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ABSTRACT
The Doppler measurements of stars are diluted and distorted by stellar activity noise. Dif-
ferent choices of noise models and statistical methods have led to much controversy in the
confirmation of exoplanet candidates obtained through analysing radial velocity data. To quan-
tify the limitation of various models and methods, we compare different noise models and
signal detection criteria for various simulated and real data sets in the Bayesian framework.
According to our analyses, the white noise model tend to interpret noise as signal, leading
to false positives. On the other hand, the red noise models are likely to interpret signal as
noise, resulting in false negatives. We find that the Bayesian information criterion combined
with a Bayes factor threshold of 150 can efficiently rule out false positives and confirm true
detections. We further propose a Goldilocks principle aimed at modelling radial velocity noise
to avoid too many false positives and too many false negatives. We propose that the noise
model with RHK-dependent jitter is used in combination with the moving average model to
detect planetary signals for M dwarfs. Our work may also shed light on the noise modelling
for hotter stars, and provide a valid approach for finding similar principles in other disciplines.

Key words: methods: data analysis – methods: numerical – methods: statistical – techniques:
radial velocities – Planetary Systems.

1 IN T RO D U C T I O N

Almost all natural phenomena are studied by collecting and mod-
elling data, comparing models and inferring model parameters.
Since the data collection and reduction are usually standardized
to remove bias and systematics, the results of data analyses are
more influenced by the choice of models and inference methods
than by data reduction.1

Due to the limited explanation power of theories and models,
natural phenomena are always left with inadequate or incomplete
modelling. Thus, our understanding of these unexplained variations
(so-called noise) significantly influences how well we can explain
data particularly when noise levels are similar to those of variations.
For example, the glacial–interglacial cycles over the Pleistocene era
were probably caused by the orbital variations of the Earth through
modulating the incoming solar radiation (Milankovitch 1930; Hays,
Imbrie & Shackleton 1976). However, this theory is challenged
by various authors (Hasselmann 1976; Pelletier & Turcotte 1997;

�E-mail: f.feng@herts.ac.uk or fengfabo@gmail.com
1 Actually, data reduction is also a kind of modelling that converts the
primary observations into secondary data such as catalogues. But the process
is well understood in a theoretical sense.

Wunsch 2004) using stochastic processes to model the climate
change.

In the case of detections of exoplanets in the Doppler measure-
ments of stars, the activity induced radial velocity (RV) variations
are called ‘excess noise’ or ‘jitter’, compared with the RV variations
caused by Keplerian motions of planets (called ‘signals’). Jitter is
typically correlated (or red) over various time-scales (Baluev 2013),
and is caused by various mechanisms such as instability of instru-
ments, magnetic cycles, oscillation, rotation, and granulation of
stars (Dumusque et al. 2012). Jitter actually consists of unmodelled
variations as well as pure noise. This jitter is poorly understood and
modelled, leading to the problem of model incompleteness (Fischer
et al. 2016). To separate jitter from planetary signals, many noise
models are proposed based either on statistical properties of the RV
time series (e.g. Baluev 2013) or on astrophysical studies of stel-
lar variability (e.g. Rajpaul et al. 2015). The number of planetary
candidates is sometimes greatly influenced by the choice of these
noise models. For example, six planets have been claimed to orbit
around GJ 581 (Vogt et al. 2010) based on data analysis applying
the white noise model. However, Baluev (2013) could not confirm
all of them using Gaussian process (GP) models. Similar controver-
sies exist in the confirmation of exoplanets around GJ 667C using
the white noise, moving average (MA), and GP models (Anglada-
Escudé et al. 2013; Feroz & Hobson 2014). These controversies
show that the more flexible the noise model is, the less planetary
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signals it can find. We will see this effect in the comparison of noise
models.

Another factor that causes uncertainties in data analysis is the
usage of different statistical methods. For example, many studies
claimed periodicities in the data of mass extinctions and terrestrial
impact craters based on the periodogram or other frequentist ap-
proach (Alvarez & Muller 1984; Raup & Sepkoski 1984; Melott
et al. 2012). But there seems to be no evidence for periodicities in
the data based on the Bayesian inference (Bailer-Jones 2011; Feng
& Bailer-Jones 2013, 2014). The tension caused by statistics also
exists in the confirmation of planetary candidates even if the same
noise model is used. For example, Tuomi (2011) only found four
planets using Bayesian methods, while Vogt et al. (2010) found six
using the same RV data set of GJ 581 and the same noise model but
based on the periodogram. The solution to such controversies relies
on the exploration of appropriate modelling and inference meth-
ods based on a better understanding of the mechanisms underlying
certain phenomena and a proper choice of statistical tools.

Most data analysis of RV data was seen based on frequentist meth-
ods, in particular, the Lomb–Scargle periodogram and adaptations
of it, e.g. two-dimensional Keplerian Lomb–Scargle periodogram
(O’Toole et al. 2009). However, the periodogram assumes that the
noise in the time series is not correlated and that there is only one
periodic signal in the data. Despite this, it is misused to search for
multiple periodic signals. For example, only one Keplerian compo-
nent is used to model a superposition of several Keplerian signals.
Both of these assumptions are problematic if the strength of signals
is comparable with the noise level (Tuomi & Jenkins 2012; Fischer
et al. 2016). Furthermore, the periodogram assumes periodicity in
the data rather than testing it by comparing periodic models with
other models. Thus, periodogram, by definition, is biased in terms
of model comparison. This is particularly true when the mecha-
nisms responsible for certain phenomena are complex and poorly
modelled (e.g. aperiodic and/or quasi-periodic phenomena).

Despite these problems, various periodograms are broadly em-
ployed to identify planetary signals in RV observations because they
are easy to calculate. To test the significance of a signal, a selected
false alarm probability (FAP) of a periodogram is commonly used
as a detection threshold. This metric is equivalent to the p-value
which is used to reject null hypotheses such as the white noise
model. However, the choice of null hypothesis is always arbitrary,
and thus makes FAP unable to properly estimate the significance
of a signal. Considering these drawbacks, periodograms should be
used cautiously particularly in cases when the signal-to-noise ra-
tio is not high and the host star is perturbed by multiple planets
(Cumming 2004; Ford & Gregory 2007).

To avoid the above problems of the periodogram, we need a
statistical tool to compare models on the same footing rather than
rejecting simple null hypothesis. If we know exactly the under-
lying physics of certain phenomena, there would be no need to
compare different models. But this is often not the case for natural
phenomena. Hence a proper way to account for model incomplete-
ness, model complexity, and uncertainties of models and data is
crucial for robust data analyses. Fortunately, such inference prob-
lems can be properly dealt with in the Bayesian framework (e.g.
Kass & Raftery 1995; Spiegelhalter et al. 2002; Gregory 2005; von
Toussaint 2011). For example, Bayesian inference methods assess
the overall plausibility of a model by calculating its likelihood aver-
aged over its prior distribution. This approach naturally accounts for
the model complexity and thus models can be compared properly.

In addition to an appropriate inference method, a modelling prin-
ciple should be established through quantifying the limitations of

stochastic and deterministic models. We do this for the RV data
of M dwarfs by comparing various noise models in the following
steps. First, we generate artificial data sets using noise models and
the Keplerian model. For these data sets, we compare noise models
using various signal detection criteria. Then, we select the best cri-
terion which confirms most true detections and rejects most false
positives. We further apply the criterion to compare models for
the data sets with injected Keplerian signals. Based on the results,
we quantify the limitations of various noise models and devise a
framework of noise models to detect planetary signals.

Our aim is to provide a quantitative comparison between noise
models used in the literature. We quantify the disadvantages and
advantages of each noise model within the Bayesian framework.
Various inference criteria are investigated for representative RV
data sets. We also present a new principle to model stellar jitter and
identify planetary signals.

