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Abstract In the UK, fungicides are often used to control phoma stem canker on winter 19 

oilseed rape. Field trials were established near Boxworth, Cambridgeshire for four cropping 20 

seasons (2011/2012, 2012/2013, 2013/2014 and 2014/15) to test the efficacy of a new 21 

fungicide mixture Refinzar® (penthiopyrad + picoxystrobin) by comparison to an existing 22 

fungicide Proline 275® (prothioconazole) against phoma stem canker (Leptosphaeria spp.) 23 

and effect on winter oilseed rape (cv. Catana) yield. In each season, weather data were 24 

collected from a weather station at Boxworth and the release of ascospores was monitored 25 

using a nearby Burkard spore sampler. The patterns of ascospore release differed between 26 

seasons and related to weather conditions. Fungicides penthiopyrad + picoxystrobin and 27 
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prothioconazole were applied in October/November when 10% plants had phoma leaf 28 

spotting (T1, early), 4/8 weeks after T1 (T2, late) or at both T1 and T2 (combined). When 29 

phoma leaf spot symptoms were assessed in autumn/winter, penthiopyrad + picoxystrobin and 30 

prothioconazole both decreased numbers of phoma leaf spots caused by L. maculans; there 31 

were few leaf spots caused by L biglobosa. Penthiopyrad + picoxystrobin and 32 

prothioconazole both reduced phoma stem canker severity before harvest compared to the 33 

untreated control but did not increase yield in these seasons when epidemics were not severe. 34 

In 2013/2014, the presence of L. maculans and L. biglobosa in upper stem lesions or stem 35 

base cankers was determined by species-specific PCR. The proportions of stems with L. 36 

maculans DNA were much greater than those with L. biglobosa DNA for both upper stem 37 

lesions and basal stem cankers. These results suggest that both penthiopyrad + picoxystrobin 38 

and prothioconazole can decrease phoma stem canker severity of winter oilseed rape in severe 39 

disease seasons. 40 

 41 
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 45 

Introduction 46 

 47 

Phoma stem canker is a disease of oilseed rape, which is caused by closely related fungal 48 

species Leptosphaeria maculans and L. biglobosa (Fitt, et al. 2006a; Stonard et al. 2010). 49 

Both pathogens follow a monocyclic disease cycle in the UK with phoma leaf spotting 50 

symptoms in autumn/winter and stem base canker in spring/summer. Severe cankers inhibit 51 

the flow of water and nutrients to the seed, and thus decrease seed yield and quality. Oilseed 52 

rape is the third most valuable arable crop grown in the UK and has a total annual value of > 53 

£600 M and an average on-farm yield of 3.5-4.0 t/ha (AHDB Cereals & Oilseeds 2015). 54 

Globally, phoma stem canker has been calculated to annually cause approximately £700M 55 
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worth of losses, making it a significant threat to worldwide oilseed rape production and food 56 

security (Fitt et al. 2006b).  57 

 Generally, L. maculans forms damaging stem base cankers and L. biglobosa forms 58 

less damaging upper stem lesions on UK winter oilseed rape (Fitt et al. 2006a; Huang et al. 59 

2011). This difference is considered a result of differences in timing of ascospore release, 60 

with L. maculans spores released in early/mid-autumn and L. biglobosa spores released in 61 

early/mid-winter (Fitt et al. 2006b). More recently, however, L. biglobosa has been shown to 62 

cause severe upper stem lesions and lodging of crops in some growing seasons (Huang et al. 63 

2014). If this occurs regularly, L. biglobosa could become a more important threat to winter 64 

oilseed rape yield. 65 

 Together with conventional plant breeding strategies that adopt effective resistance 66 

genes (Delourme et al. 2006), fungicides are commonly used in the UK to control phoma 67 

stem canker on winter oilseed rape. In 2014, 98.1 % of the total area of oilseed rape (674,580 68 

ha) received fungicide treatment for control of disease including phoma stem canker because 69 

growers generally expect such treatments to give a yield response (Garthwaite et al. 2012). 70 

UK winter oilseed rape experiments have often shown a yield response from fungicide 71 

application against phoma stem canker, although, an increase in yield was only registered 72 

when canker severity in unsprayed plots was ≥ 3 on a 0-5 disease severity scale (West et al. 73 

