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Abstract

The Milankovitch theory states that the orbital eccentricity, precession, and obliquity of the Earth influence our climate by modu-
lating the summer insolation at high latitudes in the northern hemisphere. Despite considerable success of this theory in explaining
climate change over the Pleistocene epoch (2.6 to 0.01 Myr ago), it is inconclusive with regard to which combination of orbital
elements paced the 100 kyr glacial-interglacial cycles over the late Pleistocene. Here we explore the role of the orbital elements
in pacing the Pleistocene deglaciations by modeling ice-volume variations in a Bayesian approach. When comparing models,
this approach takes into account the uncertainties in the data as well as the different degrees of model complexity. We find that
the Earth’s obliquity (axial tilt) plays a dominant role in pacing the glacial cycles over the whole Pleistocene, while precession
only becomes important in pacing major deglaciations after the transition of the dominant period from 41 kyr to 100 kyr (the
mid-Pleistocene transition). We also find that geomagnetic field and orbital inclination variations are unlikely to have paced the
Pleistocene deglaciations. We estimate that the mid-Pleistocene transition took place over a 220 kyr interval centered on a time
715 kyr ago, although the data permit a range of 600–1000 kyr. This transition, occurring within just two 100 kyr cycles, indicates
a relatively rapid change in the climate response to insolation.

Keywords: glacial cycles; obliquity; Pleistocene; Bayesian inference; mid-Pleistocene transition; climate model

1. Introduction

During the past 1 Myr (the late Pleistocene), the polar
ice sheets grew slowly (glaciation) then retreated abruptly
(deglaciation or glacial termination) repeatedly, with an inter-
val of about 100 kyr (Hays et al., 1976). These quasi-periodic
glacial-interglacial cycles dominated terrestrial climate change.
They are recorded by paleoclimatic proxies such as δ18O (the
scaled 18O/16O isotope ratio) in foraminiferal calcite, which is
sensitive to changes in global ice volume and ocean temper-
ature. Following on from the work of Adhémar, Croll, and
others, Milankovitch proposed that climate change is driven by
the insolation (the received solar radiation) during the northern
hemisphere summer at northerly latitudes (Milanković, 1941).
This insolation depends on the Earth’s orbit and axial tilt (obliq-
uity), and Milankovitch suggested that through various climate
response mechanisms, variations in these orbital elements – in
particular eccentricity, obliquity, and precession1 – can cause
climate change (“Milankovitch forcing”). Many studies have
broadly confirmed Milankovitch’s theory and the role of Mi-
lankovitch forcing in driving Pleistocene climate change, for
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1This involves both the orbital and the axial precession.

example by spectral analyses of paleoclimatic time series de-
rived from deep-sea sediments (Hays et al., 1976; Shackleton
and Opdyke, 1973; Kominz et al., 1979). These studies have
demonstrated that the climate variance is concentrated in peri-
ods of about 19 kyr, 23 kyr, 42 kyr and 100 kyr which are close
to the dominant periods in precession (∼23 and 19 kyr), obliq-
uity (∼41 kyr), and eccentricity (∼100 and 400 kyr).

There are, however, several difficulties in reconciling the Mi-
lankovitch theory with observation. Two in particular arise
when trying to explain the 100 kyr cycles. The first is the tran-
sition from the 41 kyr dominant period in climate variations to
a 100 kyr dominant period at the mid-Pleistocene around 1 Myr
ago (hereafter “Myr ago” is written “Ma”). The second dif-
ficulty is generating 100 kyr sawtooth variations from orbital
forcings and climate response mechanisms (Imbrie et al. 1993,
Huybers 2007, Lisiecki 2010). On the one hand, and as shown
in Figure 1, the onset of 100 kyr power at the mid-Pleistocene
transition (MPT) occurs without a corresponding change in the
summer insolation at high northern latitudes (represented by the
daily-averaged insolation on 21 June at 65◦N). On the other
hand, the ∼100 kyr eccentricity cycle produces only negligible
100 kyr power in seasonal or mean annual insolation variations,
despite its modulation of the precession amplitude. Further-
more, the variations of eccentricity and the northern summer
insolation are weak while the 100 kyr climatic variations are
strong, notably in marine isotope stage (MIS) 11 (see Figure 1
and Imbrie and Imbrie (1980); Howard (1997)). These prob-
lems are referred to as the “100 kyr problem” (Imbrie et al.,
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Figure 1: Climate variations over the Pleistocene. The present day is at time zero on the right. The δ18O record (lower solid line)
stacked by Lisiecki and Raymo (2005) is compared with the daily-averaged insolation at the summer solstice at 65◦N, Q̄day65◦N
(upper solid line), the obliquity (dashed line), and the eccentricity (dotted line) calculated by Laskar et al. (2004). The latter two
have been scaled to have a common amplitude. The grey region around −1000 kyr represents the MPT extending from −1250 kyr
to −770 kyr (Clark et al., 2006). The grey bar extending from −423 to −362 kyr represents marine isotope stage (MIS) 11. The
δ18O variations are dominated by 41 kyr and 100 kyr cycles before and after the MPT respectively.

1993).
Various models with different climate forcings and response

mechanisms have been proposed to solve the 100 kyr problem.
Many are based on either deterministic climate forcing models
or stochastic internal climate variations. The former proposes
that the 100 kyr cycles are driven by orbital variations, particu-
larly precession and eccentricity (Imbrie and Imbrie, 1980; Pail-
lard, 1998; Gildor and Tziperman, 2000). Many models treat
the insolation variation as a pacemaker which sets the phase of
the glacial-interglacial oscillation by directly controlling sum-
mer melting of ice sheets (Gildor and Tziperman, 2000). In this
latter hypothesis, stochastic internal climate variability plays
the main role in generating the 100 kyr glacial cycles (Saltz-
man, 1982; Pelletier, 2003; Wunsch, 2003). A general approach
is to combine the deterministic and stochastic elements within a
framework of nonlinear dynamics, which allows for the occur-
rence of bifurcation and synchronisation in the climate system
(see review by Crucifix 2012).

Other proposed hypotheses include glaciation cycles con-
trolled by the accretion of interplanetary dust when the Earth
crosses the invariable plane (Muller and MacDonald, 1997) or
by the cosmic ray flux modulated by the Earth’s magnetic field
(measured as the geomagnetic paleointensity, GPI; Christl et al.
2004; Courtillot et al. 2007). Some models also try to explain
the MPT with (Raymo et al., 1997; Paillard, 1998; Hönisch
et al., 2009; Clark et al., 2006) or without (Huybers, 2009;
Lisiecki, 2010; Imbrie et al., 2011) an internal change in the
climate system.

The above models comprise both climate forcings and re-

sponses. According to various studies (Saltzman, 1987; Maasch
and Saltzman, 1990; Ghil, 1994; Raymo et al., 1997; Paillard,
1998; Clark et al., 1999; Tziperman and Gildor, 2003; Ashke-
nazy and Tziperman, 2004), climate forcings frequently deter-
mine the time of occurrence of some climate feature, such as
the onset of deglaciation. Many recent studies have employed
concepts from chaos theory to address the problem of climate
change (Crucifix, 2012; Parrenin and Paillard, 2012; Crucifix,
2013; Mitsui and Aihara, 2014; Ashwin and Ditlevsen, 2015;
Williamson and Lenton, 2015), which then allow the concept
of "pacing" to be described more rigorously as a forcing mech-
anism. Huybers (2011) noted that many tens of pacing models
have been proposed, yet we lack the means to choose between
them.

Our current work aims to compare different forcing mecha-
nisms by using a simple ice volume model for the Pleistocene
glacial-interglacial cycles. We adopt the pacing model given
by Huybers and Wunsch (2005) and combine it with different
forcings in order to predict the glacial terminations, which are
identified from several δ18O records. Our models do not de-
scribe the physical mechanism of the climate response to exter-
nal forcings. We aim instead only to measure the role of differ-
ent forcings in determining the times of deglaciations. Due to
the large and rapid change in ice volume at deglaciation, these
times are relatively easy to identify, so the time uncertainties
associated with identification are small. They are nonetheless
still affected by the overall uncertainty in the chronology of the
δ18O record (Huybers and Wunsch, 2005).