This paper is structured as follows. We describe the Bayesian
inference method and signal detection criteria in Section 2. In Sec-
tion 3, we introduce the models of RV variations, and define their
prior distributions. Then, we compare various noise models and
signal detection criteria for artificial data sets in Section 4. In Sec-
tion 5, we introduce three RV data sets and inject planetary signals
into them for model comparison. Finally, we discuss the results and
conclude in Section 6.

2 DATA A NA LY S I S A N D I N F E R E N C E M E T H O D

2.1 Model comparison

The Bayesian model comparison relies on the Bayes theorem which
is

P (Mi |D) = P (D|Mi)P (Mi)∑
j

P (D|Mj )
, (1)

where P(Mi|D) is the posterior of model Mi for data D, P(D|Mi)
and P(Mi) are the evidence (also called the integrated likelihood)
and the prior of model Mi, and the denominator is a normalization
factor. Then, the ratio of the posteriors of two models is

P (Mi |D)

P (Mj |D)
= P (D|Mi)

P (D|Mj )

P (Mi)

P (Mj )
. (2)

If no model is favoured a priori, i.e. P(Mi)/P(Mj) = 1, the posterior
ratio becomes

P (Mi |D)

P (Mj |D)
= P (D|Mi)

P (D|Mj )
≡ BFij , (3)

where BFij is the odds of evidences of model Mi and Mj, and is
called Bayes factor. Following Kass & Raftery (1995), we interpret
BFij > 150 as a strong evidence for Mi and against Mj.

For model M with parameters θ , the evidence is

P (D|M) =
∫

θ

P (D|θ , M)P (θ |M) dθ , (4)

where θ is the parameter vector of model M, P (θ |M) is the prior
distribution of parameters, andL(θ ) ≡ P (D|θ , M) is the likelihood.
The evidence is actually the normalization factor of the posterior
distribution of model parameters,

P (θ |D, M) = P (D|θ , M)P (θ |M)

P (D|M)
. (5)

In most cases, the evidence cannot be calculated analytically due to
the complexity of the likelihood. Thus, a Monte Carlo approach is
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required either to sample the prior density P (θ |M) (prior sampling)
or to sample the posterior density P (θ |D, M) (posterior sampling)
or to sample both. The prior sampling is not appropriate for RV mod-
els because the posterior density always contains multiple modes
in the period space related to planets and activity-induced varia-
tions. The modes are typically narrow that the prior samples may
not resolve the posterior distribution properly. Considering these
difficulties in prior sampling, we sample the posterior and calculate
the Bayes factors using various estimators which will be introduced
in Section 2.3.

2.2 Posterior sampling

To sample the posterior density, we use an adaptive Metropolis–
Hastings algorithm of Markov Chain Monte Carlo (MCMC) devel-
oped by Haario, Saksman & Tamminen (2001). This algorithm ad-
justs the step of the sampler to explore the posterior efficiently. Con-
sidering possible non-linear correlation between parameters and a
non-Gaussian posterior, we run adaptive Metropolis–Hastings algo-
rithms to obtain posterior samples of 106–107 for inference. We use
the Gelman–Rubin criteria to judge whether a chain approximately
converges to a stationary distribution (Gelman & Rubin 1992).

Specifically, we conduct the following steps to produce posterior
samples. First, we run four chains in parallel, and drop out one-half
of each chain as ‘burn-in’ part. Secondly, we estimate the so-called
‘potential scale reduction factor’ (R̂) by calculating the variance
between and within the chains according to the Gelman–Rubin cri-
teria. If R̂ is less than 1.1, we combine these chains to provide a
statistically representative posterior sample for inference. Thirdly,
we repeat the above two steps to generate chains with different tem-
pering parameters. A chain is tempered if it is generated with a prob-
ability of move that is proportional to a power of the posterior ratio
of proposed parameters and current parameters. Tempering is used
to improve the dynamic properties of a chain to explore the whole
parameter space efficiently. The chain without tempering is called
‘cold chain’ while the tempered chain is called ‘hot chain’. Con-
sidering that the optimal acceptance rate of a Metropolis–Hastings
algorithm is around 0.234 under general conditions (Roberts, An-
drew & Walter 1997), we select the hot chains with acceptance rate
between 10 per cent and 35 per cent. Then, we identify the potential
signal based on the maximum a posteriori estimation, and use the
corresponding parameters as the initial conditions of a cold chain.
Finally, the cold chain provides a sample drawn from the posterior
density of the model. For models without a Keplerian component,
we run cold chains directly to obtain their unimodal posterior densi-
ties. Because we aim at comparing noise models rather than models
with multiple Keplerian components, we only obtain samples for
models with at most one planetary component.

2.3 Signal detection criteria

Given a statistically representative sample drawn from the poste-
rior density, we move on to calculate the evidence using various
methods. The integral in equation (4) can be calculated by the ‘im-
portance sampling’ method (Kass & Raftery 1995), which generates
samples from a density. For example, the harmonic mean (HM) esti-
mator of the evidence is calculated by averaging the likelihood over
samples approximately drawn from the posterior density. However,
this estimator cannot converge efficiently due to the occasional
occurrence of samples with very low likelihoods. To solve the con-
vergence problem of HM, Tuomi & Jones (2012) introduce the

truncated posterior mixture (TPM) by drawing samples from differ-
ent sections of an MCMC chain to avoid the divergence caused by
low-likelihood values. This method is easy to implement because
it only uses the output of Metropolis–Hastings algorithms. But this
method is biased if its free parameter λ is large (Tuomi & Jones
2012; Dı́az et al. 2016). In addition to importance sampling meth-
ods, we introduce the one-block Metropolis–Hastings method de-
veloped by Chib & Jeliazkov (2001). The Chib’s estimator (CHIB)
is based on the calculation of the posterior of a single point using
samples drawn from the posterior density and the proposal density
of a Metropolis–Hastings sampler.

Although the evidence can be approximately calculated by the
above methods, they have limitations in applications to complex
problems due to unrealistic assumptions or computation inefficiency
(see Friel & Wyse 2012 and Han & Carlin 2011 for a review). Con-
sidering these, we also introduce various information criteria which
are easy to calculate and thus are frequently used by practition-
ers. We introduce three of them: the Akaike Information Crite-
rion (AIC; Akaike 1974), the Bayesian Information Criterion (BIC;
Schwarz et al. 1978) and the Deviance Information Criterion (DIC;
Spiegelhalter et al. 2002). The AIC and DIC are criteria motivated
from information theory while the BIC is derived in the Bayesian
framework.2 Considering that the sample size of RV data sets may
be small, we use a revised version of AIC introduced by Hurvich &
Tsai (1989). We write the three criteria as follows.

AIC ≡ −2 lnLmax + 2k(k + 1)

N − k − 1
(6)

BIC ≡ −2 lnLmax + k ln N (7)

DIC ≡ D(θ̄ ) + 2pD = D̄(θ ) + pD, (8)

where Lmax is the maximum likelihood, k is the number of
free parameters,3 N is the number of data points, the deviance
D(θ ) = −2 lnL(θ ), and the effective number of parameters pD =
D̄ − D(θ̄ ). To compare the above information criteria with the
Bayes factor estimators, we transform these information criteria
into a Bayes factor like quantities.4 It is straightforward to convert
the BIC into a Bayes factor because Kass & Raftery (1995) argued
that e−�BIC10/2 → BF10, when the sample size is large. Here, we
define �BIC10 = BIC1 − BIC0. We also define Bayes factor using
the relative likelihood derived from AIC, i.e. BF10 = e−�AIC10/2,
where �AIC10 = AIC1 − AIC0. We then derive Bayes factor from
DIC in the same fashion, since the DIC probably approaches the
AIC when parameters are well constrained (Liddle 2007). Note that
the transformations from AIC and DIC to Bayes factor are without
theoretical foundation. Rather, it is used to transform the threshold
of AIC or DIC to the threshold of Bayes factor, making AIC or DIC
approximately suitable for Bayesian inference.