2002). Typically, azole fungicides have been applied because of their effective action against 74 

L. maculans as well as their relatively low cost compared to alternatives. Examples include 75 

flusilazole, prothioconazole and tebuconazole (Eckert et al. 2010; Huang et al. 2011). Other 76 

fungicides are available to growers; these include quinone outside inhibitor (QoI) fungicides 77 

and succinate dehydrogenase inhibitor (SDHI) fungicides, both of which disrupt energy 78 

production in the fungal cell (Avenot and Michailides 2010; Bartlett et al. 2002); however, 79 

their efficacy against phoma stem canker has not been evaluated. 80 

 Legislation from the European Union has forced the withdrawal of some fungicides 81 

used to control fungal pathogens in arable crops (Marx-Stoelting et al. 2014). An example is 82 

the withdrawal of flusilazole, a chemical widely used for phoma stem canker control in the 83 
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UK until 2014. Despite concluding that flusilazole fulfils safety requirements set by Member 84 

States, on review the European Commission withdrew usage of Flusilazole across the entire 85 

European Union (European Commission 2007). Withdrawal of flusilazole reduced options 86 

available to growers for control of phoma stem canker, along with other crop diseases. It is 87 

thus imperative to obtain a complete understanding of the effects that novel fungicide 88 

mixtures have on phoma stem canker in winter oilseed rape crop.  89 

 This paper describes work investigating the efficacy of a new fungicide mixture 90 

Refinzar® (a.i. penthiopyrad plus picoxystrobin, an SDHI plus QoI, respectively) to reduce 91 

phoma leaf spotting, decrease phoma stem canker severity and improve oilseed rape yield. 92 

 93 

Materials and Methods 94 

 95 

Weather conditions at the field site 96 

 97 

Weather data for the 2011/12, 2012/13, 2013/14 and 2014/15 winter oilseed rape growing 98 

seasons were collected at Boxworth, Cambridgeshire, UK (52.259814, -0.025437); near the 99 

winter oilseed rape field experiments and the Burkard spore sampler in 2014/15 cropping 100 

season and approximately 15 km from the site of the Burkard spore sampler in 2011/12, 101 

2012/13 and 2013/14. Temperature and rainfall data were collected daily using an automated 102 

weather station (Campbell Scientific, UK). 103 

 104 

Numbers of ascospores in the air 105 

 106 

The numbers of Leptosphaeria ascospores in the air were estimated using a 7-day volumetric 107 

spore sampler (Burkard Manufacturing Co. Ltd, UK). For the 2011/12, 2012/13 and 2013/14 108 

cropping seasons, the spore sampler was located at Whittlesford, Cambridgeshire, UK 109 

(52.109299, 0.156023). For the 2014/15 cropping season, the spore sampler was located at 110 

Boxworth, Cambridgeshire (52.270127, -0.027112). The spore sampler accommodated a 111 
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rotating drum (2 mm per hour) that held a strip of Melinex tape. The tape was lined with a 112 

thin layer of petroleum jelly and hexane paste mixture (10 g petroleum jelly, 20 ml hexane). 113 

After 7 days of sampling, the rotating drum was removed and the Melinex tape was divided 114 

into seven 24-hour segments. Each segment was then cut horizontally, with one half stored at 115 

-20 oC for molecular analysis and one half mounted for microscopy to count spore numbers. 116 

The slide-mounted tape was stained with trypan blue solution (0.4% w/v in water, Sigma-117 

Aldrich, UK) so that the ascospores were visible under a light microscope (100x total 118 

magnification). Counting was done in three longitudinal traverses across the slide and the 119 

number of ascospores recorded for each traverse. The concentration of ascospores in the air 120 

was calculated according to equation described by Lacey and West (2006). 121 

 122 

Winter oilseed rape field experiments 123 

  124 

Field experiments were established near Boxworth, Cambridgeshire, UK for the 2011/12, 125 

2012/13, 2013/14 and 2014/15 cropping seasons. The winter oilseed rape cultivar Catana 126 

(Dekalb, UK) was used because of its susceptibility to L. maculans (resistance rating of 4 in 127 

the UK North region on a 1-9 scale; where 9 is very resistant) but good resistance against 128 

