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Segmentation of functional parts in image series of functional activity is a common problem in neuro-
science. Here we apply regularized non-negative matrix factorization (rNMF) to extract glomeruli in intrin-
sic optical signal (IOS) images of the olfactory bulb. Regularization allows us to incorporate prior knowledge
about the spatio-temporal characteristics of glomerular signals. We demonstrate how to identify suitable
regularization parameters on a surrogate dataset. With appropriate regularization segmentation by rNMF
is more resilient to noise and requires fewer observations than conventional spatial independent compo-
nent analysis (sICA). We validate our approach in experimental data using anatomical outlines of glomeruli
obtained by 2-photon imaging of resting synapto-pHluorin fluorescence. Taken together, we show that rNMF
provides a straightforward method for problem tailored source separation that enables reliable automatic seg-
mentation of functional neural images, with particular benefit in situations with low signal-to-noise ratio as in
IOS imaging.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
Introduction

Measuring the activity of large neuronal ensembles is a fundamental
problem in neuroscience. Functional optical imaging is a widely used
tool to measure spatio-temporal responses of neuronal ensembles
distributed over extended brain areas. Many neuroscientific questions
require identification of regions in the imaged areas which exhibit cor-
related activity, for example groups of neurons which are functionally
related or anatomically grouped. For an efficient work-flow it is desir-
able that large volumes of recorded ensemble activity are automatically
disaggregated into functional/anatomical parts, with each part charac-
terized by its associated pixels (spatial location) and their common
time-course (Dorostkar et al., 2010). The automatic segmentation of
neuronal activity is not only important to increase experimental
throughput, but also to increase the reproducibility and reliability of
the results.

For instance, this problem arises in extracting individual glomeruli
and their response time-course from optical recordings of the olfactory
bulb, a system extensively studied using functional imaging (for a
tical Neuroscience, Institute of

er).

. This is an open access article under
review see Pain et al., 2011). Glomeruli are the first relay station in the
olfactory pathway, with each glomerulus relaying the convergent
input of a distinct type of olfactory sensory neurons (OSNs) expressing
the same olfactory receptor (Firestein, 2001). Thus, the input to the glo-
merular ensemble represents the basic sensory representation of the ol-
factory world. Our understanding of this representation is still
rudimentary and disputed (Ma et al., 2012; Murthy, 2011; Soucy et al.,
2009). This circumstance demands large-scale studies of chemical re-
ceptive fields of glomeruli and their spatial arrangement, a task conve-
niently achieved using optical imaging of neuronal activity.

A well established technique for imaging the dorsal olfactory bulb is
to measure reflectance at about 700 nm, the so-called intrinsic optical
signal (IOS) (Rubin and Katz, 1999).

The IOS comprises both a global diffuse signal and a local signal orig-
inating in the glomeruli (Meister and Bonhoeffer, 2001). The local signal
is related toOSN glutamate release and its uptake by astrocytes (Gurden
et al., 2006). It has been demonstrated that the IOS corresponds well to
both pre-synaptic calcium signals (Wachowiak and Cohen, 2003) and
pre-synaptic exocytosis measured using synapto-pHluorin (Soucy
et al., 2009). However, the intrinsic optical signal is by a factor of three
to ten (calcium) up to twenty (synapto-pHluorin) weaker, implying a
smaller signal-to-noise ratio which poses a significant challenge to
data analysis. The advantage of IOS imaging is that it doesn't require
an ion-sensitive dye, which significantly simplifies the experimental
procedure.
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A range of algorithms and techniques have been applied with the
aim of identifying both the location of glomeruli and the time course
of their activation from the noisy optical imaging data. In the most
straightforward approach the image is de-noised and spatial regions
of interest are selected as local maxima of odor induced activation,
crossing a defined threshold (Bathellier et al., 2007; Belluscio and
Katz, 2001; Ma et al., 2012; Meister and Bonhoeffer, 2001; Wachowiak
and Cohen, 2001). The corresponding time courses are then extracted
from the surrounding pixels. However, choosing the right threshold
is difficult. A high threshold delivers robust segmentation of single
spatial peaks in the signal, but small activations may not be detected.
In contrast, neighboring strong response regions merge when using
a low threshold (Dorostkar et al., 2010). Furthermore biological
responses to stimuli are often superimposed onto biological and
technical noise sources (Grinvald et al., 1999). The manual choice
of a threshold may also complicate the reproduction of results in in-
dependent experiments even if experimental conditions vary only
slightly.

Techniques for blind source separation (BSS) offer an elegant way
out of this dilemma. Using BSS techniques it is possible to separate
distinct sources which compose a signal, allowing the simultaneous
determination of spatial extent and temporal response of the sources
(i.e. glomeruli in our case). For example spatial independent component
analysis (sICA) was successfully applied to analyze IOS odor responses
in the mouse olfactory bulb (Reidl et al., 2007) and to extract glomeruli
in calcium imaging experiments in the honeybee antennal lobe
(Strauch and Galizia, 2012). The sICA approach relies on the spatial
structures of the sources being independent, i.e. that they are located
at different positions or have different shapes (e.g., blood vessels
vs. glomeruli). Instead of assuming spatial independence, other
approaches in optical imaging segmentation have been proposed
which separate sources by assuming temporal (Strauch and Galizia,
2012) or spatio-temporal (Mukamel et al., 2009) independence. But
since glomeruli can exhibit largely overlapping ligand spectra and
hence correlated odor responses (Ma et al., 2012), the assumption of
temporal independence is violated and thus requires at least an addi-
tional step of image segmentation. Also the convex cone analysis
(Strauch et al., 2012) suffers from the demand of additional post-
processing steps.