2 Although the BIC is derived using the Laplace approximation of a Gaussian
likelihood distribution and the likelihood distribution in our case is always
multimodal, we use it because the likelihood is always dominated by the
Keplerian signal if there is, and the local distribution around the maximum
is always Gaussian.
3 We assume that a free parameter could be any variable in a model as in the
case of linear models. Although a more complex definition of the parameter
number could be helpful for non-linear models, this is equivalent to changing
the Bayes factor threshold which we will do in Section 5.2.
4 To make the notation simple, we still use BF to name this quantity.
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With the above evidence estimators and information criteria, we
adopt the following diagnostics for the presence of a Keplerian
signal.

(i) The period P of the signal can be constrained from above and
below in the posterior density. In other words, it converges to a
stationary distribution.

(ii) The amplitude K of the signal is significantly greater than
zero. Specifically, the posterior of K = 0, i.e. P(K = 0|D, M), is less
than 1 per cent.5

(iii) The evidence of a model with one Keplerian component
should be at least 150 times higher than the evidence for the model
without any Keplerian component, i.e. BF10 > 150 (Kass & Raftery
1995).

The above procedure is also used by Tuomi (2012) in combination
with the MA model which we will introduce in the following section.

3 MO D E L L I N G R A D I A L V E L O C I T Y
VA R I ATI O N S

The measured Doppler shifts of a star are generated by gravita-
tional force from star–planet(s) interactions and stellar activity. The
spectroscopic measurements of these Doppler shifts yield RV data
with instrument uncertainties and various activity indexes. To ac-
count for these factors, we model the data by combining Keplerian
components and various noise components. In the following sec-
tions, we introduce the basic model which includes the white noise
model and the Keplerian component. Then, we add various noise
components on to the basic model to build other models in such a
way that the basic model is nested in the full model given all noise
components.

3.1 White noise model

There is good evidence in the architectures of the Solar system
and exoplanetary systems for orbital resonances playing some role
(e.g. semimajor axes of resonant trans-Neptunian objects). How-
ever, the importance is limited over the typical time span of RV
data (e.g. Batygin 2015), and so we make the simplifying assump-
tion that planetary orbits are independent of each other in a plan-
etary system. Although we only consider at most one Keplerian
signal in this work, we introduce a model of multiple Keplerian
signals for general cases. We adopt the following basic model of
RV variations,

v̂b(ti , θ) =
n∑

j=1

fj (ti) + a ti + b +
∑

k

ckIk

fj (ti) = Kj [cos(ωj + νj (ti)) + ej cos(ωj )], (9)

where Kj, ω, ν j, ej are the amplitude, the longitude of periastron, the
true anomaly, and the eccentricity for the jth planetary signal.
The true anomaly ν is an implicit function of time, and depends
on the orbital period P and the orbital phase at the reference time
M0. It can be calculated by solving the Kepler’s equation. Thus the
Keplerian component for each planet contains five free parameters:
K, P, e, ω, and M0. In addition to the above parameters, we use two
parameters, a and b, to model the acceleration caused either by a
companion or by the long-period activity cycles of the star and the
reference velocity. We also use ck to model the linear dependence

5 In reality, we fit a normal distribution to the posterior sample, and from
the best-fitted posterior density we determine P(K = 0|D, M).

of RV on the activity index Ik. Specifically, we use IF, IB, and IR to
denote the width of the spectral lines [full width at half-maximum
(FWHM)], the bisector span (BIS) and the log(R′hk) (RHK), respec-
tively. Note that these indexes are included into the model in a
deterministic way. But they will be used in Sections 3.4 and 3.5 to
model the jitter in a stochastic way.

The white noise model accounts for the excess noise through the
likelihood function:

L(θ ) ≡ P (D|θ , Mw)

=
∏

i

1√
2π(σ 2

i + s2
w)

exp

[
− (v̂b(ti , θ ) − vi)2

2(σ 2
i + s2

w)

]
, (10)

where σ i is the observational noise at time ti, sw is the constant
amplitude of the white noise, and vi is the observed RV at time
ti. The jitter depends on stellar activity levels which are partly
measured by various shape indexes of spectrum such as FWHM
and BIS and activity proxies such as the RHK index. The noises
caused by activity and instruments are typically correlated (Baluev
2013), and are too complex to be modelled deterministically. Thus, a
range of red noise models are proposed to remove correlated noises
which may mimic Keplerian signals. In the following sections, we
introduce two of them: the MA and GP models.

3.2 Moving average

The MA model is used to model the dependence of current noise
on previous noise. The MA of order q or MA(q) is

v̂(ti) = v̂b(ti) + εti +
q∑

j=1

k(ti , ti−j )εti−j
, (11)

where k(ti, ti − j) is the kernel used to weight the white noise at time
ti − j. We introduce two kernel functions, the Laplacian kernel

kL(ti , ti−j ) = wj exp(−β|ti − ti−j |) (12)

and the squared exponential kernel

kse(ti , ti−j ) = wj exp(−β(ti − ti−j )2/2), (13)

where wj is a positive number for white noise at ti − j, and β is a free
parameter.

According to Tuomi et al. (2013), MA(1) is the best MA model
which enable the detection of weak signals. In addition, this model
seems to outperform other red noise models in recent RV Challenge
(Dumusque et al., in preparation) conducted by Xavier Dumusque.6

Hereafter, we will use MA to denote MA(1) and use the Laplacian
kernel if not mentioned otherwise.

3.3 Gaussian process

The GP is included in the RV model by adding non-diagonal parts
to the covariance matrix of the likelihood function (see equation 10)
which is

L(θ ) ≡ P (D|θ, Mgp) = 1√|2πC| exp

[
−1

2
(v − v̂b)C(v − v̂b)

]
,

(14)

where v is the observed RV sequence (i.e. {vi}), v̂b is the RV model
expressed by equation (9) (i.e. {v̂b(ti , θ )}), and C is the covariance

6 The details of RV Challenge data sets and results can be found online at
https://rv-challenge.wikispaces.com
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matrix. The covariance matrix is composed of diagonal and non-
diagonal components. The former is related to the Gaussian mea-
surement noise {σ i} and the excess white noise sw, while the latter
is determined by a kernel. To calculate the covariance matrix, we
introduce three types of kernels: Laplacian (L), squared-exponential
(se), and quasi-periodic (qp) kernels, which are formulated as
follows.

kL(t, t ′) = sr exp(−|t − t ′|/l),

kse(t, t ′) = sr exp

[
− (t − t ′)2

2l2

]
,

kqp(t, t ′) = sr exp

[
− sin2(π (t − t ′)/Pq)

2l2
p

− (t − t ′)2

2l2

]
, (15)

where sr is the red noise amplitude, l, lp and le are correlation time-
scales, and Pq is the period of the quasi-periodic kernel. The L
kernel is used by Baluev (2013) and Feroz & Hobson (2014), while
the se and qp kernels are advocated by Rajpaul et al. (2015) in their
GP framework used to disentangle activity-induced variations from
planetary signals. In the comparison of noise models, we will focus
on the Laplacian kernel, and use the other kernels for sensitivity
tests.

