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Abstract

An important task performed by a neuron is the selection of relevant inputs from among thousands of synapses impinging
on the dendritic tree. Synaptic plasticity enables this by strenghtening a subset of synapses that are, presumably,
functionally relevant to the neuron. A different selection mechanism exploits the resonance of the dendritic membranes to
preferentially filter synaptic inputs based on their temporal rates. A widely held view is that a neuron has one resonant
frequency and thus can pass through one rate. Here we demonstrate through mathematical analyses and numerical
simulations that dendritic resonance is inevitably a spatially distributed property; and therefore the resonance frequency
varies along the dendrites, and thus endows neurons with a powerful spatiotemporal selection mechanism that is sensitive
both to the dendritic location and the temporal structure of the incoming synaptic inputs.
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Introduction

Neurons are constantly bombarded by thousands of synaptic

inputs, so it is essential that neurons are able to listen selectively to

subsets of these inputs. Throughout the sensory pathways,

topographic maps ensure that neurons are able to sample a

limited range of the stimulus space [1]. But the use of space is only

one means by which input selectivity is achieved in the central

nervous system. Another effective means is to respond selectively

to particular temporal input patterns. A range of mechanisms can

facilitate temporal selectivity ranging from pre-synaptic short-term

plasticity [2–6], learning strategies of specific temporal patterns

[7–10], to post-synaptic membrane resonances which enhance

responses to specific input rates [11–13].

The focus of this study is the latter mechanism of resonance,

membrane resonance, which has been traditionally considered a

scalar property of a neuron: one neuron has one preferred

resonance frequency [11,14]. This view, however, is inconsistent

with the increasing awareness of the complexity of dendritic

ramifications, the non-uniform spatial distribution of their ionic

channels and highly localized non-linearities. Such elaborate

biophysics can endow single neurons with multiple resonances

occuring at a wide range of frequencies and bandwidths, and thus

enable neurons to act as multi-dimensional input classifiers. Here,

we explore this idea using both analytic methods and numerical

simulations of neurons with both simplified and realistic dendritic

structures. We show how spatial profiles of resonance frequencies

emerge naturally in dendrites, facilitating selective filtering of

synaptic inputs based on their location and temporal signature.

Our findings thus counter the widely-held assumption that input

selection is based on a single prefered frequency band regardless

the location of the synaptic input.

Results

Origin of IKlva resonance in membrane and dendrites
Resonance in neuronal membranes has been described by many

experimentalists and theoreticians [11,12,15–18]; it requires an

interplay between at least two conductances with different

dynamics. Figure 1A illustrates how an interaction between a

membrane’s passive electrical properties (resistance and capaci-

tance) and one voltage-dependent current (low voltage-activated

potassium current, IKlva) can give rise to a resonant mem-

brane impedance (Z vð Þ) comprised of two admittances:

Z vð Þ~ Geff vð ÞzGw vð Þ
� �{1

. The interplay between these ad-

mittances produces the impedance resonance in much the same

way as the restorative and regenerative conductances interact to

form a resonance. The first admittance, Geff vð Þ, is an effective

leak (red curve in Figure 1B) that is mostly associated with the

classic membrane passive RC-circuit (time-constant teff ; see

METHODS), and which acts as a shunt at high frequencies as
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schematically illustrated by the large red arrow below the plots.

The second admittance Gw vð Þ (blue curve in Figure 1B) is due to

the IKlva channels whose limited activation rate (time-constant

t vð Þ) leaves them increasingly closed at frequencies higher than

fw~1= 2ptvð Þ, as depicted by the small blue arrow at right. The

sum of these two admittances often results in a minimum at a mid

frequency range producing a peak impedance Zm vð Þ at a

resonance frequency fr (Figure 1A). This minimum occurs when

the increase in Geff vð Þ counter-balances the drop of Gw vð Þ. Since

the increase of Geff vð Þ takes place for frequencies higher than

feff ~1= 2pteff

� �
, the resonance frequency fr is always higher than

feff . This is demonstrated in figure 1C where fr is color-coded for

different values of �ggKlva and EL while feff is displayed as black line

contours. Clearly, the resonance frequency fr and its sharpness (Q)

depend on teff , tw, �ggeff and �ggw, and through them on any

biophysical parameters affecting the resting state of the mem-

brane. As such, Zm vð Þ is affected by the reversal potential EL,

membrane leak conductance gL, and maximal potassium conduc-

tance �ggKlva (see METHODS, Figure 1C and Supplementary
Figure S1). As shown in Figure 1C, the resonance frequency

increases monotonically both with increasing potassium channel

density �ggKlva and with its steady state level (set by EL). The

sharpness of tuning Q depends on how much Gw vð Þ can decrease

before the increase in Geff vð Þ takes place and on how close in

frequency these two changes occur. Hence, the dependence of Q

upon the biophysical parameters is complex. For instance,

Supplementary figure S1 A2 illustrates how changes in the leak

conductance gL produces nonmonotonic changes in Q. To

conclude, even in an isopotential patch of membrane with a

linearized model of channel dynamics, the resonance frequency fr

can vary substantially (300% or 120,fr,350 Hz) depending on a

range of parameter values typically found at different locations of a

dendrite (Figure 1C and Supplementary Figure S1).

