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A b s t r a c t  10 

The first neonicotinoid insecticide, imidacloprid, was launched in 1991. Today this class of 11 

insecticides comprises at least seven major compounds with a market share of more than 12 

25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists 13 

of insect nicotinic acetylcholine receptors and provide farmers with invaluable, highly 14 

effective tools against some of the world’s most destructive crop pests. These include 15 

sucking pests such as aphids, whiteflies, and planthoppers, and also some coleopteran, 16 

dipteran and lepidopteran species. Although many insect species are still successfully 17 

controlled by neonicotinoids, their popularity has imposed a mounting selection pressure for 18 

resistance, and in several species resistance has now reached levels that compromise the 19 

efficacy of these insecticides. Research to understand the molecular basis of neonicotinoid 20 

resistance has revealed both target-site and metabolic mechanisms conferring resistance. 21 

For target-site resistance, field-evolved mutations have only been definitely characterized in 22 

two aphid species. Metabolic resistance appears much more common, with the enhanced 23 

expression of one or more cytochrome P450s frequently reported in resistant strains. Despite 24 

the current scale of resistance, neonicotinoids remain a major component of many pest 25 

control programmes. Resistance management strategies, based on mode of action rotation, 26 

are of crucial importance to preventing resistance becoming more widespread. In this review 27 

we summarize the current status of neonicotinoid resistance, the biochemical and molecular 28 

mechanisms involved, and the implications for resistance management. 29 
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1. Neonicotinoid insecticides 33 

Neonicotinoids are one of the most important chemical classes of insecticides globally due to 34 

their high efficacy against a range of important insect pests and their versatility of use [1,2]. 35 

They are registered in more than 120 countries worldwide [2] and are particularly active 36 

against numerous sucking pests, and also several coleopteran, dipteran, and lepidopteran 37 

pest species by foliar, soil and seed treatment applications [3]. Neonicotinoids are selective 38 

agonists of the insect nicotinic acetylcholine receptor (nAChR), a pentameric cys-loop ligand-39 

gated ion channel located in the central nervous system of insects [1]. The mode of action 40 

classification scheme of the Insecticide Resistance Action Committee (IRAC) lists seven 41 

commercial neonicotinoids in Group 4A (nAChR agonists) (Sparks and Nauen, this issue). 42 

The first neonicotinoid launched was imidacloprid in 1991, followed by nitenpyram and 43 

acetamiprid in 1995, and others such as thiamethoxam in 1998 (Figure 1). Based on total 44 

global insecticide sales the market share of neonicotinoids was greater than 25% in 2014, 45 

with thiamethoxam, imidacloprid and clothianidin accounting for almost 85% of the total 46 

neonicotinoid sales in crop protection in 2012 (Figure 2). The main regions of neonicotinoid 47 

use are Latin America, Asia and North America (75%), with Europe accounting for 11% of 48 

total global sales (Figure 2). Increases in use have inevitably led to a mounting selection 49 

pressure for resistance to neonicotinoids. This review summarizes the global status of 50 

neonicotinoid resistance in a range of important insect pests with a particular focus on the 51 

biochemical and molecular mechanisms underlying resistance, and on information reported 52 

since the last comprehensive review of this subject  published ten years ago [4]. 53 

 54 

2. Neonicotinoid resistance: from mechanisms to field failure 55 

The first report of neonicotinoid resistance was published in 1996, describing low efficacy of 56 

imidacloprid against Spanish greenhouse populations of cotton whitefly, Bemisia tabaci [5]. 57 

Since then more than 500 peer-reviewed papers have been published on neonicotinoid 58 

resistance issues (SciFinder® 2014, American Chemical Society) in different pest insects 59 

(Figure 3). A substantial proportion of these refer specifically to imidacloprid resistance. The 60 

Arthropod Pesticide Resistance Database (APRD) [6] lists more than 330 cases of 61 

imidacloprid resistance, followed by ca. 130 and 50 cases of thiamethoxam and acetamiprid 62 

resistance, respectively. Unsurprisingly the number of arthropod species with resistance to 63 

neonicotinoids has increased with time (Figure 4). However, most cases of neonicotinoid 64 

resistance (all compounds combined) concern B. tabaci followed by the green peach aphid, 65 

Myzus persicae, the cotton aphid, Aphis gossypii and the rice brown planthopper, 66 

Nilaparvata lugens. Other pests targeted by neonicotinoid insecticides with at least 10 67 



3 
 

assigned cases of resistance in the APRD are houseflies, Musca domestica, Colorado potato 68 

beetle, Leptinotarsa decemlineata and glasshouse whitefly, Trialeurodes vaporariorum 69 

(Figure 5). In the sections below we treat each of these seven species separately, but then 70 

combine others with fewer than 10 cases reported. 71 

 72 

2.1 Bemisia tabaci 73 

The cotton whitefly, B. tabaci (Gennadius) is a highly destructive and invasive sucking pest,  74 

damaging plants by direct feeding, honeydew excretion (as a nutritional source for sooty 75 

mold) and transmission of numerous plant viruses [7]. At least 24 cryptic and morphologically 76 

indistinguishable B. tabaci biotypes have been identified by recent phylogenetic comparisons 77 

based on DNA sequencing [8,9]. However, two widespread biotypes, the Middle East – Asia 78 