3.4 RHK-dependent jitter

It is well known that the solar activity is determined by the magne-
tohydrodynamic turbulence in the atmosphere, and thus is difficult
to be accurately predicted due to the chaotic nature of turbulence
(Petrovay 2010). Like the Sun, stars also show complex activity-
induced variations (Tobias, Weiss & Kirk 1995) which are partly
recorded by activity indexes in Doppler measurements. Therefore,
the relationship between RV variations and activity indexes are
probably complex (Vanderburg et al. 2016), and a deterministic
relationship may not be appropriate to model the activity-induced
RV counterpart. As a result, the dependence of RV on indexes
should be modelled statistically. For example, Dı́az et al. (2016)
have proposed a linear dependence of jitter on the RHK index. We
call this model ‘RHK-dependent jitter’ (RJ) which replace the sw in
equation (10) with

s(ti) = sw + αIR(ti). (16)

Although Dı́az et al. (2016) used a truncated version of the linear
function, we don’t explore more versions because the RJ model
is flexible and representative, and does not require a fine-tuned
threshold to truncate the RHK index. For RV data sets that do not
have RHK index, IR denotes the activity index which is determined by
measuring the flux at the Ca II H&K lines with respect to continuum.

3.5 Lagged RHK-dependent jitter

The activity of a star is determined by the underlying complex
and non-linear dynamics. Thus, the time series generated by stellar
activity typically have long correlation time-scale (Boffetta et al.
1999). In a non-linear dynamical system, the time series of state
variables are actually projected from the motion on the manifold
of a set of states. According to Takens (1981), the non-linear state
space of the dynamics could be reconstructed by using only the
lagged time series of one variable, e.g. the RHK index in our case.
Thus, the jitter in the RV variations can be modelled as a function of
the lagged activity indexes. Considering that the RHK index is more
sensitive to stellar activity (Dumusque, Boisse & Santos 2014),

we let the jitter s(ti) depend on the previous and subsequent RHK

indexes. Then, the jitter noise becomes

s(ti) = sw + αIR(ti) + f (ti , ti−1)IR(ti−1) + f (ti , ti+1)IR(ti+1))

f (t, t ′) = η exp(−κ|t − t ′|), (17)

where η is the amplitude of the correlation between jitter, and κ is
the inverse of the correlation time-scale. Replacing the white noise
jitter sw in equation (10) by the above RJ, we define the lagged RJ
model or LRJ. Considering that the lagged RHK may induce the RV
counterpart in a deterministic way, we propose another version of
LRJ which is

v̂(ti) = v̂b(ti) + f (ti , ti−1)IR(ti−1) + f (ti , ti+1)IR(ti+1). (18)

We call the stochastic version in equation (17) LRJ(S) and the
deterministic version in equation (18) LRJ(R). They are more alike
than different in terms of accounting for time lagged RHK, and thus
share the same name. In other words, the lagged RHK of LRJ(S) is
put into the denominator of the exponential term of the likelihood
(equation 10) while the LRJ(R) model contains the lagged RHK in
the numerator. For a simulated data set, only one LRJ version will
be chosen according to the ability of each LRJ model in finding
signals.

In addition to the above-mentioned noise models, we combine
them to build compound models to make the comparison more
comprehensive. We combine MA with RJ to make the MARJ model,
and combine MA with LRJ to make the MALRJ model. For models
with and without one Keplerian component, we add 1 and 0 after
the model name, respectively. For example, MA1 means the MA
model with one Keplerian component while MA0 means the MA
model without Keplerian component.7

3.6 Prior distributions

As a necessary part in Bayesian inference, the prior distributions of
parameters are explicitly given for all models in Table 1. For the
Keplerian component in the white noise model, we adopt a Jeffreys
prior for the period with a range from one day to the time span of the
RV data sets. Following Tuomi & Anglada-Escudé (2013), we adopt
a Gaussian prior distribution over eccentricity, i.e. P (e) ∝ N (0, σe)
with σ e = 0.2, to account for observed eccentricity distribution
(Kipping 2013).8 We adopt a uniform prior for the amplitude K
with a upper limit of twice the maximum absolute value of RV.
This prior is set not only to speed up the convergence of the chain
but also to account for the fact that the long-period signal (longer
than the RV time span) is already modelled as a linear trend in
equation (9). The jitter amplitude s follows a uniform distribution
from 0 to the upper limit of the prior of K. This is also the range
of RJ s(ti). To make the chain converge quickly, we scale the RHK

index such that it has zero mean and unit variance. For the same
reason, we define the ratio of the upper boundary of the prior of
K, Kmax, and the difference between the maximum and minimum
of the index variation as the upper limit of the parameters for the
dependence of RV on activity indexes, cR, cF, and cB. For the GP
model, we find that the likelihood of the GP model is not sensitive
to the time-scale l, and thus set a narrow boundary for its prior. For

7 This is not to be mixed with qth order MA models denoted as MA(q), we
only apply MA(1) model.
8 Although Kipping (2013) recommends beta distribution, we adopt the
Gaussian distribution which is simpler and also flexible enough to describe
eccentricities.
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Table 1. The prior distributions of model parameters. The unit of c1, c2, c3, α, and η is m s−1 because the activity indexes are
scaled before included in a model. The maximum and minimum time of the RV data are denoted by tmax and tmin, respectively.

Parameter Unit Prior distribution Minimum Maximum

Each Keplerian signal
Kj m s−1 1/(Kmax − Kmin) 0 2|v|max

Pj d P −1
j / log(Pmax/Pmin) 1 tmax − tmin

ej – N (0, 0.2) 0 1
ωj rad 1/(2π) 0 2π
M0j rad 1/(2π) 0 2π

Linear trend
a m s−1yr−1 1/(amax − amin) −365.24Kmax/Pmax 365.24Kmax/Pmax

b m s−1 1/(bmax − bmin) −Kmax Kmax

Index dependence
c1 m s−1 1/(c1max − c1min) −c1max Kmax/(IRmax − IRmin)
c2 m s−1 1/(c2max − c2min) −c2max Kmax/(IFmax − IFmin)
c3 m s−1 1/(c3max − c3min) −c3max Kmax/(IBmax − IBmin)

Jitter
sw m s−1 1/(swmax − swmin) 0 Kmax

α m s−1 1/(αmax − αmin) 0 Kmax/(IRmax − IRmin)
η m s−1 1/(ηmax − ηmin) 0 Kmax/(IRmax − IRmin)
κ yr−1 1/(κmax − κmin) 365.24/(tmax − tmin) 1

Moving average
w – 1/(wmax − wmin) −1 1
β d−1 1/(βmax − βmin) 1/(tmax − tmin) 1

Gaussian process
sr m s−1 1/(srmax − srmin) 0 Kmax

l d 1/(lmax − lmin) 0.01 10
lp d l−1

p / log(lpmax/lpmin) 0.01 100
Pq d 1/(Pqmax − Pqmin) 1 100

the quasi-periodic kernel, we adopt the priors used by Mortier et al.
(2016).

4 MO D E L C O M PA R I S O N FO R A RT I F I C I A L
DATA SETS

To ensure that a model is suitable for the data, it is important to
test them using artificial data sets with known noise. Otherwise, the
model or its prior may not be appropriate for certain applications
(Fischer et al. 2016). We will do this with two types of simulated data
sets, artificial (with artificial signals and noise) and injection (with
artificial signals and real noise) data sets. Comparing all models for
these data sets, we quantify the limitations of these models and form
a signal detection strategy. Fitting different models to the artificial
data sets, we report the signals and models recovered by testing
models according to the diagnostics in Section 2.3.

We generate artificial data sets using three time samples and
corresponding measurement errors: the sample from the Keck mea-
surements of GJ 515A which contains 282 data points and two
subsamples which are generated by randomly drawing 100 time
samples from the full sample of GJ 515A. We denote these three
samples as ‘full’, ‘sub1’ and ‘sub2’, respectively. Then, we gen-
erate the RV values using three models: white noise with one
Keplerian component (W1), MA with one Keplerian component
(MA1) and GP with one Keplerian component (GP1). We vary
the period P ∈ {20, 40, 80} d and the amplitude of constant jitter
s ∈ {0.5, 1, 2} m s−1. The other parameters are fixed, such that
K = 1 m s−1, e = 0.1, ω = π/2, M0 = π/2, a = −0.1 m s−1yr−1,
b = 1 m s−1, (w, β) = (0.9, 0.25 d−1) and (sr, l) = (1 m s−1, 3˜d).