A key objective of our study is to explore the influence of

‘‘space’’ (namely dendritic location) on the resonance properties.

To do so, we distinguish between local input impedance, Zm, and

the transfer impedance H x,vð Þ, that is the total transfer function

between the input at location x and a recording electrode at the

soma, as illustrated in Figure 1D. It has been shown [19] that if the

membrane impedance Zm is bandpass, then so are the transfer

impedance and the cable space constant l vð Þ, a measure of the

electrical compactness of the dendrite. Computing the transfer

impedance using just a uniform membrane model already reveals

a strong spatial profile of resonance frequencies as illustrated in

Figure 1D (see METHODS). This dependence arises mostly from

an inherent mismatch D between the resonance of the input

impedance (fr~vr=2p) and that of the space constant (fl~vl=2p)

as shown in figure 1E. By definition the space constant l vð Þ and

the input impedance Zm are related (see Methods) and the

mismatch D~fr{fl, which is influenced by teff , tw, �ggeff and �ggw, is

non-zero for a large set of parameters (i.e. vr=vl; see

Supplementary Figure S1 B1). This implies that in most cases, a

spatial profile of resonance frequencies emerges along the semi-

infinite cable: When the injection and recording site are close to

one another, the resonance frequency of the transfer impedance is

mostly that of the input impedance Zm vð Þ. With increasing

distance between both sites, the resonance frequency of the

transfer impedance becomes more influenced by the resonance

frequency of the frequency-dependent space constant l vð Þ.
Figure 1F illustrates this effect and demonstrates that with

plausible parameters the resonance frequency of the transfer

impedance can change by as much as 11% over just the first

500 mm (of a semi-infinite cable model). Thus, the mere spatial

extent of a dendrite already results in a spatially distributed profile

of resonant frequencies.

Dendritic morphology, non-uniform ionic channel
distribution and boundary conditions

A dendrite, however, is structurally far more elaborate than the

simplified morphology and uniform membrane of the cable

presented so far. Dendritic membranes, for example, often exhibit

non-uniform distributions of ionic channels, as well as branching

and tapering geometries. To understand such different cases, one

can assume as a first approximation that a dendrite is constituted

of small uniform cable segments (piecewise constant approxima-

tion). The boundary conditions at each end of the uniform

segment affect the spatial profile of resonance frequency of the

transfer impedance. Therefore, we consider the effects of

boundary conditions using a linearized cable model (with

parameters similar to Figure 1D,E,F). Figure 2B and C illustrates

the spatial profile of resonant frequencies under two geometric

configurations: the branching of daughter dendrites at the apical

end (Figure 2B) and the attachment of a soma at the basal end

(Figure 2C). In both cases, the boundary conditon at the tip of the

segment is given by a ‘‘lumped’’ impedance (e.g. representing the

impedance of the daugther dendrites lumped together). Moreover,

this ‘‘lumped’’ impedance can be set to have different resonance

frequencies by varying �ggKlva, gl , El . In Figure 2A the ‘‘lumped’’

impedances are presented color coded by their resonant frequency

from blue (fr = 150 Hz) to red (fr = 420 Hz). The spatial profile

produced by each resonant ‘‘lumped’’ impedance is compared to a

control condition where the boundary impedance is that of an

uniform semi-infinite cable (shown in black in Figure 2A).

Compared to the uniform semi-infinite boundary condition, the

impedance at the recording location can shift considerably

depending on the specific boundary condition and segment

dimensions. For example, changes in the resonance frequency of

the transfer impedance can be observed throughout the entire

length of the segment in the case of a short segment (75 mm) while

in the case of a long segment (300 mm) these changes are mainly

located close to the modified tip. Interestingly, while boundary

conditions modify strongly the profile of resonance frequency, the

spatial profile of sharpness is not much affected (see Supplementary
Figure S2).

We then investigated the extent to which a spatially nonuniform

conductance distribution contributes to the range of resonance

Author Summary

Neurons are constantly bombarded by thousands of
inputs. Synaptic plasticity is generally accepted as a
mechanism to select certain inputs by strengthening their
synapses while reducing the effects of others by weaken-
ing them. Another biophysical mechanism to select inputs
is through membrane resonance that enhances neuronal
response to inputs arriving at a specific temporal rate
while reducing others. In the classical view, a neuron has
one such resonance frequency at which inputs can be
preferentially filtered. By dissecting the biophysical mech-
anism underlying neuronal resonance we find that
neurons in fact express a wide range of resonance
frequencies spatially distributed along their dendrites.
We further show that such dendritic resonance can endow
a neuron with a true spatio-temporal filtering property of
its inputs: neurons can preferentially filter inputs based on
their dendritic location and/or temporal signature. We
speculate that this new insight has pivotal consequences
for learning and plasticity.

