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Combining climate change, crop growth and crop disease

models to predict impacts of climate change on crop diseases

can guide planning of climate change adaptation strategies to

ensure future food security. This review summarises recent

developments in modelling climate change impacts on crop

diseases, emphasises some major challenges and highlights

recent trends. The use of multi-model ensembles in climate

change modelling and crop modelling is contributing towards

measures of uncertainty in climate change impact projections

but other aspects of uncertainty remain largely unexplored.

Impact assessments are still concentrated on few crops and

few diseases but are beginning to investigate arable crop

disease dynamics at the landscape level.

Addresses
1 School of Agriculture, Policy and Development, University of Reading,

Whiteknights, PO Box 237, Reading RG6 6AR, UK
2 Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
3 School of Life & Medical Sciences, University of Hertfordshire, Hatfield

AL10 9AB, UK

Corresponding author: Fitt, Bruce DL (b.fitt@herts.ac.uk)

Current Opinion in Plant Biology 2016, 32:101–109

This review comes from a themed issue on Biotic interactions

Edited by Consuelo M De Moraes and Mark C Mescher

For a complete overview see the Issue and the Editorial

Available online 27th July 2016

http://dx.doi.org/10.1016/j.pbi.2016.07.002

1369-5266/# 2016 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY license (http://creativecom-

mons.org/licenses/by/4.0/).

The importance of modelling impacts of
climate change on arable crop diseases
Climate change threatens crop yields, both directly

through changes in plant growth and production and

indirectly through impacts on crop diseases. It has been

estimated that changes in climate have already been

reducing global agricultural production by 1–5% per

decade over the last 30 years [1]. The greatest yield

reductions have been observed in tropical cereals such
§ This paper is part of a Virtual Special Issue based on the Current

Opinion Conference ‘Agriculture and Climate Change? Adapting crops

to increased uncertainty’, chaired by David Edwards and Giles Oldroyd

in 2015.
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as maize and rice. The trend of reduced production is

projected to continue in the future [2]. However, world

demand for staple crop products is predicted to increase

by 60% to feed the population expected by 2050 [3].

Food production is also being impacted by adaptations

towards a more sustainable biosphere, such as the expan-

sion of biofuel crops and solar farms that compete with

edible crops for land suitable for food production and the

decrease in chemical inputs in order to decrease risks to

ecosystem services.

Arable crop diseases cause yield losses estimated at 16%

globally for unprotected crops [4]. The control of crop

diseases therefore has a crucial role to play in enabling

high yields from crops and ensuring food security in the

future. As risks of decreases in crop yields increase due to

climate change and more variable weather patterns, it is

essential that crop disease losses are minimised.

Plant breeding for resistance and the development of new

chemical or biological controls for crop diseases are not

short-term processes. Therefore, decades can be needed

for strategies to be implemented. To guide strategies for

adaptation by the agricultural industry, it is essential to

project the impacts of climate change on severity of crop

disease epidemics.

Findings from recent climate change disease projection

work have been reviewed by Elad and Pertot [5] and by

Juroszek and von Teidemann [6��]. Climate change

impacts will differ between crops, diseases and geograph-

ic locations, with disease severity increasing in some

areas/crops and decreasing in others.

This review first summarises developments in modelling

climate change impacts on arable crop diseases over the

last two years. We then emphasise some of the major

challenges in crop disease modelling and recent work that

addresses these. Finally, we highlight a recent trend to

develop tools to investigate arable crop disease dynamics

at the landscape level.

Developments in modelling impact of climate
change on arable crop diseases
Climate change models are now readily available for a

series of standard climate change scenarios resulting from

different levels of anthropogenic CO2 release driven by a

new set of emission scenarios corresponding to new

Representative Concentration Pathways (RCPs) [7].
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102 Biotic interactions
These can be used to generate climate projections from a

series of different Global Circulation Models (GCMs) to

form multi-model ensembles. Temperature projections

are more robust than precipitation projections [8].

To account for expected variability in future weather [9],

crop and disease modellers are generating future ‘weath-

er’ rather than using mean climate shifts (e.g. in crop

modelling [10–13]; in crop disease modelling: see Table 1

and Figure 1). Uncertainties resulting from the projec-

tions of future climate change are being addressed in crop

disease modelling through the use of multiple GCMs

because climate change projections vary with different

climate models [14]. These projections by GCMs need to

be downscaled using weather generators and fed into

process-based crop simulation and disease models in

order to account for local variations in the weather.