We propose regularized non-negative matrix factorization (rNMF)
(Cichocki and Anh-Huy, 2009) as an alternative approach to identify
the spatial location and temporal activity of glomeruli in the olfactory
bulb. rNMF allows incorporating a priori knowledge about the source
characteristics through appropriate regularization terms. In our case,
this knowledge comprises both the spatial arrangement of glomeruli,
largely side to side with a diameter of 40–190 mm (Royet et al., 1988),
and the excitatory response characteristic of OSNs to odor stimulation
(Nara et al., 2011). Because the accuracy of BSS depends critically on
the suitability of the assumption underlying the factorization algorithm,
the incorporation of prior knowledge renders rNMF a well suited
approach for glomerulus extraction.

In this study, we introduce regularization terms specific to our BSS
problem of identifying glomeruli and extracting their response time-
courses in IOS imaging. We elucidate how suitable parameters can be
chosen in a data-driven fashion. In addition, we compare the rNMF ap-
proach to conventional sICA and examine the application domain of
both approaches.
Materials and methods

Mathematical notation

Matrices are denoted in bold capital letters and bold small letters in-
dicate column vectors. Therefore aTx represents the dot product and axT

the outer product.
Experiments

Functional intrinsic optical signal imaging
Three OMP-SpH-mice (9–22 weeks) (Bozza et al., 2004) were anaes-

thetized using urethane (1.5 g/kg i.p.). Anaesthetic was supplemented
throughout the experiments and the body temperature was kept be-
tween 36.5 °C and 37.5 °C using a heating pad and a rectal probe. For im-
aging a craniotomy over one olfactory bulbwas cut. The duramater was
removed and the imaging chamber was filled with agar (1.5%) and cov-
eredwith a glass cover slip. The prepared skull was fixatedwith cement
to a metal plate under the microscope. All animal care and procedures
were in accordancewith the animal ethics guidelines of theMax Planck
Society.

Instant JChem was used for searching, managing and property pre-
diction of odorants in a chemical database (Instant JChem 5.9.4, 2012,
ChemAxon, http://www.chemaxon.com).

Odors were presented with a two armed robot (Combipal, CTC-
Analytics, Zwingen, Switzerland) using the Software Chronos (Axel
Semrau, Sprockhoevel, Germany). 2.5 ml of the odor headspace
was injected into a constant carrier flow of filtered and humidified
air (21/min) towards the mouse's nose. After each odor presentation
the syringe used for odor transfer was flushed with nitrogen for 72 s
to minimize contamination. Odor responses were recorded in the
dorsal olfactory bulb for 12 s at 5 Hz using a macroscope (Pentax
Zoom lens 12–48 mm, f = 1:1.0 and Nikkor 135 mm, f = 1:2.0)
and an Orca-R2 camera (Hamamatsu, Japan; 1024 × 1344 pixels,
field of view 1.63 mm × 1.24 mm) under illumination with red light
(690 nm). Odor molecules reached the nose 2.5 ± 0.3 s after recording
onset as measured by a photoionization detector (Aurora Scientific,
Canada). In each animal the response to a stimulus set of 46 to 47
odors was recorded (for odor list see supplemental table T1). Each
odor stimuluswas repeated at least twice and stimuli were represented
in a pseudo-randomized sequence. Before and after each presentation
of the entire stimulus set, the pattern of blood vessels was recorded
using green illumination (546 nm, ‘green image’) and controlled for
shifts to exclude movement artifacts.

Anatomical SpH imaging
In addition to functional imaging we performed an anatomical

scan in all mice. Synapto-pHluorin labeled OB glomeruli were im-
aged using a 2-photon laser scanning microscope (Prairie Technolo-
gies, Middleton, TN, USA), a 16× water immersion objective (N.A.
0.8, Nikon, back aperture overfilled) and a MaiTai DeepSee laser
(50–170 mW, tuned to 880 nm, 80 MHz repetition rate of pulses
120 fs in length; Spectra-Physics/Newport, Santa Clara, CA, USA). Im-
ages (512 × 512 pixels) were acquired at 3 μm steps in z-direction.
Multiple Z-stacks were stitched and aligned to the functional imag-
ing data using custom written Matlab scripts. For alignment we
used the blood vessel pattern obtained by illuminating the olfactory
bulb using the ‘green image’ recorded at a wavelength of 546 nm.We
manually outlined glomeruli in the Z-stacks (see Supplementary
movie). To avoid a bias in the outlining procedure the glomeruli
were identified with the experimenter blinded to the results of
factorization.

Data preprocessing
To increase signal-to-noise ratio and reduce computational load the

raw data was filtered by binning with an 8 × 8 pixel spatial and a 12
frame temporalwindow. Then theodor induced activationwas calculat-
ed as the relative decrease of reflectance− ΔR/R=− (R− R0)/R. R0 is
the mean reflectance on the first 2 s after recording onset, well before
the odors reached the nose (see above). Furthermore the data was spa-
tially bandpass filtered with two Gaussian filters (σlow = 10 pixels,
σhigh = 1 pixels) and down-sampled by a factor of 2. The final resolu-
tion of the measurement time series was thus 64 × 84 pixels at
0.42 Hz. The concatenation of the preprocessed frames for all odors

http://www.chemaxon.com


281J. Soelter et al. / NeuroImage 98 (2014) 279–288
leads to the measurement matrix Y ∈ RF × P with element Yf,p being the
observed value of the pth pixel in the fth frame. Every fifth frame is the
start of a new odor oi, in the following denoted as f oi .