Spatially Distributed Dendritic Resonance
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Figure 1. Resonance frequency in a cylindrical cable model. A. Input impedance and definition of resonance frequency (fr) and resonance
sharpness (Q-factor). B. Biophysical properties underlying resonance. A resonance is obtained if the effective admitttance Geff increases at higher
frequencies (dotted red line) than the decrease of Gw (dotted blue line). C. Range of resonance frequencies, fr , of the input impedance ensuing from a
realistic range of leak reversal potenial (EL) and potassium conductance density �ggKlva. fr is color coded while isobars indicates the effective cut-off
frequency (red dotted line in B). The resonance is set by the effective cut-off frequency feff ~1=2pteff (black contour line) which depends on the
potassium conductance density (�ggKlva) and effective reversal potential of the membrane (EL); gL is kept constant at 1 mS/cm2. D. Normalized transfer
impedance of a semi-infinte cable measured at different position along the cable with positions color-coded (as in the schematics above). The range
of resonance frequencies (310–340 Hz) expressed by the cable is displayed as an horizontal bar. E. The resonance of the membrane patch is different
from the resonance frequency of the space constant. This inhrent mismatch produces the gradual change toward higher frequencies as distance
between the recording and input sites increases F. The spatial profile of resonance frequency (blue solid line – left ordinate axis) best displays how fr

varies along the cable and is bounded by the resonance frequency of the input impedance (lower horizontal blue dotted line) and the resonance
frequency of the space constant (upper horizontal blue dash-dotted line). The spatial profile of Q-factor is displayed as a red solid line (right ordinate
axis). Both the membrane patch (A,B and C) and cable models (D and E) consist of a leak current, fast potassium current IKlva and static H-type current
Ih (see Methods).
doi:10.1371/journal.pcbi.1003775.g001
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frequencies expressed by a neuron. Simulations exploring the

distribution of two conductances (�ggKlva and �ggh) were performed in

four types of abstract morphologies: a cable, soma-and-dendrite,

bipolar and y-dendrite model (Figure 3). The left panels of

Figure 3 A–D provide a schematic of the optimized conductance

distribution along the dendrite. Right panels provide the spatial

profile of the resonance frequency (red) and sharpness (blue).

Optimizing the membrane properties to obtain a large range of

resonant frequencies combined with moderate sharpness resulted

in specific effects of the non-uniform distribution in each

morphology.

For the cable, a gradient of �ggh conductances with a constant but

high �ggKlva produced the largest range of resonance frequencies as

shown in Figure 3A. The spatial gradient of �ggh along the cable

produces an increasing reversal potential toward its distal tip as

well as an increasing total leak (from 0.32 mS/cm2 to 1 mS/cm2).

Both effects tend to raise the input resonance frequency

(Supplementary figure S1 A1). Moreover, because of the gradient

of �ggh, each segment of this non-uniform cable will be connected at

its proximal tip to a segment of lower characteristic frequency and

at its distal tip, a segment of higher input resonance frequency.

This configuration is similar to the configuration of a linear

resonant cable producing the largest frequency range along its

length (Figure 2 B, C) and the spatial profile of resonance

frequency ranges from 292 to 325 Hz. Finally, the density of �ggKlva

is constant and high (15 mS/cm2) and ensures a sharp tuning of

input resonance (Supplementary Figure S1, A2). Therefore, the

optimization results extend the analytical insights obtained by

linearization of the ionic channel dynamics.

A similar gradient is observed in the case of a soma-and-

dendrite morphology as depicted in Figure 3B. The density of �ggh is

decreasing from 1 mS/cm2 to 0.83 mS/cm. The range of transfer

resonant frequencies observed is both caused by the conductance-

density gradient the discontinuous boundary condition introduced

by the soma (as analyzed in Figure 2). Overall, the increased

complexity of the ball-and-stick morphology increased both the

range of frequencies expressed (256 to 315 Hz) and the overall

sharpness of tuning (,Q. = 0.92) compared to the case of the

finite cable shown in figure 3A.The density of �ggh is decreasing

from 1 mS/cm2 to 0.83 mS/cm2. The range of transfer resonant

frequencies observed is both caused by the conductance-density

gradient the discontinuous boundary condition introduced by the

soma (as analyzed in Figure 2). Overall, the increased complexity

of the ball-and-stick morphology increased both the range of

frequencies expressed (256 to 315 Hz) and the overall sharpness of

tuning (,Q. = 0.92) compared to the case of the finite cable

shown in Figure 3A.

