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Abstract

We consider the weighted K-Means algorithm with distributed centroids aimed at clus-
tering data sets with numerical, categorical and mixed types of data. Our approach
allows given features (i.e., variables) to have different weights at different clusters. Thus,
it supports the intuitive idea that features may have different degrees of relevance at
different clusters. We use the Minkowski metric in a way that feature weights become
feature re-scaling factors for any considered exponent. Moreover, the traditional Silhou-
ette clustering validity index was adapted to deal with both numerical and categorical
types of features. Finally, we show that our new method usually outperforms traditional
K-Means as well as the recently proposed WK-DC clustering algorithm.
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1. Introduction

Clustering algorithms aim to find natural groups in a given data set so that each
group is composed of similar entities (i.e., objects), whereas entities between groups are
dissimilar. These data-driven algorithms are commonly used in exploratory data analysis
without learning any supplementary information from test data. Clustering has been used5

to address various practical problems such as: image segmentation [1, 2], mining text
data [3, 4], marketing [5], general data mining [6], bioinformatics [7, 8], etc.

Over the years there has been a considerable research effort in data clustering, gen-
erating a large number of clustering algorithms. Such a diversification of clustering
algorithms can be explained by a variety of different ways in which data groups, nor-10

mally referred to as clusters, may be formed. Some algorithms allow a given entity to
belong to two or more clusters, sometimes even with different degrees of membership,
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but most of them allow it to belong to a single cluster only [9, 10]. In this paper, we
are particularly interested in the latter approach, including data partitioning algorithms
with a crisp membership.15

Among this kind of partitioning algorithms K-Means [11, 12] is, arguably, the most
popular one [6, 13]. K-Means clusters a given data set Y composed of entities yi for
i = 1, 2, ..., N , each described over features v1, v2, ..., vV into K non-overlapping parti-
tions. Each cluster k = 1, 2, ...,K has a single centroid c1, c2, ..., cK , which represents the
cluster’s centre. K-Means minimizes the sum of the squared errors (E) between entities20

and their respective centroids, as shown below:

E =

K∑
k=1

N∑
i=1

uik · d(yi, ck), (1)

where uik ∈ {0, 1} is a binary variable, specifying whether the entity yi is assigned to
cluster k or not, and d is a function returning the distance between yi and ck. In most
cases, the distance in use is the squared Euclidean distance in which

d(yi, ck) =

V∑
v=1

(yiv − ckv)2. (2)

In this case, calculating centroids becomes a trivial exercise:

ckv =

∑N
i=1 uik · yiv∑N
i=1 uik

. (3)

The minimization of (1) can be done using the iterative method below, which is carried
out until convergence.

1. Select K entities from Y at random and copy their values to the initial centroids
c1, c2, ..., cK . Set each uik = 0.25

2. Assign each entity yi ∈ Y to the cluster represented by its closest centroid. If entity
yi is assigned to cluster k, then set uik to 1. If there are no changes in uik, then
stop the algorithm.

3. Update each centroid to the centre of its cluster. Go to Step 2.

Because of its wide use, the weaknesses of K-Means are rather well known. The main30

of them are as follows: (i) there is no guarantee that the algorithm will reach global
optimum; (ii) K has to be known beforehand; (iii) it assumes that each feature has the
same degree of relevance (i.e., the same weights); (iv) it does not support categorical
features.

Aiming to address the point (iii), Makarenkov and Legendre [14] and Chan et al.35

[15] introduced the Weighted K-Means (WK-Means). This algorithm automatically sets
a weight, sv, for each feature v in the data set, which is then incorporated into the
calculation of distances (see Section 2 for more details). The approach of Chan et al.
[15] also considers a new parameter, β, which is the exponent of sv, but does not specify
a clear way of assessing it. However, WK-Means does outperform K-Means and seems40

to work well in general [15, 4].
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Regarding the point (iv) above, K-Means, as many other algorithms, assumes that
any categorical feature has to be transformed into numerical. There are indeed various
methods for such a transformation [6]. However, most of them result in information loss
[16].45

The latter issue has motivated recent developments of clustering algorithms allow-
ing for both numerical and categorical types of features. Huang [17] introduced the
k-prototype algorithm, a popular variation of K-Means designed to deal directly with
data sets containing mixed data types. This approach has been also extended to fuzzy
clustering [10].50

Kim et al. [9] introduced the concept of fuzzy centroids. In this concept, the centroids
are no longer represented by hard-type values, but instead by fuzzy centroids. The latter
authors showed that their approach works quite well in a fuzzy scenario, in which a given
entity may belong to two or more clusters with different degrees of membership. Ji et
al. [18], inspired by the concept of fuzzy centroids, has recently introduced the concept55

of distribution centroids which represent the centers of clusters for categorical features
in a crisp scenario, rather than in a fuzzy one. Ji et al. [18] also incorporated into their
algorithm the variable weight estimation procedure, thus addressing the above-mentioned
weaknesses (iii) and (iv) of traditional K-Means.