Minor 1 biotype (MEAM1, also referred to as biotype B) and the Mediterranean biotype 79 

(MED, also  referred to as biotype Q) are of particular importance as crop pests [10]. Both 80 

biotypes have developed resistance to multiple classes of insecticide [11,12] including 81 

neonicotinoids [4]. Neonicotinoid resistance has been widely reported in both B and Q type 82 

B. tabaci from several geographic regions [4,12-19] particularly against imidacloprid. 83 

Resistance ratios for neonicotinoids in B. tabaci often exceed 1000-fold and lead to serious 84 

control failures [4]. 85 

Neonicotinoid resistance in B. tabaci is mainly conferred by enhanced detoxification 86 

by microsomal monooxygenases [17,20], and recently a single, constitutively overexpressed, 87 

cytochrome P450, CYP6CM1, was shown to be highly correlated with imidacloprid resistance 88 

in B- and Q-type whiteflies [21]. Functional expression of CYP6CM1 revealed its capacity to 89 

detoxify imidacloprid by hydroxylation of position 5 of the imidacloprid imidazolidine ring 90 

system [22], but also its inability to metabolise other neonicotinoids such as acetamiprid [23]. 91 

Resistance to imidacloprid in cotton whiteflies was shown to be age-specific [24] and 92 

correlated with the expression of CYP6CM1 in different life stages [25]. Recently it was 93 

shown that CYP6CM1 also detoxifies pymetrozine by hydroxylation, an insecticide with a 94 

different mode of action and chemically very different from neonicotinoids [26]. These results 95 

provided the molecular basis for the observed cross-resistance between neonicotinoids and 96 

pymetrozine in B. tabaci [27]. Transgenic lines of Drosophila melanogaster expressing 97 

CYP6CM1 were shown to be less susceptible to imidacloprid, providing further functional 98 

evidence of its role in imidacloprid resistance in  B. tabaci [28]. Next generation sequencing 99 

(RNAseq) has provided further insights into the diversity of detoxification genes over-100 

expressed in a B. tabaci strain resistant to neonicotinoid insecticides such as thiamethoxam 101 

[29]. Another study on thiamethoxam resistance in B. tabaci also revealed stage-specific 102 

expression of CYP6CM1, but also other detoxification enzymes such as glutathione S-103 

transferases [30]. Even though other cytochrome P450s such as CYP4C64 have been 104 
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reported to be over-expressed in neonicotinoid-resistant B. tabaci, the main P450 gene 105 

consistently over-expressed is CYP6CM1 [31]. To date, no target-site mutations in B. tabaci 106 

nAChR subunits have been described. 107 

 108 

2.2 Myzus persicae 109 

The green peach aphid, M. persicae (Sulzer), is the most economically important aphid crop 110 

pest worldwide. Unlike other species in which differences in response to neonicotinoids 111 

emerged several years after first exposure to these compounds, low but statistically-112 

significant variation in susceptibility to imidacloprid in M. persicae was reported in tandem 113 

with the first commercial releases of this insecticide [32,33]. Suspicions that such variation 114 

was a by-product of tolerance to nicotine, selected during the adaption of some populations 115 

of M. persicae (so-called M. persicae subsp. nicotianae) to feeding on tobacco, have been 116 

reinforced by research attributing resistance to over-production of a single P450 (CYP6CY3) 117 

[34,35]. Survival following exposure to discriminating concentrations of nicotine (and 118 

neonicotinoids) for a range of aphid clones from the UK, Greece, southern Africa and Japan 119 

was closely and positively correlated with levels of CYP6CY3 mRNA expression [34,35]. 120 

Expression of recombinant CYP6CY3 enzyme in Sf9 insect cells showed it to be highly 121 

efficient at metabolizing nicotine and two neonicotinoids – imidacloprid and clothianidin – to 122 

less toxic metabolites [34]. Overexpression appears attributable both to a modification of the 123 

promoter region and to structural amplification of the CYP6CY3 gene, with some clones 124 

possessing up to 100 copies. Thus, in contrast to the usual case of resistance traits being 125 

selected de novo by chemicals used for aphid control, this appears to be a rare example of 126 

pre-selection resulting from host-plant adaptation and an expansion in host range [34]. At 127 

present it is unclear to what extent CYP6CY3-mediated resistance occurs in or has spread to 128 

non-tobacco-adapted M. persicae as a consequence of gene flow between races, or as a 129 

result of subsequent selection by neonicotinoids themselves. 130 

The microarray study that initially implicated CYP6CY3 in resistance also showed a 131 

number of ESTs encoding cuticular proteins to be up-regulated in a resistant clone, 132 

suggesting that modified penetration through the cuticle might be operating in concert with 133 

enhanced detoxification to determine the resistance phenotype [35]. Further evidence for an 134 

additional mechanism in clones overexpressing CYP6CY3 came from incomplete 135 

suppression of resistance by enzyme inhibitors [36], the differential expression of resistance 136 

in feeding and contact bioassays [35], and in vivo penetration assays with radiolabelled 137 

imidacloprid [35]. However, without an unambiguous marker for a mechanism based on 138 

reduced penetration it has not been possible to quantify its importance and contribution to 139 

resistance, singly or alongside different levels of overexpression of CYP6CY3. 140 
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Receptor radioligand binding studies and nucleotide sequencing of nAChR subunit 141 

genes have also been undertaken to explore the possible occurrence of target-site 142 

resistance to neonicotinoids in M. persicae. These yielded negative results until a clone 143 