The optimized conductance profile for the bipolar neuron

morphology lead to an even larger range of resonant frequency

and Q-factors (Figure 3C). In the bipolar case, the range of

transfer resonance frequencies differs in both dendrites mosty due

to the different distributions of the leak conductance. In one

branch, a low density of both �ggh and �ggKlva caused relatively low

resonance frequencies of the transfer impedance along the branch

while a high density in both conductances caused relatively high

resonance frequencies in the other branch. As a result, the range of

resonance exhibited in the whole neuron was large (between 268

and 338 Hz) and maintained good sharpness (,Q. = 0.99).

Thus, thismorphological construct exploited both non-uniform

densities and changes in boundary conditions between the soma

and each of its two branches.

Similarly, the optimized Y-branch produced a large range of

resonance frequencies from its low resonance frequency in the

parent branch to the high resonance frequency in the daugther

Figure 2. Effect of boundary conditions on the spatial profile of
resonance frequencies observed in a dendritic segment. A. To
explore the effect of boundary conditions on a dendritic segment,
different resonant lumped boundary conditions, Zlump, are used. The
color-code represents resonance frequency of the ‘‘lumped’’ boundary
condition with blue to red corresponding to resonance frequencies
ranging lower to higher than the cable characteristics –black line. B. A
resonant boundary condition at the tip of a cable mimics sudden
changes in membrane parameters and can represents as a first
approximation either a change in channel density between segment
of a in non-uniform cable or local geometric changes (branching or
tapering). The influence of the resonant boundary condition is obtained
analytically in the case of this simple abstract morphology. The spatial
profile of resonance is shown for the different conditions presented in
A. The spatial profile of resonance is influenced over its entire length in
the case of short segments (75 mm -upper panel) while long segment
(300 mm – lower panel) are affected mostly on their distal tip when
compared to the refence case of a semi-infinite cable. C. Similarly, the
spatial profile of resonance is drastically changed when a resonant
boundary condition is located at the soma. The effect is large and
observed over the entire resonant segment, even when the segment is
long. This has important implication for e.g., stellate cells for which each
dendritic branch ‘‘sees’’ at its proximal ending a resonant ‘‘lumped’’
boundary condition constituted of the soma and all other branches.
doi:10.1371/journal.pcbi.1003775.g002
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Figure 3. Optimized membrane parameters to achieve the largest range of resonant frequencies with high sharpness (Q-factor). A.
Left panel: a sketch of the model cable with non-uniform density of �ggKlva and �ggh color-coded and normalized to the allowed range (see Methods).
Right panel: Optimized range of resonance frequencies (red) and sharpness (blue) along the cable. A gradient of �ggh against a constant high density of
�ggKlva produces the largest frequency range. B. Left panel: The Ball-and-stick model and its optimized conductance density profile. The optimized cable
diameter and soma radius are also drawn to scale in the sketch. A similar type of gradient can be observed as in Panel A. Right panel,:Spatial profile of
the resonance frequency (red) and sharpness of tuning (blue). C. Left panel, bipolar model and non-uniform density of �ggKlva and �ggh. Right panel:
Spatial profile of resonance frequency (in red) and sharpness of tuning (in blue) with markers indicating the distinct left and right branches. D. Left
panel: The ‘‘Y-branch’’ model and its optimized non-uniform density of �ggKlva and �ggh . Right panel: Spatial profile of resonance frequency and sharpness
of tuning with markers indicating parent (P) and daughter one (D1) and two (D2) in D.
doi:10.1371/journal.pcbi.1003775.g003
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branches (Figure 3D). Thus, dendritic constructs such as branch-

ing, tapering and non-uniform channel distributions enrich the

spatial distribution of resonant frequencies caused by space alone.

Neurons as complex spatio-temporal input classifiers
For a more realistic experimentally reconstructed morphology

(downloaded from NeuroMorpho.org, see Methods), the non-

uniform distribution of conductances, the complex branching and

tapering of dendrites can lead to an even richer spatial distribution

of resonance frequency as shown in Figure 4A. We optimized the

density of �ggKlva and �ggh for each branch of this model. Each branch

was allowed to have a linear gradient of these two channels and

the optimization criteria was to find the model with largest range

of resonance frequencies (in the complete neuron) while maintaing

a reasonable sharpness (,Q..0.8, see METHODS). Figure 4A

illustrates the model neuron resulting from that first stage of

optimization. At each location x on the dendritic tree, the resonant

frequency of H x,vð Þ is color-code ranging from 207 Hz (blue) to

247 Hz (red). In this model based on a real morphology, the

combination of dendritic geometry and non-uniform ion-channel

distribution endow any morphologically realistic model neuron

with a rich spatial profiles of resonance. Such spatially distributed

and sharply tuned resonance frequencies can effectively act as

spatiotemporal filters for a neuron’s inputs, which leads us to

consider in more detail the functional significance of these

resonances. With distinct dendritic locations expressing a prefer-

ence for certain frequencies, one can envision the dendrite as

powerful spatio-temporal filter of synaptic inputs: viewed from the

vantage point of the soma, each point on the dendritic tree has a

preferred input modulation rate that it amplifies while attenuating

all others input rates. This is demonstrated by the simulations in

Figure 4B where the temporal and the spatial selectivity are

illustrated separately (see Methods).
Temporal selectivity can be demonstrated when one set of