Weather generators now available (e.g. LARS-WG [13];
Figure 1
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PRECIS [15]) allow ‘weather variables’ to be generated at

regional/local daily scales as inputs for crop and disease

models [16]. Launay et al. [17��] investigated five foliar

fungal diseases and concluded that use of weather vari-

ables over several years rather than overall mean changes

in climate was ‘crucial to model the effects of these

variations’. Projections of extreme weather events, how-

ever, are still in their infancy [7], although researchers are

recognising that extreme weather events will have large

impacts on disease severity and yield loss [18].

Climate change affects pathogen biology not only directly

but also indirectly through effects on host development

and phenology. Therefore, crop models are frequently

included within climate change impact assessments for

crop diseases in order to enable interactions between crop

phenology and pathogen development to be deduced and

impacts of diseases on crop yield to be examined [19–21].
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bined to produce projections of crop growth stages and disease
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Table 1

Climate change impacts on crop disease studies published between January 2014 and January 2016

Pathogen

group

Disease Pathogen Model components Comments Reference

Fungi Various diseases on

various hosts

Fusarium oxysporum

f. spp.

Two GCM ! CLIMEX Climate change impacts

on global distribution of a

pathogenic species

complex.

[68]

Fungi Fusarium head blight

on wheat

Fusarium spp. One GCM ! simulated

weather + crop model + disease

model.

Climate change impacts

in China.

[21]

Fungi Fusarium head blight

on wheat

Fusarium culmorum 11 GCM ensemble + anthesis

model + mycotoxin model.

Climate change impacts

on mycotoxin levels in

Scotland.

[32�]

Fungi Brown rust on wheat Puccinia recondita 15 GCM ! simulated

weather + disease model.

Climate change impacts

in Luxembourg.

[24]

Fungi Six soil-borne fungi:

three affecting

cereals,

three affecting

spring-sown

herbaceous crops

Fusarium nivale

Fusarium culmorum

Bipolaris sorokiniana

One GCM + soil conditions

model + disease model.

Climate change impacts

in Europe.

[69]

Pythium ultimum

Sclerotinia minor

Macrophomina

phaseolina

Fungi Leaf blast on rice Magnaporthe oryzae One GCM ! simulated

weather + crop model + disease

model.

Climate change impacts

in Tanzania.

Same disease can

increase in severity in

some areas and

decrease in others.

[19]

Bacteria Leaf blight on rice Xanthomonas oryzae

pv. oryzae

Fungi Leaf blast on rice Magnaporthe oryzae One GCM ! simulated

weather + disease model.

Climate change impacts

in South Korea.

[26�]

Bacteria Leaf blight on rice Xanthomonas oryzae

pv. oryzae

Fungi Leaf blast on rice Magnaporthe oryzae 11 GCMs and

ensemble ! simulated

weather + disease model.

Climate change impacts

in South Korea.

[31]

Bacteria Leaf blight on rice Xanthomonas oryzae

pv. oryzae

Fungi Phoma stem canker

on oilseed rape

Brown rust on wheat

Net blotch on barley

Leptosphaeria

maculans

Puccinia recondita

Pyrenophora teres

One GCM ! simulated

weather + infection model.

Climate change impacts

in France for five foliar

pathogens.

[17��]

Oomycetes Downy mildew on

grape

Potato late blight

Plasmopara viticola

Phytophthora

infestans

Oomycetes Downy mildew on

grape

Plasmopara viticola One GCM ! simulated

weather + crop model + disease

model.

Climate change impacts

in France.

[25]

Oomycetes Potato late blight Phytophthora

infestans

3 GCM ! monthly means + crop

model + disease model.

Global climate change

impacts.

[20]

Oomycetes Potato late blight Phytophthora

infestans

Weather data + 3 disease models. Not strictly a climate

change impact paper but

a comparison of different

disease models.

[70]
For example, when climate change impacts on Fusarium
head blight in UK wheat were first considered, projected

drier weather at current anthesis dates in June suggested

that disease severity would decrease [22]. However, the

addition of a crop model showed that the susceptible

growth stage (anthesis) would occur 2 weeks earlier, when

rainfall was still sufficient to facilitate infection.