(termed FRC) was collected in 2009 from peach at a site experiencing a marked loss of 144 

control efficacy with neonicotinoids [37]. Resistance in FRC was markedly more resistant 145 

than any clone studied previously. In topical application bioassays with imidacloprid and 146 

thiamethoxam, resistance was impossible to quantify due to survival at the highest doses it 147 

was feasible to apply [37]. CYP6CY3 was overexpressed in FRC at levels similar to those in 148 

resistant clones studied previously, but in addition, sequencing of nAChR subunit genes 149 

identified a point mutation in the loop D region of the β1 subunit that causes an arginine to 150 

threonine substitution (R81T). Loop D of β1 has a known role in binding of the natural ligand 151 

acetylcholine and of synthetic neonicotinoids [38] and the R81 residue specifically has been 152 

shown through homology modelling to modulate neonicotinoid binding [39]. Indeed, the 153 

presence of threonine at this residue in most vertebrate receptors compared to the ubiquity 154 

of arginine in insects is considered a primary determinant of the selective toxicity of 155 

neonicotinoids. Hence it seems unequivocal that R81T is directly implicated in conferring a 156 

level of neonicotinoid resistance unrecorded previously in M. persicae. Its discovery 157 

represented the first proven case of a target-site modification leading to control failure with 158 

neonicotinoids under field conditions.  159 

Using a PCR-based diagnostics the current distribution of the R81T mutation has 160 

been shown to extend in a band from southern Spain, through southern France to northern 161 

and Central Italy [40,41]. This distribution remains closely coincident with the cultivation of 162 

peach and closely-related crops. Extensive monitoring has failed to detect its presence 163 

further north in Europe despite continuing and extensive reliance on neonicotinoids for aphid 164 

control in countries such as the UK (S. Foster pers. comm. 2014). It seems likely that the 165 

transition from holocycly in the south of Europe to obligate anholocycly in the north is 166 

constraining the ability of the mutation to spread from its point of origin and/or establish in 167 

new localities. This is being investigated further. 168 

 169 

2.3 Aphis gossypii 170 

Like M. persicae, the cotton-melon aphid, A. gossypii (Glover) is highly polyphagous with a 171 

long history of resistance to insecticides. Its host plants, which include curcubits, cotton and 172 

solanaceous crops, are often intensively treated with neonicotinoids and resistance to these 173 

products, although only confirmed relatively recently, now appears to be geographically 174 

widespread. Systematic monitoring of aphids on cotton in Australia and the USA has 175 

documented a temporal decline in sensitivity related to increased reliance on neonicotinoids 176 

as seed treatments and foliar sprays [42,43]. Discriminating concentration assays 177 
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complemented by full dose-response testing of insects from Australian cotton showed a 178 

gradual change from 2006-7 to 2008-9, with resistance factors in the latter season peaking at 179 

6.4-fold for acetamiprid, 22-fold for thiamethoxam and 6-fold for clothianidin, respectively 180 

[43]. This trend continued in 2009-2010 when 96% of samples contained resistant individuals 181 

[43]. To combat this trend there are recommendations to avoid foliar sprays of neonicotinoids 182 

against A. gossypii but these are compromised by the continuing importance of 183 

neonicotinoids for controlling other pests including whiteflies and mirids [43].  184 

Monitoring of A. gossypii between 2008 and 2011 from cotton-growing regions of the 185 

southern USA that were reporting diminished efficacy of neonicotinoids showed a 48-fold 186 

range of LC50 values for thiamethoxam across the four years, with resistance tending to be 187 

higher for fields that had received at least one foliar application of a neonicotinoid insecticide 188 

[42]. Interestingly, resistance factors were much higher after 48h exposure in a leaf-dip 189 

bioassay than after 72h, although the broad association between resistance and field 190 

treatment history was evident at both endpoints. 191 

The mechanism(s) underpinning resistance in Australia and the USA remain to be 192 

elucidated, whereas in eastern Asia there is mounting evidence for the same target-site 193 

R81T amino acid substitution as found in M. persicae. Samples of A. gossypii collected from 194 

six sites in South Korea in 2012 gave maximum resistance of 1500-fold to imidacloprid, 195 

2600-fold to acetamiprid and 14,000-fold to clothianidin [44]. Even more remarkably, 196 

laboratory selection with imidacloprid of a strain (IMI-R) collected in 2011 led to resistance 197 

factors of 36,000 to imidacloprid, 69,000 to acetamiprid, and 285,000 to thiacloprid [44]. 198 

Bioassays using synergists and enzyme assays yielded no evidence of enhanced 199 

detoxification in IMI-R compared to a susceptible strain, whereas full length cloning showed 200 