After preprocessing we estimated the remaining pixel noise as the
standard deviation of pixel activation in response to the ‘non-odor’
Argon.

Surrogate data

To evaluate the factorization performance we created surrogate
datasets resembling the main characteristics of the biological case.
That is we randomly placed 40 sources side by side on a regular 9 ×
(a)

(d)

(e)

(f)

(b)

Fig. 1. Surrogate data. (a) 40 Gaussian shaped sources randomly placed on a regular 9 × 9
indicate half maximum. (b) Distribution of per-stimulus peak activations (in arbitrary uni
relations ρ used to induce temporal correlation within four groups of sources. (c) Six-poin
tivation time series of a source instance (50 odors in 300 frames f). (e) Surrogate signal for
(f) Left panels: recovered source in rNMF (top) and sICA (bottom). Right panels: reconstru
upper left corners.
9 grid in a 50 × 50 pixel image (Fig. 1a). A source s contributes
to the activation of a pixel p with a decaying pixel participation xs
around the source's center xs,p = exp(−0.1(p − ps

center)2)
(Fig. 1d). For a set of i = 1, … n surrogate stimuli oi, we drew
peak activations aoi ;s from a gamma distribution (μ = 0.2, σ =
0.28) (Fig. 1b), resulting in a narrowly tuned response spectrum
specs ¼ ao1 ;s; ao2 ;s;…; aon ;s

� �
. A temporal correlation between groups

of sources, as depicted in Fig. 1b, was introduced via a Gaussian
copula (Nelsen, 1998). Furthermore each stimulus response was
expanded to a six frame time series mimicking the shape of an
experimentally observed time course (Fig. 1c). The concatenation
of these single stimuli responses yielded the overall time series as
(c)

grid in a 50 × 50 pixel image. Crosses mark centers of pixel participation and circles
ts au) (gamma distribution with μ = 0.2, σ = 0.28). Inset: Gaussian copula with cor-
t model time-course for stimulus activation. (d) Pixel participation (left) and full ac-
five example stimuli at peak activation, including gaussian pixel noise (σnoise = 0.2).
cted source activation time series. Temporal correlation rtmp to true source is given in
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of a source s, modeling the response of a single glomerulus through-
out a series of measurements. Finally the summed activation of all
sources gave the overall spatio-temporal observation Y = ∑s asxsT +
N additionally corrupted by gaussian pixel noise Nf ;p∈N 0;σnoiseð Þ
(Fig. 1e).

Matrix factorization

The objective of matrix factorization is to obtain a decomposition of
observation Y into K components with time-courses Â∈RF�K and pixel
participations X̂∈RK�P. Therein â f ;k is the activation value of component
k in the fth frame and x̂k;p the participation of the pth pixel in it. Accord-
ingly âk is the full time-course of this component and x̂k the participation
strength for all pixels. The reconstruction of a measurement is then

given by Ŷ ¼ ∑kâkx̂
T
k ¼ ÂX̂ and a measurement is described as its re-

construction and the unexplained residual data Y ¼ ÂX̂þ R. After fac-
torization we rescaled x̂0

k ¼ x̂k=max x̂kÞð and â0k ¼ max x̂kð Þ � âk which

leaves the contribution of a component â0kx̂
0T
k ¼ âkx̂

T
k invariant and

allows for reading the pixel-participation as relative strength of partici-
pation in the common time series.

Spatial ICA (sICA)
In sICA, factorization is performed under the objective that all pixel

participations x̂k are mutually independent. We employed the FastICA
implementation of scikit-learn (Pedregosa et al., 2011) to obtain such
a factorization. First the data is whitened and reduced to K components
via principal component analysis. The choice of K determines the num-
ber of unique components extracted by ICA. The resulting factorization
Y = APCAXPCA + R has minimal variance in residual R and orthogonal
pixel participations xkPCA of zero mean and unit variances. To obtain
pixel participations x̂k which are not only uncorrelated but indepen-
dent, FastICA estimates an unmixing matrix W maximizing the
nongaussianity/negentropy of the ‘unmixed’ components X̂ ¼ WXPCA

(Hyvärinen, 1999). This yields thefinal factorizationY ¼ ÂX̂þ R ¼ APCA

W−1WXPCA þ R.

Regularized NMF (rNMF)
In non-negative matrix factorization the values of factorization are

restricted to be positive (af,k ≥ 0, xk,p ≥ 0 ∀ f, k, p). Positive pixel partic-
ipations enable straightforward physiological interpretation, reading
the pixel values in each component as contribution values of the
extracted physiological source. Positive time-courses reflect the as-
sumption that source responses are excitatory. To obtain such a factor-
ization the HALS algorithm iteratively minimizes the reconstruction

error R ¼ Y−ÂX̂
��� ������ ���2

F
under the non-negativity constraint (Cichocki

and Anh-Huy, 2009), with ‖‖F denoting the Frobenius Norm. To further
constrain the factorization to known characteristics of the hidden sources
the algorithm allows the imposition of additional regularization to the es-
timation. This is achievedby jointlyminimizing the reconstruction errorR

together with a constraint C in the form Y−ÂX̂
��� ������ ���2

F
þ αC Â; X̂

� �
, with α

determining their trade off.
In general there is no unique solution of the NMF problem

(Donoho and Stodden, 2004). Especially if two sources have a similar
activation profile, a valid factorization would be a component
reflecting the common ground activation and components contain-
ing the deviation.

