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ABSTRACT

Context. Massive stars influence their environment through stellar winds, ionising radiation, and supernova explosions. This is signi-
fied by observed interstellar bubbles. Such feedback is an important factor for galaxy evolution theory and galactic wind models. The
efficiency of the energy injection into the interstellar medium (ISM) via bubbles and superbubbles is uncertain, and is usually treated
as a free parameter for galaxy scale effects. In particular, since many stars are born in groups, it is interesting to study the dependence
of the effective energy injection on the concentration of the stars.

Aims. We aim to reproduce observations of superbubbles, their relation to the energy injection of the parent stars, and to understand
their effective energy input into the ISM, as a function of the spatial configuration of the group of parent stars.

Methods. We study the evolution of isolated and merging interstellar bubbles of three stars (25, 32, and 60 M) in a homogeneous
background medium with a density of 10m, cm™ via 3D-hydrodynamic simulations with standard ISM thermodynamics (optically
thin radiative cooling and photo-electric heating) and time-dependent energy and mass input according to stellar evolutionary tracks.
We vary the position of the three stars relative to each other to compare the energy response for cases of isolated, merging and initially
cospatial bubbles.

Results. Mainly due to the Vishniac instability, our simulated bubbles develop thick shells and filamentary internal structures in col-
umn density. The shell widths reach tens of per cent of the outer bubble radius, which compares favourably to observations. More
energy is retained in the ISM for more closely packed groups, by up to a factor of three and typically a factor of two for intermediate
times after the first supernova. Once the superbubble is established, different positions of the contained stars make only a minor dif-
ference to the energy tracks. For our case of three massive stars, the energy deposition varies only very little for distances up to about
30 pc between the stars. Energy injected by supernovae is entirely dissipated in a superbubble on a timescale of about 1 Myr, which
increases slightly with the superbubble size at the time of the explosion.

Conclusions. The Vishniac instability may be responsible for the broadening of the shells of interstellar bubbles. Massive star winds
are significant energetically due to their — in the long run — more efficient, steady energy injection and because they evacuate the space
around the massive stars. For larger scale simulations, the feedback effect of close groups of stars or clusters may be subsumed into

one effective energy input with insignificant loss of energy accuracy.
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1. Introduction

The properties of the interstellar medium (ISM) — i.e. its mor-
phology with imprinted bubbles and superbubbles (Gruendl et al.
2000; Arthur 2007; Chu 2008; Sasaki et al. 2011), its molecular-
cloud fragments in formation or in dispersal, and its level of tur-
bulence — are strongly affected by the physics and dynamics of
stellar feedback (e.g. de Avillez & Breitschwerdt 2004, 2005;
Dobbs et al. 2011b,a; Ntormousi et al. 2011). The actual agents
of stellar feedback are massive stars, which are born in the denser
parts of the ISM (for recent reviews see McKee & Ostriker 2007,
Zinnecker & Yorke 2007). The interaction via winds and ion-
ising radiation of a single massive star with its surroundings
is usually referred to as an “interstellar bubble” (Weaver et al.
1977). Strong winds are shocked close to the star and produce
a hot overpressured bubble, which drives an expanding shell of

* The movie associated to Fig. 3 is available at
http://www.aanda.org

Article published by EDP Sciences

swept-up, shocked ambient gas. The shell may be partially or
completely ionised by the ultraviolet emission of the central star.
The increased pressure may additionally push the leading shock
front. Interstellar bubbles are usually not energy conserving, be-
cause of the radiative losses of the shocked ambient medium
(e.g. Weaver et al. 1977). This has been nicely demonstrated
by the observations of Gruendl et al. (2000). For some bubbles,
they resolve the radiative leading shock wave, with the highly
excited [ O IIT] tracing the hottest outermost gas, and Ha tracing
a somewhat cooler surface inside of [ O III]. This indicates that
the leading shock front in these cases is shock ionised rather than
photo-ionised. Radiative energy losses are substantial, but hard
to quantify in detail (e.g. Garcia-Segura & Mac Low 1995), and
they affect wind-blown and supernova related bubbles alike.

Many molecular clouds host massive stars in groups. The
bubbles of these stars have to interact, because the sizes of the
individual bubbles (parsecs, e.g. Weaver et al. 1977; Gruendl
et al. 2000) are comparable to the size of the parent molecular
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clouds (Kainulainen et al. 2011). Also, in star-forming regions,
smaller groups of stars are often located within distances of
tens of parsecs (e.g. Orion, Voss et al. 2010). The interaction
of individual bubbles leads to the formation of superbubbles
(Tenorio-Tagle & Bodenheimer 1988; Oey et al. 2001; Chu
2008; Oey 2009, for reviews). The expansion of the combined
superbubble is often described by the same model as for indi-
vidual bubbles. Superbubbles may reach sizes of hundreds of
parsecs (e.g. Tenorio-Tagle & Bodenheimer 1988; Breitschwerdt
& de Avillez 2006; Sasaki et al. 2011). But they often ap-
pear to be too small and too bright in X-rays compared to
models (e.g. Oey & Garcia-Segura 2004; Jaskot et al. 2011).
Possible explanations include energy dissipation due to mass
loading or uncertainties in the stellar wind data, e.g. due to
clumping.

Understanding of the physics of bubbles and superbubbles
is the key ingredient in order to gauge the efficiency of stel-
lar feedback. It is of particular importance to assess the effec-
tive energy input into the ISM. Our group has embarked on this
task, and has synthesised the total energy input into molecular
clouds for realistic stellar populations based on recent stellar
evolution models (Voss et al. 2009): Averaged over all massive
stars (8 My < M < 120 M,), the energy input due to winds
is of the order of 10°° erg/star. Supernovae contribute about ten
times more. The energy injection is extended over several tens
of Myr and has a peak near four Myr with a shallow decline
afterwards. Winds dominate before the peak and supernovae af-
terwards. Substantial variations from cluster to cluster are ex-
pected due to the sparser sampling at the massive end of the
initial mass function.