Pyrenopeziza brassicae the cause of light leaf spot (AHDB Cereals & Oilseeds 2015). 129 

 In each growing season, seeds of cv. Catana were sown in mid/late August at a seed 130 

rate of 5 kg/ha and a drilling depth of 1 cm. To test the efficacy of a new fungicide mixture 131 

(penthiopyrad + picoxystrobin), by comparison to existing fungicides (flusilazole or 132 

prothioconazole), for control of phoma stem canker (Leptosphaeria spp.) and impact on 133 

winter oilseed rape yield, experiments were arranged in a randomised block design with three 134 

replicates. Each plot received one of 14 treatments (four different fungicides applied under 135 

three different timing regimes (T1, T2 or T1 and T2 combined), one untreated throughout the 136 

cropping season, one treated with a spring spray only, T3), thus totalling 42 plots (Table 1). 137 

The fungicide Refinzar® (DuPont UK Ltd; a.i. penthiopyrad 160 g/l plus picoxystrobin 80 g/l) 138 

was used in all four cropping seasons. The product has been marketed as a potential 139 
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alternative to the azole fungicides that are used widely in the UK on winter oilseed rape. 140 

Sanction® (DuPont UK Ltd; a.i. flusilazole 250g/l) was used for the first two cropping 141 

seasons before its active ingredient flusilazole was withdrawn. It was replaced by another 142 

azole fungicide, Proline 275® (Bayer Crop Science UK Ltd; a.i. prothioconazole 275 g/l), for 143 

the 2013/14 and 2014/15 cropping seasons. To represent the components of Refinzar®, 144 

Galileo® (DuPont UK Ltd; a.i. picoxystrobin 250 g/l) and LEM17® (DuPont UK Ltd; a.i. 145 

penthiopyrad 200 g/l) were also applied but data are not presented. The fungicide spray 146 

timings differed from season to season, with the first application (T1) taking place in autumn 147 

when 10% of plants were affected with phoma leaf spots. The second application (T2) was 148 

made 8 weeks after T1 in 2011/2012 season and 4 weeks after T1 in 2012/13, 2013/14 and 149 

2014/15 seasons. All plots except the untreated control received a spring-flowering spray (T3) 150 

against the pathogen Sclerotinia sclerotiorum, the causal agent of sclerotinia stem rot. 151 

(Table 1 here) 152 

 153 

Phoma leaf spotting, stem canker and yield assessment 154 

 155 

Phoma leaf spotting was assessed by randomly sampling ten plants per plot in the 2011/12 156 

and 2012/13 cropping seasons and 15 plants per plot in the 2013/14 and 2014/15 cropping 157 

seasons; as described in Steed et al. (2007). The sampling was done regularly between 158 

November and February each cropping season. The total numbers of L. maculans (large grey 159 

lesions with pycnidia) and L. biglobosa (small dark lesions with few or no pycnidia) leaf 160 

spots on each leaf were recorded, together with growth stage of the plant. 161 

 Phoma stem canker severity assessment was done once in the 2011/12 and 2012/13 162 

cropping seasons (25 July 2012 and 9 July 2013), twice in the 2013/14 cropping season (27 163 

May and 1 July 2014) and twice in the 2014/15 cropping season (1 June and 29 June 2015). A 164 

random sample of either 10 (2011/12 and 2012/13), 25 (2013/14) or 15 (2014/15) plants was 165 

collected from each of the 42 plots using the method described in Steed et al. (2007). The 166 

severity of basal cankers was assessed by cutting the stem at the base of each sampled plant 167 
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and scoring the cross-sectional area of necrotic tissue according to a 0-6 scale (Huang et al. 168 

2011), modified from Lô-Pelzer et al. (2009). Upper stem lesions were cut at the centre point 169 

of the lesions and assessed on the same scale. Desiccated plots were harvested using a small 170 

plot harvester and yield (t/ha) recorded. Presence of light leaf on stems was also noted.  171 

 172 

Stem canker subsampling, DNA extraction and species-specific PCR 173 

 174 

To investigate whether the phoma stem cankers were caused by L. maculans and/or 175 