To avoid the explanation of pixel group activations inmore than one

component, a good solution X̂ contains only minimal off-diagonal ele-

ments in the components' spatial overlap matrix X̂X̂
T
, leading to the

global sparseness regularization term Csp X̂
� �

¼ ∑ j∑k≠ jx̂ jx̂k (Chen

and Cichocki, 2005). This term reflects the assumption that glomerular
signals recorded by IOS imaging show only weak overlap. As a further
physiological constraint we took into account that neighboring pixels
are likely to belong to the same source. This was reflected in a smooth-
ness regularization,minimizing the spatial variation of each component

Csm ¼ ∑k∑p x̂k;p−lTp x̂k

� �2
with lp being the neighborhood vector of

the pth pixel reflecting its 2D connectivity (Cichocki and Anh-Huy,
2009). Taking both regularizations together, a solution is preferred
where the activation of a pixel is either attributed to a single source or
the mixed signal of neighboring sources.

We used the hierarchical alternating least squares (HALS) frame-
work (Cichocki and Anh-Huy, 2009) to optimize our regularized objec-
tive function. The full algorithm is provided in Appendix A.

The HALS algorithm can be initialized with any guess of Â and X̂. We
chose a deterministic approach to obtain reproducible results and avoid
any chance effects of random initialization (see Appendix B). In detail,
we started with the pixel with the maximal peak activation in the
signal and selected its time-course to initialize the first component.
Then the participation of all pixels in this time-course was calculated
and their contributions to the signal was subtracted from the data to
obtain the unexplained residuals R ¼ Y−âkx̂

T
k . We repeated this pro-

cedure on the residuals R until we initialized all k components. This
approach is similar to convex cone analysis (Strauch et al., 2012).
Strauch et al. selected the pixel with the highest euclidean norm, es-
sentially choosing the pixel with the highest variance. We instead
chose the maximum norm (highest peak activation) to address
the expected sources' activation characteristics of few but strong
(i.e. sparse) activations.

Sequential compositions of rNMF and sICA

Both sICA and rNMF might provide complementary aspects of a
solution. Therefore we created various sequential compositions of
these approaches. The first composition we assessed was to perform
one approach on the reconstructed data Ŷ ¼ ÂX̂ ¼ Y−R of the other
one. It implies the assumption that the residual R of the first factoriza-
tion mainly contains noise, and removing it is equivalent to de-noising
the data.

The second compositionwe usedwas to initialize rNMF by the recti-
fied factorization [XsICA]+, [AsICA]+ of sICA. Vice versa, sICA was per-
formed directly on the pixel participation XrNMF of rNMF (instead of
performing it on the data Y). This procedure yielded a total of four se-
quential compositions of rNMF and sICA: 1) rNMF initialized with the
rectified sICA components, 2) rNMF performed on the sICA reconstruc-
tion (‘de-noising by sICA’), 3) sICA performed on pixel participations
obtained with rNMF, and 4) sICA performed on rNMF reconstructions
(‘de-noising by rNMF’).

Performance criteria

We employed different measures to evaluate the performance
of factorization. In rNMF we estimated the efficiency of the sparse-
ness constraint by calculating the spatial correlation (pixel-wise
Pearson's r) of components. Especially the highest correlation rcomp

k ¼
max jr x̂k; x̂ j

� �
highlights shared explanation of pixel groups in the fac-

torization, which is in opposition to the assumption of locally sparse
signals.

In case of the surrogate dataset where the ground truth is known
we furthermore directly assessed how well the true sources were
reconstructed in factorization. Therefore each source was assigned to
the component to which it exhibited the highest spatial correlationes ¼
argmaxir x̂i;xsð Þ. The recovery error of a source was then calculated as
the relative mean squared error of reconstruction for all time-points

and pixels MSEs ¼ ∑ f ;p a f ;sxs;p−â f ;~sx̂~s;p
� �2

=∑ f ;p af ;sxs;p
� �2 . As x̂~s in

sICA exhibits small but many non-local values (see Fig. 1f), this mea-
sure would indicate worse performance than actually could be
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achieved by simple post-processing like thresholding. To ensure a fair
performance comparison between sICA and rNMF, we therefore
accounted for potential post-processing improvements by calculating

the sICA recovery error only for the local source region MSEsICAloc
s ¼

∑ f ;ploc af ;sxs;ploc−â f ;~sx̂~s;ploc
� �2

=∑ f ;ploc af ;sxs;ploc
� �2

for pixels ploc =

{p|xs,p N 0.05} which have a substantial participation in the original
source. Instead of recovery error, we will report the counterpart source
recovery SR = 1 − MSE. Furthermore we characterized coincidence of
source and matched component by evaluating their mutual spatial
and temporal correlation, rspts ¼ r x̂~s;xsð Þ and rtmp

s ¼ r â~s; asð Þ.
For the experimentally obtained IOS data the ground truth is

unknown. Nevertheless we were able to utilize the exactly defined
experimental design of repeated stimuli and the generally high
reproducibility of odor responses on single trial basis (Spors and
Grinvald, 2002) for evaluating temporal characteristics of a component.
For each component k we calculated its response spectrum speck ¼
ao1 ;k; ao2 ;k;…; aon ;k
� �

to the first and second stimulus repetition. The re-
sponse to an odor oi was the mean activation 4.8 s–12 s after odor mea-

surement onset: aoi ;k ¼ ∑ f oiþ4

f¼ f oiþ2â f ;k=3. The trial-to-trial correlation of

response spectra rk
t2t = r(speck1st, speck2nd) reflects then the stimulus cor-

related fraction of activation in the component. Low rk
t2t indicates sources

with weak coupling to odor stimulation, for example blood vessels.