Crop models are frequently process-based in design [23],

while both empirical [21,24] and process-based [25,26�]
disease models are in general use. Juroszek and von Tei-
www.sciencedirect.com 
demann [6��] found that temperature was the most widely

used environmental parameter in disease models, with leaf

wetness duration or another variable representing mois-

ture used if necessary. Process-based disease models are

particularly well-developed for inoculum potential and

infection success because of the need to enable farmers

to reduce costs and crop losses by making appropriate

interventions at optimal timings. Models that predict yield

loss are comparatively less reliable, partly because they

require accurate mathematical descriptions of all aspects of

disease epidemiology, crop physiology and host-pathogen
Current Opinion in Plant Biology 2016, 32:101–109
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Table 2

Examples of experimentation in free-air CO2 enrichment (FACE), controlled-environment (CE) or glasshouse facilities that will enhance

parameterisation of crop disease models

Experimental

facility

Climate change aspects Crop Disease and pathogen Comments Reference

Temp CO2 Ozone

FACE U Coffee Coffee rust (Hemileia vastatrix)

Cercospora leaf spot

(Cercospora coffeicola)

No effect of elevated CO2

on disease incidence

[71]

CE U U U Barley Powdery mildew (Blumeria

graminis)

Spot blotch (Bipolaris

sorokiniana)

Elevated CO2, O3 and

temperature, when applied

in isolation, gave different

effects on the two diseases

Unexpected interactions

between elevated CO2, O3

and temperature

[72�]

CE U Barley Yellow dwarf virus Elevated temperature

increased symptoms

[73]

CE U Maize Fusarium verticillioides Elevated CO2 increased

maize susceptibility and

fungal biomass

Mycotoxin levels unaltered

[56]

Glasshouse U U Wheat Fusarium crown rot (Fusarium

pseudograminearum)

Elevated CO2 increased

disease severity

[53]

Glasshouse U Wheat Fusarium crown rot (Fusarium

pseudograminearum)

Elevated temperature

reduced disease severity

[55]
interactions. Controlled environment, glasshouse and

free-air CO2 enrichment (FACE) experiments continue

to facilitate more accurate parameterisation of both crop

and disease models through investigation of temperature,

CO2 and ozone effects (Table 2).

The formation of the Agricultural Model Intercomparison

and Improvement Project (AgMIP [27,28]) has increased

interest in the use of multi-model ensembles. Ensembles

have been used in climate projections for some years. The

first large scale multi-model ensemble work has been done

for wheat growth models [10,29]. The median of a series of

models, calibrated for the same cropping area, was the

most reliable predictor of grain yield [30], whereas the

mean gave the most reliable prediction for grain protein

concentration. Other published ensembles for maize [11]

and rice [12] have shown that model-ensembles give more

reliable predictions than single models alone.

Climate model ensembles have already been used for

disease modelling [24,31,32�]. The use of disease-model

ensembles has not yet been implemented but this was

discussed at a satellite meeting to the 5th AgMIP Global

Workshop in Florida in February 2015 (Advancing Pest

and Disease Modelling: http://conference.ifas.ufl.edu/

pest/index.html).

Major challenges for modelling impacts of
climate change on arable crop diseases
The fact that multi-model ensembles are possible for some

crop and disease models emphasises the concentration of

research on few diseases of relatively few major crops,
Current Opinion in Plant Biology 2016, 32:101–109 
especially those of wheat, grape and oilseed rape [6��].
Most work has been done on fungal pathogens although

some recent work has been done with viral [33] and

bacterial [19] pathogens and on disease vectors [34�]. To

some extent, efforts and time are being wisely directed to

major staple crops. However, all are predominantly tem-

perate crops. Population expansion is greatest in the de-

veloping world, where other staple crops are grown and

climate change impacts on food security are likely to be

greatest [1]. In fact, climate change impacts are already

being experienced in Africa [35]. This region has already

been recognised as having the world’s greatest proportion

of food-insecure people.

In the southern hemisphere, it is likely that efforts are

being concentrated on solutions to current disease and

pest problems rather than directed at projections for the

future. A recent Climate Change, Agriculture and Food

Security (CCAFS) working paper [36] highlights the need

for trained plant pathologists, data gathering, modelling of

crop diseases and pests, and pre-emptive crop resistance

against serious new disease and pest threats to give Africa

the best support to maintain its food security. It does not

suggest research on climate change impacts on individual

diseases. This may be wise advice, since agricultural

catastrophes such as the world-wide loss of Gross Michel

bananas to Fusarium wilt, the threat of Fusarium oxy-
sporum subtropical race 4 to Cavendish bananas [37]

and the arrival of maize lethal necrosis in new areas have

had much larger effects on family and regional food

security and economies than gradual climate-related

changes in disease severity. Many of the worst crop
www.sciencedirect.com
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disease problems currently occurring in Africa are the

result of ‘first encounter’ events, including Phytophthora
megakarya on cocoa, cassava mosaic virus and cassava

brown streak virus [36].