A common approach for assessing a model is to use p-values
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to reject a null hypotheses (Huybers and Wunsch, 2005; Huy-
bers, 2011). However, it is well established that p-values can
give very misleading results (Berger and Sellke, 1987; Jaynes,
2003; Christensen, 2005; Bailer-Jones, 2009; Feng and Bailer-
Jones, 2013), so we instead compare models using the Bayesian
evidence. This compares models on an equal footing and takes
into account the different flexibility (or complexity) of the mod-
els (Kass and Raftery, 1995; Spiegelhalter et al., 2002; von Tou-
ssaint, 2011).

This paper is organized as follows. In section 2 we assemble
the data – stacked δ18O records – and identify the glacial ter-
minations. In section 3 we summarize the Bayesian inference
method as we use it. We build models based primarily on or-
bital elements to predict the Pleistocene glacial terminations in
section 4. These are compared for different data sets and time
scales in section 5. We perform a test of sensitivity of the results
to the model parameters and choice of time scales in section 6.
Finally, we discuss our results and conclude in section 7.

2. Data

2.1. δ18O from a depth-derived age model
The past climate can be reconstructed from isotopes recorded

in ice cores or deep sea sediment cores. Air bubbles trapped at
different depths in ice cores can be used to reconstruct the past
atmospheric temperature, for example. Ice cores have so far
been used to trace the climate back to about 800 kyr (Augustin
et al., 2004). In order to reconstruct the climate back to 2 Ma,
the δ18O ratio recorded in the calcite (CaCO3) in foraminifera
fossils (including species of benthos and plankton) in ocean
sediment cores can be used. We use the δ18O ratio as a mea-
sure of variations in the global ice volume, although we note
that this is also sensitive to the temperature and isotope com-
position of seawater, for which corrections can be made. For a
discussion of the interpretation of marine calcite δ18O see for
example Shackleton (1967) and Mix and Ruddiman (1984).

In order to calibrate δ18O measurements and to assign ages
to sediment cores, one could assume either a constant sedi-
mentation rate (determined using radiometrically dated geo-
magnetic reversals), or a constant phase relationship between
δ18O and an insolation forcing based on the Milankovitch the-
ory (see Huybers and Wunsch 2004 for details). The former
is the “depth-derived age model” (Huybers and Wunsch, 2004;
Huybers, 2007). The latter is referred to as “orbital tuning” (Im-
brie et al., 1984; Martinson et al., 1987; Shackleton et al., 1990).
Clearly this latter method is not appropriate for testing theories
related to Milankovitch forcings, because it already assumes a
link between δ18O variations and orbital forcings.

Huybers (2007) (hereafter H07) stacked and averaged twelve
benthic and five planktic δ18O records to generate three δ18O
global records: an average of all δ18O records (“HA” data set);
an average of the benthic records (“HB” data set); an aver-
age of the planktic records (“HP” data set).2 In addition to

2The planktic δ18O records may not produce a stack as good as benthic
records because surface water is less uniform in temperature and salinity than
the deep ocean (Lisiecki and Raymo, 2005).

these three data sets, we also analyze the orbital-tuned ben-
thic δ18O stacked by Lisiecki and Raymo (2005) (“LR04” data
set), despite its orbital assumptions. The LR04 record was re-
calibrated by H07 to generate a tuning-independent LR04 data
set (“LRH” data set; see the supplementary material of H07 for
details).

We standardize each of the above δ18O records over the past
2 Myr to have zero mean and unit variance, to produce what we
call the δ18O anomalies as shown in Figure 2 (DD, ML, MS
are explained below). We identify the deglaciations in the next
section. We see that the sawtooth 100 kyr glacial-interglacial
cycles become significant over the late Pleistocene while 41 kyr
cycles dominate over the early Pleistocene. From now on, we
will use the term “late Pleistocene” to mean the time span 1 Ma
to 0 Ma, and “early Pleistocene” to mean 2 Ma to 1 Ma.

2.2. Identification of deglaciations

Rather than trying to model the full time series of δ18O varia-
tions, we focus instead only on the times of glacial terminations
(deglaciations). This is because an orbital forcing should de-
termine predominantly the timing of a deglaciation rather than
the detailed variation of the ice volume (Gildor and Tziperman,
2000; Paillard, 1998; Huybers and Wunsch, 2005). This not
only simplifies the problem (thus making results more robust),
but is also in line with our goal of trying to identify the main
pacemakers for deglaciations, rather than trying to model the
continuous response of the climate to orbital forcings. Here we
describe how we identify the deglaciations.

From Figure 1, we see that the δ18O amplitudes are larger in
the late Pleistocene than in the early Pleistocene. This is inter-
preted to mean that after the MPT, ice sheets both grew to larger
volumes and retreated more rapidly to ice-free conditions. This
rapid and abrupt shift from extreme glacial to extreme inter-
glacial conditions defines 11 well-established late-Pleistocene
terminations (Broecker, 1984; Raymo, 1997). Because termina-
tion 3 is sometimes split into two terminations (Huybers, 2011)
– labeled 3a and 3b (Figure 2) – we actually identify 12 ma-
jor terminations over the late Pleistocene. The times of these
major terminations as established by various publications has
been collated by Huybers (2011) and are given in his supple-
mentary material. Based on his Table S2, we define three sets
of terminations which cover just the late Pleistocene:

• DD: termination times and corresponding uncertainties es-
timated from the depth-derived timescale in H07;

• MS: termination times and corresponding uncertainty
equal to the median and standard deviation (respectively)
of different termination times for each event given in the
literature (Imbrie et al., 1984; Shackleton et al., 1990;
Lisiecki and Raymo, 2005; Jouzel et al., 2007; Kawamura
et al., 2007);

• ML: termination times as in the MS data set, but with
larger uncertainties obtained by adding the time uncertain-
ties of the depth-derived time scales in quadrature with the
corresponding uncertainties in the MS data set.
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Figure 2: The variation of δ18O with time as determined by a depth-derived age-model (HA, HB, HP, and LRH) and an orbital-
tuning model (LR04). The past 2000 kyr is divided into two parts: the early Pleistocene extending from 2 Ma to 1 Ma and the
late Pleistocene extending from 1 Ma to the present. The deglaciations we identify for each data set are show in red: the point is
the mean time, the error bar is the uncertainty. In the late Pleistocene, we identify three additional sets of terminations: the DD
terminations are denoted by blue lines while the ML/MS terminations are denoted by green lines. These each consists of 12 major
terminations, which are indicated by the numbers (we use the convention of splitting termination 3 into two events). What we call
minor terminations are all the red points which are not major terminations.

These terminations are shown as vertical lines in Figure 2.
In addition to these major terminations, there are also minor

terminations characterized by transitions from moderate glacial
to moderate interglacial conditions. Considering the ambiguity
in defining these (Huybers and Wunsch, 2005; Lisiecki, 2010),
we identify terminations in our δ18O records using the method
of H07. A termination is identified when a local maximum and
the following minimum (defined as a maximum-minimum pair)
have a difference in δ18O larger than one standard deviation of
the whole δ18O record. The time of a termination is the mid-
point of the maximum-minimum pair and the age uncertainty of
this mid-point is calculated from a stochastic sediment accumu-
lation rate model (Huybers, 2007). We identify sustained events
in all data sets by filtering δ18O with different moving-average
(or "Hamming") filters. The data sets are show in Figure 2. We
use the term “major terminations” to refer to terminations iden-
tified in these data sets which coincide with the major termina-
tions in the DD, MS, or ML data sets. All other terminations
we refer to as minor terminations. The data on these are listed
in Table 1.

Finally, we also define three additional hybrid data sets. As
the HA data set is a stack of both benthic and planktic records,
we combine the early-Pleistocene terminations identified from
the HA data set together with late-Pleistocene terminations
from the DD, ML, and MS data sets to generate the HADD,
HAML, and HAMS data sets, respectively.

Thus starting from our five original data sets (HA, HB, HP,
LR04, LRH), we have a total of 11 data sets of glacial termi-
nations against which we will compare our models (see Table
1).

As there are dating errors and identification uncertainties, we
cannot know exactly when a deglaciation occurred. To take into
account these uncertainties, we treat the time of each deglacia-
tion probabilistically by defining a Gaussian distribution with
the mean and standard deviation equal to the time and time un-
certainty (respectively) of the termination. The terminations in
a data set are therefore represented as a sequence of Gaussians,
which will be modeled as described in the following section.