Source code

Source code (Python) for performing rNMF, including a GUI ver-
sion, is available online at https://github.com/jansoe/FUImaging/
tree/Neuroimage2014. In the "examples" subfolder of this repository,
we provide IPython Notebooks to reproduce the data analysis per-
formed in this manuscript. Supplemental file 3 contains the necessary
data. Online inspection of this code is possible at http://nbviewer.
ipython.org/github/jansoe/FUImaging/blob/master/examples/
IOSsegmentation/regNMF.ipynb.

Results

The purpose of this studywas to incorporate appropriate regulariza-
tion in the NMF framework to improve automatic segmentation
of glomeruli in the mouse olfactory bulb in IOS imaging. We first use
surrogate data to analyze the benefits of rNMF, including the
performance-critical choice of appropriate regularization. In a practical
IOS imaging scenario we illustrate the capability of rNMF to infer glo-
merular positions and responses, and verify the results using anatomical
measurements. At all stages, we compare the performance of the rNMF
approach to conventional sICA.

Segmentation of surrogate data

It is generally difficult to assess factorization performance for
experimentally obtained imaging data because the ground truth is un-
known. To obtain nevertheless a detailed picture on the terms of perfor-
mance for rNMF and sICA we constructed a parameterized surrogate
dataset in which we have full control over the sources composing the
signal. With this dataset we could address two important questions:
First, what is the influence of method inherent parameters and how
can we choose their values for a given dataset? And second, what is
the application domain of both methods with respect to strength of
pixel noise and number ofmeasured stimuli? To answer these questions
we constructed surrogate sources resembling the main characteristics
of our biological object of research. Surrogate glomeruli are arranged
side by side with overlapping spatial signal distribution (Fig. 1a). This
induces a spatial correlation of 0.29, i.e. a small dependence, to neigh-
boring sources. Their response spectra are narrowly tuned and groups
of glomeruli exhibit correlation in their response spectra (Fig. 1b).
Each glomerulus rises to peak activation with a model time-course
that mimics measured response dynamics (Fig. 1c). The data to enter
factorization is the concurrent observation of 40 glomeruli in response
to nstim stimuli (e.g. odors) corrupted by additional pixel noise σnoise

(Fig. 1e).
We started our analysis with a dataset roughlymimicking the proper-

ties of our intrinsic optical signal (IOS) imaging datawith nstim=50 stim-
ulus observations and a noise level of σnoise = 0.2. Fig. 1f shows an
example of a recovered source from both rNMF (αsm = 2, αsp = 0.5)
and sICA, illustrating the general characteristics of themethods. rNMF in-
deed showed the desired properties of a localized, sparse and smooth
pixel participation, accurately reproducing the spatial and temporal char-
acteristics of the source. In contrast plain sICA (with no additional pro-
cessing applied) generates more holistic pixel participations, containing
global noise contributions besides the local source contribution. While
the non-local aspects could probably be mitigated using suitable post-
processing, this result points out a more noisy reconstruction of the acti-
vation courses by sICA, especially for weaker signals.

Choice of regularization parameters
The outcome of rNMF factorization depends on the choice of regular-

ization. On the basis of problem-specific knowledge we devised two reg-
ularization terms on the basis of expected source characteristics: spatial
sparseness and spatial smoothness (see Materials and methods). The
relative influence of those regularization terms is governed by the param-
eters αsp (sparseness) and αsm (smoothness). We systematically evaluat-
ed their effect on factorization results on the surrogate data in order to
provide a heuristic for choosing useful parameter values.

We first started with the parameter for smoothness regulariza-
tion αsm. With αsm = αsp = 0, that is without any regularization,
pixel participations of the NMF components spread across the
whole image, containing small scale structures of one pixel size.
These small scale structures progressively disappeared as we in-
creased the smoothness regularization to αsm = 8 (Fig. 2a). None-
theless, the extracted components contained contributions from
different sources even with strong smoothness regularization.
Therefore we introduced sparseness regularization, which controls
the number of components a pixel is participating through the pa-
rameter αsp. Withmoderate regularization (αsp = 0.5), a component
exactly described a single source (Fig. 2b, left panel). Setting its value
too high (e.g. αsp = 4) resulted in components covering only part of a
source, as any overlap of components is prevented by the regularization
(Fig. 2b, right panel).

To further quantify the effect of sparseness regularization we
employed two measures. First, we calculated the recovery of the actual
surrogate sources by the components, SRk. Second, wemeasured shared
explanation of pixel groups in multiple components via spatial correla-
tion between components rkcomp (seeMaterials andmethods). This is an
uninformed measure not depending on any knowledge of actual
sources, and hence is also applicable when the ground truth is not
known, i.e. in real experimental data.