The WK-Means algorithm with distributed centroids (WK-DC) was proved to work60

well on data sets with numerical, categorical and mixed data types [18]. However, as we
will show here, there is still room for further improvement of this approach.

The main contribution of this paper is to further improve the WK-DC algorithm by:
(i) applying subclustering, so that a given feature v may have different weights at different
clusters, and thus supporting the intuitive idea that features may have different degrees65

of relevance at different clusters; (ii) using the Lp metric with the same exponent p in the
weight and distance calculation so that feature weights could be seen as feature re-scaling
factors for any exponent; (iii) calculating the centroids by using the minimization of the
Lp metric; (iv) showing how the Silhouette clustering validity index can be adapted to
deal with both numerical and categorical types of features.70

2. Background and related work

The Weighted K-Means algorithm (WK-Means) aims to estimate the degree of rele-
vance s of each feature v, taking it into account in the clustering process [15, 14]. The
concept of feature weighting is closely related to that of distance, requiring an update in
the latter. WK-Means incorporates feature weighting in the squared Euclidean distance,75

by defining the distance between entity yi and centroid ck as
∑V
v=1 s

β
v ·(yiv−ckv)2, where

sv is the weight of feature v, and β is a user-selected exponent.
The partitioning of a data set Y , containing N entities yi, i = 1, 2, ..., N , each de-

scribed over V features, v1, v2, ..., vV , into K clusters is given by minimizing the WK-
Means criterion, which is as follows:80

E =

K∑
k=1

N∑
i=1

V∑
v=1

uik · sβv · d(yiv, ckv), (4)

where ckv is the feature v of the centroid of cluster k. The WK-Means criterion is subject
to
∑V
v=1 sv = 1 and 0 ≤ sv ≤ 1 (for v = 1, . . . , V ), and a crisp clustering in which a
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given entity yi is assigned to a single cluster. The binary variable uik indicates whether
yi is assigned to cluster k:

uik =

{
1, if yi belongs to cluster k,

0, if yi does not being to cluster k.
(5)

The algorithm to minimize WK-Means is very similar to that of K-Means shown in85

Section 1, with a couple of extra considerations only. First, each sv is initialized to a
non-negative random value, but still subject to

∑V
v=1 sv = 1. Second, after updating

each centroid, the algorithm updates each feature weight as well, and then goes back
to Step 2. This weight update occurs in a similar fashion to that of WK-Means with
distributed centroids (explained in Section 3). The WK-Means algorithm was shown to90

provide steady results [15, 4], but it does not deal with categorical features directly. A
data set containing categorical features would need to be pre-processed to transform such
features, or a k-prototype algorithm should be applied.

To address this important limitation, Ji et al. [18] proposed to use distributed cen-
troids in WK-Means (WK-DC), showing that WK-DC outperforms other popular parti-95

tioning algorithms such as k-prototype, SBAC and KL-FCM-GM [19, 10]. The WK-DC
algorithm deals with data sets containing both numerical and categorical features, but
still represents each partition using a single centroid C = {c1, c2, ..., cK}. The centroid
of a cluster k is represented by ck = {ck1, ck2, ..., ckV }. This representation is straight-
forward for a numerical variable v. If v is a categorical variable containing T categories100

a ∈ v, then ckv = {{a1
v, w

1
kv}, {a2

v, w
2
kv}, ..., {atv, wtkv}, ..., {aTv , wTkv}}.

