The study was performed 

by heating mixtures of 100 mg of various types of carbon and 10 mg of labelled K2
13

CO3 to 

temperatures up to 723°C in flowing helium. The amount of emitted CO2 was recorded for 

each type of carbon. It was observed that the total CO2 that was emitted for the K2
13

CO3-

carbon samples was only slightly higher than the CO2 released by the carbon-alone samples. 

In addition, the amount of 
13

CO2 was similar to that for 
12

CO2 for the K2
13

CO3-carbon 

samples; after removing the surface-bound oxygen by means of pyrolysis, production of 

13
CO2 decreased significantly. This observation inferred that the release of 

13
CO2 from the 

K2
13

CO3-carbon samples was not due to the decomposition of K2CO3 as otherwise the 

amount of 
13

CO2 would have been even higher. The authors attributed the presence of 
13

CO2 

to a mechanism of isotope exchange between K2
13

CO3 and the surface oxides originally on 

carbon.  

In addition to alkali-metals, alkaline-earth metals like calcium have also been reported to 

catalyse the oxidation of carbon. Calcium-catalysed carbon gasification was studied by 

Cazorla and co-authors [37] by using high-purity carbon which was loaded with CaCO3 by 
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means of either ion-exchange, aqueous impregnation or through sintering. Steady-state and 

step-response experiments were carried out at 800°C initially in flowing helium and then in 

CO2 (at a gas pressure of 0.01MPa). The authors labelled the reactant CO2 atoms by using 

13
CO2. They observed that the uncatalysed reaction produced equal amounts of 

13
CO and 

12
CO, as theoretically expected. However, the catalysed reaction produced unusually higher 

amounts of 
12

CO, but this was not the case when the reaction temperature was further 

increased. From this, the authors suggested that a redox cycle for the catalysed reaction 

involving the formation of a higher oxide is to be excluded. The CaO/CaCO3 catalytic 

behaviour was in contrast to the behaviour of the alkali metals which according to McKee 

and Chatterji [31] and Carabiniero et al [32] form peroxides. In addition, in the work of 

Cazorla and co-authors [37], when the flowing gas was switched from 
13

CO2 to helium, the 

desorption curves showed a continuous 
13

CO2 and 
13

CO decay which was greater than that in 

the non-catalysed reaction, implying retention of these species by the catalyst-containing 

sample. However, CaCO3 cannot form at the temperatures and pressure used in the 

experiments, implying that retention of 
13

CO2 occurs only at the calcium-carbon interface and 

around CaO particles. The higher amount of 
12

CO observed during the catalysed reaction was 

therefore only attributable to the decomposition of CaCO3 which was deemed the 

catalytically active species. The model proposed by the authors is thus summarised as: 

2Ca
13

CO3-C  CaO-C(O) + 2
13

CO    (11) 

2CaO + (OCO)  2CaO-C + CO2    (12) 

Perhaps the most extensive investigations in recent years on the catalytic effect of potassium 

and calcium acetates on the oxidation of C-C composite aircraft brakes as well as graphite 

powder were conducted by Wu and Radovic [38]. The catalyst-loading methods for the two 

carbon materials were different; for the C-C composite material, catalyst loading was 

performed by means of impregnation in an aqueous solution of 99% calcium or potassium 

acetate, while for graphite powder, loading was performed by physically mixing graphite 

with 3 weight% of acetate. The catalytic oxidation was analysed by comparing the reaction 

rates of the samples at different temperatures. The reactivity, R, of the samples, defined as the 

rate of weight loss, 
𝑑𝑤

𝑑𝑡
 divided by the initial weight, w0, 

𝑅 =  −
1

𝑤0
∙

𝑑𝑤

𝑑𝑡
 s

-1
      (13) 
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was calculated from the release rates of CO and CO2 gaseous products. The authors observed 

potassium to have a much stronger ability to catalyse the oxidation reaction than calcium did.  

The catalytic effect of potassium was equally strong with the C-C composite material as well 

as with graphite powder. On the other hand, calcium acetate mixed with graphite powder 

showed only a limited catalytic effect. The burn-off profiles for the potassium-catalysed 

reaction displayed a monotonic increase in the oxidation rate for both the C-C material and 

graphite. On the other hand the calcium-catalysed reaction showed a monotonic decrease in 

the case of the C-C material and an initial decrease followed by an increase in the oxidation 

rate in the case of graphite. The authors also reported that the potassium catalytic 

effectiveness varied with different amounts of loaded catalyst, but it was insensitive to the 

loading method. The calcium catalytic effectiveness was attributed to an optimal initial 