R81T to be present in the β1 nAChR subunit of IMI-R and five of the field samples collected 201 

in 2012. Sixty generations of laboratory selection with imidacloprid of an originally 202 

susceptible strain collected in Shandong province in China in 2009 resulted in 66-fold 203 

resistance to this compound [45]. Cloning of six α and the β1 subunits again showed R81T to 204 

be present in the latter. 205 

One notable discrepancy between these two studies suggesting R81T to be the 206 

primary sole cause of neonicotinoid resistance is in the magnitude of resistance factors: up to 207 

36,000-fold for imidacloprid in Korea but only 66-fold in the selected strain from China. One 208 

explanation might be the different bioassay methods utilized: dipping of leaves and apterous 209 

aphids in test solutions by Shi et al. [45], and placing untreated aphids on previously dipped 210 

and dried leaves by Koo et al. [44]. Side-by-side testing using both methods would be 211 

valuable for disclosing the importance of the route of exposure in influencing the phenotypic 212 

expression of resistance traits, as already documented when comparing systemic and topical 213 

application methods for M. persicae [46]. The parallel appearance of R81T in M. persicae 214 
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and A. gossypii is of evolutionary significance, highlighting again the limited scope for target-215 

site mutations that confer appreciable resistance while retaining normal receptor function.  216 

 217 

2.4 Nilaparvata lugens 218 

The brown planthopper, N. lugens (Stål), is the most economically significant pest of rice 219 

(Oryza sativa L.) throughout Asia, causing damage through direct feeding and the 220 

transmission of rice viruses [47]. The control of N. lugens has relied heavily on the use of 221 

synthetic insecticides with resistance developing to all of the older compounds used for 222 

control [48]. The first neonicotinoid, imidacloprid, was introduced against N. lugens in the 223 

early 1990’s and because of its excellent efficacy and the fact that it was largely unaffected 224 

by resistance that had evolved to older compounds rapidly became a mainstay for control. 225 

After a decade of use populations of N. lugens were reported with reduced 226 

efficacy/resistance to imidacloprid, and resistance is now widespread in populations collected 227 

from across Asia with resistance factors of 600-800-fold recently described [48-52]. 228 

The first mechanism of resistance to neonicotinoids reported for N. lugens involved a 229 

target-site modification [53] with a strain of N. lugens selected with imidacloprid for 35 230 

generations exhibiting over 250-fold resistance compared to a lab susceptible strain in 231 

insecticide bioassays. Radioligand binding experiments to whole body membrane 232 

preparations revealed a significant lower level of [3H]imidacloprid-specific binding to 233 

preparations of the resistant strain suggesting a target-site resistance mechanism [53]. 234 

Sequencing of nAChR subunit genes identified a single point mutation at a conserved 235 

position (Y151S) in two nAChR subunits, Nlα1 and Nlα3 with confirmation of the causative 236 

effect of these mutations coming from expression of hybrid nAChRs containing N. lugens α 237 

and rat β2 subunits, with the presence of Y151S associated with a substantial reduction in 238 

specific [3H]imidacloprid binding [53]. Surprisingly, since these findings were reported, this 239 

mechanism has never been identified in any field-collected population. Rather, several 240 

studies have provided both indirect and direct evidence that enhanced P450 activity 241 

contributes to the neonicotinoid resistance of field collected populations of N. lugens 242 

throughout Asia [4,54,55]. Use of the metabolic enzyme inhibitor piperonyl butoxide (PBO) 243 

and the model substrate 7-ethoxycoumarin were initially used to implicate P450-mediated 244 

detoxification in resistance [54,56]. However, more recently, molecular studies have 245 

identified the overexpression of two possible P450 enzymes with imidacloprid resistance in 246 

lab and field populations. The first of these, CYP6ER1, was identified as the only member of 247 

32 tentative unique P450s annotated from two recent sequencing projects as highly 248 

overexpressed (up to 40-fold) by quantitative RT-PCR in a range of resistant strains, with the 249 

level of expression observed in the different strains significantly correlated with the 250 

resistance phenotype [57]. The second P450, CYP6AY1, was one of six genes identified by 251 
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quantitative RT-PCR as significantly overexpressed (~18-fold) in a laboratory strain selected 252 

with imidacloprid for 40 generations [58]. This P450 was also overexpressed in four field 253 

strains (4-9-fold) compared to a susceptible strain [58]. This finding was surprising as 254 

CYP6AY1 was down-regulated (or neutrally expressed) in the resistant strains compared to 255 

the susceptible strain examined in the study by Bass et al. [57]. Nevertheless, functional 256 

expression of CYP6AY1 and RNAi experiments provided evidence that CYP6AY1 has the 257 

capacity to metabolise imidacloprid to 4/5-hydroxy-imidacloprid and confer resistance [58]. 258 

More recently polymorphisms in the promoter of CYP6AY1 were identified between a 259 

resistant field-collected and lab susceptible strain that were shown to enhance promoter 260 

activity  in reporter gene assays and may be acting as cis-acting factors to enhance the 261 

expression of CYP6AY1 [59]. Further work is required to elucidate the relative contribution of 262 

CYP6ER1 and CYP6AY1 in the imidacloprid resistance of N. lugens populations across Asia. 263 