3. Bayesian modelling approach

We use the standard Bayesian probabilistic framework (e.g.
Kass and Raftery, 1995; Jeffreys, 1961; MacKay, 2003; Sivia
and Skilling, 2006) to compare how well the different models
explain the paleontological data. This approach takes into ac-
count the measurement errors, accounts consistently for the dif-
fering degrees of complexity present in our models, and com-
pares models symmetrically. Our specific methodology is out-
lined briefly in this section. It is described in more detail in
Bailer-Jones (2011a,b), where we also present arguments why
this approach should be preferred to hypothesis testing using
p-values.
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Table 1: Terminations (major and minor) identified from different δ18O records using H07’s method (HA, HB, HP, LR04 and LRH)
and the DD, MS and ML data sets of major terminations. Combining the early Pleistocene terminations of HA with the DD, MS
and ML data sets, we obtain the hybrid data sets of HADD, HAMS and HAML. For each column, the termination ages are listed
on the left side and the age uncertainties are listed on the right side (also see Figure 2). All quantities are in units of kyr.

HA HB HP LR04 LRH DD MS ML

Late
Pleistocene
(between
1
and 0 Ma)

-10 0.81 -10 0.81 -11 1.9 -12 2.2 -12 2.2 -11 1.9 -13 1.8 -13 3.1
-127 5.3 -127 5.3 -127 5.3 -131 6.3 -125 5 -124 5 -128 3.6 -128 6.6
-209 6.6 -209 6.6 -209 6.6 -219 7.5 -208 6.4 -208 6.4 -218 4.3 -218 8.7
-233 6.4 -233 6.4 -233 6.4 -245 7 -233 6.4 -231 6.3 -244 4.8 -244 8.6
-323 6.8 -321 7 -323 6.8 -290 7.5 -321 7 -326 7 -337 4.5 -337 9.8
-415 7.4 -415 7.4 -415 7.4 -335 8.4 -413 7.6 -423 7.1 -421 4.4 -421 8.2
-537 6.5 -535 6.6 -537 6.5 -531 7.3 -581 6.9 -622 5.8 -621 2.7 -621 6.4
-581 6.9 -581 6.9 -537 6.5 -531 7.3 -581 6.9 -622 5.8 -621 2.7 -621 6.4
-621 5.8 -621 5.8 -601 6.4 -581 6.9 -621 5.8 -714 4.5 -712 7.5 -712 8.8
-705 5.9 -705 5.9 -622 5.8 -621 5.8 -705 5.9 -794 3.7 -793 1.8 -793 1.8
-743 5 -742 4.8 -705 5.9 -708 5.4 -741 4.5 -864 5.7 -864 0.84 -864 5.8
-789 4.2 -789 4.2 -745 5.5 -743 5 -788 4.2 -957 5.8 -958 1.7 -958 6.0
-866 5.8 -866 5.8 -787 4.1 -791 4.1 -865 5.7
-911 6 -911 6 -845 8 -867 5.7 -912 6
-955 5.9 -955 5.9 -865 5.7 -915 5.9 -955 5.9
-996 5.5 -996 5.5 -955 5.9 -959 5.7 -978 7

-983 6.5

Early
Pleistocene
(between
2
and 1 Ma)

-1029 5.6 -1029 5.6 -1030 5.6 -1031 5.5 -1027 5.5
-1080 6.6 -1080 6.6 -1075 6.1 -1085 6.5 -1079 6.5
-1111 8.1 -1111 8.1 -1109 8 -1117 8 -1109 8
-1170 10.4 -1171 10.5 -1149 9.9 -1192 11.4 -1172 10.5
-1235 11.7 -1234 11.7 -1173 10.5 -1244 12 -1234 11.7
-1279 12.3 -1279 12.3 -1235 11.7 -1285 12.3 -1278 12.3
-1316 12.9 -1316 12.9 -1279 12.3 -1325 12.7 -1317 13
-1358 13.2 -1358 13.2 -1324 12.7 -1363 13.1 -1359 13.2
-1403 13.3 -1403 13.3 -1353 13 -1405 13.2 -1405 13.2
-1445 13.4 -1445 13.4 -1407 13.2 -1447 13.3 -1445 13.4
-1485 13.2 -1485 13.2 -1449 13.2 -1493 12.9 -1485 13.2
-1521 12.9 -1521 12.9 -1481 13.1 -1529 12.5 -1521 12.9
-1560 12.9 -1559 12.4 -1521 12.9 -1569 12 -1561 12.3
-1641 10.8 -1642 10.8 -1562 12.3 -1609 11.5 -1608 11.5
-1688 9.8 -1689 9.8 -1607 11.5 -1644 10.7 -1641 10.8
-1741 7.4 -1741 7.4 -1640 10.8 -1694 9.4 -1690 9.7
-1783 6.9 -1783 6.9 -1742 7.4 -1743 7.3 -1741 7.4
-1855 7.7 -1855 7.7 -1784 7 -1783 6.9 -1855 7.7
-1897 7.3 -1897 7.3 -1820 6.9 -1859 7.6 -1855 7.7
-1940 5.8 -1940 5.8 -1856 7.7 -1940 5.8 -1941 5.9

-1893 7.1
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The posterior probability of a model M postulated to describe
a data set D is given by the rules of probability as

P(M|D) =
P(D|M)P(M)

P(D)
, (1)

where P(M) is the prior of model M, and P(D) can be consid-
ered here as a normalization constant. P(D|M) is the evidence
of model M which can be written mathematically as

P(D|M) =

∫
P(D|θ,M)P(θ|M)dθ . (2)

θ is the set of parameters of model M, P(D|θ,M) is the likeli-
hood – the probability of observing the data D given specific
values of the model parameters – and P(θ|M) is the prior distri-
bution of parameters of this model.

Ideally we would be interested in evaluating the P(M|D) for
different models, as this is the probability of a model being true
given the observed data. However, this would require that we
define all possible models. Thus in practice we compare models
by looking at the ratio of model posterior probabilities. If we
cannot (or choose not to) distinguish between models a priori,
then we set P(M) to be equal for all models. It follows from
equations 1 and 2 that this ratio for models M1 and M2 is

P(M1|D)
P(M2|D)

=
P(D|M1)
P(D|M2)

=

∫
P(D|θ1,M1)P(θ1|M1)dθ1∫
P(D|θ2,M2)P(θ2|M2)dθ2

. (3)

The above ratio of the evidences is called the Bayes factor and
is used to compare how well a model (relative to another model)
predicts the data, independent of the values of the model param-
eters. Note that this does not involve tuning the model parame-
ters, which is why using the evidence takes into account differ-
ing model complexities. A (maximum) likelihood ratio test, in
contrast, automatically favors more complex models (e.g. ones
with more parameters), because such model can be tuned to fit
the data better without them suffering any penalty on account
of their increased complexity: an arbitrarily complex model
will fit the data arbitrarily well. The evidence automatically
balances model complexity against fitting accuracy to find the
most plausible model, as described in the above references.

If we had good reasons to adopt unequal model priors (i.e.
other information favored one model over another), then we
should instead look at the product of the Bayes factor with the
ratio of these priors, but this is not done here.

To account for the time uncertainties in the glacial termina-
tions, we interpret a termination time as a Gaussian measure-
ment model

P(t j|τ j) =
1

√
2πσ j

e(t j−τ j)2/2σ2
j (4)

where t j is the measured time of termination j (identified from
a stacked δ18O record), σ j is the estimated uncertainty in that
measurement and τ j is the (unknown) true termination time.

If D comprises N independently measured events, then the
probability of observing the complete data set D = {t j} is just

the product

P(D|θ,M) =

N∏
j

P(t j|θ,M)

=

N∏
j

∫
τ j

P(t j|τ j)P(τ j|θ,M)dτ j

(5)

where the second line just follows from the marginalization rule
of probability. P(t j|θ,M), the event likelihood, is the probabil-
ity that an event (termination) j is observed at time t j. It is
equal to the integral of the product of the measurement model
with the model-predicted probability of the true time of the
event, P(τ j|θ,M), over all values of the true time. That is, we
marginalize (average) over the unknown true time. (This is ex-
plained further in section 4.3 after we have introduced the mod-
els.)

This model-predicted probability of the times of the events,
i.e. the deglaciations, is the time series model. This will be
derived in section 4 from the orbital forcing and pacing models.