The arrival of new pathogens highlighted in recent papers

[38,39] has been attributed to new climatic conditions

[40], trade movements [41,42], host shifts [43��,44] and

lack of indigenous host resistance [45] all contributing to a

trend towards pathogen saturation in both crops and

natural ecosystems [38]. Combined climate, crop growth

and disease modelling has been implemented in areas

where pathogens are not already present to emphasise the

need for quarantine procedures, pathologist training and

the introduction of crop resistance to slow the entry and

establishment of pathogens in new countries [45]. Model-

ling to predict new disease threats is expected to be

beneficial since many years are needed to prepare appro-

priate solutions. In Africa, for example, the development

time for a control practice for a new disease is estimated to

be 10–15 years [36]. A major challenge for plant pathol-

ogists is to expand work to include the major diseases of a

worldwide range of staple crops. Recent attempts to

group pathogens with similar epidemiological traits

[17��,46] and to develop generic disease risk assessments

may help to predict what will happen to a greater number

of diseases under climate change. However, disease se-

verity is often conditional on one or more absolutely

critical co-occurrences in host and pathogen phenology

that are difficult to include in generic models.

Another major challenge is the fact that the uncertainty

and reliability of models continues to be poorly reported

or inadequately emphasised. A special issue of Agricultur-
al and Forest Meteorology on Agricultural prediction using
climate model ensembles recently highlighted uncertainty in

crop and disease modelling. The use of multiple ‘years’ of

generated weather data partially accounts for uncertainty

in climate projections but there are few other instances of

stochastic modelling in disease work [47]. Gouache et al.
[48], examining climate change impacts on Zymoseptoria
tritici leaf blotch on winter wheat in France, used multiple

GCMs to generate climatic projections. Three sources of

uncertainty were considered: uncertainty in climate pro-

jections, uncertainty in disease parameter estimation and

the variance of residual error. Uncertainty in climate

projections contributed most to uncertainty in disease

predictions but interactions between causes of uncertain-

ty also made ‘a major contribution to overall variance’.

This appears to contradict the findings of the AgMIP

multi-model ensemble work on wheat [29] and on rice

[12], where the largest contribution to uncertainties was

due to variation among crop models rather than among

climate models. However, Gouache et al. [48] did not use

a crop model in their work.
www.sciencedirect.com 
Several other crop disease studies have now included

multiple GCMs (see Table 1). Adoption of a technique by

Mendlik and Gobiet [49�] for reducing the number of

GCMs in a climate model ensemble while maintaining

variability in model designs may increase the use of

multiple GCMs in modelling climate change impacts

on crop diseases.

Frequently, researchers have used different methods to

describe the fit of their models to their construction and

validation data without further attempts to quantify the

reliability of model predictions. Zhang et al. [21] exam-

ined their empirical model’s predictive capability for both

construction and validation data sets to show that model

performance was consistent but did not comment that the

model over-predicts low disease incidence. The need for

models to be assessed for their usability and validity was

highlighted by Cunniffe et al. [50��]. Kim et al. [26�] tested

their parameterisation of the process-based model EPIR-

ICE by examining whether the model exceeded a pre-set

tolerance threshold selected to assess whether the model

‘was sufficiently accurate for its intended purpose’. Yet for

findings from modelling to be of use for planners, clear

statements of the usefulness and reliability of model

outputs need to be made.

Some other aspects of climate change impacts have

received little attention to date and, therefore, offer

additional challenges to crop disease modellers. These

include the effects of climate change on host resistance

against pathogens [51–56]; the effects of climate change

on pathogen insensitivity to fungicides [57] and the

genetic adaptation of pathogens to changes in climate

[44,58]. An interesting tool has been published to exam-

ine management of fungicide resistance over time [59�]
but the model does not incorporate climate change

impacts that may modify the response of pathogens.

Work has begun at the crop level to examine impacts of

climate change on the balance between interacting path-

ogen species. Different pathogens can become dominant

because new pathogens reach new locations or new hosts

or because a previously unimportant pathogen becomes

dominant. Shifts in competition between organisms, both

pathogenic and commensal, both within the host and in

the host’s immediate environment, are beginning to

receive attention [60] but the interactive ecology of

microbial communities is difficult to study. Kemen

[43��] summarised process-based work done in this area

and discussed progress made at the microbe community

level, proposing that host-microbe interactions are strong-

ly affected by the presence and/or participation of other

microbes. Incorporating findings from microbial interac-

tions as they become available will offer another chal-

lenge to disease modellers.