interface contact with the carbon surface; the low wettability of the calcium catalytic species 

for carbon and the subsequent loss of contact during the later stages of oxidation led to a 

decrease in the catalytic activity of calcium. In the case of calcium there was therefore, 

dependency on both the amount of the catalyst loaded into the samples and the impregnation 

method. This feature was confirmed by further tests that showed that pre-treatment in argon 

enhanced the catalytic action with potassium, whereas the opposite effect was found with 

calcium. Both the potassium and calcium catalytically-active species were thought to undergo 

a redox cycle as proposed initially by McKee and Chatterji [31] and were more effective than 

carbon alone to adsorb and dissociate the gaseous reactants. Optimal catalysis therefore relied 

on the effective transportation of oxygen from the catalyst to the carbon and this was reported 

to be dependent upon the optimal interfacial contact between the catalyst and carbon. In order 

to achieve optimal catalysis, good interfacial contact between the catalytically active species 

and carbon must be established and maintained throughout the oxidation reaction. Potassium 

acetate decomposes at lower temperatures than calcium acetate and this is thought to give 

potassium carbonate the ability to form better contact. Moreover, potassium salts and oxide 

have a lower melting point than those of calcium conferring potassium salts higher mobility 

and thus the ability to re-disperse throughout the oxidation reaction and maintain constant 

optimal interfacial contact. Calcium salts and oxides have lower mobility and do not re-

disperse throughout the oxidation reaction. The ability of calcium to catalyse the oxidation 

reaction thus relies solely on good initial interfacial contact with carbon. As the oxidation 

proceeds, the calcium catalytically active species progressively loses contact with carbon and 

thus catalyst de-activation occurs. This is the pattern observed by the authors leading to the 

monotonic decrease of the reaction rate of the calcium-catalysed reaction. The results of SEM 



 

18 
 

and XRD showed that the PAN fibres used in their study underwent oxidation before the 

matrix, in agreement with the observations of Carabiniero et al [32]. 
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3. Mechanisms of protection of C-C composites against catalytic oxidation 

Several methods have been investigated in order to develop the means to prevent or limit the 

catalytic oxidation of C-C composite brakes. The proposed protection mechanisms are based 

on three different approaches; (i) improvement of the quality of the C-C composite material, 

(ii) addition to the composite of compounds that can reduce the rate of oxidation and (iii) the 

use of coatings or physical barriers to restrict access to the C-C composite.  

The improvement of the quality of the material has concentrated on the elimination of 

defects; this approach essentially reduces the amount of porosity and the number of active 

carbon sites. In addition, the conversion of amorphous carbon to the crystalline graphitic 

structure which is less prone to reaction with oxygen may be another possible means to 

enhance the oxidation resistance [39]. However, porosity is one of the features of the 

manufacturing method and it cannot be fully eliminated, while further heat-treatment to 

induce more graphitisation is likely to introduce defects in the carbon fibres and reduce their 

strength. Treatment of the material to improve its quality was used by Ehrburger and Lahaye 

[39] who observed that a lower catalytic effect could be achieved if the material was heat-

treated at high temperatures up to 2623°C.  

The introduction of chemical groups to the C-C composite aims to decrease the rate of carbon 

oxidation by reducing the rate of the mobility of the catalysts or by forming a barrier between 

the composite and oxygen [40]. Phosphorus compounds were thermally deposited by Wu and 

Radovic [40] by impregnating C-C composite samples using methyl-phosphoric acid 

(CH3OP(OH)2) or phosphorus oxychloride (POCl3) and heating at around 600°C. The 

phosphorus deposits were shown to almost completely suppress the catalytic effect of 

calcium, and to partially suppress that of potassium. By using XRD, SEM, X-Ray 

photoelectron spectroscopy (XPS) and temperature-desorption studies, the authors showed 

that one of the oxygen atoms from the phosphorus-based compounds was bonded onto the 

carbon active sites. The inhibition effect was due to a combination of site blockage whereby 

C-O-PO3 and C-PO3 groups formed a bridge-bond with the carbon through the oxygen atom 

and this led to the formation of a physical barrier whereby metaphosphates prevented access 

of the catalysts to the carbon active sites. The bridge-bond was observed to remain stable up 

to temperatures of 1000°C. According to Wu and Radovic [40], the catalytic activity of 

calcium carbonate during the initial stages of oxidation was due to the initial interfacial 

contact with the carbon surface; it was suggested that the presence of the C-O-PO3 and C-PO3 
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groups prevented optimal interfacial contact and therefore stopped the calcium catalytic 

activity. This was not the case with potassium which is much more mobile than calcium and 

is therefore able to re-disperse and maintain interfacial contact with the carbon for the 

duration of the oxidation reaction.  