synapses (at fixed locations) can cause a differential/preferential

response at the soma of the neuron when stimulated with different

temporal activation patterns, as illustrated in the scenario of

Figure 4B1. Here, the spatial distribution of the green synapses

was chosen on the dendritic tree of Figure 4A so as the combined

transfer function optimally responds to a 208 Hz modulated spike

train while ignoring a 228 Hz input. This simulation demonstrates

the dendritic temporal filtering abilities achieved with a combined

spatial profile of transfer resonances. Note that in arriving at this

result, we did not need to optimize the synapse properties, which

are assumed to simply enhance signal transduction to ensure that

the frequencies arising on the post-synaptic membrane are near

the resonance frequencies shown in panel Figure 4A.

Spatial selectivity is illustrated by two sets of synapses at distinct

dendritic locations responding differentially to the same signal as

shown in Figure 4B2. The red synapses are located at dendritic

locations corresponding to a resonance frequency of 22864 Hz

and the blue synapses at 20864 Hz. When both groups were

stimulated separately by Poisson processes modulated at 228 Hz

(see Methods), the input at the blue synapses generated only a few

spikes at the soma (blue trace). By contrast, the same input signal

at the red synapses, elicited many more spikes (red trace). The

same signal therefore induced different somatic responses when

conveyed to the neuron through distinct sets of synapses with

different resonance properties to the soma.

To conclude, a neuron can perform elaborate spatiotemporal

filtering of its inputs utilizing the distribution of its dendritic

resonances, a capability that is substantially more elaborate than is

widely assumed possible of a neuron expressing only one prefered

resonant frequency [12,13,20].

Discussion

In summary, building upon the work of Koch and colleagues

[19,21], we have shown that a model of a simple neuronal

membrane with typical biophysical properties and ionic channels

can readily exhibit a resonant transfer impedance. When viewed

from a distance down the cable, the resonance can take a wider

range of frequencies and bandwidths. This range expands greatly

when considering nonuniform cable models with complex

boundary conditions and changing ionic channel densities and

types. Finally, the full power and versatility of this dendritic

resonance idea comes into focus in a more realistic multi-

compartmental model which allowed us to demonstrate its

potential functional significance as it enables a neuron to serve

as a spatiotemporal filter.

Given the ubiquity and diversity of dendritic resonances, why

has their functional significance been thus far neglected? The

answer probably lies in the commonly-held view that resonance

mainly plays a role in synchrony (and participation therein) at

lower frequencies (e.g., a,b, and h-bands at ,10 Hz). At those

frequencies it is hard to distinguish experimental variability from a

real range of resonance frequencies (a range of 50% around 4 Hz

is 2–6 Hz). At the much higher frequencies considered here (and

in only one previous report [14]), a 50% range translates to 225–

375 Hz. Resonances in those ranges correspond to high gamma.

Interestingly, in the lower auditory system, where neurons are

known to express fast-activated potassium channels, these higher

modulation frequencies can be transmitted by neuron to encode

modulation of the sound energy. Temporal modulations at these

frequencies convey periodicity cues critical in the perception of

pitch [22]. Also, in more central neurons these rates can readily

occur in the high-conductance state during which neurons are

constantly bombarded with seemingly irregular firing rates [23].

As long as there is a temporal modulation (envelope) rate,

dendritic transfer resonance can still filter relevant signals.

It should be pointed that neurons with a rich variety of dendritic

transfer resonance may rather be the rule than the exception.

Indeed, as we have highlighted here both nonuniform channel

conductance and boundary conditions enhance the usual range of

transfer resonance expressed by a cable. There have been many

studies demonstrating that channels are non-uniformly distributed

on the dendrite [24–25]. Given that a diverse range of resonances

is ubiquitous and inevitable in dendrites, we can speculate on

further implications of our findings. A first important observation

is the difference between resonant frequencies of the input versus

transfer impedance: the input impedance dominates locally while

the tranfer impedance is global insofar it spans the complete

dendritic membrane along which an input signal travels to the

soma. Plasticity can, in principle, differentially exploit local and

global effects. At the local level, a signal that temporally matches

the resonant frequency in the input impedance may trigger a large

local voltage-depolarization giving rise to a calcium transient that,

in turn, triggers plasticity mechanisms [26]. At the global level, a

different (but not mutually exclusive) hypothesis is based on pre

and post-synaptic spike times [27]. In this scenario, the combined

synaptic input to a neuron triggers a post-synaptic spike, which

then back-propagates into the dendritic tree and activates plasticity

mechanisms. Since the strength of somatic depolarizaion depends

on the global resonant frequency of the transfer impedance, the

most likely inputs to induce spiking (and hence plasticity) are those

with modulation rates that match this global resonance.