We then have all the ingredients we need to calculate the like-
lihood (equation 5), and therefore the evidence (equation 2) for
a given time series model for a given data set. Both the likeli-
hood calculation and the evidence calculation involve an inte-
gral. We perform these numerically. The former is one dimen-
sional (over time), so is straightforward. The latter is multi-
dimensional (over the model parameters), so we use a Monte
Carlo method. This involves drawing parameter samples from
the parameter prior distribution, P(θ|M), calculating the likeli-
hood for each, and then averaging the result. In each case we
draw 105 samples.

The Bayes factor is a positive number. The larger it is com-
pared to unity, the more we favor model 1 over model 2. Based
on the criterion given by Kass and Raftery (1995), we conclude
that model 1 should be favored over model 2 if the Bayes factor
is more than 10 (and 2 over 1 if it is less than 0.1). If the Bayes
factor lies between 0.1 and 10, we cannot favor either model.

4. Time series models

In section 4.1 we introduce various climate forcing models,
such as those based on variations of the Earth orbital parame-
ters. In section 4.2 we define the pacing models. We use this
term in a somewhat narrower sense than is often used in the lit-
erature (Saltzman et al., 1984; Tziperman et al., 2006). Here a
pacing model is one which modulates the effect of a continu-
ously variable forcing mechanism through the introduction of
a threshold. Specifically, the ice volume is unaffected by the
forcing mechanism until the ice volume exceeds some thresh-
old, where the value of this threshold depends on the magnitude
of the forcing. Having defined the forcing and pacing models,
we use them in section 4.3 to predict a sequence of glacial ter-
mination times. For a given forcing/pacing model M, and val-
ues of its parameters θ, this is the term P(τ j|θ,M) in equation 5.
In section 5 we will compare these model-predicted termina-
tions with the measured ones, using the the Bayesian approach
to compare the overall ability of the models to explain the data.
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4.1. Forcing models

Insolation influences the climate in a number of ways, both
directly through mechanisms such as heating the lower atmo-
sphere, and indirectly through modifying the ice accumula-
tion rate and other mechanisms (Berger, 1978b,a; Saltzman and
Maasch, 1990). Mainstream thinking holds that climate change
is most sensitive to the northern summer insolation at high lat-
itudes because the temperature in continental areas, of which
there is more in the northern hemisphere, is critical for ice melt-
ing or sublimation (Milanković, 1941). The summer insolation
at high latitudes depends on the geometry of the Earth’s orbit
and the inclination of Earth’s spin axis, and thus depends on
the eccentricity, precession, and obliquity (hereafter referred to
collectively as “orbital elements”, even though obliquity is not
orbital). Variations in these alter how the insolation varies with
season (from orbital and axial precession), with latitude (from
obliquity changes), and with time scale (e.g. eccentricity varia-
tions occur at dominant periods of 100 kyr and 400 kyr).

Milankovitch proposed that the combination of orbital ele-
ments which gives rise to the measured summer insolation at
65◦N is crucial to generating the glacial-interglacial cycles (Mi-
lanković, 1941; Hays et al., 1976). To model orbital forcings
more generally, we define an orbital forcing model, f (t), as a
combination of eccentricity, precession, and obliquity, which is
proportional to the insolation over certain time scales, seasons,
and latitudes. We build the following forcing models based on
the reconstructed time-varying eccentricity, fE(t), precession,
fP(t), obliquity, fT(t), and four different combinations thereof:

fE(t) = e(t)
fP(t) = e(t) sin(ω(t) − φ)
fT(t) = ε(t)

fEP(t) = α1/2 fE(t) + (1 − α)1/2 fP(t)

fET(t) = α1/2 fE(t) + (1 − α)1/2 fT(t)

fPT(t) = α1/2 fP(t) + (1 − α)1/2 fT(t)

fEPT(t) = α1/2 fE(t) + β1/2 fP(t) + (1 − α − β)1/2 fT(t),

(6)

where e(t), ε(t), and e(t) sin(ω(t)−φ) are the eccentricity, obliq-
uity, and precession index (or climatic precession), respectively.
ω(t) is the angle between perihelion and the vernal equinox, and
φ is a parameter controlling the phase of the precession. We
use the variations of these three orbital elements over the past
2 Myr as calculated by Laskar et al. (2004). We standardize
each of fE(t), fP(t), and fT (t) to have zero mean and unit vari-
ance, and then combine them to generate the compound mod-
els. α and β are contribution factors which determine the rela-
tive contribution of each component in the compound models,
where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. In addition to these models,
we also use the daily-averaged insolation at 65◦N on July 21 as
a proxy for the Milankovitch forcing, fCMF.

Beyond orbital forcings, we also consider the influence of
variations of the Earth’s orbital inclination and of the cosmic
ray flux. To do this we build an inclination-based forcing
model, fInc(t), using the orbital inclination calculated by Muller
and MacDonald (1997), and we model the cosmic ray forcing

as a geomagnetic paleointensity (GPI) time series (standardized
to the mean and unit variance), fG(t), as collected by Channell
et al. (2009).

All forcing models and corresponding prior distributions
over their parameters (“forcing parameters”) are shown in Ta-
ble 2. In this table and the following sections, all parameters
are treated as dimensionless variables by setting the time unit
to be 1 kyr (ice volume is on a relative scale). For the preces-
sion model, we set φ = 0 to treat precession according to the
Milankovitch theory (although in section 6 we will allow the
phase of the precession to vary in order to check the sensitivity
of our results to this assumption). As we do not have any prior
information about the values of the contribution factors in the
compound models, we adopt uniform prior distributions over
the interval [0, 1] for these.

Figure 3 shows the single-component forcing models (which
do not have any adjustable parameters). All forcing models will
be included in pacing models and corresponding termination
models in the following sections. Hereafter, for each forcing
model, the corresponding pacing and termination models share
the same name as shown in the first column of Table 2.

4.2. Pacing models

As described earlier, we use the term “pacing” to mean that
some aspect of the climate system is independent of external
forcings until the climate system reaches a threshold, whereby
the value of this threshold is dependent upon the forcing. We
model the pacing effect on ice volume variations using the de-
terministic version of the stochastic model introduced by Huy-
bers and Wunsch (2005). In that model the ice volume at time t
is

v(t) = v(t−∆t)+η(t) and if v(t) > h(t) then terminate, (7)

where
h(t) = h0 − a f (t), (8)

and ∆t is a constant time interval. Thus the ice volume changes
in discrete steps until it passes a threshold h(t), which is itself
modulated by a climate forcing f (t) with a contribution factor
a. The initial ice volume is v0 and the background threshold,
h0, is either a constant or can itself vary with time. We set
η(t) to be unity while the threshold has not been reached; af-
ter that the glaciation is terminated by setting η(t) to a constant
negative value such that the ice volume linearly decreases to
0 within 10 kyr of the threshold having been exceeded.3 After
this η(t) is set to unity, the next cycle starts. The threshold and
the deglaciation duration are chosen to generate approximately
100 and 41 kyr glacial cycles (Huybers and Wunsch, 2005). If
the contribution factor a is zero, the ice volume will vary with
a period modulated by the background threshold, h0. We de-
fine this model as the Periodic model. In general the period
may vary with time. However, if h0 is constant, then the Peri-
odic model has a constant period of value h0 + 10 kyr. Because

3In practice the ice volume can go slightly negative due to the finite value
of ∆t, but this is of no practical consequence.
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Table 2: The termination models and corresponding forcing models and parameters. In addition to any forcing model parameters
listed, the termination models have pacing parameters and the background fraction parameter. The prior distributions of these
parameters are described in sections 4.1, 4.2, and 4.3, respectively.