Boron has been reported to be another element that can be used for inhibiting the catalytic 

oxidation of C-C composites [42]. Wu and Radovic [41] investigated its effect by 

impregnating C-C samples with solutions of B2O3 in water followed by heating at 2500°C. 

The effect of this treatment was to reduce the oxide to elemental boron which had previously 

been reported to catalyse the conversion of amorphous carbon to graphite [42, 43]. By using 

XRD measurements, Wu and Radovic [41] demonstrated that the boron-doped samples had 

undergone more graphitisation and also exhibited three-dimensional order. According to the 

authors [41], substitutional boron can also enter the graphite crystal structure of the carbon 

fibres to make it more ordered. This has the effect of increasing the crystallite dimension 

which then lowers the electron density and prevents the chemisorption of oxygen. Indeed, it 

has been reported that the presence of boron in the carbon lattice redistributes the π electrons 

in the graphene plane, thus lowering the Fermi level of carbon [45]. However, the role of 

substitutional boron in the carbon lattice is rather controversial because studies have shown 

that boron itself may exhibit both an inhibiting and a catalytic effect on the oxidation of 

carbon [44-48]. Further investigation by the same research laboratory [48] has shown that at 

low levels of substitutional boron (below 2% by weight), a catalytic effect on the oxidation 

rate is exhibited by boron itself. On the other hand, at levels of substitution of 5% by weight, 

an inhibiting effect has been observed. Clearly the inhibiting effect of boron is not compatible 

with the observation of the redistribution of the π-electrons in the graphene layer and the 

lowering of the Fermi level. Therefore this warrants further investigation to understand the 

role of boron in the oxidation of carbon.  

The observed mechanism of the inhibition by boron of the catalytic oxidation of carbon 

composites differs from that of phosphorus compounds. In addition, to the reduction in the 

Fermi level of carbon, the protective effect of boron has been proposed to occur in two ways: 

(i) by reduction of the number of carbon active sites and (ii) by blockage of carbon by 

formation of boron oxide which melts at 450°C [41]. The effect of boron doping and of boron 

oxide deposition was observed by Wu and Radovic [41] to completely suppress the calcium-

catalysed reaction. As with phosphorus oxide compounds, boron oxide may disrupt the initial 
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interfacial contact between calcium and carbon resulting in its deactivation. A combination of 

SEM and XRD data that were presented by Wu and Radovic [40], have demonstrated the 

effect of blockage of the carbon fibres and matrix by B2O3. According to McKee [49], the 

site-blocking effect occurs because the O-O bond distance in the –BO3 group is close to the 

distance between the zigzag carbon atoms in the graphene layer (around 0.24nm). On the 

other hand, results of X-ray photoelectron spectroscopy presented by Cermignani et al [50] 

identified the presence of boron oxycarbides rather than B2O3 following a four-hour oxidation 

at 600°C. The need for oxygen to diffuse through the encapsultaing B2O3 or boron 

oxycarbides may be another factor for the reduction in the rate of the catalytic oxidation as 

reported by Wu and Radovic [41]. However, boron-doping and boron oxide deposition had 

only a minimal inhibiting effect on the potassium-catalysed reaction. It was suggested that the 

reason for this was the high mobility rate of potassium salts and their ability to readily re-

disperse and maintain good interfacial contact with carbon. A sharp decrease in the oxidation 

rate after a maximum had been reached was pondered to be due to the reaction of boron oxide 

with potassium catalysts to form a glass-like layer, but the authors provided no data to 

substantiate this. However, if correct, this approach would seem to be potentially the most 

effective to prevent the catalytic oxidation of C-C composites. The effect of this prevention 

approach would be to convert the catalyst to another stable compound which would inhibit 

the catalysis reaction. The most likely mechanism of the catalytic oxidation of C-C 

composites by sodium and potassium salts is probably the one involving the redox reaction 

between the monoxides and the peroxides and carbon as proposed by McKee and Chatterji 

[31]; thus scavenging the catalyst by prevention of the reaction of alkali metal oxides to their 

respective peroxides would seem to be the most sensible approach to eliminate catalysis. 