A slight variation on the latter hypotheses is the case in which a

‘‘teacher’’ signal impinges onto the soma and triggers spikes. In

that situation, the neuron can associate the modulation of the

Spatially Distributed Dendritic Resonance
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‘‘teacher’’ signal to a specific the set of synapses that have an equal

transfer resonance to the soma. Indeed, such a neuron would be

responsive only when the preferred modulation rate at the

synapses matches that of the teacher signal. Inputs from synapses

with transfer resonance modulated at any other rate would not be

carried out to the soma and would not interact constructively with

the ‘‘teacher’’ signal. This situation is particularly interesting in the

auditory system where low frequency cell could provide ‘‘teacher’’

signals to modulation detector neurons with dendritic branches

spread across tonotopy (such as octopus cells [28–30] or inferior

colliculus stellate cells [31]). Since the output modulation rate of

low frequency cells is determined by their location, while that of

high frequency cell is not, cross-frequency modulation detectors

could arise by such a learning of specific input location. This idea

provides a neural basis to solve the central problem of linking the

rate modulation of low and high frequency places in auditory pitch

perception [32].

Thus, resonant frequencies in dendrites not only enable the

neurons to perform elaborate spatio-temporal filtering, it can also

have pivotal consequences for plasticity, and different plasticity

mechanism could be activated by local or global post-synaptic

potentials dependent on the temporal signature of the pre-synaptic

signal.

Methods

Neurons are modeled at two different levels in this study: a

membrane level (i.e. point neuron) and a compartmental level.

Both levels relied on a current-balance equation which describes

the ionic flow across the membrane. In addition to the passive flow

of current, we focus on one particular restorative voltage-

dependent current IKlva produced by fast activated, slowly

inactivating potassium channel. The membrane dynamics are

described by:

C
dV

dt
~gL EL{Vð ÞzIKlvazIh

where IKlva~�ggKlvaw4z EK{Vð Þ with w~w V ,tð Þ and

z~z V ,tð Þ represents the proportion of activated and

inactivated ionic channels. Their dynamics are given in

the standard form introduced by Hodgkin-Huxley
dx

dt
~

x?{x

tx

, where x stands for either w or z. The voltage

dependent time constants tw, tz and the activation w? and

inactivation z? of the potassium channel are taken from

Mathews et al. [33]: tw~
21:5

6 exp
Vz60

7

� �
z24 exp

Vz60

50:6

� �

z0:35, tw ~
179

5 exp
Vz60

10

� �
zexp

Vz70

8

� � z 10:7,

w?~
1

1zexp
Vz57:34

{11:7

� �, and z?~
1{0:27

1zexp
Vz67

6:16

� �z0:27.

The time constants parameters and EK~{106 mV are kept

constant throughout the study. Because of its much slower time

Figure 4. Spatio-temporal input classicifcation in neurons due to to spatial profiles of resonance in the transfer impedance in
dendrites. A. Resonance frequencies of the transfer impedance. Each dendritic location is color-coded from blue (207 Hz) to red (247 Hz) and
represents the resonance frequencies of the transfer impedance toward the soma (recording location). This demonstrates how non-uniform
membrane parameters and a complex multi-polar cell morphology give rise to a large range of spatially segregated temporal filters. B. The spatio-
temporal filtering ability of a stellate cell with distributed resonance properties. Two classification tasks are presented: one based on the temporal
modulation of the input rate (B1) and one based on the spatial distribution of synapses (B2). In each case, the neuron receives 25 independent non-
homogenous Poisson processes inputs. B1. Temporal selectivity: location of the (green) inputs are optimized so that the output spike rate best
discriminates between two input signals; a target input signal modulated at 228 Hz and minimized for a null-signal modulated at 208 Hz. A
schematic raster plot of the different input signal is shown (red: target signal, blue: null-signal). The target signal triggers many spikes (red trace) while
the null-signal triggers none. B2. Spatial selectivity: synapses are inserted at dendritic locations matching a resonance frequency in the transfer
impedance of 228 Hz (64 Hz, red dots) or 208 Hz (64 Hz, blue dots). When a signal modulated at 228 Hz is presented to the red group of synapses,
the neuron responds with many spikes (red trace). When at the same red synapses a singal modulated at 208 Hz is presented, the neuron fails to
respond and generates only a few spikes (blue trace).
doi:10.1371/journal.pcbi.1003775.g004
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scale, the current Ih is modeled as a static leak (i.e.

Ih~�ggh Eh{Vð Þ) throughout the paper with Eh~{43 mV.