 264 

2.5 Musca domestica 265 

The house fly, M. domestica L., is a passive vector for a range of debilitating human and 266 

animal diseases and is consequently an important pest on animal farms across the world.  267 

Like the other pest species highlighted in this review, effective control is often reliant on the 268 

use of pesticides and house flies have similarly proved highly adept at developing resistance, 269 

with reports of over 60 different compounds now listed in the APRD [6]. Neonicotinoids, 270 

primarily imidacloprid and thiamethoxam, are effective against a range of public hygiene 271 

pests and have been used as feeding baits and in spray applications to control house flies in 272 

animal facilities for a number of years [60]. Early studies showed good efficacy of 273 

imidacloprid against laboratory strains carrying resistance to other insecticide classes [61] 274 

and initial monitoring of field populations prior to the introduction of neonicotinoids for house 275 

fly control confirmed only limited variation in their response [62,63].  Recent studies have, 276 

however, revealed more significant resistance in field collected populations from several 277 

parts of the world, including the U.S. [64], Europe [65,66], Pakistan [67] and China [68], with 278 

further laboratory selection of these strains resulting in resistance factors for imidacloprid 279 

ranging from 100 fold [66] to over 2,000 fold [69]. 280 

Attempts to investigate the underlying mechanisms of resistance in these strains have 281 

implicated possible roles for both metabolic enzymes and target site modification, but have 282 

yet to unambiguously assign the metabolic activity to a specific enzyme or identify the exact 283 

target alteration(s) responsible. For example, both imidacloprid and thiamethoxam resistance 284 

in field-collected strains from Denmark was partly synergised by treatment with the 285 

cytochrome P450 inhibitor, PBO [66] and this was correlated with increased expression of 286 

several P450 genes (CYP6A1, CYP6D1, CYP6D3, CYP6G4) after neonicotinoid exposure 287 

[66,70]. However, as yet none of these genes have been functionally expressed and shown 288 
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conclusively to metabolise these compounds. The metabolic resistance was accompanied by 289 

an apparent 60% reduction in the expression level of the α2 nicotinic acetylcholine receptor 290 

subunit (Mdα2) in the same resistant strains and was suggested as a possible additional 291 

mechanism that contributes to their reduced sensitivity [71], although it should be pointed out 292 

that no other nicotinic subunits were investigated for either altered expression or target site 293 

modification in this study.   294 

Interestingly, the high level of imidacloprid resistance (2,300 fold) selected from a 295 

Florida field strain was not synergisable by PBO [69], suggesting a possible target site 296 

alteration similar to that described in aphids. This resistance was mapped to autosomes 3 297 

and 4, both of which carry nicotinic acetylcholine receptor subunit genes, and would 298 

therefore seem to be a fruitful area for further investigation. The publication of a full genome 299 

sequence for M. domestica [72] offers new opportunities for a more detailed characterization 300 

of nAChR genes in this and other resistant strains, and should facilitate a clearer 301 

understanding of the molecular basis of resistance in this species. 302 

 303 

2.6 Leptinotarsa decemlineata 304 

The Colorado potato beetle, L. decemlineata (Say), is a serious pest of potatoes and other 305 

solanaceous crops, particularly in North America and Europe. This species has gained 306 

notoriety for rapidly developing resistance to almost all of the insecticides used for its control 307 

[6]. The neonicotinoid imidacloprid was first introduced for L. decemlineata control in 308 

Northern America in 1995. Widespread monitoring of imidacloprid susceptibility in 309 

populations from North America and Europe collected over 1995-1998, revealed up to 29-310 

fold variation in response [73]. Much of this variation was not a result of selection from 311 

imidacloprid use per se, as most of the populations assayed were never exposed to this 312 

compound, but was likely a consequence of cross-resistance from chemicals used earlier. 313 

The least sensitive strains described in this study came from Long Island, New York, an area 314 

with a history of intensive insecticide use against L. decemlineata [73]. In support of this 315 

finding a report published in the same year described 100-fold levels of resistance to 316 

imidacloprid in adults of an L. decemlineata population collected as early as 1997 from an 317 

imidacloprid-treated commercial potato field [74]. Subsequent monitoring of samples from 318 

Long Island has reported further increases in resistance to imidacloprid (309-fold) with lower 319 

levels of cross-resistance also observed to dinotefuran, clothianidin, acetamiprid, thiacloprid, 320 

thiamethoxam, and nitenpyram, despite these never having been used in the field up to this 321 

point [75]. 322 

 The precise mechanism(s) underlying neonicotinoid resistance in L. decemlineata 323 

have not been fully characterized, however, several studies have advanced our 324 

understanding of the possible mechanisms involved. Two studies of resistant strains from 325 
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Long Island using insecticide synergists have suggested that P450-mediated detoxification 326 

plays a significant role in resistance, with esterases possibly also involved, however, the fact 327 

that enzyme inhibitors did not completely eliminate resistance in resistant strains suggests 328 

additional mechanisms may be involved [74,75]. In contrast to these findings 329 

pharmacokinetic experiments with other strains of L. decemlineata showed no significant 330 

difference in in vivo metabolism of radiolabelled imidacloprid [76]. The potential role of target-331 

site modification in the neonicotinoid resistance of L. decemlineata has also been explored 332 