We found that themean source recovery SRk, starting at almost zero
without any sparseness regulation, increased to a maximum at about
αsp = 0.25 (2−2) and then decreased again (Fig. 2c). In contrast, the
maximal mutual correlation between components rkcomp started to de-
crease to zero at sparseness regularization values of αsp N 0.125 (2−3)
(Fig. 2c). The range of maximal source recovery was thus in a regime
where all strong component correlations became eliminated but some
residual correlation was left. This reflects the fact that neighboring
sources actually have a spatial correlation of r=0.26 due to their spatial
overlap. The interdependency of both measures suggests the simple
heuristic to choose αsp in a regimewhere spatial component correlation
starts to be significantly reduced. In the following we implemented
this by choosing αsp

opt as the first value of αsp where maxkrkcomp drops
below 0.5.

https://github.com/jansoe/FUImaging/tree/Neuroimage2014
https://github.com/jansoe/FUImaging/tree/Neuroimage2014
http://nbviewer.ipython.org/github/jansoe/FUImaging/blob/master/examples/IOSsegmentation/regNMF.ipynb
http://nbviewer.ipython.org/github/jansoe/FUImaging/blob/master/examples/IOSsegmentation/regNMF.ipynb
http://nbviewer.ipython.org/github/jansoe/FUImaging/blob/master/examples/IOSsegmentation/regNMF.ipynb
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Fig. 2. Regularization parameter choice for surrogate data set (nstim = 50, σnoise = 0.2). (a) Effect of smoothness regularization parameter αsm on an rNMF-extracted compo-
nent (k = 80, αsp = 0). (b) Effect of sparseness regularization through αsp on the rNMF component (k = 80, αsm = 2). (c) Maximal spatial component correlation rcomp

and standard deviation for five different dataset instances (blue) respectively mean recovery SRk (green) in dependence of αsp (k = 80, αsm = 2). (d) Mean source recovery
SR in dependence of number of components k and smoothness regularization αsm. (e) Spatial and temporal correlation of matched components (k = 80, αsm = 2, αsp =
0.5) to 200 sources of five dataset instances. The color of each dot indicates the corresponding SR value (colorbar see (d)). Histograms on axes depict per-axis marginal
distributions.
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We next asked how sensitive the results are on the initial choice of
smoothness regularization αsm and number of components k. Setting
αsp=αsp

opt according to the above derivedheuristic, the factorization per-
formance was robust to the exact choice of k as long as it substantially
exceeded the number of sources, e.g. by a factor of 1.5 to 3 (Fig. 2d).
With respect to smoothness regularization the best results were obtain-
ed for values of αsm between 0.5 and 2. This is a regime where most, but
not all small scale structures are removed.

Taken together, we suggest the following heuristic to choose rNMF
parameters: set the number of components k well above the number
of expected sources (as a rule of thumb a factor of two), tune smooth-
ness regularization to just remove most small scale structures and ad-
just sparseness regularization to just remove any strong component
correlation.

With parameters corresponding to these heuristics (k=80,αsm=2,
αsp = αsp

opt = 0.5) we obtained near optimal factorizations of the surro-
gate data with very good source recovery. This especially implied an ex-
tremely high temporal accuracy with 99.5% of components exhibiting a
temporal correlation to their corresponding source higher than 0.9.
Fig. 2e shows that for components with moderate source recovery
values the temporal correlation to the source was always larger than
0.85.

Comparison of rNMF and sICA
Having demonstrated the benefits of appropriate regularization

in rNMF, we next compare the performance of rNMF to that of con-
ventional sICA on the surrogate data set. In sICA both spatial and
temporal reconstruction of sources were more noisy, as already
pointed out in the example above (cf. Fig. 1f). Due to the many but
small non-local pixel participation values, the performance measure
we used for rNMFmight underestimate sICA's recovery performance
compared to what could be achieved by simple post-processing like
thresholding. To account for such post-processing and enable a fair
comparison we only computed source recovery for localized sICA
components (sICAloc, see Materials and methods). Nonetheless
sICAloc components showed significantly lower source recovery
than rNMF components (Fig. 3a) (p = 4 ∗ 10−41, Kolmogorov–
Smirnov test). This result was independent of the number of compo-
nents k chosen to initialize the method (Fig. 3b). In particular, rNMF
outperformed sICA regarding the reconstruction of the true time
course of the sources, as measured by the temporal correlation rtmp

(Fig. 3c).
In general matrix factorization consists of the objective function

to be optimized and the optimization procedure thereof. In FastICA
the optimization procedure is further sub-divided in a first step
of data reduction to k components via PCA and subsequent optimiza-
tion of the component's independence. To better understand
the particular influence of these steps we performed various sequen-
tial combinations of rNMF and sICA (see Materials and methods).
Initializing rNMF with sICA components had no effect on recovery
performance (Fig. 3d, sICA ini). In contrast, recovery was impaired
when rNMF was applied on the data reconstruction from the sICA
factorization (Fig. 3d, sICA dat). Since the sICA dat condition implies
removing the part of the data that sICA reconstruction did not
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Fig. 3. Comparison of rNMF and sICA performance in source reconstruction. Data is pooled for five independently drawn surrogate datasets. (a) Histogramof source recovery values SRk for
rNMF (solid gray, k=80, αsm= 2,αsp= 0.5) and localized sICA components sICAloc (black line, k=80). (b) Dependence ofmean source recovery SRk on the number of components k in
the surrogate data. (c) Temporal correlation of rNMF components rtmprNMF vs. rtmpsICA of sICA components. (d,e) Violin plots of distribution on source recovery values SRk for (d) plain rNMF,
rNMF initialized with sICA components (sICA ini) and rNMF performed on sICA data reconstruction (sICA dat) and (e) for plain sICA, sICA performed on pixel participation of rNMF com-
ponents (rNMF init) and sICA performed on rNMFdata reconstruction (rNMF dat). (f,g)Mean source recovery SRk in (f) rNMF and (g) sICAloc for different amounts of pixel noise σnoise and
number of stimuli used for dataset generation nstim.
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explain (the residual), this effect shows that in sICA part of the sparse
signal is lost in the noise due to the variance driven dimensionality
reduction of PCA. We also evaluated the reverse procedures, i.e. ini-
tializing sICA with rNMF pixel participations (Fig. 3e, rNMF ini),
and performing sICA on rNMF reconstructions (Fig. 3e, rNMF dat).
We found that both procedures improved the performance of plain
sICA, showing that de-noising the data with rNMF is beneficial for
sICA segmentation. On the other hand, the resulting sICA segmenta-
tion is worse than the results of the prior rNMF step, i.e. before apply-
ing sICA. This indicates that the objective function of rNMF better
suits the source characteristics than the spatial independence objec-
tive of sICA.