L. biglobosa, stems with basal stem canker or upper stem lesion symptoms were subsampled 176 

for DNA extraction and Leptosphaeria species-specific PCR. Approximately three stems per 177 

plot were selected from basal stem canker and upper stem lesion samples from all 42 plots of 178 

the 2013/14 field experiment. Using a scalpel, thin shavings of the basal canker or upper stem 179 

lesion tissue were cut away from each stem and placed in 2 ml Eppendorf tubes (Sigma-180 

Aldrich Co LLC, UK). The subsamples were stored at -20 oC after freeze-drying for 24 hours. 181 

The subsamples were then ground into a powder using a mortar and pestle. A sub-sample of 182 

the powdered stem material was transferred into 2 ml Eppendorf tubes and DNA was 183 

extracted using a DNA extraction kit (DNAMITE Plant kit; Microzone Ltd, UK) and 184 

quantified using a Nanodrop ND-1000 spectrophotometer (Labtech International, UK). 185 

Identification of species was done using end-point PCR with species-specific PCR primers 186 

LmacF/LmacR for L. maculans and LbigF/LmacR for L. biglobosa (Liu et al. 2006). Gel 187 

electrophoresis was done to identify the presence of L. maculans and/or L. biglobosa DNA.  188 

 189 

Statistical analysis 190 

 191 

The R software was used to for statistical analyses of data (R Development Core Team 2011). 192 

Linear mixed effects models were done on leaf spotting, canker severity and yield data. Two-193 

way mixed effect ANOVA was done on spray timing and fungicide treatment. One-way 194 
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mixed effect ANOVA was done independently on spray timing and then fungicide treatment. 195 

Residuals were tested for normality using the Shapiro-Wilk test of normality. 196 

 197 

Results 198 

 199 

Rainfall 200 

 201 

Rainfall patterns differed between the four seasons during autumn/winter (phoma leaf spot 202 

development stage) and summer (phoma stem canker development stage). In the 2011/12 203 

cropping season, the autumn and winter months were dry compared with the 2013/14 204 

cropping season. In August and September, 73 mm of rainfall was recorded. Periods of 205 

prolonged rainfall did not commence until December 2011 and there were never periods of 206 

heavy rainfall. In the summer, it was predominantly wet, with heavy rainfall in April (101 207 

mm), June (103 mm) and July (115 mm) (Figure 1b). In the 2012/13 cropping season, 208 

prolonged rainfall occurred much earlier, with periods of substantial rainfall commencing in 209 

mid-September and continuing to mid-February with the occasional short dry period. In 210 

August and September, 70 mm of rainfall was recorded. The spring and summer were dry 211 

with occasional periods of short-term rainfall (Figure 1d). In the 2013/14 cropping season, 212 

rainfall pattern was similar to that of the 2012/13 growing season in the autumn/winter. 213 

Rainfall started in early autumn, with increases in August and September over a few days and 214 

then continued for a period between October and mid-November. In August and September, 215 

91 mm of rainfall was recorded. A period of prolonged rainfall occurred between December 216 

and February (202 mm over 88 days) (Figure 1f). In the 2014/15 cropping season high rainfall 217 

commenced early (8 August) with a period of very heavy rainfall (112.6 mm) causing flash 218 

floods in the region. In August and September, 192 mm of rainfall was recorded although 219 

58 % of this was on 8 August. Rainfall in the winter months was more sporadic than in the 220 

previous seasons, with no periods of particularly prolonged rainfall between December and 221 

February (Figure 1h).  222 
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 223 

Average temperature 224 

 225 

Across the four seasons, average temperature followed a typical pattern, with temperature 226 

decreasing to ≤ 0 oC in December, January and February. Periods of particularly low 227 

temperatures differed among seasons. In the 2011/12 cropping season, a low temperature (-228 

7.1 oC) occurred on 10 and 11 of February. Average temperature between 1 October and 31 229 

May was 7.8 oC (Figure 1b). In 2012/13, a similar pattern was observed, but low temperature 230 

(-4.4 oC) occurred a month earlier on 14 January. One notable difference in this cropping 231 

season was an uncharacteristic period of cold weather in mid-late March. Snowfall and 232 

temperatures < 0 oC were recorded during this period. Average temperature between 1 233 

October and 31 May was 5.7 oC (Figure 1d). In 2013/14, there was no period of particularly 234 

cold weather, with average daily temperature never < 0 oC. Average temperature between 1 235 