using binding assays with tritiated imidacloprid. Initial results failed to reveal differences in 333 

imidacloprid affinity to nAChRs from head membrane preparations of neonicotinoid-resistant 334 

and susceptible beetles (Nauen et al., unpublished). Further work has compared the neural 335 

activity of imidacloprid on the spontaneous activity of a motor nerve leaving the isolated 336 

central nervous system of susceptible and resistant beetles [77]. Although no differences 337 

were seen in the sensitivity of the central nervous system of resistant and susceptible beetles 338 

to excitation by imidacloprid, significant reductions in the sensitivity of CNS preparations of 339 

the resistant strain to inhibition by imidacloprid were observed, suggestive of a possible 340 

change in the sensitivity of at least one subgroup of nAChRs [77]. Although the origin of the 341 

decreased sensitivity to block neural activity by imidacloprid in the resistant beetles requires 342 

further characterization, it is likely that it relates to the observed resistance to imidacloprid.  343 

 344 

2.7 Trialeurodes vaporariorum 345 

The glasshouse whitefly, T. vaporariorum (Westwood) is an economically important pest of 346 

protected vegetable and ornamental crops in most temperate regions of the world. As for 347 

many of the other pests detailed in this review resistance of this species to a range of older 348 

insecticide classes, such as the pyrethroids and organophosphates [78], led to the increasing 349 

reliance on neonicotinoid insecticides for control after their introduction. The first cases of 350 

neonicotinoid resistance were reported in T. vaporariorum strains collected in 2004/2005 351 

from the United Kingdom the Netherlands and the U.S. [79,80]. More recent work has 352 

described neonicotinoid resistance in T. vaporariorum strains from the UK, Turkey, Spain, 353 

China, Germany [81] and Greece [82] with reduced susceptibility to imidacloprid also 354 

reported in strains from Finland [83]. Taken together these results suggest resistance to 355 

neonicotinoids in T. vaporariorum may now be widespread in global populations.  356 

Interestingly, neonicotinoid resistance in T. vaporariorum shows several parallels with 357 

that of the tobacco whitefly B. tabaci. Cross-resistance bioassays and selection experiments 358 

revealed a clear correlation in the observed responses of T. vaporariorum to neonicotinoids 359 

and pymetrozine, strongly suggestive of cross-resistance between the two classes [81]. 360 

Furthermore, resistance to the neonicotinoid imidacloprid and pymetrozine was shown to be 361 

age-specific, with resistance in nymphs failing to compromise recommended application 362 
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rates [81]. Taken together these results suggest a similar mechanism may underlie 363 

resistance in B. tabaci and T. vaporariorum. As detailed above, resistance to both 364 

imidacloprid and pymetrozine in B. tabaci results from enhanced expression of the P450 365 

CYP6CM1. Recent sequencing of the transcriptome of T. vaporariorum has allowed the 366 

identification of several P450 genes (CYP6CM2, CYP6CM3, CYP6CM4) that share 367 

significant homology with B. tabaci CYP6CM1 and therefore represent candidates for a 368 

potential role in resistance in T. vaporariorum [84]. 369 

 370 

2.8 Other pests 371 

Neonicotinoid resistance has also been reported in several other insect pest species in 372 

addition to those listed above and it is beyond the scope of this review to provide an 373 

exhaustive list, nevertheless, in some cases multiple reports of resistance have suggested a 374 

growing resistance problem for certain species and these are summarised below.  375 

 The white-backed planthopper, Sogatella furcifera (Horvath), and small brown 376 

planthopper Laodelphax striatellus (Fallén) are two important pests of rice in Asia. Screening 377 

for imidacloprid resistance in S. furcifera populations collected in 2006 from East and South-378 

East Asia revealed that, in contrast to N. lugens, most populations displayed full sensitivity to 379 

this compound [85]. However, in the same study the first evidence of field resistance was 380 

detected in a single population from Japan. More recent monitoring of field populations of S. 381 

furcifera in China has suggested resistance has since become more widespread with ~30% 382 

of populations collected from 2010 to 2013 showing moderate resistance (<15-fold) to 383 

imidacloprid [86,87]. Despite these findings all populations tested remained susceptible to 384 

thiamethoxam [86,87]. Initial monitoring of the sensitivity of L. striatellus populations in China 385 

found high levels of resistance to imidacloprid in strains collected from Jiangsu province 386 

suggestive of a local hotspot of resistance [88]. However, more recent monitoring of 387 

populations in China (including from Jiangsu province) found all populations collected from 388 

2011-2013 were susceptible to both imidacloprid and thiamethoxam [87]. 389 

 The Asian citrus psyllid, Diaphorina citri (Kuwayama), is one of the most economically 390 

important pests of citrus worldwide, primarily due to its status as a vector of citrus greening 391 

disease. Monitoring of populations of this pest in Florida collected in 2009/2010, where it is a 392 

significant problem to citrus growers, revealed reduced sensitivity in certain populations to 393 

imidacloprid and thiamethoxam, with 35- and 13-fold resistance to the two compounds 394 

respectively observed in the most resistant strain [89]. These findings suggested 395 

neonicotinoid/insecticide resistance may be becoming an emerging problem in this species in 396 