Finally we asked how dataset statistics influenced the performance
of rNMF and sICA.

In particularwe asked towhich extent themethodswere affected by
noise and the number of stimuli used for dataset generation (nstim).
Both rNMF and sICA performed well in low noise regimes and when
the number of stimuli was larger than the number of sources (Figs. 3f,
g). However, rNMFwasmore resilient to pixel noise and also coped bet-
ter with the ‘overcomplete’ case when the number of stimuli nstim was
smaller than the number of sources (which was set to 40 in all exam-
ples). This result points out that the rNMF method is particularly suited
to studying odormaps in the olfactory bulbwithwide-field IOS imaging,
when the expected number of sources (glomeruli) is in the same range
or greater than the number of stimuli (unique odorants) used in one re-
cording session.
In-vivo imaging data

The surrogate data provided insight into the application domain
of the methods and yielded a heuristic for parameter choice. But ex-
perimentally obtained in-vivo IOS data is more complex than the sur-
rogate data. With respect to spatial characteristics, glomeruli have
varying sizes and shapes and also the exact spatial signal distribution
is unknown. Furthermore the temporal characteristics of glomeruli
do not obey an unique probability distribution but vary strongly in
overall peak activation strength and odor selectivity (Nara et al.,
2011).

Since IOS imaging alone doesn't reveal the ground truth re-
garding glomerulus locations, we performed 2-photon synapto-
pHluorin imaging of the resting fluorescence and obtained outlines
of anatomical glomerulus positions (Fig. 4a). While the anatomical
outlines naturally can't provide full information on the actual con-
tribution of individual glomeruli to each pixel in the IOS recording,
they do provide reliable information about glomerular position.
The process of manual outlining and alignment of functional
and anatomical measurements (Fig. 4b) may introduce a small
error, complicating a ‘hard’ assessment of reconstruction quality.
Nevertheless these outlines allowed for visual inspection of the
match between anatomical glomerulus positions and extracted
components.

We thus asked whether our general observations on the surro-
gate dataset still held for the IOS data. To answer this question, we
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Fig. 4. Factorization of IOS mouse olfactory bulb imaging. (a) Z-frame of the synapto-pHluorin resting fluorescence image stack and manually outlined glomeruli (yellow con-
tours, scale bar: 200 μm). (b) Glomerulus outlines (yellow) aligned to green image of the dorsal OB. (c) Examples of odor response maps obtained with IOS; mean −ΔR/R 6 s
after odor delivery. (d) Two exemplary extracted rNMF components. Top: glomerulus-like component with localized activity (left panel) and high trial-to-trial correlation.
Bottom: blood vessel-like component with low trial-to-trial correlation (right panel). (e) Similar components extracted by sICA. (f,g) Stacked histograms of observed trial-
to-trial correlations of (f) rNMF and (g) sICA components. Vertical lines indicate thresholds for contour plots in (i,j). (h) Odor responses of reliably extracted glomeruli
(rt2t N 0.7) obtained by sICA vs. responses of matched glomeruli obtained by rNMF. (i) Contour plot of extracted pixel participation compared to anatomical glomerulus outlines
(yellow) for rNMF in two animals. Black/dark gray contours indicate components with trial-to-trial correlation (rkt2t N 0.7), light gray contours correspond to components with
rk
t2t N 0.5. Greenmarks highlight glomeruli that only appeared in rNMF. Redmarks highlight glomeruli better recovered in sICA.Magentamarks highlight components with 0.5 b rt2t b 0.7
that do not resemble glomeruli. (j) Same as (i) for sICA.
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performed sICA and rNMF for three measurements (termed animal
a, b, and c) according to our deduced heuristic. Both the pixel noise
(σnoise = 0.15 (animal a), σnoise = 0.15 (animal b), σnoise = 0.19
(animal c), estimated from the response to the ‘non-odor’ Argon)
as well as the range of observed activations were in the range of
the surrogate dataset (Fig. 4c).

We chose k = 150 to initialize rNMF and sICA, well above the esti-
mated number of around 60 activated glomeruli.
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In addition we set αsm = 2 in rNMF to avoid one-pixel scale
structures and αsp = 0.5 to prohibit any component correlation
above 0.5. In both rNMF and sICA we found some components
that resembled glomeruli regarding their spatial extent and the
activation course, while others looked like parts of blood vessels
or measurement artifacts (‘noise’) (Figs. 4d,e). To distinguish
putative glomerulus components from non-glomeruli we exploited
the trial-to-trial correlation rk

t2t of the components' odor spectra.
The distributions of rk

t2t values were roughly bimodal for both
methods with a population of highly stimulus dependent compo-
nents (Figs. 4f,g). Those stimulus dependent components exhibited
good overlap with the anatomical outlines (Figs. 4i,j and Supplemen-
tal Fig. S1), taking into account the ambiguity of the outlines along
the z-axis.