Inter-disciplinary collaboration is challenging but is es-

pecially important in modelling impacts of climate
Current Opinion in Plant Biology 2016, 32:101–109
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change on crop diseases. There is a need to incorporate

advances in climate change and crop modelling into

disease models; to continue to construct models for

new host-pathogen systems; to calibrate and validate

these models through experimentation and long-term

data collections; to examine how pathogens, hosts and

landscapes might change in the future; and to take

account of pathosystem interactions with other organisms.

To facilitate information exchange, scientists should con-

sider carefully the use of keywords in publications. Dur-

ing the search for recent relevant papers for this article,

the keywords ‘climate change’ and ‘plant disease’ reliably

returned review articles but failed to locate much of the

relevant primary research. A move amongst research

funders to make project outcomes publicly available is

driving the expanding use of open access publishing but

has not yet resulted in the easy availability of research

data. An increase in free data repositories, which offer not

only safe storage of research data but also easy access

through DOI links publishable in primary research

papers, should aid future research.

Modelling impacts of climate change on
arable crop diseases at the landscape scale
Modelling is producing tools for policy planners that will

facilitate investigation of possible consequences of hu-

man adaptation to the threats to food security of climate

warming and diseases. This investigation needs to be

done at the landscape level since disease inoculum is

often widely dispersed.

Much has been said in recent reviews of food security

[61] about the need for sustainable systems, including

natural and agricultural ecosystems. With the almost

certain [7] increase in extreme weather, resilience is

likely to involve adaptation through diversification. This

will produce changes at the landscape and farm scales

that will have effects on disease incidence and severity.

Cropping changes will also occur due to the introduction

of new crops adapted to the changed climate, with or

without the loss of current crops. Skelsey and Newton

[32�] modelled the effects on Fusarium mycotoxin levels

in wheat of introducing maize into cropping rotations in

Scotland as the climate becomes more favourable for

maize. They estimated that projected decreases in rain

during wheat anthesis should offset the increased risk

resulting from maize debris being a more potent source

of Fusarium inoculum than wheat or barley debris.

Although it is difficult to foresee the effects of crop

yield, product demand and economics on farmer deci-

sion-making [62], modelling offers strategic planners the

opportunity to experiment with different cropping

regimes across a landscape to estimate potential impacts

on crop diseases.

A group from INRA, the French National Institute for

Agricultural Research, have developed a modelling
Current Opinion in Plant Biology 2016, 32:101–109 
framework that allows planners to assess the effects of

different crops and different crop aggregations within the

landscape on wind-dispersed foliar pathogens [63�,64].

Their model can also simulate the effects on epidemics of

spatial deployment strategies for cultivars with complete

or partial resistance. Although not yet expanded to exam-

ine effects over several years, the modelling suggests that

complete resistance results in best disease control when it

is deployed in mixed landscapes whereas partial resis-

tance is most effective when the crop host is aggregated in

different regions [64]. This finding is illustrated by the

effective deployment in Australia of oilseed rape resistant

R gene-mediated resistance against Leptosphaeria macu-
lans (phoma stem canker) through deployment of differ-

ent R gene combinations in different cropping regions

[65]. Since virulent races exist for all R genes deployed,

the cultivars with pyramided R genes can be described as

partially resistant. Similarly, Fabre et al. [66] considered

resistance deployment in the landscape. Modelling the

effects of R gene resistance deployment in the landscape

showed that using a mixture of resistant and susceptible

cultivars was effective in controlling foliar pathogens that

were spread by wind from sources outside the field.

Modelling over a series of years showed that deploying

a mixture of resistant and susceptible cultivars across the

landscape also reduced the likelihood of pathogen adap-

tation to deployed resistance. Pathosystems with differ-

ent epidemiological traits react differently at the

landscape level [67]. It is important that these traits

can be accurately represented in climate change impact

assessments.

Conclusions
Climate change impacts on crop disease are still being

studied for relatively few crops and few pathogens.

Uncertainties resulting from the projections of future

climate change are being addressed through the use of

multiple GCMs and multiple weather years. However,

other uncertainties inherent in crop disease models re-

main largely unexplored and unreported. There is still a

need to find methods to clearly describe the reliability of

projections to planners and climate change adaptation

strategists.

Other aspects of arable crop disease modelling, such as

the effects of interactions between pathogens and other

microbes, will require inter-disciplinary collaboration.

Recently developed tools that enable changes at land-

scape level to be incorporated into disease predictions

have already been used to investigate changes in crop

patterns and alternative deployments of host resistance.

Future studies to expand these landscape investigations

to include the effects of more adaptation strategies are

needed for climate change impact assessments for arable

crop diseases to contribute more widely to future needs in

food and environmental security.
www.sciencedirect.com
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