The above representation of the centroid of a categorical feature v allows each category
a ∈ v to have a weight directly related to its frequency in the data set Y , where the value
of wtkv is calculated using the following equation:

wtkv =

N∑
i=1

ηtk(yiv), (6)

and,

ηtk(yiv) =


(∑N

j=1 ujk

)−1

, if yiv = atv,

0, if yiv 6= atv.
(7)

Unlike WK-Means, the distance d(yiv, ckv) for a numerical v in WK-DC is set to be the
Manhattan distance, defined by |yiv − ckv|. Obviously, the Manhattan distance cannot
be applied if v is categorical. In this case, d(yiv, ckv) is equivalent to ϕ(yiv, ckv), where:

ϕ(yiv, ckv) =

T∑
t=1

ϑ(yiv, a
t
v), (8)

and,

ϑ(yiv, a
t
v) =

{
0, if yiv = atv,

wtkv, if yiv 6= atv.
(9)

Moreover, the WK-DC algorithm incorporates the feature weighting component of WK-105

Means. Thus, each feature v ∈ V has a weight sv representing its degree of relevance,
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which is assumed to be inversely proportional to its dispersion. This is an intuitive
concept in which features that are compact, and by consequence have a smaller dispersion,
are thought to be more relevant than features that are sparser, and by consequence have
a higher dispersion. The dispersion of v is given by Dv, as shown below:110

Dv =

K∑
k=1

N∑
i=1

uik · d(yiv, ckv). (10)

Using Dv, it becomes possible to calculate sv:

sv =

0, if Dv = 0,(∑h
τ=1[DvDτ ]

1
(β−1)

)−1

, if Dv 6= 0.
(11)

where h is the number of features for which Dv 6= 0. Note that Equation (11) leads to
a division by zero at β = 1. In this case, the minimization of s results in finding the
feature with the highest Dv for which sv = 1, while the weight of all other features is set
to zero [15].115

There has been limited indication for what values of the exponent β WK-Means pro-
vides the best clustering results, or how β could be successfully estimated for a particular
data set. On the other hand, WK-DC was introduced using solely, and rather success-
fully, β = 8 [18]. Based on this success, we decided to extend WK-DC by addressing the
following three major points. First, the WK-DC makes use of a single weight per feature120

sv. We believe that it would be more intuitive to apply subclustering, in which a given
feature v could have different weights at different clusters (i.e., effectively using skv rather

than sv). Obviously, skv will be subject to the following constraints:
∑V
v=1 skv = 1 and

0 ≤ skv ≤ 1 (for v = 1, . . . , V ), for each fixed value of k = 1, 2, ...,K.
Second, the difference of one between the exponent β and the distance exponent in125

WK-DC [18] does not allow the feature weights to be seen as feature re-scaling factors.
If the two exponents were identical, the weights could be used to re-scale the given data
set as a part of data pre-processing step. This is not only a matter of setting β to one, as
in this case the minimization of (10) would set the weight sv of a single feature v to one
and all other feature weights to zero [15]. We propose to change the distance exponent130

instead, considering the Lp metric instead of the Manhattan distance.
Third, the WK-DC algorithm proposed by Ji and colleagues [18] uses the Manhattan

distance to assign entities to clusters. It relies on the mean to determine the cluster
centroids. It is well known, however, that the median instead of the mean should be used
with the Manhattan distance. In our algorithm, we ensure that each cluster centroid will135

have the smallest sum of distances to all of the cluster’s entities by aligning the distance
used to assign entities to centroids with the minimization used to find each centroid. The
distance we consider here is the Minkowski distance and its minimization is given by the
steepest descent algorithm [20] discussed below.

3. The Minkowski Weighted K-Means with distributed centroid140

We have recently considered the use of the Lp distance in clustering with Minkowski
Weighted K-Means [20]. Unfortunately, our algorithm [20], as the original WK-Means
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algorithm, was not designed to deal with categorical features directly. The Lp distance

between an entity yi and a centroid ck is given by p

√∑V
v=1 |yiv − ckv|p. Here, we propose

to remove the pth root, similarly to the popular use of the squared Euclidean distance in145

clustering, as well as consider the feature weights.
In our new algorithm, called Minkowski Weighted K-Means with distribution centroid

(MWK-DC), we will apply subclustering allowing a feature v to have different degrees
of relevance at different clusters. This will have an impact on the distance calculation as
we will show below:150

dp(yi, ck) =

V∑
v=1

spkv · |yiv − ckv|
p, (12)

where p, an exponent of both the distance and the feature weight, is a user-defined pa-
rameter. As we will show in the next section, an optimal value of p can be selected
using a modified version of the Silhouette clustering index which will be adapted to deal
with both numerical and categorical types of features. Any distance measure creates a
bias in terms of the shape of clusters which the partitioning algorithm should be able155

to recover. WK-DC uses the Manhattan distance, meaning that the bias is towards dia-
mond shapes. WK-Means uses the squared Euclidean distance, setting the bias towards
spherical clusters. When the Lp distance is used, the resulting bias depends on p. If
p = 1, our function will be the Manhattan distance; if p = 2, our function will be the
squared Euclidean distance; and if p→∞, the bias will be towards squares. In summary,160

by using the Lp distance we can set the bias given by the distance to any interpolation
between a diamond and a square. With the weighted Lp distance in (12), we can rewrite
(4) as follows:

Ep =

K∑
k=1

N∑
i=1

V∑
v=1

uik · spkv · |yiv − ckv|
p. (13)

The calculation of skv in both WK-DC and MWK-DC is based on the dispersion of v.
However, the use in MWK-DC of an equation similar to Equation (10) in WK-DC would165

be problematic. Indeed, consider a scenario in which a feature v has K different values
which do not change within the same cluster k = 1, 2, ...,K. If we were to simply update
(10) to calculate dispersions per cluster, it would lead to a weight of zero as per (11),
even so such a feature seems a perfect feature to separate clusters. We solve this problem
by adding a small constant to our dispersion. We define the dispersion, Dkvp, of feature170

v in cluster k at a given exponent p as follows:

Dkvp =

N∑
i=1

uik · |yiv − ckv|p + 0.01, (14)

where the small constant of 0.01 is used to avoid the case of Dkvp = 0. We think that the
features whose value is constant over all entities yi ∈ Y should be addressed in the data
pre-processing stage, rather than by the clustering algorithm in question. Using (14), we
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can calculate the weight, skv, of feature v at cluster k as follows:175

skv =

(
V∑
u=1

[
Dkvp

Dkup

] 1
(p−1)

)−1

, (15)

where skv is subject to the following constraints:
∑V
v=1 skv = 1 and 0 ≤ skv ≤ 1 (for

v = 1, . . . , V ), for each k = 1, 2, ...,K. The only division by zero in (15) would happen if
p = 1. In this case, the minimization of our objective function implies that for a given
cluster k, only a single feature, that with the highest Dkv, has the weight of one, whereas
all other features have the weight of zero.180

The algorithm used to iteratively minimize our objective function, given by Equation
(13), is presented below:

1. Randomly selectK entities yi ∈ Y and set their values as initial centroids c1, c2, ..., cK .
Set each weight skv randomly, but subject to

∑V
v=1 skv = 1 and 0 ≤ skv ≤ 1 (for

v = 1, . . . , V ), for each k = 1, 2, ...,K.185

2. For each entity yi ∈ Y and cluster k = 1, 2, ...,K, set uik = 1 iff ck is the closest
centroid to yi as per Equation (12), otherwise set uik = 0 .

3. Update each centroid ck for k = 1, 2, ...,K to the Lp centre of its cluster. If there
are no changes, then stop the algorithm and output u, c1, c2, ..., cK , and s.

4. Update each feature weight skv, applying Equation (15). Go back to Step 2.190

At p = 1, p = 2 and p = ∞, the Lp center of a cluster is given by the component-
wise median, mean and midrange, respectively. For other values of p the center can be
obtained using a steepest descent algorithm [20], since we can assume p ≥ 1.

4. Setting of the experiments

The original paper introducing the use of the distributed centroid in WK-Means [18]195

does not deal with data normalization. Its authors probably assume that the normal-
ization is carried out during the feature weighting process, which may not be true in all
cases. The distance between yiv and a ckv for a categorical v, given by ϕ(yiv, ckv) in
(8), has a maximum of one. However, if v is numerical, the maximum distance, given by∑V
v=1 |yiv − ckv|, will tend to the range of v.200

We can solve this problem by normalizing each numerical feature in such a way that
the maximum distance between entities and centroids is the same, whether v is numerical
or categorical. Often data sets are normalized using the popular z-score standardization.
In this, yiv = yiv−ȳv

stdev(yv) , where stdev(yv) represents the standard deviation of feature v

over yi ∈ Y . In this study, we chose a different normalization, which is as follows:205

yiv =
yiv − ȳv
range(yv)

, (16)

where ȳv represents the average value for v over each entity yi ∈ Y . The above equation
guarantees that any numerical feature v ∈ V will have a range of one. This means that
the maximum distance between any entity and its corresponding centroid will tend to
one.
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The choice of the range, rather than of the standard deviation in (16) has yet another210

interesting characteristic: unlike the latter, the former is not biased towards unimodal
distributions [21, 6]. Consider the following example of two features, a being unimodal
and b being bimodal. The standard deviation of b will be higher than that of a, which
means that after the standardization the values of b will be smaller than those of a, thus
having a smaller contribution to any distance-based clustering process. However, b is215

clearly a feature that can be used to discriminate between natural groups sought by any
clustering algorithm.