Termination Description Forcing Forcing model
model model parameters
Periodic 100 kyr pure periodic model None —
Eccentricity Eccentricity fE(t) —
Precession Precession fP(t) φ
Tilt Tilt or obliquity fT(t) —
EP Eccentricity plus Precession fEP(t) α, φ
ET Eccentricity plus Tilt fET(t) α
PT Precession plus Tilt fPT(t) α, φ
EPT Eccentricity plus Precession plus Tilt fEPT(t) α, β, φ
CMF (Classical) Milankovitch forcing fCMF(t) —
Inclination Inclination fInc(t) —
GPI Geomagnetic paleointensity fG(t) —

Time/kyr

N
or

m
al

iz
ed

 fo
rc

in
g 

m
od

el
s

−2000 −1500 −1000 −500 0

−1
0
1

−1
0
1

−1
0
1

−1
0
1

−1
0
1

−1
0
1

Eccentricity

Precession

Tilt

CMF

Inclination

GPI

Figure 3: The single-component forcing models. A deglaciation is likely to be triggered by a peak in the forcing. The values of
eccentricity, precession, obliquity and Milankovitch forcing (CMF) are calculated by Laskar et al. (2004), the orbital inclination
relative to the invariable plane is given by Muller and MacDonald (1997), and the GPI record is from Channell et al. (2009).

h0 controls the period of ice volume variations, different val-
ues of h0 are required to model the 100 kyr cycles in the late
Pleistocene and the 41 kyr cycles in the early Pleistocene (see
Figure 4). We therefore first build pacing models to separately
predict the deglaciations over the early and late Pleistocene us-
ing the constant background threshold model. We then use a
varying background threshold (either linear or sigmoidal) to try
to model the whole Pleistocene. We now describe these models
in more detail.

4.2.1. Constant background threshold

A constant background threshold is appropriate for modeling
glacial-interglacial cycles without a transition such as the MPT.
One realization of such a pacing model with the threshold mod-
ulated by a PT forcing model is shown in Figure 5. The ice vol-
ume grows until it passes the forcing-modulated threshold. The
ice volume then decreases rapidly to zero within the next 10 kyr.
We see that a deglaciation tends to occur when the insolation is
near a local maximum. Hence the pacing model (equations 7
and 8) can generate ∼100 kyr saw-tooth cycles which enables a
forcing mechanism to pace the phase of these cycles.

The pacing model has three parameters: v0, h0, a. Rather
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Constant threshold: 
h0=30 if t>−1000,
h0=90 otherwise

Linear threshold: 
p=0.03, q=110

Sigmoid threshold: 
k=110, τ=200, t0=−1000

Sigmoid threshold: 
k=110, τ=100, t0=−1000

Sigmoid threshold: 
k=110, τ=200, t0=−800

Figure 4: Effect of the threshold in the pacing model. Different values of the threshold, h0(t), are shown: constant (red), linear
(green), sigmoidal (blue, cyan, black). The legend shows the values of the parameters of the linear and sigmoid background
thresholds according to equations 9 and 10 respectively. The Periodic model is achieved using a constant threshold over some time
span. By changing it from h0 = 30 in the early Pleistocene to h0 = 90 in the late Pleistocene, we can reproduce an abrupt change in
the period of ice volume variations from ∼41 kyr to ∼100 kyr.
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Figure 5: A pacing model with threshold h(t) modulated by the PT forcing model with α = 0.5 and φ = 0 (equation 6). The
pacing model parameters are: background threshold h0 = 90; initial ice volume v0 = 25; contribution factor of forcing a = 25.
The dashed line denotes the constant threshold, and the grey line represents the threshold modulated by the PT forcing model, i.e.
h(t) = h0 − a fPT(t;α = 0.5, φ = 0).

than fixing these to some expected values, we assign a proba-
bility distribution to them. This is the prior which appears in
equation 2, which shows that by averaging the likelihood over
values drawn from this prior we get the evidence for the model.

As described above, a periodic pacing model is generated by
adopting a constant threshold, h(t) = h0 and a = 0. When
forcings are added onto the constant threshold (to give a , 0),
the ice volume variations then have an average period of about
(h0 + 10−a) kyr, because ice volume accumulation tends to ter-

minate at a forcing maxima. For this reason we use different
prior distributions on a and h0 depending on whether we are
trying to model the early (41 kyr cycles) or late (100 kyr cycles)
Pleistocene. Specifically, we use prior distributions for v0, h0,
and a which are uniform over the following intervals (and zero
outside): 0 < v0 < 90γ, 90γ < h0 < 130γ, 15γ < a < 35γ,
where γ = 0.4 when we model ∼41 kyr cycles and γ = 1 when
we model ∼100 kyr cycles. The range of v0 is just the range of
the ice volume variation, while the mean values of the prior dis-
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tributions of h0 and a with γ = 1 are the fitted values obtained
by Huybers (2011). For the periodic model, a is zero and h0 has
a uniform prior distribution over 70γ < h0 < 110γ. In section
6, we will check how sensitive our results are to this choice of
priors.

4.2.2. Linear trend background threshold
The constant background threshold model is incapable of

modeling the transition from the 41 kyr world to the 100 kyr
world. If we treat h0 as a step function as shown in Figure 4
(red lines), the corresponding pacing model predicts an abrupt
MPT with an extra parameter (the time of the transition). But
to model the MPT, we will introduce another two versions of
the pacing model by allowing the background threshold to vary
with time (linearly and nonlinearly).

Studies have suggested various mechanisms which may be
involved in climate change before and after the MPT (Saltzman
et al., 1984; Maasch and Saltzman, 1990; Ghil, 1994; Raymo
et al., 1997; Paillard, 1998; Clark et al., 1999; Tziperman and
Gildor, 2003; Ashkenazy and Tziperman, 2004). H07 suggests
that a simple model with a threshold modulated by obliquity
and a linear trend can explain changes in glacial variability over
the last 2 Myr without invoking complex mechanisms. To in-
vestigate this, we replace the threshold constant h0 with a linear
trend in time

h0 = pt + q, (9)

where p and q are the slope and intercept of the trend respec-
tively. To predict the transition from 41 kyr cycles to 100 kyr cy-
cles with reasonable parameter sets, we adopt the following uni-
form prior distributions for the pacing parameters: 0 < v0 < 36,
0 < p < 0.1, 106 < q < 146 and 10 < a < 30. For the Periodic
model we use a = 0 and a uniform prior for q between 86 and
126. These ranges are adopted so that the pacing model predicts
the 41 kyr and 100 kyr cycles with similar period uncertainties
as produced by the ranges of parameters in the pacing model
with a constant background threshold (section 4.2.1).

An example of the linear trend is shown with the green line in
Figure 4. If the threshold is not modulated by any forcing (i.e.
a = 0, the Periodic model), then the pacing model generates a
gradual transition from 50 kyr cycles 2 Ma to 110 kyr cycles at
the present.

4.2.3. Sigmoid trend background threshold
To enable a more rapid onset of the MPT, we introduce an-

other version of the pacing model with a nonlinear trend in the
background threshold, defined using the sigmoid function as

h0 = 0.6k/(1 + e−(t−t0)/τ) + 0.4k, (10)

where k is a scaling factor, t0 denotes the transition time, and
τ represents the time scale of the MPT. The uniform priors of
the parameters of this version of pacing models are set to be:
0 < v0 < 36, 90 < k < 130, 10 < τ < 500, 10 < a < 30,
and −700 < t0 < −1250, as motivated by the range of MPT
time given by Clark et al. (2006). For the Periodic model we
set a = 0 and change the range of k to be 70 < k < 110. The

reason for choosing these priors is the same as given in section
4.2.2.

Figure 4 illustrates this model. A late transition time, t0,
moves the trend to the present, and a smaller transition time
scale, τ, generates a more rapid transition. The values of 0.6k
and 0.4k in the above equation are set in order to rescale the
trend model such that the ice volume threshold including a sig-
moid trend allows both ∼41 kyr and ∼100 kyr ice volume vari-
ations.

4.3. Termination models

Using the same method described in section 2 for the data,
we identify glacial terminations in the ice volume time series
generated by the pacing models. The age uncertainty of each
termination is equal to half of the duration of the termination.
As with the data, a single termination is represented as a Gaus-
sian probability distribution over time, which is just the term
P(τ j|θ,M) in equation 5 (see section 3). The full set of pre-
dicted terminations forms the time series model which we will
compare with the data. We use the term “termination model” to
refer to the combination of a forcing model and a pacing model,
which together has a number of parameters. These are listed in
Table 2. Each of these termination models can have different
background threshold models, as was explained in section 4.2.

Figure 6 shows schematically how we compare the model-
derived terminations (red line) with the data on one termination
(black line). The event likelihood (the integral in equation 5) for
a termination is calculated by integrating over time the product
of the probability distribution of the observed time of the ter-
mination, P(t j|σ j, τ j), with the model prediction of the true ter-
mination time, P(τ j|θ,M). The product of event likelihoods for
all terminations in a data set is the likelihood for the termina-
tion model with specific values of the parameters of the forcing
and pacing model. By calculating the likelihood for many dif-
ferent values of those parameters (drawn from their prior distri-
butions), and averaging them, we arrive at the evidence for that
termination model (equation 2).