October and 31 May was 8.3 oC (Figure 1f). The 2014/2015 cropping season was similar to 236 

the previous season in that there was no period of particularly cold weather, with average 237 

daily temperature only < 0 oC on two occasions (-0.7 oC and -0.4 oC on 19 January and 22 238 

January, respectively). Average temperature between 1 October and 31 May was 7.2 oC 239 

(Figure 1h). 240 

 241 

Ascospore numbers 242 

 243 

The numbers of ascospores in the air and the period in which most ascospores were released 244 

differed among growing seasons. In 2011/12 and 2012/13, there was a major discharge of 245 

spores in November and a large discharge of spores in January; the discharge in November 246 

was longer in 2012/13 (Figure 1a, c). In 2013/14, the spore release pattern was similar to 247 

2012/13 but differed in timing; ascospore dispersal occurred over a longer period in the 248 

autumn, with a large release in the winter of both seasons; however, in 2013/14, the autumn 249 
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release of spores was a month before the equivalent release in 2012/13 (November in 2012/13 250 

and October in 2013/14). Similarly, a large release of spores in the winter occurred a month 251 

earlier in 2013/14 than 2012/13 (January in 2012/13 and December in 2013/14) (Figure 1c, e). 252 

Due to accessibility issues in 2014/2015 cropping season, spore release data commenced at 253 

the start of November. Nonetheless, two large releases were recorded at the end of November 254 

and mid/late January (Figure 1g). A common pattern among all four seasons was the 255 

relationship between rainfall and spore release. In most seasons, spore release commenced in 256 

large numbers after a period of prolonged or heavy rainfall. For example, heavy rainfall at the 257 

start of November 2011 was associated with ascospore release later that month. However, 258 

some spores were also released after periods of light rainfall, such as in December 2013. 259 

(Figure 1 here) 260 

Field experiments 261 

 262 

In all four cropping seasons, the spring flowering spray had no affect on leaf spotting, canker 263 

severity or yield when compared to the control; therefore, the untreated control data presented 264 

are a mean of untreated plots and spring spray only (T3) plots. Penthiopyrad alone produced 265 

similar results to penthiopyrad + picoxystrobin and therefore has been excluded from the 266 

analysis. Picoxystrobin alone produced similar results to the untreated control and therefore 267 

has been excluded from the analysis and data are not presented.  268 

 269 

Phoma leaf spotting 270 

 271 

In the 2011/12, 2012/13 and 2014/15 cropping seasons, incidence of phoma leaf spotting in 272 

unsprayed plots did not increase in severity on winter oilseed rape leaves until March and 273 

phoma leaf spotting was never severe during the autumn/winter; therefore, data are not 274 

shown. In 2013/14, the phoma leaf spotting started earlier and incidence (% plants affected) 275 

was much greater in unsprayed plots in the autumn/winter months compared to the previous 276 

two winter oilseed rape cropping seasons (Figure 2). Experimental plots treated with 277 
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penthiopyrad + picoxystrobin or prothioconazole had significantly less L. maculans type leaf 278 

lesions per plant when compared with the untreated control, except when fungicides had only 279 

just been applied (T2 only plots at December 2013 assessment) or when their activity had 280 

decreased over time (T1 application at February 2014 assessment). The penthiopyrad alone 281 

treatment was statistically similar to the picoxystrobin + penthiopyrad treatment.  282 

 The two fungicides significantly decreased number of L. biglobosa type lesions, 283 

compared with the untreated control, in December 2013 on T1 only and on T1 plus T2 plots, 284 

and in February 2014 on T2 only treated plots. When comparing the efficacy of the two 285 

fungicides, there was no significant difference in the numbers of L. maculans type lesions 286 

present between penthiopyrad + picoxystrobin and prothioconazole treated plots (Figure 2a, c, 287 

e). Furthermore, there was no significant difference in the numbers of L. biglobosa type leaf 288 

lesions present between penthiopyrad + picoxystrobin and prothioconazole treated plots 289 

(Figure 2b, d, f). 290 

(Figure 2 here) 291 

 292 

Stem canker severity 293 

 294 

In the 2011/12, 2012/13 and 2014/15 cropping seasons, stem canker was not severe (Figure 295 