We have applied the above normalization to the numerical features of all 12 real-life
data sets we analyzed in this study. Table 1 describes each data set in terms of its
number of entities, numerical features, categorical features and clusters. These data sets220

are freely available at the popular UCI machine learning repository [22].

Table 1: 12 real-life data sets from the UCI machine learning repository [22] used in our experiments

Numerical Categorical
Entities Features Features Clusters

Australian credit approval 690 6 8 2
Balance 625 0 4 3
Breast cancer 699 9 0 2
Car Evaluation 1728 0 6 4
Ecoli 336 7 0 8
Glass 214 9 0 6
Heart Disease 270 6 7 2
Ionosphere 351 33 0 2
Iris 150 4 0 3
Soya 47 0 35 4
Teaching Assistant 151 1 4 3
Tic Tac Toe 958 0 9 2

Our experiments involved four different partitioning algorithms, which were the fol-
lowing: (i) K-Means; (ii) WK-DC; (iii) WK-DC S, a version of WK-DC using cluster
dependant feature weights; and (iv) MWK-DC.

1. K-Means225

Traditional K-Means algorithm was carried out on the data sets with numerical
features only. We have run 100 experiments per data set.

2. WK-DC
As originally introduced in [18]. We have run 100 experiments per data set.

3. WK-DC S230

A version of WK-DC in which a given feature v has K weights. We have added
a small constant to each feature dispersion, according to Equation (14), to avoid
issues related to features having the same value within a cluster. We have also run
100 experiments per data set.

4. MWK-DC235

As described in Section 3. We have run 100 experiments per value of p = {1.0, 1.1, 1.2, ..., 5.0}.

Several previous works, including our own, measured the quality of algorithms by es-
timating the proportion of correctly classified entities [20, 18]. However, we acknowledge
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that in some cases the estimated rate might be a poor measure for assessing the quality of
a clustering solution [23]. Thus, in this study, we use the adjusted Rand index (ARI)[24]240

to measure the quality of clustering. We have also decided to discard any experiment in
which we did not obtain the expected number of clusters.

Note that all the four algorithms we consider here are non-deterministic. This means
that we not only have to run them many times, but also that we have to find what the
best run was. Two sets of experiments were carried out. In the first, we were interested
in determining which algorithm was the best in terms of cluster recovery. We ran each
algorithm and compared its clustering solution to the known reference clustering by using
the ARI index. Of course this approach is not feasible in real life. Thus, we also needed
a method to identify optimal cluster distribution without any prior knowledge. This
was investigated in our second set of experiments, in which we attempted to recover the
correct clustering without considering any reference solution. We used the Silhouette
width [25] to find this solution in unsupervised way:

si =
1

N
·
N∑
i=1

b(yi)− a(yi)

max{a(yi), b(yi)}
, (17)

where a(yi) is the average distance between yi and all the entities in its cluster, and b(yi)
is the lowest average distance between yi and any cluster not including yi. Note that
−1 < si < 1, and the closer si is to one, the better the obtained clustering solution is.245

Here, the distance between yiv, and yjv where yi, yj ∈ Y , for a numerical feature v is
given by the squared Euclidean distance d(yiv, yjv) = (yiv − yjv)2. Clearly, calculating
si in a data set containing categorical features requires a distance measure that also
supports categorical features. For this reason, we calculated the dissimilarity between
categorical features using Equation (8) and initializing each wtkv using Equation (6).250

5. Results and discussion

We conducted our simulations with the WK-DC, WK-DC S and MWK-DC algorithms
which were applied to analyze the experimental data sets in Table 1. Moreover, we
also carried out experiments using the traditional K-Means algorithm on the data sets
containing solely numerical features. We did not include in our simulations other popular255

clustering algorithms capable of dealing with data sets containing categorical data, such
as k-prototype, SBAC and KL-FCM-GM [19, 10, 17], because WK-DC was already shown
to outperform all of them [18].