Linear analysis of the resonance
The resonance introduced by IKlva can be described in the

Fourier domain [16,19,34] after linearizing the current

balanced equation around the resting membrane potential

v0. A small variation in the potassium current dIK~

LIK

LV

� �
dVz

LIK

Lw

� �
dwz

LIK

Lz

� �
dz is composed of three terms:

an ohmic part (i.e. the steady-state potassium conductance

LIK

LV

� �
~�ggKlvaw4

?z?) and two other terms describing the increase

and decrease in subsequent changes in activation and inactiva-

tion of the channels. The membrane impedance is given

by Z vð Þ~ �ggeff 1zjvteff

� �
zkw= 1zjvtwð Þzkz= 1zjvtzð Þ

� �{1
,

where �ggeff ~gLz�gghz�ggKlvaw4
?z4

? is the effective conduc-

tance of the membrane composed of the leak and the steady-

state potassium conductance and teff ~C=Geff is the

effective membrane time constant. The conductance

kw~{4�ggKlva EK{Vð Þw3
?z Lw?=LVð Þ

��
v0

represents the extra

conductance associated with opening additional activation gates

following a variation of voltage around rest. Correspondingly,

kz~{4�ggKlva EK{Vð Þw4
?z Lz?=LVð Þ

��
v0

represents the decrease

in conductance associated with the closing of some inactivation

gates. The frequency dependence of kw and kz allows a further

simplification. Since tz&80 ms [33] while tw&2 ms, any voltage

changes at frequencies above 12.5 Hz have little effect on the

inactivation and thus we can neglect effect of the inactivation.

Therefore, we use the following expression for the mem-

brane impedance in Figure 1A: zm vð Þ^ �ggeff 1zjvteff =2p
� �

z
�

kw 1zjvtw=2pð ÞÞ{1
.

Cable model of resonant dendrite
For the spatially extended models (Figure 1D,E and 2), the

current-balanced equation for each compartment is similar to that

of the membrane with the addition of terms describing the current

between compartments which is proportional to the axial

resistance ra. The space constant l~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rm=rapd

p
for a dendrite

describes the distance between an injection and recording site for

which the DC component has decayed of a factor e.

More generally, the membrane impedance Zm vð Þ deter-

mines the frequency dependent space constant l vð Þ~
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ri=Zm vð Þd

p� �{1
, of the dendrite (where < denotes the real

part of a complex number). The transfer impedance H x,vð Þ
between any two points separated by a distance x can be

computed by solving the generalized cable equation given in the

Fourier domain by c2 vð ÞLxxV x,vð Þ~V x,vð Þ with its appropri-

ate boundary conditions, where c2 vð Þ~ra=Zm vð Þ. For the semi-

infinite cable described in Figure 1, its magnitude reads

H x,vð Þj j~ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RiZm vð Þ=pd3

q����
����exp {x=l vð Þ½ � and this was used

to compute the spatial profile of the resonant frequency

fr xð Þ~vr xð Þ=2p and spatial profile of Q-factor, denoted Q xð Þ
(see below). The space constant of the semi-inifinite cable is thus

related to input impedance by l vð Þ~ H 0,vð Þj jw vð Þ where

w vð Þ~1=cos heff vð Þzhw vð Þ
� �

=2
� �

with hx~tan{1 vtxð Þ. This

relationship demonstrates why an inherent mismatch exists

between the resonance frequency of the space constant is different

than that of the the input impedance. When more specific

boundary conditions are used (Figure 2), the transfer impedance

H x,vð Þ~A cosh c vð Þxð ÞzB sinh c vð Þxð Þ does not easily relate to

the concept of space constant. Different approaches [21,35,36] can

be used to compute A~A v,xð Þ and B~B v,xð Þ from the

boundary conditions. We have used the expression of rule I and

III of Koch and Poggio [21].

Compartmental model of resonant dendritic tree
Numerical simulations to determine the influence of complex

dendritic morphologies on resonance were performed using the

NEURON+Python [37,38] software. In order to explore the wide

range of parameters that leads to significant spatio-temporal input

filtering, we performed evolutionary optimizations [39,40] of

abstract (cable, bipolar, multipolar, ‘‘Y’’ dendrites) model neurons

(Figure 3) as well as morphological detailed model neurons (see

Figure 4). Optimization by evolutionary algorithms involved two

critical steps: parametrization of the model neurons so they can be

systematically optimized and, the quantitative assessment of the

models to guide the optimization.

The parameters used for the optimization are summarized in

Table S1. These parameters are based on neurons from the early

auditory pathway [31,41–43]. Note that in each of these models

the segment diameters as well as the conductance densities may

follow a linear gradient between an initial and ending value. The

diameter is additionally constrained not to increase. The length of

the dendritic branches in the abstract models is adjusted so that

the total length of the path between soma and termination point is

200 micron.