3). Severity was never more than 1.5 on a 0-6 scale for either upper stem lesions or basal stem 296 

cankers in these three cropping seasons. Fungicide application did not significantly decrease 297 

stem canker severity in 2011/12 and only prothioconazole at the combined T1/T2 application 298 

timing significantly reduced severity compared to the control in 2012/13. In the 2013/14 299 

cropping season (Figure 3c), canker was more severe than in other seasons. There were 300 

significant differences in the severity of basal stem cankers between fungicide treatments and 301 

between timings (P < 0.05, 12 df), however, there was no significant difference in upper stem 302 

lesion severity between fungicide treatments and timings (data not shown). Unlike 303 

prothioconazole, penthiopyrad + picoxystrobin did not decrease the severity of basal stem 304 

cankers when applied at the T1 spray timing only when compared to untreated (P < 0.05, 4 305 
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df). Nonetheless, at T2 and T1/T2 timings, both penthiopyrad + picoxystrobin and 306 

prothioconazole reduced severity equally. Penthiopyrad + picoxystrobin at T1/T2 and 307 

prothioconazole at T1/T2 performed similarly, reducing basal stem canker severity more than 308 

if they were applied at T1 only or T2 only. Although there were significant differences 309 

between fungicide treatments and between timings, the interactions were not significant and 310 

were removed from the final model.  311 

 No other diseases were severe in the field experiments across all four growing 312 

seasons; although, in 2014/15 cabbage stem flea beetle affected winter oilseed rape 313 

establishment in the Cambridgeshire region and may have had an affect on the field 314 

experiments. Light leaf spot was present but not severe.  315 

(Figure 3 here) 316 

 317 

Yield 318 

 319 

Improvement in yield of fungicide-treated plots was sometimes positive and sometimes 320 

negative when compared with the control over the four cropping seasons (Figure 4). Despite 321 

effects of treatment on stem canker severity across all cropping seasons, there was no 322 

significant effect of fungicide treatment on yield in any season. 323 

(Figure 4 here) 324 

 325 

Proportion of stems with L. maculans or L. biglobosa 326 

 327 

A total of 133 basal stem canker samples and 74 upper stem lesion samples was analysed by 328 

PCR. The proportions of upper stem lesions and basal stem cankers with L. maculans DNA 329 

detected in the sample was much greater than those with L. biglobosa DNA detected (Table 330 

2). Out of 74 samples of upper stem lesions, 45 had only L. maculans DNA detected, two 331 

samples had only L. biglobosa DNA detected and 11 samples had both species DNA detected. 332 

No L. maculans or L. biglobosa DNA was detected in 16 upper stem samples. Of 133 basal 333 
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stem canker samples, 102 had only L. maculans DNA detected and four samples had both 334 

species detected. No samples had only L. biglobosa DNA recorded. No L. maculans or L. 335 

biglobosa DNA was detected in 27 basal stem canker samples.  336 

 (Table 2 here) 337 

 338 

Discussion 339 

 340 

These results suggest that in cropping seasons when there are moderately severe phoma stem 341 

canker epidemics, penthiopyrad + picoxystrobin and prothioconazole are both effective at 342 

reducing phoma stem canker severity in situ. Severe canker results in yield loss because 343 

transport of water and nutrients up the stem is decreased by girdling, thus resulting in 344 

premature ripening and shrivelled seed pods (West et al. 2002). These results show that 345 

penthiopyrad + picoxystrobin or prothioconazole both prevent the formation of severe 346 

cankers, potentially allowing good pod development. 347 

 Furthermore, they show that foliar application of penthiopyrad + picoxystrobin or 348 

prothioconazole in the autumn reduced the number of L. maculans type leaf lesions that 349 

formed on leaves. Application of either fungicide when incidence of L. maculans leaf spotting 350 

reached 10% plants affected (T1) significantly reduced the number of lesions; a further 351 

application one or two months later (T2) appears to have had a smaller but still significant 352 

effect on the number of lesions. Work with GFP-labelled L. maculans has shown that if the 353 

phoma leaf spot stage is prevented, the pathogen does not grow along the leaf petiole to form 354 

stem cankers (Huang, et al. 2014). Thus, this early stage inhibition stops the later 355 