The total number of these artificial data sets is 54. Then, we anal-
yse each data set with the W0, W1, MA0, MA1, GP0, and GP1
models, and apply the signal detection criteria (see Section 2.3) to
confirm/reject potential signals. The results are shown in Table 2.

4.1 Comparing models

In Table 2, we observe that the white noise model recovers signals
better than the red noise models. However, the white noise model
also detects more false positives because it interprets correlated
noise as signal. It is a surprise that the MA model does not recover
itself for the full and sub2 data sets with (P, K) = (40 d, 1 m s−1).
That means the MA model interprets both the MA noise and part
of the signal as correlated noise, leading to an underestimation of
the significance of the true signal. This indicates that a red noise
model may not successfully separate correlated noise from planetary
signals.

We also find that the white noise and MA models could be recov-
ered through applying at least one Bayes factor estimator for 10 and
7 data sets, respectively. However, the GP model is recovered for
only 3 data sets. Due to the flexibility of the GP model in fitting a
data set, it overfits the noise and thus underfits the signal, leading to
a lower evidence. This problem is also evident from the fact that the
GP model does not recover any true signals while the white noise
and MA models recover 4 and 3, respectively, for the GP generated
data sets.

We can see the above differences between the white noise and
MA and GP models from their posterior densities in Fig. 1. We
calculate the posterior densities by binning the posterior samples
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Table 2. Comparison of noise models for artificial data sets. The Bayes factor of the one planet models (e.g. MA1) and corresponding zero planet models
(e.g. MA0) are calculated for each data set. Without applying the threshold of BF10 > 150, the results of the test are denoted as A, B, and C, which means
that the signal is correctly recovered, not recovered (false negative) and falsely identified (false positive). The results obtained without and with applying the
BIC-based BF threshold are written in normal and bold fonts, and corresponding detection numbers (denoted by N and n with subscripts) are reported without
and with brackets, respectively. The flag A is underlined if the true model is recovered based on any estimator of the Bayes factor. The numbers of the data sets
that have true models selected by any estimator and by the BIC is denoted by NT and nT, respectively.

Sample True model W1 MA1 GP1
Test model W1 MA1 GP1 W1 MA1 GP1 W1 MA1 GP1

P =20 d; s = 1 m s−1 A A A A A A A A B
P =40 d; s = 1 m s−1 A A A A B A A A A

full P =80 d; s = 1 m s−1 A A A A A A C C B
P =20 d; s = 2 m s−1 A A A A B B A B B
P =40 d; s = 2 m s−1 B B B A B B A A B
P =80 d; s = 2 m s−1 B B B A A A B B B

P =20 d; s = 0.5 m s−1 C B B A A A B B B
P =40 d; s = 0.5 m s−1 A A A A B B A B B

sub1 P =80 d; s = 0.5 m s−1 A A A A B B A A B
P =20 d; s = 1 m s−1 B B B B B B C C C
P =40 d; s = 1 m s−1 A B B B B B A A A
P =80 d; s = 1 m s−1 B B B B B B B B B

P =20 d; s = 0.5 m s−1 A A A A A A B B B
P =40 d; s = 0.5 m s−1 A A A A A A A A A

sub2 P =80 d; s = 0.5 m s−1 A A A A A A C C A
P =20 d; s = 1 m s−1 A B A B B B B B B
P =40 d; s = 1 m s−1 B B B A B A B B B
P =80 d; s = 1 m s−1 B B B B B B B B B

Numbers of flags for each model without (with) applying the threshold of BF >150

NA(nA) 11(7) 9(6) 10(5) 13(10) 7(4) 9(6) 8(4) 6(3) 4(0)
NB 6 9 8 5 11 9 7 9 13

NC(nC) 1(0) 0 0 0 0 0 3(2) 3(0) 1(0)
NT(nT) 10(10) – – – 7(3) – – – 3(0)

over the period and choosing the maximum posterior in each bin
as an approximation of the marginalized posterior. The significance
of the signal can be inferred from the posterior difference between
thresholds and the difference between the signal and noise. We
find that the signal detected by the white noise model is more sig-
nificant than those detected by red noise models, and the signal
detected by the GP model is the weakest. We also observe that
the broad peaks around 70 d are probably false positives. The red
noise models reduce the significance of the false positives together
with that of the signal. In other words, the cost of decreasing the
false positive rate is increasing the false negative rate. We also
notice that the peak around 1.05 d is probably an alias of the sig-
nal. But it is not as significant as the signal for all noise models.
In particular, the red noise models seem to remove the alias effi-
ciently due to their ability of modelling correlated noise over short
time-scales.

The performance of the models is also revealed by their maximum
likelihoods shown in Fig. 2. We see that the planetary component
can improve the maximum likelihood of white noise model more
significantly than those of other models. This property of the white
noise model is generic for all artificial data sets.

4.2 Choosing the optimum Bayes factor estimators

To further confirm the signal detections in Table 2, we compare
models with and without Keplerian component using the Bayes
factor threshold BF >150. We cannot calculate the Bayes factors of
models which do not have any chains converged to the target signal

(denoted by flag ‘A’ in Table 2) due to a lack of statistically rep-
resentative posterior samples. For data sets with recovered signals,
we calculate the Bayes factor using the AIC, BIC, CHIB, DIC, HM
and TPM estimators. To ensure the convergence of each method, we
increase the size of the posterior sample gradually and calculate the
Bayes factor for each sample size. Since the DIC cannot converge
properly due to the asymmetry and multimodes of the posterior
density, we only show the results for other estimators in Fig. 3.
We find that the HM and TPM estimators give similar results since
the HM is just a special case of the TPM (Tuomi & Jones 2012).
However, neither of them converge very well due to the occasional
occurrence of samples with very low likelihoods. The Bayes factor
estimated by AIC is always higher than that estimated by the BIC
and CHIB. We also see these differences from the Bayes factors
calculated using the full posterior sample in Fig. 4. For models with
one Keplerian component, we find that the DIC always estimate
much higher Bayes factors while the BIC and CHIB estimate the
lowest Bayes factors. However, for models without any Keplerian
component, all methods give similar Bayes factors, which justifies
the usage of each method in the cases of unimodal posterior den-
sities. We further investigate all data sets, and find that the Bayes
factors estimated by AIC, HM, and TPM are comparable, and the
BIC and CHIB estimators always give similar results.

We then test the significance of signals using the Bayes factor
threshold of 150. For each estimator of the Bayes factor, we ap-
ply the threshold to confirm recovered signals (denoted by ‘A’),
false positives (denoted by ‘C’), and recovered models (denoted by
‘T’). The ratios of confirmed and total number of them for all data
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Figure 1. The unnormalized logarithm posterior density from the tempered
chains for the white noise (upper), MA (middle), and GP (lower) models
for the full data set simulated using the GP model with P = 20 d and s =
1 m s−1. To show the significance of signals in each panel, the 10 per cent,
1 per cent, and 0.1 per cent of the maximum a posterior is shown by dashed
lines. The true period of the artificial signal is denoted by a vertical dotted
line.

Figure 2. The maximum likelihood ratios (MLR) of various models and
the W0 model for the full data set simulated by the GP model with P = 20 d
and s = 1 m s−1 (the same data used in Fig. 1).

sets9 are used to characterize the ability of estimators combined
with the Bayes factor threshold in confirming true signals and noise
properties. The results for all estimators are reported in Table 3.