Table 2 shows the results of our experiments in terms of the adjusted Rand index
(ARI) and the number of completed iterations necessary for convergence (Itr). We were260

looking for an algorithm that produces high values of ARI with a small number of it-
erations. We limited the number of iterations in each algorithm to a maximum of 100.
In the cases where more than one optimum clustering solution was obtained (i.e., where
different clustering solutions corresponded to the same optimum value of SI), we reported
their average ARI and average number of iterations the algorithm took to converge. Ta-265

ble 2 has two main columns: (i) Optimal run, in which the optimal clustering is that with
the highest ARI; and (ii) Optimal SI run, a totally unsupervised experiment in which
the optimal clustering is that with the highest Silhouette width (SI).
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Some interesting patterns can be observed when considering the results of Optimal
run. WK-DC S produced equivalent or higher values of ARI than WK-DC for nine of270

the twelve data sets we considered. Our MWK-DC algorithm did even better, providing
identical or higher values of ARI than WK-DC for eleven of the twelve data sets. WK-DC
outperformed MWK-DC in a single data set, the Heart disease, with a difference of 0.045
in ARI. Table 2 also shows that WK-DC was unable to generate a clustering solution
with the expected number of clusters for the Ecoli data set. This is possibly related to275

the fact that WK-DC does not minimize its distance when calculating centroids.
In terms of the number of iterations, WK-DC S provided identical or better results

than WK-DC for nine data sets, whereas MWK-DC produced competitive or better
results than WK-DC for ten of them. We believe that our alignment between the distance
used to assign entities and the minimization used to find centroids was the key factor to280

achieve the reduction in the number of iterations. We can also see that WK-DC was the
only algorithm to reach an optimum solution without converging when applied to the
Teaching Assistant data set.

Our second set of experiments included a totally unsupervised clustering approach
based on our modified Silhouette index capable of dealing with data sets containing285

categorical features. In these experiments WK-DC S generated mixed results, being
equivalent or better than WK-DC in terms of ARI for six data sets only. However, our
MWK-DC algorithm was equivalent or better than WK-DC in terms of ARI for nine
data sets. In terms of the number of iterations the algorithms took to complete, WK-
DC S provided equivalent or better results than WK-DC for eight data sets, whereas290

MWK-DC was equivalent or better than WK-DC for seven of them.
Figure 1 illustrates the relationship between the ARI index corresponding to the

clustering solution provided by our MWK-DC algorithm and the exponent p. Here we
present the maximum ARI per value of p (solid line), analogous to our experiments in
Table 2 under Optimal run, as well as the ARI estimated using the Silhouette width295

for each value of p, analogous to our experiments under Optimal SI run. Note that
sometimes the estimated ARI in Figure 1 appears to be higher than in Table 2. This is
due to the fact that the former shows the ARI corresponding to the highest SI at each
p, while the latter reports a single ARI related to the highest SI value obtained over all
possible values of p. In all experiments, clusterings that did not contain the expected300

number of clusters were disregarded. We can see that this was a particular issue for the
Ecoli data set at p ≤ 2.5.

6. Conclusion

Most of the clustering algorithms have been designed to deal with data sets containing
numerical features only. In this paper, we introduce the Minkowski Weighted K-Means305

with distributed centroids (MWK-DC), a feature weighting algorithm capable of dealing
with both numerical and categorical types of features. Our algorithm extends the ap-
proach of Weighted K-Means with distributed centroids (WK-DC) [18] in three different
ways: (i) it allows for an intuitive idea that one feature v may have different degrees of
relevance at different clusters; (ii) it uses the Lp metric with the same exponent p in the310

weight and distance calculation. Thus, each feature weight can now be seen as a fea-
ture re-scaling factor for any considered exponent p; and (iii) it calculates the centroids
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Table 2: Experimental results. Section Optimal run: the best results provided by MWK-DC over
all considered values of p = 1.0, 1.1, ... , 5.0 are shown. Section Optimal SI run: SI (Silhouette)
values were calculated over all considered values of p in MWK-DC (unsupervised clustering); the results
corresponding to the clustering solution that maximized SI are shown.