The quantitative assessement of the models we are established

by two means. First, the spatial profile of resonance frequency

fr xð Þ~vr xð Þ=2p allows us to compare quantitatively the range of

frequencies obtained on a fixed morphology. For the linear cable,

this is obtained by numerically computing arg minv H x,vð Þj j. For

the compartmental model with nonlinear channel dynamics, an

‘‘impedance amplitude profile’’- current (ZAP-current [44]) is

injected at a specific location in the dendritic segment and the

frequency at which the membrane potential is maximal (Vmax) is

taken as the resonant frequency (i.e. fr~vr Vmaxð Þ=2p). The

second assemement is based on the sharpness of tuning, also called

the Q-factor. Rather than defining the Q-factor by

Q~ Zm vrð Þ=Zm 0ð Þj j, as done in various study [12,19,45], we

use a definition focusing on the bandpass properties offered by

dendritic resonance, that is: how quickly the resonant response

drops around the resonant frequency fr. The Q-factor is thus

defined by Q~vr=Dv where Dv~v1{v2 denotes the band-

width of the resonance and v1{v2ð Þ are such that

V2 v1ð Þ~V2 v2ð Þ~V2 vrð Þ=2. The spatial profile of the Q-factor,

Q xð Þ is determined by computing Q at each point along the

dendrite.

We can then decide to optimize for range of resonance

frequencies obtained, the overall Q factor or both Simultaneously

(as in Figure 3).

Spatio-temporal input filtering on realistic spiking model
of neuron

To demonstrate the spatio-temporal filtering in a spiking model

with a realistic morphology, a neuron model with an archetypical

multipolar morphology [46] (‘‘P2-DEV139’’ originally published

in [44] available at the NeuroMorpho.org archive [47]) is

simulated and optimized. We optimize this model neuron in two

steps. First, the membrane properties (Table S1) are modified

iteratively to obtain a large range of resonance frequencies

(resulting in a 207 to 247 Hz range – see Figure 3A) and with

reasonable sharpness in the dendrites (0.79,Q,0.89). Second,

Spatially Distributed Dendritic Resonance
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while using these optimal membrane parameters, we optimize

synaptic parameters and input parameters for two tasks: temporal

or spatial filtering. Both tasks exemplify the single property of the

optimized neuron, namely to perform spatio-temporal input

classification. For both tasks, the synaptic input parameters

optimization is performed as follows. Inputs spike trains onto 25

synapses are obtained from independent non-homogeneous

Poisson processes (NHPP) with sinusoidal firing rate

Fr tð Þ~I0zIm sin vtð Þ where I0 and Im are both optimization

parameters. A DC current is added to the soma segment

representing the global background activity. To demonstrate the

temporal selectivity, we fix the modulation frequency vmod=2p to

a target frequency (vmod=2p~ftarget~228 Hz) or a null frequency

(fnull~208 Hz). The synapses’ location and strength is optimized

for a discrimination task: output spike rate is maximized for ftarget

and minimized for fnull , that is, the location and strength is kept

identical for the two different inputs (figure 3B1, green dots).

Because the synaptic locations are the same in both cases, the

neuron can only use temporal information of the input to filter the

target from the null signal. To demonstrate the spatial selectivity, we

fix the input frequency at f ~228 Hz and optimize synapses’

location and strength for two different sets of synapses: the ‘‘target

set’’ which should maximize the output firing rate and the ‘‘null set’’

which is optimized for a different frequency. Because the input

signal is identical in both cases, the neuron can only use the location

of the synapse to filter one signal but not the other (Figure 3, B2)

Supporting Information

Figure S1 Membrane conductance parameters affect both input

and transfer resonance. A1. Resonance frequency of the input

impedance depends on both the potassium and leak conductances

(respectively, gKlva and gL). At potassium conductance gKlva larger

than 10 msiem./cm2 the resonance frequency is closely related to

the effective cutoff frequency veff . A2. The quality factor of the

input impedance is in part determined by kw although a region of

high sharpness of tunning is found around gKlva~20 msiem./cm2

and gL~0:5 msiem./cm2. B. The transfer impedance has a

different resonance frequency depending on the location of the

input (see Figure 1C, D). The mismatch (B1) between vl

(resonance frequency of the cable space constant l) and vr

(resonance frequency of the membrane impedance) explains the

range of resonance frequency seen along a semi-infinte cable(B2).

(TIF)

Figure S2 Influence of dendritic structure on the spatial profile

of the Q-factor of the transfer impedance. A. Different resonant

lumped boundary conditions, Zlump, are color-coded with blue

representing boundaries with lower resonance frequencies and red

higher. Black describes the case of the uniform semi-infinite cable.

B. A resonant lump at the tip of a cable mimics sudden changes in

membrane parameters. The influence of the lump is obtained

analytically in the case of this simple abstract morphology. The

spatial profile of Q-factor is shown for the different Zlump

presented in A. A short and a long segment are displayed to

show that the sharpness of tuning is not affected much compared

to the refence case of a semi-infinite cable. This observation is also

valid in the case of a resonant lump at the soma (C) for which

important changes in resonance frequency can be observed

(Figure 2C).

(TIF)

Table S1 Parameters of the conductance based model subject to

optimization (Figure 3–4). Allowed values for the parameters must

be inside the given ranges. Default values are inspired by auditory

nucleus neurons that contain the fast IKlva. For the full morphology

the membrane resistance was increased to resemble that of a

neocortical cell.
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