In this table, we find that the DIC is not appropriate for confirming
detections because it cannot rule out any false positive. On the
contrary, the CHIB estimator is able to get rid of almost all false

9 To keep the notation simple, we continue to use N and n with subscripts to
denote them (see Table 2).

Figure 3. The convergence of Bayes factor estimators for the artificial data
set generated by the MA model with P = 80 d and s = 1 m s−1. The upper,
middle, and bottom panels show the logarithm Bayes factors of W1, MA1,
GP1, with respect to W0, respectively. The TPM estimator of Bayes factor
is calculated with λ = 10−4 as recommended by Tuomi & Jenkins (2012).

Figure 4. The Bayes factors estimated by various methods. The heights of
the lines within each grey bar represent the Bayes factors of a certain model
with respect to W0 estimated by AIC, BIC, CHIB, DIC, HM, and TPM from
left to right.

positives, but can only confirm 47 per cent true detections. An
appropriate choice is the AIC which could rule out about one quarter
of the false positives, and confirm 96 per cent of the true detections.
Although the AIC is not a Bayesian criterion, we regard the AIC
combined with a threshold as a practical tool to confirm detections.
In the case of exoplanet detection, avoiding false positives is more
important than avoiding false negatives. Such requirements can be
satisfied by the BIC which rules out 75 per cent false positives and
confirms 58 per cent true detections. In addition, the BIC recovers
75 per cent true models while the CHIB method recovers 60 per cent,
justifying our choice of the BIC rather than the CHIB estimator to
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Table 3. The ratios used to characterize estimators. The notations are similar
to those in Table 2.

AIC BIC CHIB DIC HM TPM

nA/NA 0.96 0.58 0.47 1.0 0.90 0.90
nC/NC 0.75 0.25 0.13 1.0 0.88 0.88
nT/NT 0.75 0.65 0.60 0.40 0.70 0.50

rule out false positives. Although the HM and TPM estimators
confirm most true detections, they have convergence problems as
we have mentioned (see Fig. 3).

In summary, the white noise model is able to detect weak signals
efficiently while the GP are so flexible that signals are interpreted as
correlated noise. The performance of the MA model is somewhere
between the performance of GP and white noise models. Moreover,
most false positives could be ruled out by the BIC-estimated Bayes
factor threshold of 150.

5 MO D E L C O M PA R I S O N FO R I N J E C T I O N
DATA SETS

In the above section, we have analysed the artificial data sets with
known noises and signals. To make our analysis more general, we
apply the same analysis method to data sets with known signals
but with noises from real data. We adopt three data sets, the High
Accuracy Radial Velocity Planet Searcher (HARPS) measurements
of GJ 1 (44 epochs) and GJ 361 (101 epochs), and the Keck mea-
surements of GJ 445 (64 epochs). For each data set, we use the RVs,
measurement errors and activity indexes of RHK. We also consider
the RV dependence on the FWHM and BIS index (see equation 9)
if they are available. Considering that the data of GJ 445 is not pub-
lished before, we show it in the appendix. We introduce the three
targets in the following section.

5.1 Radial velocity data

Most nearby stars now have precision radial velocities recorded for
them. As of 2016 April, the ESO archive for the HARPS instrument
finds over 7000 different targets although most only have a few
epochs some objects have large numbers, e.g. nearly 20 000 for
alpha Centauri B. We focus our attention on RV data for nearby
M dwarfs. We choose these targets because they appear to have
relatively lower activity noise. We have attempted to focus on targets
which have reasonable sampling, good precision and for which
there is enough RV data to make detections but where there is not
a strong known signal. We have drawn these from the sample of
Tuomi et al. (in preparation) and specifically choose to study data
from both HARPS (Mayor et al. 2003) and High Resolution Echelle
Spectrometer (HIRES) (Vogt et al. 1994). These are two of the pre-
eminent RV instruments whose design, calibration, and processing
can be considered both reliable and independent.

GJ 1 is a metal-poor (e.g. [Fe/H] = −0.45; Neves et al. 2012)
M2 dwarf at a distance of 4.5 pc (van Leeuwen 2007) without any
reported planetary companions (e.g. Zechmeister, Kürster & Endl
2009). Suárez Mascareño et al. (2015) find that it has a rotation
period of 60.1 ± 5.7 d based on spectral activity indexes. Analysis
of the All Sky Automated Survey (ASAS) photometric data (Poj-
manski 2002) does not confirm this rotation period (Tuomi et al.,
in preparation) though there are relatively modest 42 photometric
data points spanning less than a year. We consider the 44 HARPS
epochs which we have extracted from the ESO archive.

GJ 445 is a metal-poor (e.g. [Fe/H] = −0.30; Neves et al. 2012)
M4 dwarf at a distance of 5.4 pc (van Leeuwen 2007) without
any reported planetary companions or rotational signals. Here, we
consider 64 epochs of Keck data.

GJ 361 is a slightly metal-poor (e.g. [Fe/H] = −0.11; Neves
et al. 2012) M1.5 dwarf at 11 pc (van Leeuwen 2007). Tuomi et al.
(in preparation) find a low-amplitude signal (3.82 m s−1) with a
period of 28.9 d which is removed from the data. Tuomi et al. (in
preparation) do not find any evidence for significant periodicities
in 241 ASAS V-band photometric observations of the star spanning
2298 d. We utilize 101 epochs of HARPS RV data.

To extract the noise from the GJ 361 data set, we analyse the
data of GJ 361 with the moving model and identify the signal,
and subtract the signal from the data set. This subtracted version
is called ‘GJ361 subtracted’. To ensure that no significant signal
exist in the GJ 1, GJ 445, and GJ 361 subtracted data sets, we fit
all models in Section 3 to them and do not find any significant signal
which satisfies the signal detection criteria. Fitting the W0 model
to all data sets, we obtain the posterior of jitter-induced white noise
sw, and use the mean value as a reference point for choosing the
amplitudes of injected Keplerian signals.

5.2 Recovering signals

To inject signals, we vary the amplitude and period of the Keplerian
component and keep other parameters fixed. The amplitude of a
signal is varied in such a way that the signal strength is lower,
comparable, or higher than the jitter level. We adopt P ∈ {20, 40,
80} d for all data sets, K ∈ {1, 2, 4} m s−1 for GJ 1 and GJ 361, and
K ∈ {4, 6, 8} m s−1 for GJ 445. The other Keplerian parameters are
set e = 0.1, ω = π/2, M0 = π/2. Finally, we fit all noise models
with and without planet to the injection data sets, and report the
detections confirmed by the signal detection criteria in Table 4.

As seen from Table 4, no strong signals are found by any noise
model, although the W1, RJ1 and LRJ1 models seem to identify
weak signals which fail to pass the Bayes factor threshold. The
table shows that the LRJ1 model detects the most signals without
applying the BIC-estimated Bayes factor threshold (BF10 > 150)
while the W1 and RJ1 models find the most signals once applying
the threshold. On the contrary, red noise models only recover less
than half of the injected signals and even less if applying the Bayes
factor threshold, implying that they are much more conservative and
prone to false negatives. However, if without applying the Bayes
factor threshold, the MA model can recover 13 signals. As a red
noise model, MA is not as flexible as GP, and thus is able to identify
more signals. In addition, most true signals recovered by the W1,
RJ1, and LRJ1 models are also strong in the posterior densities of
the MA model, although they may not satisfy the detection criteria.
On the contrary, the false positives are never strong in the posterior
distributions of MA. Hence, the MA model can be used to confirm
true detections and reject false ones.

To ensure that the results are not sensitive to the choice of kernels,
we adopt the squared exponential kernel for the MA models (see
equation 13), the squared exponential and quasi-periodic kernels
for the GP models (see equation 15). We fit the red noise models
with these new kernels to the GJ1 data set with (P, K) = (20 d,
2 m s−1), the GJ445 data set with (P, K) = (80 d, 8 m s−1), and
the GJ361 subtracted data set with (P, K) = (80 d, 2 m s−1). For
all these three data sets, we do not find any statistically significant
improvement by changing kernels.