To accommodate other contributions from the climate system
to the timing of a termination, we add a constant background
probability to the termination model. This is defined using the
background fraction b = Hb/(Hb + Hg), where Hb is the am-
plitude of the background and Hg is the difference between the
maximum and minimum of the Gaussian sequence. The back-
ground fraction is a parameter of the model which we do not
measure, so we assign it a prior (uniform from 0 to 0.1) and
marginalize over this too.

Let us summarize our modelling procedure. A forcing model
(Figure 3) modulates the ice volume threshold (equation 8)
of the pacing model (equation 7) from which the termination
model (e.g. red line in Figure 6) is derived. This is then com-
pared with a sequence of terminations identified from a δ18O
data set using our Bayesian procedure.
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Figure 6: Schematic illustration of the components in the likelihood calculation (equation 5). The red line is the termination model
generated from the pacing model shown in Figure 5. The black line represents the measured data on termination j. Its time and
uncertainty are interpreted probabilistically as a Gaussian distribution over time.

5. Results of the model comparison

5.1. Evidence and Bayes factor
We calculate the Bayesian evidence of the termination mod-

els listed in Table 2 for each of the data sets shown in Table 1.
We calculate this for terminations extending over three different
time spans: 1 Ma to 0 Ma, 2 Ma to 1 Ma and 2 Ma to 0 Ma. The
first time span is the same as that chosen by Huybers (2011).
However, other studies claim that the onset of 100 kyr cycles
occurred around 0.8 Ma. We will examine in section 6 how
sensitive our results are to the choice of time span. According
to the time span in question, we need to choose the appropriate
pacing model, because this determines the dominant period.

The Bayes factor (BF) is just the ratio of the evidence for two
models. Rather than reporting Bayes factors for various pairs of
models, we will report them for all models relative to a simple
reference termination model. This reference model is just a uni-
form probability distribution over the time of deglaciations, and
has no parameters. It corresponds to a constant probability in
time of a deglaciation, but its choice is arbitrary as it just serves
to put the evidences on a convenient scale.

Bayes factors should only be used to compare different mod-
els for a common data set. This is because their definition re-
quires that the factor P(D) in equation 3 cancels out.

5.1.1. Late Pleistocene (1-0 Ma)
The deglaciations identified using H07’s method (in the data

sets HA, HB, HP, LR04, and LRH) contain many minor termi-
nations which may be better explained by models which predict
∼41 kyr cycles. Thus, we choose constant background thresh-
olds with γ = 1 and γ = 0.4 for all termination models in order
to predict 100 kyr and 41 kyr variations, respectively, over the
past 1 Myr.

The BF for each termination model relative to the uniform
model is shown in Figure 7. We see that the HA, HB, LR04,
and LRH data sets favor the models with a tilt component and
with γ = 0.4. Although compound models such as EPT and

CMF sometimes have BFs slightly higher than the Tilt model,
precession and eccentricity may not be necessary to explain the
terminations identified in these data sets.

The HP data set favors the PT model with γ = 1. This could
be caused by a mismatch between the terminations identified
in HP and the terminations identified in other data sets. For
example, around the time of termination 6 (Figure 2), two ter-
minations are identified in HP while only one termination is
identified in other data sets. The discrepancy between HP and
other data sets is larger before 0.8 Ma, which indicates a more
ambiguous definition of terminations, particularly for planktic
δ18O. On account of this, in section 6 we will narrow the time
span to 0-0.8 Ma (a more conservative time scale of late Pleis-
tocene). Nevertheless, for all the data sets containing minor
terminations, tilt is a common factor in the preferred models.

For the DD, ML, and MS data sets, the PT and CMF models
with γ = 1 are favored. In other words, the major terminations
are better predicted by a model involving precession and tilt
rather than either alone, although tilt alone can pace minor ter-
minations. Because the EPT and CMF models have lower BFs
than the PT model, the eccentricity component is unlikely to
pace the glacial terminations directly. Yet eccentricity can de-
termine the glacial terminations indirectly through modulating
the amplitude of the precession maxima (i.e. e sinω). A similar
conclusion was drawn by Huybers (2011) using p-values. We
note that the rejection of a null hypothesis in this way does not
automatically validate the alternative hypothesis. The Bayesian
approach allows one to directly compare multiple models in a
symmetric fashion.

Since the late Pleistocene is characterized predominantly by
major terminations, we conclude that late Pleistocene climate
change is paced by a combination of obliquity and preces-
sion. This does not automatically imply that there is no link
between major terminations and eccentricity variations. Eccen-
tricity may determine the 100 kyr cycles in the late Pleistocene,
while obliquity and precession influence the exact timing of the
terminations (Lisiecki, 2010). This could be studied in future
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work by introducing an eccentricity dependence into the pacing
model.

5.1.2. Early Pleistocene (2-1 Ma)
Here we only consider the HA, HP, HB, L04, and LRH data

sets, because the DD, ML, and MS sets have no terminations in
the early Pleistocene. We only calculate BFs for models with
γ = 0.4 (and not γ = 1), because this reproduces periods on
the order of 41 kyr, and such cycles are obvious in all data sets
(Figure 2). We exclude the GPI model because the GPI record
has a time span less than 2 Myr. The BFs for the termination
models are shown in the upper right panel of Figure 7.

We see that the Tilt model is favored by all data sets. The
combination of tilt with other orbital elements does not give a
higher BF, so we conclude that the other orbital elements do
not play a major role in pacing the deglaciations over the early
Pleistocene. It is important to realise that although the Bayesian
evidence generally penalizes more complex models, this does
not automatically result in a lower Bayes factor for such mod-
els. They can achieve higher Bayes factors if the model is sup-
ported by the data sufficiently strongly (see the references in
section 3).

5.1.3. Whole Pleistocene (2-0 Ma)
For the whole Pleistocene we use the data sets HA, HB, HP,

LR04, and LRH as well as the hybrid data sets, HADD, HAML,
and HAMS. We use pacing models with and without a trend
threshold to model the terminations. The BFs for the above
models and data sets are shown in the lower left panel of Figure
7.

For the HA, HB, and LR04 data sets, the Tilt model with
γ = 0.4 is favored. Other combinations with the tilt component
and with γ = 0.4 yield similar BFs. However, for the HP and
LRH data sets, the PT model with a sigmoid trend is favored
and this model also gives high BFs for the HA, HB, and LR04
data sets. For all these data sets, the Precession, Eccentricity,
and Periodic models have rather low BFs. These results indicate
a major role for tilt and a minor role for precession in pacing
major and minor Pleistocene deglaciations. For all the above
data sets, the CMF model with γ = 0.4 has a high BF, but
not higher than other models with a tilt component. CMF is
an optimized version of the EPT model. Faced with different
models which give similar Bayes factors, we will normally want
to choose the simplest, which here is PT. We will investigate
this further in section 6.

For the HADD, HAML, and HAMS data sets, the PT model
with a threshold modulated by a sigmoid trend is favored, and
those compound models with a tilt component also have high
BFs. The whole Pleistocene deglaciations appear to be paced
by the combination of precession and obliquity. This is con-
sistent with the results for the late-Pleistocene deglaciations.
The physical reason why precession becomes important after
the MPT is beyond the scope of our work and is still under de-
bate.

On account of the existence of the MPT, modeling the whole
Pleistocene with a constant background threshold model makes
little sense, so those corresponding results should not be given

much weight. (This corresponds to assigning all those models
a smaller model prior, P(M).) More appropriate are the models
with linear and sigmoid background thresholds. Among these,
we see that the EPT and CMF models have BFs about ten times
lower than the PT model. We conclude that eccentricity does
not play a significant role in pacing terminations over the whole
Pleistocene. We also find that the PT model with a sigmoid
background threshold is more favored than the PT model with
a linear background threshold, which indicates that the MPT
may not be as gradual as claimed by (Huybers, 2007). We will
discuss this further in section 6.