Florida, however, more recent monitoring has revealed, in contrast to other insecticide 397 

classes, a slight decrease in resistance to neonicotinoids [90]. Beyond Florida monitoring of 398 

D. citri populations collected from lime orchards in Central West Mexico has recently 399 
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revealed widespread, mostly moderate, resistance (<25-fold) to both imidacloprid and 400 

thiamethoxam [91]. However, a strain collected from one site (Apatzingan, Michoacan) 401 

displayed extremely high resistance to imidacloprid (>4000-fold) suggesting the emergence 402 

of more potent resistance in this area [91]. 403 

The codling moth, Cydia pomonella L., is a major pest of pome fruit worldwide. The N-404 

cyano-imino neonicotinoids thiacloprid and acetamiprid, are relatively effective for codling 405 

moth control and have been widely adopted since their introduction. Resistance to both 406 

compounds has been reported in C. pomonella populations from Europe [92,93], the U.S. 407 

[94] and Argentina [95], with low level resistance to thiacloprid also reported in populations 408 

from Canada [96]. Surprisingly, resistance to thiacloprid in Europe has been observed in 409 

countries/regions prior to their use by growers and this is associated with cross-resistance 410 

with older compounds. A similar phenomenon has also been reported for acetamiprid with 411 

resistance to this compound correlated with levels of azinphos-methyl resistance in 412 

populations from the U.S. [94]. Both of these cases are suggestive of an underlying 413 

metabolic resistance mechanism that confers broad cross-resistance to a range of 414 

compounds. In relation to this several studies have also reported enhanced activity of 415 

detoxification enzymes, including P450s, glutathione-S-transferases and esterases to be 416 

correlated with resistance in biochemical assays [92,93,97]. However, to date, the precise 417 

enzymes involved in neonicotinoid resistance have not been characterized. 418 

 Western flower thrips, Frankliniella occidentalis (Pergande), is a major insect pest of 419 

several vegetable, fruit and ornamental crops. The first report of resistance of this species to 420 

neonicotinoids was in a laboratory strain originating from the United States which displayed 421 

moderate resistance to imidacloprid (RR 14-fold) [98]. Interestingly imidacloprid had not been 422 

used against this species at this time and therefore the observed resistance was almost 423 

certainly a result of cross-resistance from older insecticides [98]. More recent work has 424 

reported resistance to both imidacloprid and acetamiprid in strains of F. occidentalis 425 

originating from Japan and China [99]. Synergism bioassays using the metabolic enzyme 426 

inhibitor piperonyl butoxide (PBO) suggested that metabolism by P450s may be involved in 427 

acetamiprid resistance in these strains, and cloning and sequencing of nicotinic acetylcholine 428 

receptor (nAChR) subunits provided no evidence of a target-site mechanism [99]. Finally, 429 

modest levels of resistance to thiamethoxam (15-fold) were also recently reported in a strain 430 

of F. occidentalis selected in the laboratory with this compound for 55 generations [100]. 431 

Interestingly this strain showed high levels of cross-resistance to the neonicotinoid 432 

imidaclothiz (392.1-fold) but no or very low cross-resistance to the neonicotinoids 433 

imidacloprid, acetamiprid, dinotefuran and nitenpyram. This finding might be explained by a 434 

metabolic resistance mechanism that exhibits substrate preference for chlorothiazolylmethyl 435 

neonicotinoids such as thiamethoxam and imidaclothiz. In this regard thiamethoxam efficacy 436 
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against the resistant strains was synergized by PBO and triphenyl phosphate (TPP) and 437 

biochemical assays showed modest increased in monooxygenase and carboxylesterase 438 

activity suggesting a possible involvement of these enzyme systems in resistance [100]. 439 

 440 

3. Implications and conclusions 441 

 442 

It is no coincidence that most species exhibiting economically-significant resistance to 443 

neonicotinoids are ones that have gained notoriety for resistance to a broad range of other 444 

insecticide groups. The same agronomic and biological traits that have predisposed them to 445 

resist older products must also underpin the evolution of resistance to neonicotinoids. This 446 

propensity for accumulating multiple resistance greatly constrains the implementation of 447 

approaches recommended for combating resistance in general [101] and to neonicotinoids 448 

specifically [5,102]. The most widely advocated tactic for managing resistance, other than the 449 

obvious one of minimizing reliance on chemicals per se, is the alternation of groups with 450 

different modes of action to avoid continuous selection for the same resistance 451 

mechanism(s). In the above cases, a lack of effective alternatives combined with the 452 

unprecedented versatility of neonicotinoids has led to intensive use of these compounds and 453 

enhanced the risk of resistance developing [4,103]. Bioassay results for several insecticides 454 

tested against a multi-resistant Spanish strain of the aphid M. persicae (Figure 6) exemplify 455 

well how the accumulation of resistance mechanisms can deplete the supply of compounds 456 

available for alternation schemes. The appearance of strong resistance to imidacloprid 457 

caused by the R81T target-site mutation (see above) in a genetic background already 458 

containing mechanisms conferring target-site insensitivity to the carbamate pirimicarb and 459 

synthetic pyrethroids [104] results in only two of the tested products (flonicamid and 460 