We made three observations: First, components with rt2t N 0.7
corresponded well to anatomical glomerulus outlines. The same
holds true for components with 0.5 b rt2t b 0.7 except in a few cases
where components rather resembled blood vessels or other artifacts
(magenta marks in Figs. 4i,j). Second, many glomeruli were detected
by both methods, but some were solely extracted by rNMF (green
marks in Figs. 4i,j) or exhibited higher trial-to-trial correlation rt2t

in rNMF than in sICA. Third, in rare cases we observed that two
rNMF components were located within one anatomical outline (red
marks in Figs. 4i,j) indicating different temporal activation of these
parts, potentially due to underlying blood vessels or as an artifact
of bandpass filtering.

In general these observations matched the results obtained using
the surrogate dataset. rNMF yielded higher source recovery than sICA
with a more precise temporal reconstruction, i.e. a higher trial-to-trial
correlation. These results were robust over a range of parameter values
(see Supplemental Fig. S2).

Finally, we asked whether the confinement of rNMF to positive
activations had an effect on the extracted components compared to
those extracted by sICA. To asses this we matched the most reliable
components extracted with sICA (rt2t N 0.7) to the respective rNMF
component with which it exhibited the highest spatial correlation.
The odor response spectra of the matched components were highly
similar for both methods (Fig. 4h, r = 0.95). Furthermore, sICA ex-
tracted only a few and small negative signals which are not present
in rNMF. Although this could indicate that our assumption of observ-
ing purely excitatory responses with IOS imaging has been mildly
impaired, negative values in sICA might just as well be artifacts of
the initial highpass filtering.

Discussion

In this study we demonstrated how to introduce prior knowledge
about source characteristics through regularization in the NMF frame-
work. We showed that regularized NMF outperformed standard sICA
as a blind source separation approach for the automatic segmentation
of glomeruli from IOS images of the olfactory bulb. We achieved this
by reducing the approach's ‘blindness’ through incorporating knowl-
edge about the spatial continuity and spatial separation of glomeruli.
As a result of the regularization, the rNMF approach was more resilient
to pixel noise and required fewer independent observations than sICA
to reliably extract the locations and odor response spectra of individual
glomeruli. Since the number of measurable stimuli is often restricted by
experimental constraints, the reduced demand in stimulus number
makes rNMF an interesting choice for other techniques with high
signal-to-noise ratio, e.g. calcium sensitive dye imaging (Spors et al.,
2006).

The combination of smoothness and sparseness regularization
promoted factorizations in which observations were explained by
neighboring pixels. In our case the almost two dimensional arrange-
ment of glomeruli on the surface of the olfactory bulb justifies this
approach. Nevertheless this assumption holds also in many 3D
imaging scenarios like functional 2-photon imaging or fMRI.
Moreover, tuning the introduced regularizations to the expected
distribution of activity in the imaged tissue allows for a fine-
grained adjustment of the methods' sensitivity in a broad range of
applications.

We have demonstrated that the rNMF results remained stable
over a wide range of parameters. But we also showed that regulari-
zation is absolutely necessary in NMF to obtain good results. Given
a sufficiently large set of stimuli and/or low noise levels, sICA
will also yield robust and fast segmentation, with no regularization
parameters to tune. Hence, there is a tradeoff between the
benefits of rNMF and the additional effort required for appropriate
regularization.

In general sICA and NMF are closely related (in particular sparse-
ness regulated NMF Hoyer, 2002, 2004). Therefore instead of alter-
nating the basic NMF approach, one might also modify standard
ICA to obtain a problem specific objective function. Indeed there
exist numerous ICA variations addressing specific aspects of our reg-
ularization, e.g. non-negative ICA (Plumbley, 2003), sparse ICA
(Babaie-Zadeh et al., 2006) spatio-temporal tomographic non-
negative ICA (Valdés-Sosa et al., 2009) or overcomplete ICA (Lee
et al., 1999). However, the sICA assumption of spatial independence
is violated in our data set because the sources show partial overlap.
The advantage of rNMF is that it allows the gradual adjustment of
the spatial correlation of the segmented components to the expected
spatial correlation of the true sources.

In general rNMF stands out by its straightforward implementa-
tion of constraints from prior knowledge. It allows for the addition
or replacement of further modifications like temporal decorrelation
or temporal smoothness and hence provides an opportunity to tailor
factorization to known source statistics. While the assumption of
non-negative responses in our data is in agreement with the litera-
ture (Nara et al., 2011) and our own results (see the In-vivo
imaging data section), it is also straightforward to relax this assump-
tion in the HALS algorithm by dismissing the rectification step
(Cichocki and Anh-Huy, 2009). This would allow for negative source
signals to be covered while still keeping the interpretability of non-
negative pixel participations. Such an approach may prove useful to
apply rNMF in cases where inhibitory signals are expected, such as
using calcium imaging to measure odor maps in the insect antennal
lobe (Sachse and Galizia, 2002).

The great flexibility in generating problem tailored factorization
makes rNMF a promising approach for automated analysis in many
functional imaging situations. In our case it facilitates an automatic
and reliable high throughput investigation of chemical receptive fields
of glomeruli in the mouse olfactory bulb.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.04.041.
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Appendix A. Regularized NMF algorithm

Symbols are defined in theMaterials andmethods section. Addition-
ally matrix L contains the neighborhood vector lp of pixel p in it's pth
row and x̂prev

k denotes the estimation of x̂k in the previous iteration.
Appendix B. Initialization

Initialization procedure for Â and X̂. rp denotes the pth row of matrix
R and therefore the residual time-course of pixel p.
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