According to Figure 7, the Inclination and GPI models are
not favored, and in fact are less favored than the reference uni-
form model (as BF<1). Thus we find that the geomagnetic pa-
leointensity does not pace glacial cycles over the last 2 Myr, al-
though we note that there is some controversy over the link be-
tween the GPI and climate change (Courtillot et al., 2007; Pier-
rehumbert, 2008; Bard and Delaygue, 2008; Courtillot et al.,
2008). In contrast to the conclusion of Muller and MacDonald
(1997), there we find no evidence for a link between the orbital
inclination and ice volume change.

5.2. Discrimination power
To validate our method as an effective inference tool to select

out the true model, we generate simulated data from each model
and then evaluate the Bayes factors for all models on these data.
The data are simulated with the following parameters for all
models except the Periodic one: h0 = 110γ, a = 25γ, b = 0,
and v0 = 45γ, where γ = 1 for terminations simulated over
the last 1 Myr and γ = 0.4 for the time range 2 to 1 Ma. For
the Periodic model we use instead of h0 = 90γ and of course
a = 0. Recall that the period of the resulting time series is
approximately h0 + 10 − a. Other parameters in corresponding
forcing models are fixed at α = 0.5 for compound models with
two components, α = 0.3 and β = 0.2 for the EPT model, and
φ = 0 for models with a precession component.

The BFs for simulated data over the last 1 Myr are shown
in the left panel of Figure 8. We see that all models based on
a single orbital element are correctly selected, although those
models combining the correct single orbital element with other
elements may also give comparable BFs. When models have
similar BFs we would generally want to favor the one with
fewest components. This again corresponds to using a larger
value of the model prior, P(M) (see section 3).

Incorrect models, in contrast, generally receive much lower
Bayes factors. For the PT-simulated data set, the PT model
is correctly discriminated from the CMF model (a fitted EPT
model). We also see that although the ET model may not be
correctly selected out when its BF is similar to that obtained for
EP, PT, EPT, and CMF models, the ratios of the Bayes factors
are close to unity. The much larger ratios between them for the
real data validate our inference of the ET model (see section 5).
Figure 8 shows that the EP model is not favored over the Eccen-
tricity model even when the former is the true model. However,
the Eccentricity model is never favored on any of the real data
sets, so this misidentification does not occur in practice. In con-
clusion, this discrimination test indicates that our identification
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Figure 7: The Bayes factors relative to the uniform model for terminations occurring over the past 1 Myr (upper left), from 2 Ma to
1 Ma (upper right), over the past 0.8 Myr (lower left), and over the past 2 Myr (lower right). The logarithm of the Bayes factor is
shown on a color scale for each model (vertical axis) and data set (horizontal axis). Upper left panel: the models above and below
the white line have constant background threshold defined by γ = 1 and γ = 0.4, respectively. Upper right panel: all models have
a constant background threshold defined by γ = 0.4. Lower left panel: Same as the upper left panel but for terminations over the
past 0.8 Myr. Lower right panel: the upper, middle, and lower blocks (of ten models each, separated by the white line) use a linear
trend, a sigmoid trend, and a constant background threshold (respectively) with γ = 0.4. In all panels except the top right one, the
data sets on the left side of the dashed line include minor late-Pleistocene terminations while the data sets on the right side do not.
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Figure 8: Discrimination power. As Figure 7 but for simulated data extending over the last 1 Myr (left) and from 2 Ma to 1 Ma
(right). The dashed line indicates the results for the true model for each data set. Ideally this BF would be much higher than all
other BFs in that column.

(in section 5.1.1) of the PT model as the best model for the late
Pleistocene is reliable.

We then apply the same test to the period 2-1 Ma, which uses
a different value of γ as explained above. The results are shown
in the right panel of Figure 8. We see that the correct model
always has a larger Bayes factor than the other models. Yet we
also see that for data simulated from the PT model, the CMF
and EPT models have similar BFs as the PT model. However,
as the PT model is not as fine tuned as the CMF model and
has fewer adjustable parameters than the EPT model, we would
generally invoke Occam’s razor to select the PT model.

This experiment confirms that Bayesian model comparison
and our interpretation of the Bayes factors allows us to se-
lect the correct model. We conclude that tilt (or obliquity) is
the main “pacemaker” of the deglaciations over the last 2 Myr,
while precession may pace the deglaciations over the late Pleis-
tocene. This indicates that precession becomes important in
pacing terminations after the MPT. Other climate forcings, in-
cluding GPI and inclination forcing, are unlikely to pace the
deglaciations over the Pleistocene.

6. Sensitivity test

We now perform a sensitivity test to check how sensitive a
model’s BF is to the choices of time scale and model priors.

To do this we first change the time of the onset of the 100 kyr
cycles from 1 Ma to 0.8 Ma. We recalculate the BFs and show
them in the lower left panel of Figure 7. We see that the combi-
nation of obliquity and precession (i.e. the PT model) still paces
the major terminations (DD, ML, and MS) better than obliquity
alone. So our conclusion is robust to this change of the late-
Pleistocene time span.

We then change the prior distributions over some model pa-
rameters and keep others fixed. We apply this sensitivity test to
the ML, HA, and HAML data sets with time spans of 1–0 Ma,
2–1 Ma, and 2–0 Ma, respectively. These three data sets are
representative and conservative because they contain the major
terminations as well as minor terminations identified in the HA
data set, which is stacked from both benthic and planktic data
sets. In each case we select the most favored types of the pacing
model according to the model comparison in section 5. They
are: the constant background threshold with γ = 1 for ML; the
constant background threshold with γ = 0.4 for HA; sigmoid
background threshold for HAML. For each model, we change
the range of the uniform prior on each parameter as follows (the
name in parentheses is used to label the change in Figure 9)

• λ = 0 → −10 ≤ λ ≤ 10 (lag): Here we account for the
possible time lag between the forcing and its effect (as was
suggested by previous studies such as Hays et al. 1976 and
Imbrie and Imbrie 1980). λ represents the time lag(s) of
any model listed in Table 2, and λ ranges -10 to 10 kyr in
steps of 1 kyr. For models with a single component, a time
lag is achieved by shifting the corresponding time series to
the past or to the future. For compound models, each com-
ponent is shifted independently, and the corresponding ev-
idences are calculated by marginalizing the likelihood over
time lags of all components.

• 90γ < h0 < 130γ → 80γ < h0 <
140γ (hlarge) and 100γ < h0 < 120γ (hsmall): We extend
or shrink the upper and lower limits of the background
threshold, h0, by 10γ. Changing the prior distribution of h0
is equivalent to changing the prior distribution of the pe-
riod of a pacing model, because the average period is about
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h0 +10−a (see section 4.2.1). The above changes only ap-
ply to models with a , 0 while the prior distribution of the
Periodic model (a = 0) is changed from 70γ < h0 < 110γ
first to 60γ < h0 < 120γ and then to 80γ < h0 < 100γ.
For models with a sigmoid trend, the prior distribution of
k is changed from 90 < k < 130 first to 80 < k < 140 and
then to 100 < k < 120.

• 15γ < a < 35γ → 5γ < a < 45γ (alarge) or 20γ < a <
30γ (asmall): We extend or shrink the range of contribu-
tion factor of forcing, a, around its mean. These changes
do not apply to the Periodic model, for which a = 0.

• 0 < b < 0.1 → 0 < b < 0.2 (blarge) or 0 < b < 0.05 (as-
mall): We double or halve the upper limit of b, the contri-
bution factor of the background in the termination model.

• φ = 0 → −π < φ < π (phi): We now allow any value for
the the phase of the precession, φ, which is related to the
season of the insolation that forces the climate change.

The BFs for the models with each of the above changes are
shown Figure 9, separated into three blocks corresponding to
the different data sets, ML, HA, HAML. For the ML data set (1–
0 Ma; top block), the PT and CMF models are favored over the
Tilt model for all changes in the priors. The PT and CMF mod-
els without time lags are also favored over corresponding mod-
els with lags. This indicates that the Tilt and Precession models
pace climate change without significant time lags. Over the
early Pleistocene (middle block), the Tilt model is marginally
favored. The BFs of the EPT model vary a lot but are never
higher than the Tilt model. For the HAML data set (2–0 Myr;
bottom block), the model combining a sigmoid trend and the
PT forcing is favored for all changed priors. Moreover, the
BF for the PT model increases when shrinking the range of
the background fraction, b. The relative lack of significance
of the background suggests a significant influence of obliquity
and precession over the past 2 Myr.