spirotetramat) retaining high levels of activity against this strain. Interestingly this field-461 

collected strain also shows moderate resistance to pymetrozine (IRAC subgroup 9B), but not 462 

flonicamid (subgroup 9C). Both insecticides are known to act as modulators of chordotonal 463 

organs (IRAC main group 9), but are chemically different. 464 

One of the major limitations to resistance management is the occurrence of cross-465 

resistance. Insect pests very rarely resist just one compound; resistance mechanisms 466 

commonly encompass most or all chemicals within a particular mode-of-action group and 467 

can, much less predictably, affect other groups as well. The literature reviewed above 468 

contains numerous cases of resistance initially reported to one neonicotinoid being found 469 

through bioassays to extend to other compounds in this class. The magnitude of resistance 470 

factors to different molecules may vary considerably, presumably as a consequence of 471 

differences in the substrate specificity of detoxifying enzymes. However, based on the 472 

collective results of work so far it is impossible to identify consistent and exploitable patterns 473 
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of cross-resistance across commercially-available neonicotinoids. Recommendations 474 

advanced previously [102,103], reinforced by a common IRAC mode of action classification 475 

(Group 4A) (Sparks and Nauen, this issue), to treat the seven commercial neonicotinoids as 476 

a single group for resistance management purposes unquestionably remain appropriate 477 

when designing insecticide alternation strategies. 478 

Interesting questions about cross-resistance arise with the introduction of new 479 

molecules targeting the same site as ones developed previously, but considered to display 480 

unique properties that distinguish them from predecessors. The sulfoximine, sulfoxaflor [105] 481 

and the butenolide, flupyradifurone [106] are unquestionably nAChR agonists but chemically 482 

different from neonicotinoids and thus have been placed in new subgroups (4C and 483 

4D,respectively) in the IRAC classification scheme. This distinction is supported by data 484 

showing that aphids and whiteflies with metabolic resistance to imidacloprid and other 485 

conventional neonicotinoids remain almost fully susceptible to sulfoxaflor and flupyradifurone 486 

[105-107]. However, a strain of M. persicae with the still geographically-restricted R81T 487 

mutation showed appreciable resistance to both of these new compounds (Figure 6). Thus, 488 

anticipating risks of cross-resistance involving novel members of a broad mode-of-action 489 

group requires caution as these risks can be mechanism-specific.  490 

The predominance (so far) of enhanced metabolism, as opposed to target-site 491 

modification, as a cause of resistance to neonicotinoids increases the possibility of 492 

resistance extending to compounds with contrasting modes of action. The best documented 493 

example to date is cross-resistance between neonicotinoids and the azomethine pymetrozine 494 

in the whiteflies B. tabaci [27] and T. vaporariorum [81]. Examples of species showing 495 

variation in response to neonicotinoids at the time of their introduction can raise suspicions of 496 

resistance pre-selected by earlier used groups [73], although the exact nature of such cross-497 

resistance remains to be investigated.  498 

Since the last comprehensive review of this subject [4], there have been additional 499 

pest species acquiring neonicotinoid resistance, and changes in the extent and severity of 500 

cases of resistance already documented ten years ago. Most notably, there has been 501 

significant progress with characterizing the genetic and molecular basis of resistance 502 

mechanisms, providing exciting evolutionary insights and also techniques for rapid diagnosis 503 

and monitoring of resistance genotypes. These achievements can contribute not only to 504 

tracking and helping to contain known cases of resistance but also to anticipating the 505 

emergence and nature of new resistance outbreaks.   506 
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 845 

 846 

 847 

Figure legends 848 

 849 

Figure 1. Important neonicotinoid insecticides (manufacturers) and year of market 850 

introduction. 851 

Figure 2. Agricultural use by region and market share of individual neonicotinoids in percent 852 

(total market share 2012: 3.192bn US$; Source: Wood Mackenzie). Abbreviations: TMX 853 

(thiamethoxam), IMD (imidacloprid), CLT (clothianidin), ACT (acetamiprid), TCP (thiacloprid), 854 

DNF (dinotefuran), NIT (nitenpyram). 855 

Figure 3. Cumulative number of published peer-reviewed papers on resistance to 856 

neonicotinoids generally and to imidacloprid specifically. 857 

Figure 4. Cumulative number of arthropod species with neonicotinoid resistance (Arthropod 858 

Pesticide Resistance Database, Michigan State University). 859 
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Figure 5. Number of reported cases of neonicotinoid resistance up to 2014 (Arthropod 860 

Pesticide Resistance Database, Michigan State University). Only those pests with >10 861 

reported cases are shown. 862 

Figure 6. Dose response curves for different insecticides against 3rd instar nymphs of Myzus 863 

persicae in leaf-dip bioassays (72h). Strain HS is susceptible to insecticides, whereas clone 864 

E03-10 C2 is derived from a field strain collected in Spain in 2010 and homozygous for the 865 

R81T mutation in the ß1-subunit of the nAChR, conferring cross-resistance to neonicotinoids, 866 

sulfoxaflor and flupyradifurone. This clone also carries mutations in AChE (MACE) and 867 

voltage-gated sodium channel (kdr/skdr). 868 
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