development of cankers; exemplified here by the T1 and T2 application of either 356 

penthiopyrad + picoxystrobin or prothioconazole, which significantly reduced the number of 357 

lesions on leaves in November and December and significantly reduced stem canker severity 358 

in the following July.  359 

 By contrast, in seasons when there is little early phoma leaf spotting (e.g. 2011/12 360 

and 2012/13), the data suggest that fewer fungicide sprays are needed since canker severity 361 
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was very low and it did not affect yield. The timing and severity of basal stem cankers and 362 

upper stem lesions has previously been reported to affect the potential yield of winter oilseed 363 

rape crops (Zhou et al. 1999). Early, severe basal cankers or upper stem lesions are more 364 

likely to cause yield loss than later/slight basal stem cankers or upper stem lesions. The 365 

development of later, less severe stem cankers can be associated with a later release of 366 

ascospores, as shown by the 2011/12 and 2012/13 cropping seasons, when a large release of 367 

ascospores occurred later in the season compared to 2013/14; when there was less rainfall in 368 

August and September the release of ascospores was delayed, resulting in a later onset of 369 

phoma leaf spotting. Disease severity has previous been linked to yield loss in winter oilseed 370 

rape; only when disease severity is high ( 3 on a 0 – 5 severity scale) does a yield response 371 

occur in fungicide treated plots (West et al. 2002). 372 

 The results for timing of ascospore release and leaf spotting suggest that the optimum 373 

fungicide application regime differs between seasons. In 2013/14, ascospore release was 374 

earlier, due to greater rainfall in August/September, than in the previous two seasons, thus 375 

resulting in a more severe canker prior to harvest. These observations are in general 376 

agreement with the UK phoma stem canker disease model published by Evans et al. (2008), 377 

based on many seasons of data, since the model predicts an earlier date for 10% phoma leaf 378 

spotting when rainfall and/or temperature are high during summer. Furthermore, the model 379 

predicts the date of onset and severity of canker using thermal time, with greater thermal time 380 

between 10% phoma leaf spotting and harvest resulting in more severe cankers. This explains 381 

why canker severity was less in 2011/2012 and 2012/13, when winter temperatures were less 382 

than in 2013/14.  383 

 The low incidence of L. biglobosa leaf spots, and small amount of L. biglobosa DNA 384 

in stem canker samples suggests that the disease was caused predominantly by L. maculans in 385 

these experiments. It has been suggested that L. maculans and L. biglobosa have a north-386 

south divide (Stonard et al. 2010), so a smaller amount of L. biglobosa in these southern sites 387 

was not unexpected. A multiple site study over several years is required to establish more 388 

information on the threat that L. biglobosa poses to UK oilseed rape production. 389 
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Figure legends 

Figure 1. Numbers of ascospores of Leptosphaeria spp. (a, c, e, g), average temperature and 

daily rainfall (b, d, f, h) monitored over four cropping seasons. a-b) 2011/12 cropping season; 

c-d) 2012/13; e-f) 2013/14; g-h) 2014/15. Weather data were collected at Boxworth, 

Cambridgeshire, using a day interval automated weather station. The grey line represents 

average temperature (oC) and black bars represent total daily rainfall (mm). Airborne 

ascospores (number m-3) were collected using a Burkard spore sampler that was situated at 

Whittlesford, Cambridgeshire (15 km from site of the field experiment) in 2011/12, 2012/13 

and 2013/14 and Boxworth, Cambridgeshire in 2014/15. 

Figure 2. Incidence of phoma leaf spotting associated with Leptosphaeria maculans (a, c, e) 

or L. biglobosa (b, d, f) type leaf lesions on winter oilseed rape (cv. Catana) plots sprayed 

with fungicide at T1 (early) (a, b), T2 (late) (c, d) or T1 & T2 (combined) (e, f) in the 2013/14 

cropping season near Boxworth, Cambridgeshire. Fifteen winter oilseed rape plants were 

collected from each plot and assessed for incidence of L. maculans and L. biglobosa type leaf 

lesions. Plots were treated with penthiopyrad + picoxystrobin (dotted line), prothioconazole 

(dashed line) or untreated (solid line). Average number of leaf lesions per leaf was calculated. 