As we have mentioned in Section 4, the red noise models inter-
prets signals as noise, and thus adding a Keplerian component to
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Table 4. Model comparison for RV data sets without and with injected signals. We use the LRJ(S) and MALRJ(S) models to fit the GJ1 data set, and apply
the LRJ(R) and MALRJ(R) models to fit the other data sets. The meanings of A, B, and C are described in Table 2.

Data set Injected signal MA1 GP1 W1 RJ1 LRJ1 MARJ1 MALRJ1

– B B B B B B B
P = 20 d, K = 1 m s−1 B B B B B B B
P = 20 d, K = 2 m s−1 B B A A A A A
P = 20 d, K = 4 m s−1 A A A A A A A
P = 40 d, K = 1 m s−1 B B C B B B B

GJ1 P = 40 d, K = 2 m s−1 A B A A A A A
P = 40 d, K = 4 m s−1 A A A A A A A
P = 80 d, K = 1 m s−1 B B C B C B B
P = 80 d, K = 2 m s−1 A B A A A A A
P = 80 d, K = 4 m s−1 A A A A A A A

— B B C B B B B
P = 20 d, K = 4 m s−1 B B B B B B B
P = 20 d, K = 6 m s−1 B B C C A B B
P = 20 d, K = 8 m s−1 A A A A A A A
P = 40 d, K = 4 m s−1 A B C B A B A

GJ445 P = 40 d, K = 6 m s−1 A B A A C A A
P = 40 d, K = 8 m s−1 A A A A A A A
P = 80 d, K = 4 m s−1 B B C C B B B
P = 80 d, K = 6 m s−1 B B B B B B B
P = 80 d, K = 8 m s−1 B B A A A B B

– B B C C C B B
P = 20 d, K = 1 m s−1 B B B B B B B
P = 20 d, K = 2 m s−1 B B B B B B B
P = 20 d, K = 4 m s−1 A A A A A A A
P = 40 d, K = 1 m s−1 B B C B C B B

GJ361 subtracted P = 40 d, K = 2 m s−1 A A A A A A A
P = 40 d, K = 4 m s−1 A A A A A A A
P = 80 d, K = 1 m s−1 B B B C B B B
P = 80 d, K = 2 m s−1 B B A A A B A
P = 80 d, K = 4 m s−1 A A A A A A A

Numbers of flags for each model without (with) applying the threshold of BF >150

NA(nA) 13(8) 9(7) 15(15) 15(15) 16(14) 13(9) 15(9)
NB 17 21 7 11 10 17 15

NC(nC) 0 0 8(2) 4(0) 4(0) 0 0

a red noise model would not improve the likelihood as much as
the W1 model does. This is evident from the comparison of the
maximum likelihoods of all models in Fig. 5. We observe that the
likelihoods of W1, RJ1, and LRJ1 are much higher than those of
W0, RJ0, and LRJ0, indicating the necessity of adding one Keple-
rian component into the noise model. On the contrary, the Keplerian
component does not significantly improve the likelihoods of the red
noise models, in particular the GP model.

Among the W1, RJ1, and LRJ1 models, the W1 model give
similar results as the RJ1 and LRJ1 models, although RJ1 and LRJ1
can model a few data sets slightly better due to adjusting extra free
parameters. The LRJ1 model is favoured by the GJ445 data sets
with (P, K) =(20 d, 6 m s−1) and (40 d, 4 m s−1). For the latter
one, we show the posterior distribution of parameters α, η, and κ

of LRJ1 in Fig. 6. We observe that the white noise sw dominates
the total noise while the index dependent noises is consistent with
zero. For all the other data sets, we do not find strong dependence
of noise on the right-hand side (RHS) index either. Despite this,
the RJ1 and LRJ1 models give fewer false positives than the white
noise model does, indicating a weak dependence of jitter on the
RHS index. Furthermore, the false positives detected by RJ1 and
LRJ1 failed to pass the Bayes factor threshold. This is not caused by
the Bayesian penalization of model complexity because the Bayes

factor of RJ1 (or LRJ1) and RJ0 (or LRJ0) do not depend on the
number of parameters of the RJ (or LRJ) model. To test this further,
we vary the Bayes factor threshold to see whether there is an optimal
threshold which can reject more false positives and keep all true
detections. But we failed to find such a value. For example, we
increase the Bayes factor threshold to be 200, and apply this new
threshold to test the signals detected by the white noise model. We
find that the false positives for the GJ445 data set with (P, K) =
(40 d, 4 m s−1) cannot be ruled out, and the true signal in the GJ1
data set with (P, K) = (20 d, 2 m s−1) is rejected. It means that
we cannot confirm all true signals recovered by the white noise
model and reject false positives simultaneously by adjusting the
Bayes factor threshold. Considering these problems of the white
noise model and the complexity of the LRJ models, we recommend
the RJ to model the excess noise in RV observations.

Considering the limitations of different noise models, we set up
a rule for modelling RV noise and selecting signals in order to
avoid as many false positives and negatives as possible. We call
this rule ‘Goldilocks principle’. Specifically, we suggest combining
the white noise model and the RJ with the MA model in the fol-
lowing way to confirm detections. First, we apply the three criteria
introduced in Section 2.3 to confirm a signal detected by the model
of RJ. Then, the signal is further confirmed if it is also strong and
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Figure 5. The MLR of noise models and the W0 model for the GJ445 data
set with P = 40 d and K = 8 m s−1 and the GJ361 subtracted data sets with
P = 80 d and K = 2 m s−1. Each grey bar encloses the MLRs for one noise
model with and without planetary component.

unique (without local maxima exceeding the 10 per cent threshold,
see Fig. 1) in the posterior distribution of the MA model. Finally,
the signal is confirmed as a planet if it is not found to be strong in the
posterior distributions of the white noise model (with zero eccentric-
ity) for the activity indexes to avoid detecting activity-induced false
positives that have a different phase in the RVs and activity indexes.

6 D I S C U S S I O N S A N D C O N C L U S I O N S

This work aims at comparing various noise models and inference
criteria for detecting weak signals in RV data sets. We define dif-
ferent noise models and introduce estimators of Bayes factor to
analyse artificial data sets. We find that the white noise model is
better than red noise models in detecting true signals. However, the
white noise model tends to interpret correlated noise as a signal, and
thus detect false positives. On the contrary, the red noise models,
particularly the GP, usually interprets the signal as noise, at least
partially, leading to false negatives. This is also the reason why the
GP model is not favoured even by the GP generated data sets (see
Table 2). This challenges the view that a simultaneous modelling of
noise and signal components in data would not result in overfitting
or underfitting problems (e.g. Foreman-Mackey et al. 2015). The
solution of the problem is not only to perform modelling in the
Bayesian framework but also to properly model noise and signal
according to a Goldilocks principle which could be obtained for
each specific scientific question.

Comparing various Bayes factor estimators, we find that the BIC
estimation of Bayes factor combined with a Bayes factor threshold
of 150 can reject most false positives while other criteria either

confirm more false positives or reject a large proportion of true
detections. In addition, the TPM, HM and DIC estimators do not
converge properly. Meanwhile the AIC and CHIBs penalize the one
planet models too little and too much, leading to false positives and
negatives, respectively. Given that all estimators of Bayes factors
have shortcomings (Ford & Gregory 2007), we adopt the BIC for
practical reasons.