Support for this idea is provided by the results reported by Tricot et al [51] who brushed 

mono-aluminium phosphate solution onto the surface of C-C samples. Following drying and 

a heat-treatment at 650°C in an inert atmosphere, some samples were brushed with various 

acetate solutions before undergoing isothermal oxidation at 650°C.  After 3 hours of 

oxidation, the unprotected samples exhibited significant levels of oxidation; for example, the 

sample that had been exposed to potassium acetate lost 62% carbon, while the samples with 

sodium and calcium acetates lost 60% and 30% respectively. However, in the presence of 

these acetates, the samples that were protected with the mono-aluminium phosphate lost less 

than 0.5% carbon over the same period. According to the authors [51], the presence of the 

Al(PO3)3 coating prevented the catalysts from establishing good contact with the carbon. In 

addition, XRD analysis of the protected sample that had been contaminated with sodium 
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acetate, showed evidence of small amounts of NaAlP2O7. This demonstrated the ability of the 

Al(PO3)3 to convert the catalytic species into an inactive compound. A similar approach was 

attempted by Devecerski et al [52] who added 4% by weight of boron in the glassy matrix of 

the composite. They showed evidence of oxidation of the boron which then formed B2O3; 

subsequent tests revealed inhibition against catalytic oxidation with sodium acetate. It was 

proposed that the inhibition to catalysis was due to reaction between B2O3 and Na2O to form 

Na2B4O7 thus preventing the formation of sodium peroxide. They tried to verify the 

formation of Na2B4O7 by XRD and FTIR analyses, but the results were inconclusive perhaps 

due to the low amounts of the borate in the samples. The authors then soaked a composite 

sample in a saturated solution of Na2B4O7.10H2O for 30 minutes and subsequent oxidation 

runs showed results that were similar to those that had exhibited catalytic inhibition. This 

result provided some basis to their assumption that Na2B4O7 could have formed and was 

probably the cause of the catalytic inhibition, but further work is required to confirm the 

mechanism. 

The formation of an oxygen diffusion barrier can be generated by deposition of suitable 

coatings. However, in doing this care must be taken to avoid thermal mismatch between 

carbon and the protective coating as this may lead to the formation of cracks within the latter 

and this may have a detrimental effect. Oxygen can diffuse through any cracks that may form 

and oxidation can take place leading to the formation of further cracks and the fragmentation 

of the protective layer [16]. Silicon carbide and silicon nitride have thermal expansion 

coefficients that are close to that for carbon and therefore they represent a potential choice as 

protective coatings against oxidation; while they have been applied as coatings to minimise 

or prevent the oxidation of C-C composites, as yet there is no information on whether they 

can have any effect on the catalytic oxidation of the material. The use of surface treatments 

with phosphoric acid has been used by Labruquere et al [53] to protect C-C composites; from 

the data they presented, it was observed that the treated samples lost about 2% carbon after 

one hour at 650°C in air, in comparison to the unprotected samples that lost about 12%. It 

was suggested that at low temperatures the phosphorus species reacted with the catalytic 

impurities to form alkali and alkaline-earth orthophosphates to make the catalysts inactive. At 

temperatures above 600°C, the phosphorus-bearing species was reported to attach itself to 

active carbon sites and prevent access of oxygen to these sites. It was also reported the 

catalytic oxidation could not be prevented above about 900°C. At these temperatures, the 
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phosphorus-bearing species lost adherence with the carbon fibres and could not provide any 

protection.  
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4. CONCLUSIONS 

The catalytic of oxidation of C-C composite aircraft brakes is of great concern as it can 

enhance the oxidation rate by an order of magnitude and thus degrade the material. The 

decomposition of the de-icing chemicals which are based on acetates and formates of sodium, 

potassium and calcium leads to formation of the respective carbonates. In the case of the 

alkali metals, the carbonates in the presence of carbon tend to decompose to the monoxides. 

Evidence in the literature has shown that the subsequent redox reaction between the 

monoxides and the peroxides is the mechanism of catalysis. In the case of calcium, the 

reversible reaction between the carbonate and the oxide appears to be responsible for the 

catalysis. Most of the investigations to reduce or eliminate the catalytic oxidation of C-C 

composites have focussed on doping the material or improving its quality, in addition to the 

use of protective coatings. Doping with phosphorus has been successful in stopping the 

catalytic activity of calcium salts by formation of C-O-PO3 and C-PO3 bonds. The use of 

boron as a dopant has shown a variety of effects; boron catalyses the conversion to graphite 

and also enters the lattice as a substitutional atom resulting in the reduction of the Fermi 

level. Both of these effects inherently increase the oxidation resistance of the material. In 

addition the formation of B2O3 around the carbon tends to block it from oxygen. Based on the 

current state-of-the-art, the current authors propose the use additives that will react with the 

alkali carbonates/monoxides and prevent the redox reaction between the monoxides and the 

peroxides.  
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