To further investigate the role of precession in pacing the
major late-Pleistocene deglaciations, we marginalize the like-
lihoods for the PT model over all its parameters except for
the contribution factor of precession contribution factor, α, and
phase, φ. (Note that the evidence is the likelihood marginal-
ized over all model parameters.) We do this for the ML data
over the last 1 Myr. The distribution of this marginalized likeli-
hood (relative to the uniform model) is shown in the left panel
of Figure 10. The highest values occur for phases ranging
from −50◦ < φ < +50◦, indicating that the main pacemaker
under this model is either the intensity of the northern hemi-
sphere summer insolation or the duration of the southern sum-
mer (we cannot distinguish between these based on available
data). While very small contribution factors, α < 0.1, are
strongly disfavored, the model is otherwise not very sensitive
to α. Since α determines the size of the contribution of pre-
cession to the PT model (equation 6), this means that some
precession contribution is favored, but the exact amount is not
well constrained. This broad high likelihood range of α and φ

means that the pacing depends on the overall northern hemi-
sphere summer insolation at a range of northern latitudes (or
equivalently the duration of the southern summer) rather than
that at a specific latitude and time in summer. This is consis-
tent with Huybers 2011’s conclusion that “climate systems are
thoroughly interconnected across temporal and spatial scales”.

We found in section 5.1.3 that the pacing model with a sig-
moid background threshold model was favored when modeling
the whole Pleistocene. We now identify which parameters of
that model are most favored by the data. To do this we calcu-
late the marginalized likelihood (relative to the uniform model)
for the PT model with a sigmoid background threshold as a
function of both the transition time scale, τ, and transition mid-
point, t0, on the HAML data set (i.e. we marginalize over all
other parameters): see the right panel of Figure 10. To explore
this more completely we have extended the upper limit of t0
from -700 kyr to -300 kyr. The peak is at around τ = 100 kyr
(about one glacial-interglacial cycle) and t0 = −715 kyr. To vi-
sualize this transition, a sigmoid background model with this
value of τ is shown in Figure 4. Defining the transition dura-
tion as the time taken for the ice volume to change from 25% to
75% of its maximum value, τ = 100 kyr corresponds to a tran-
sition duration of 220 kyr. This timescale for the MPT is con-
sistent with the findings of Hönisch et al. (2009); Mudelsee and
Schulz (1997); Tziperman and Gildor (2003); Martínez-Garcia
et al. (2011). It is shorter (more abrupt transition) that found
by H07 and others (Raymo et al., 2004; Liu and Herbert, 2004;
Medina-Elizalde and Lea, 2005; Blunier et al., 1998), although
Figure 10 shows that longer time scales are not that improba-
ble (but note that the likelihoods are shown on a logarithmic
scale). The transition time of 715 kyr ago is somewhat later
than the mid-point of the MPT of ∼-900 kyr identified by Clark
et al. (2006) using a frequency spectrogram analysis. Yet our
data/analysis permits a range of values, although we see that
the region around -900 kyr is disfavored for low values of τ.
Discrepancies from previous results could also arise from the
fact that we use just termination data.

As a final sensitivity test, we change the sign of the contri-
bution factor of forcing, a, to model possible anticorrelations
between forcing models and the data over the late Pleistocene.
We find that this significantly reduces the BF for all favored
models, which shows that models with anticorrelations are a
poor description of the data.

7. Summary and conclusions

Using likelihood-based model comparison, we find that a
combination of obliquity (axial tilt) and precession is the main
pacemaker of the 12 major glacial terminations in the late Pleis-
tocene. Obliquity alone can trigger minor terminations over the
whole Pleistocene. The obliquity and precession pace the Pleis-
tocene terminations without significant time lags, and their pac-
ing roles can be identified with high significance.

We confirm the dominant role of obliquity in pacing the
glacial terminations over the early Pleistocene. In contrast to
the conclusion of H07, we find that a model with obliquity
alone describes the major and minor Pleistocene deglaciations
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Figure 9: Sensitivity test. Bayes factors for several models with a change in the range of priors (compared to what was used in
section 5.1 and Figure 7). These are shown for three different data sets (and time scales) in the three blocks separated by white
horizontal lines. In each block the logarithm of the Bayes factor is show on a color scale for each model (vertical axis) and change
in prior (horizontal axis). The first column – labeled ‘none’ – gives the BFs for models with the original priors for reference. Some
models are not relevant for certain prior changes, so the corresponding slots are empty (white). The three blocks are as follows.
Top: pacing model with a constant background threshold with γ = 1 for the ML data set (0–1 Ma). Middle: pacing model with
a constant background threshold with γ = 0.4 for the HA data set (1–2 Ma). Bottom: pacing model with a sigmoid background
threshold for the HAML data set (0–2 Ma).
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Figure 10: The distribution of the logarithm of the marginalized likelihood relative to the uniform model, log10(RML), for the PT
model as a function of two model parameters. The left panel shows the distribution over the precession contribution factor (α) and
phase (φ) for the PT model with γ = 1 for the ML data set (the last 1 Myr). The right panel shows the distribution over the transition
time (t0) and transition time scale (τ) for the PT model with a sigmoid background threshold for the HAML data set (the last 2 Myr).
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each panel, the most favored region is identified by applying a 25 × 25 grid to the distribution, and is denoted by a cross. Note that
the scales saturate: likelihoods above or below the limits of the color bar are plotted using the extreme color.

(together) better than a model which combines obliquity with a
trend in the background threshold. Thus obliquity is sufficient
to explain at least the time of minor terminations before and
after the MPT, without reparameterizing the model as done by
H07 and Raymo et al. (1997); Paillard (1998); Ashkenazy and

Tziperman (2004); Paillard and Parrenin (2004); Clark et al.
(2006).

We observe that precession becomes important in pacing the
∼100 kyr glacial-interglacial cycles after the MPT. Through the
comparison of models with a linear trend and models with a
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sigmoid trend in the background threshold, we find that the
glacial terminations over the whole Pleistocene can be paced
by a combination of precession, obliquity, and a sigmoid trend
in the background threshold. Using marginalized likelihoods,
we find that the MPT has a time scale (the time required for ice
volume to grow from 25% to 75% of the maximum) of about
220 kyr and a mid-point at around 715 kyr before the present.
This is rather late compared with other studies (Clark et al.,
2006), although our data/analysis supports a broad range of val-
ues. Note that we do not assume the existence of a strict peri-
odicity in the data, in contrast to some studies based on power
spectrum analyses. Since there is no significant change in the
power spectrum of the insolation before and after the MPT, the
MPT must be caused by a rapid change of response of the cli-
mate to the insolation, rather than by the insolation itself. This
is consistent with previous studies (Paillard, 1998; Parrenin and
Paillard, 2003; Ashkenazy and Tziperman, 2004; Clark et al.,
2006).

We also find that geomagnetic forcing and forcing by
changes in the inclination of the Earth’s orbital plane are un-
likely to cause significant climate change over the last 2 Myr.
This weakens the suggestion that the Earth’s orbital inclination
relative to the invariable plane influences the climate (Muller
and MacDonald, 1997). Our results also suggest that the mod-
ulation of cosmic rays or solar activity by the Earth’s mag-
netic field has at best a limited impact on climate change on
timescales between 10 kyr and 1 Myr, challenging the hypoth-
esis that connects the geomagnetic paleointensity with climate
change (Channell et al., 2009).

The Bayesian modelling approach is well suited to multiple
model comparison, because it evaluates all their evidences ex-
plicitly: a model is not selected just because some alternative
“noise” model is rejected. Uncertainties in the data are also ac-
commodated. Moreover, the approach automatically and con-
sistently takes into account the model complexity, in contrast to
most other methods (e.g. frequentist hypothesis testing, max-
imum likelihood ratio tests) which will favor more complex
models unless they are penalized in some ad hoc way.

Our conclusions are reasonably robust to changes of param-
eters, priors, time scales, and data sets. The main uncertainty
in our work comes from the identification of glacial termina-
tions over the Pleistocene, although we have used different data
sets of terminations to reduce this uncertainty. In future work,
a more sophisticated Bayesian method (e.g. the method intro-
duced by Bailer-Jones 2012) could be employed to model the
full time series of climate proxies. Using this model inference
approach, we may learn more about the mechanisms involved
in the climate response to Milankovitch forcings.
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