We have applied the BIC-based signal detection threshold to
analyse data sets with injected signals. We have simulated 27 data
sets by injecting signals with various periods and amplitudes into the
HARPS measurements of GJ1 and GJ361 and the Keck observations
of GJ445. We find that the white noise model and the (lagged) RJ
models recover most injected signals. However, the Bayes factor
threshold cannot reject all false positives found by the white noise
model. Increasing the threshold cannot rule out all false positives
and confirm all true detections simultaneously. On the contrary, the
Bayes factor threshold successfully reject all false positives detected
by the RHK-dependent noise models, although the dependence of
jitter on the RHK is weak probably due to the low activity level of
our targets. To make the planet detection conservative, we suggest
to form a noise model framework by combining the RHK-dependent
noise model (RJ) and the MA model. Since most planet hosts are
M dwarfs, our conclusions on modelling the RV noise of M dwarfs
are probably generic for exoplanet detections and so this work may
also shed light on the noise modelling for hotter stars.

We also test the sensitivity of the evidences for red noise models
to their kernels, and do not find any significant improvement for
the test cases analysed here. Since the injection data sets are from
different instruments and with different sizes, our quantification
of the limitations of various noise models are probably generic
for detecting planets in RV observations. Our results indicate that
flexible noise models such as GPs may underestimate the number
of Keplerian signals. This is supported by the Tuomi et al. (2013)
choice of first-order MA model to reduce jitter rather than higher
order MA models. In addition, the Tuomi et al. group ‘won’ the RV
Challenge using the MA model while other groups failed to recover
as many signals using more flexible models. This is consistent with
our findings that the usage of flexible noise models tend to result
in false negatives when the models do not correctly reflect the
underlying physics of stellar activity.

This difference between noise models is also evident from the
controversy over the validation of the number of planets, where red
noise models find less signals than other models, e.g. GJ 581 and
GJ 667C discussed in the introduction section. These controversies
are consistent with our conclusion that red noise models lead to
false negatives while the white (or RHK-dependent) noise model
lead to false positives. To avoid both, we define a Goldilocks prin-
ciple by combining the RHK-dependent noise model with the MA
model and a BIC-based signal detection criterion. This principle
also provides a clue for noise modelling in other fields. For example,
stochastic models may not be appropriate for modelling the glacial–
interglacial cycles over the Pleistocene because they tend to give
false negatives. This can be investigated through injecting Earth’s
orbital variations into noisy climate data and recovering them us-
ing stochastic noise models in combination with orbital models.
Another example is the detection of periodic signals in quasar light
curves. The optical variability of quasars could be caused by random
processes, rotations of binary black holes, uneven sampling and/or
correlated noise. Since RV variations have similar characteristics,
our work may also provide insights for disentangling periodic sig-
nals from stochastic variability in quasar light curves (e.g. Graham
et al. 2015; Vaughan et al. 2016).
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Figure 6. The unnormalized posterior distribution of sw, α, η, and κ of the LRJ1 model. The histograms are made with 905 004 posterior samples of a cold
chain. For each panel, the red curve shows the fit of Gaussian distribution to the unnormalized posterior density. The mode, mean (μ), standard deviation (σ ),
skewness (μ3), and kurtosis (μ4) are shown for each posterior distribution.

In summary, the Goldilocks principle provides an approach to
balance between overfitting and underfitting of noise by statistical
models, which may poorly reflect the underlying physics and thus
are unable to disentangle noise from signals. Although a GP frame-
work has been proposed to partly account for the underlying physics
(Rajpaul et al. 2015), the jitter may not be properly modelled due
to the flexibility of GP models and the simplification of the com-
plex relationship between RV variations and stellar activity indexes.
Further studies on the statistical property of stellar activity proxies
and their connection with RV variations are essential steps towards
an astrophysically motivated modelling of stellar jitter. A probable
method is the non-linear time series analysis which connects the
non-linear dynamical system with the time series of some system
outputs (Kantz & Schreiber 2004; Sugihara et al. 2012). This idea
has inspired us to build the lagged RJ model which performs well in
our analyses. Moreover, correlated noise and deterministic signals
can be well distinguished using surrogate time series, a concept
developed in the community of non-linear time series (Schreiber
& Schmitz 2000). These facts justify further investigations into the
non-linear approach of modelling RV noise.
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Table A1. The Keck measurements of GJ 445.

Julian Days RV (m s−1) RV error (m s−1) RHK

245 0840.154 14 1.82 2.52 0.7041
245 0862.051 38 −15.10 2.61 0.4365
245 1171.112 43 6.22 3.09 0.5667
245 1173.151 70 −6.46 2.70 0.5500
245 1174.140 20 3.09 2.91 0.7017
245 1229.025 28 −16.97 2.88 0.6536
245 1312.832 99 4.72 2.33 0.6772
245 1581.055 20 −0.05 2.72 0.6771
245 1702.848 04 5.85 2.61 0.5760
245 1983.039 06 −3.28 3.36 0.3824
245 2333.052 76 10.70 3.55 0.5765
245 2654.075 29 −2.00 2.94 0.3798
245 2681.031 26 11.68 3.64 0.4286
245 3018.119 66 7.61 2.76 0.3705
245 3399.016 32 0.80 2.87 0.6102
245 4131.081 86 7.17 3.03 0.6257
245 4277.801 90 −0.04 2.59 0.5708
245 4278.821 43 −3.37 2.88 0.5773
245 4279.812 60 −1.15 2.79 0.6036
245 4285.838 63 4.57 3.37 0.5528
245 4294.865 88 6.86 3.01 0.7721
245 4304.846 50 5.53 2.55 0.4551
245 4305.851 01 0.00 2.30 0.5399
245 4306.849 62 −4.73 2.59 0.6472
245 4307.889 09 −4.51 2.74 0.2917
245 4308.868 95 −6.74 3.57 0.3674
245 4309.851 57 −0.65 2.87 1.2438
245 4310.844 23 −2.85 2.76 0.5632
245 4311.839 10 −13.70 2.95 0.5975
245 4312.834 56 −4.73 2.87 0.9761
245 4313.838 37 1.69 2.89 0.5117
245 4314.864 90 −0.83 3.16 0.6875
245 4455.140 57 5.31 2.97 0.7055
245 4455.146 74 2.30 2.99 0.7308
245 4491.045 32 0.12 2.54 0.5859
245 4546.047 64 0.62 2.33 0.5356
245 4600.955 56 −0.47 2.74 0.6064
245 4601.924 83 −2.04 1.99 0.6463
245 4701.748 52 2.92 2.85 0.4183
245 4701.755 98 4.35 2.91 0.5082
245 4702.741 86 0.80 2.87 0.7380
245 4702.749 38 −1.07 3.21 0.5221
245 4703.746 93 4.92 2.61 0.3905
245 4703.754 77 −0.73 2.59 0.6241
245 4704.733 49 7.15 2.83 0.6441
245 4704.741 71 −0.16 3.44 0.4719
245 4968.958 56 −2.12 2.71 0.6697
245 4968.965 72 −0.99 3.23 0.4139
245 5021.852 43 −3.12 3.86 0.4572
245 5049.794 14 −4.34 3.01 0.6463
245 5258.996 15 −12.23 2.82 0.4616
245 5313.909 21 9.88 2.59 0.5754
245 5371.791 82 0.60 2.68 0.3061
245 5637.047 57 −3.31 2.43 0.5640
245 5638.026 85 1.23 2.56 0.4916
245 5663.861 10 0.46 2.30 0.6717
245 5668.880 64 10.32 2.40 0.6443
245 5670.920 34 6.46 2.45 0.6590
245 5671.928 02 5.80 2.60 0.7044
245 5672.928 40 4.46 2.45 0.7519
245 5673.893 82 6.65 2.63 0.6778
245 5703.845 80 −6.13 2.80 0.5339
245 5704.761 19 −5.27 2.78 0.5667
245 5705.770 66 −7.64 2.52 0.6797
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