Standard errors of the means are represented as error bars. Details of spray timings are given 

in Table 1.  

 

Figure 3. Basal stem canker severity on experimental winter oilseed rape (cv. Catana) plots in 

a) 2011/12, b) 2012/13, c) 2013/14 and d) 2014/15 cropping seasons near Boxworth, 

Cambridgeshire. Plots received sprays of penthiopyrad + picoxystrobin or prothioconazole at 

T1 (early), T2 (late) or T1 & T2 (combined). Basal stem canker severity (scale 0-6; Lô-Pelzer 

et al., 2009) was scored on 25 plant stems sampled from each plot. Standard errors of the 

means are represented as error bars (6 df). Details of spray timings are given in Table 1. 

 



 

Figure 4. Average yield (t/ha) from experimental winter oilseed rape (cv. Catana) plots in a) 

2011/12, b) 2012/13, c) 2013/14 or d) 2014/15 cropping seasons near Boxworth, 

Cambridgeshire. Plots received sprays of penthiopyrad + picoxystrobin or prothioconazole at 

an early (T1), late (T2) or combined (T1 & T2) timings. Desiccated plots were harvested 

using a small plot harvester and yield was calculated. Standard errors of the means are 

represented as error bars (6 df). Details of spray timings are given in Table 1. 
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Figure 4 

 

 

Table 1 Treatment list giving fungicides and spray timings used in field experiments at Boxworth, Cambridge over 

four winter oilseed rape (cv. Catana) cropping seasons. Experiments were arranged in a randomised block design 

with three replicates. T1 spray was applied in the autumn when 10% of the plants had phoma leaf spotting. T2 

spray was applied in the autumn/winter 4 or 8 weeks after T1. A third fungicide spray (T3) targeting sclerotinia 

stem rot was applied to all treatments except treatment 1, which remained untreated throughout the cropping 

season. In 2011/12 and 2012/13 cropping seasons, prothioconazole was used as the flowering spray (T3) and in 

2013/14 and 2014/15 picoxystrobin was used.  

 
* Received T3 flowering spray and therefore differs from treatment 1 which was untreated throughout cropping season.  

^ Flusilazole was applied in 2011/12 and 2012/13 until its withdrawal and was replaced by prothioconazole in 2013/14 and 

2014/15 

 

 

 

 

 

 

 

 

 

 

Spray timing T1 (10% leaf spotting) T2 (T1 + 4 or 8 weeks)

Treatment number Chemical
Rate

Chemical
Rate

g a.i/ha g a.i/ha

1 Untreated - Untreated -

2* Untreated - Untreated -

3^ Flusilazole or Prothioconazole 200 or 176 Untreated -

4 Penthiopyrad 160 Untreated -

5 Picoxystrobin 80 Untreated -

6 Penthiopyrad + Picoxystrobin 160 + 80 Untreated -

7^ Untreated - Flusilazole or Prothioconazole 200 or 176

8 Untreated - Penthiopyrad 160

9 Untreated - Picoxystrobin 80

10 Untreated - Penthiopyrad + Picoxystrobin 160 + 80

11^ Flusilazole or Prothioconazole 200 or 176 Flusilazole or Prothioconazole 200 or 176

12 Penthiopyrad 160 Penthiopyrad^ 160

13 Picoxystrobin 80 Picoxystrobin 80

14 Penthiopyrad + Picoxystrobin 160 + 80 Penthiopyrad + Picoxystrobin 160 + 80



 

 

 

Table 2: Numbers (percentage) of winter oilseed rape (cv. Catana) phoma stem canker 

subsamples with L. maculans or L. biglobosa DNA present determined by species-specific PCR 

for L. maculans and L. biglobosa (subsamples collected stem base cankers* or upper stem lesions 

sampled from all plots on 1 July 2014 were ground into a powder before DNA was extracted).  

 

* three stem base cankers or upper stem lesions per plot 

Number (%) of stem canker subsamples with 

L. maculans only L. biglobosa only Both Neither

Upper stem lesion (n = 74) 45 (60.8 %) 2 (2.7 %) 11 (14.9 %) 16 (21.6 %)

Basal stem canker (n = 133) 102 (77 %) 0 4 (2.7 %) 27 (20.3 %)
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