Optimal run Optimal SI run
ARI Itr p ARI* Itr p Si

A
u
st
ra

li
a
n K-Means - - - - - - -

WK-DC 0.2976 8 - 0.0048 3 - 0.9444
WK-DC S 0.5119 6 - 0.0001 2 - 0.9999
MWK-DC 0.5077 3 1.5,1.6,2.1-2.4,2.6 0.1679 2 1.1,1.2 1.0000

B
a
la
n
c
e K-Means - - - - - - -

WK-DC 0.1545 2 - -0.0011 1 - 0.1467
WK-DC S 0.1545 3 - 0.0553 2 - 0.9299
MWK-DC 0.2588 1 4.0 0.0553 2 5.0 0.9594

B
re

a
st

C
. K-Means 0.8823 4 - 0.8823 4 - 0.9107

WK-DC 0.7400 6 - 0.7350 8 - 0.6510
WK-DC S 0.6195 3 - 0.2015 3 - 0.9462
MWK-DC 0.8552 5 5.0 0.5747 6 3.8 0.9595

C
a
r
E
v
. K-Means - - - - - - -

WK-DC 0.1323 2 - 0.0407 3 - 0.3142
WK-DC S 0.1601 2 - 0.0842 4 - 0.9865
MWK-DC 0.2236 3 13 ps 0.0081 4 1.1-1.3 1.0000

G
la
ss

K-Means 0.2583 3 - 0.1735 8 - -0.1150
WK-DC 0.2895 13 - 0.2386 13 - 0.5058
WK-DC S 0.2611 5 - 0.2069 13 - 0.1703
MWK-DC 0.3126 11 4.4 0.2639 6 4.3 0.7976

E
c
o
li

K-Means 0.6357 13 - 0.4537 8 - 0.1968
WK-DC NaN NaN - NaN NaN - NaN
WK-DC S 0.0318 2 - 0.0318 2 - -0.0352
MWK-DC 0.7989 22 3.8 0.6522 11 5.0 0.6845

H
e
a
rt

K-Means - - - - - - -
WK-DC 0.3938 5 - 0.0280 1 - 0.8656
WK-DC S 0.4323 10 - 0.1807 2 - 0.9996
MWK-DC 0.3485 5 4.6 0.0932 3 1.1,1.2 1.0000

Io
n
o
sp

h
e
re K-Means 0.2038 4 - 0.2038 4 - 0.4125

WK-DC 0.2092 3 - 0.2092 4 - 1.0000
WK-DC S 0.3833 6 - 0.2092 6 - 0.9978
MWK-DC 0.6178 14 4.9 0.2092 3 1.1 1.0000

Ir
is

K-Means 0.9222 2 - 0.8668 4 - 0.8640
WK-DC 0.8512 9 - 0.7445 4 - 0.5846
WK-DC S 0.8680 4 - 0.5685 2 - 0.6354
MWK-DC 0.9222 4 1.1 0.8857 8 3.5 0.8663

S
o
y
a

K-Means - - - - - - -
WK-DC 0.9533 6 - 0.9366 5 - 0.7855
WK-DC S 0.8178 3 - 0.3211 3 - 0.9134
MWK-DC 1.0000 2 33 ps 0.9533 2 4.9 0.9778

T
e
a
c
h
in

g
A
. K-Means - - - - - - –

WK-DC 0.0320 100 - 0.0248 100 - 0.4611
WK-DC S 0.0638 3 - 0.0477 3 - 0.9875
MWK-DC 0.0820 5 3.3,3.8,4.6,4.7 0.0477 3 4.6 0.9949

T
ic
T
a
c
T
o
e K-Means - - - - - - -

WK-DC 0.1515 5 - 0.0692 9 - 0.3071
WK-DC S 0.1515 2 - -0.0184 2 - 0.9283
MWK-DC 0.1515 3 35 ps -0.0128 2 5 0.9858
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Figure 1: Maximum possible ARI per data set at each value of p (solid line) and estimated ARI (using
the Silhouette) per data set at each value of p (dashed line).
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by minimizing the metric used in the distance calculation. In our case, we proceed by
minimizing the Lp metric.

Taking into account that both MWK-DC and WK-DC are non-deterministic, we ran315

them 100 times for each experimental data set and then selected the solutions maximizing
the popular Silhouette width index. Using the concept of distributed centroids, we
extended the classical application of Silhouette to support both numerical and categorical
features.

Our results suggest that MWK-DC generally outperforms WK-DC as well as its320

subclustering version, WK-DC S, in terms of both cluster recovery, measured using the
adjusted Rand index and the number of completed iterations required for convergence.
Furthermore, we still see potential for extension of MWK-DC, considering its version
allowing different distance biases at different clusters as well as its version including the
fuzzy Minkowski Weighted K-Means procedure [26].325
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