Stars are born in the densest regions of the ISM. Much of
the injected energy is therefore quickly lost to radiation in cool-
ing shock compressed shells. Hydrodynamic simulations have
been used to assess the effective energy input into the ISM. The
energy deposition efficiency of isolated massive stars in their
wind phase has been assessed in 2D hydrodynamic simulations
by Freyer et al. (2003, 2006). Though they include the effect
of photo-ionisation, they show that the gas dynamical effects
are dominated by the mechanical energy input: for example, for
a 35 (60) M, star, they expect that only 17 (5) per cent of the
energy increase in the ISM in their simulation is due to ioni-
sation. They give their energy deposition efficiency as fractions
of the radiative energy input. Scaled to the mechanical energy
input, they find that about 38 (9) per cent of the input energy
has been added to their ISM at the end of their simulations
for the 35 (60) My star. The dynamics of two wind bubbles
(25 M and 40 M, stars) separated by 16.2 pc has been stud-
ied by van Marle et al. (2012). The two bubbles quickly merge,
sweeping the colliding parts of the wind shells away into the
bubble of the lower mass star, due to the pressure difference in
the bubbles. An aspherical superbubble is then formed, which
isotropises after a few Myr. More interesting details are observed
which we refer to below, when we compare them with our find-
ings in Sect. 3. Ntormousi et al. (2011) have simulated the merg-
ing of two superbubbles in 2D with identical stellar content. One
of the most interesting findings in the simulations of Ntormousi
et al. (2011) and van Marle et al. (2012) is the occurrence of
the Vishniac thin shell instability (Vishniac 1983). This insta-
bility is strongly suppressed in the simulations of Freyer et al.
(2003, 2006) due to the thickening of the shell because of the in-
creased pressure due to the ionisation. The Vishniac instability is
interesting as it may create observable filamentary features, and
thick filamentary shells, and thus discriminate between models
(van Marle & Keppens 2012).
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Here, we address the effective energy injection into a homo-
geneous ISM for three interacting interstellar bubbles with 3D
hydrodynamics simulations, using standard ISM thermodynam-
ics. We neglect the effect of ionising radiation, because it is ex-
pected to be less important in this context (Freyer et al. (2003),
see e.g. Gritschneder et al. (2010) for the effects of ionising ra-
diation). We take as our starting element a group of three coeval
massive stars, 25, 32 and 60 M, respectively. We study the de-
position efficiency of energy injection as a function of distance
between the stars. We find a high efficiency in the wind phase,
comparable to the 2D results of Freyer et al. (2003, 2006) and the
2D and 3D results of Fierlinger et al. (2012), details of bubble
merging similar to van Marle et al. (2012) and an enhancement
of the feedback efficiency by about a factor of two for grouping
of the stars closer than about a few tens of pc. The energy of
supernovae that explode within superbubbles is dissipated on a
timescale of about 1 Myr. Additionally, we show column density
renderings of prominently Vishniac unstable 3D shells, which
should give a first approximation of the observational appear-
ance of the Vishniac instability.

2. Simulations

We carry out 3D hydrodynamic simulations with the
NIRVANA 3.5 code (Ziegler 2008, 2011), evolving the conserva-
tion equations for mass, momentum and energy. NIRVANA 3.5 is
a conservative, finite volume code and combines block struc-
tured adaptive mesh refinement (AMR) with parallelisation by
the message passing interface (MPI) library.

2.1. Numerics and code tests

The main solver modules are an HLLD solver (HLLD_CT),
applying the 1D approximate Riemann solver of Miyoshi &
Kusano (2005) dimension-by-dimension in 3D, and a second-
order Central-Upwind scheme (CU_CT, full details in Ziegler
2011). We work in Cartesian coordinates throughout (apart
from the radiative test case in this section). In order to check
the isotropy of the solution in this geometry and also for differ-
ences between these solvers, we re-run and analysed the adia-
batic blastwave test problem that comes with the code with both
solvers. Here, a fixed amount of thermal energy is initially de-
posited in a finite circular region of 22 cells diameter. In both
cases, a reasonably spherically symmetric bubble develops, with
a forward shock, a contact surface and a backward shock. The
contact surface evolves identically for both solvers, forward and
backward shock are lead by the solution of the CU_CT solver
by at most one cell. Hence, both methods yield a very similar re-
sult for symmetrical bubble expansion. For the same solver but
different angular directions other than the grid axes, the radii of
the different features of interest differ by typically one and up to
about three grid cells.

As a radiative (see below for details about radiative cooling
and heating) test simulation, we re-run the 1D-supernova test of
Tenorio-Tagle et al. (1990, Fig. 1), also in spherical coordinates,
but otherwise with the same numerical settings as for the 3D
production runs below. Here, 10°! erg are deposited within a ra-
dius of 10'® cm. Density and temperature are initially assumed
to be 1 cm™ and 100 K, respectively, throughout the computa-
tional domain. We use the CU_CT solver with a uniform mesh
with a cell size between 5.6 x 1073 pc (6400 cells in total) and
0.36 pc (100 cells in total) for this test. The density slices in
Fig. 1 (top) show the expected shape for such an explosion. In
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Fig. 1. Test simulation of an isolated supernova in a homogeneous en-
vironment according to Tenorio-Tagle et al. (1990). This test was run
in 1D and spherical coordinates at radial resolutions between 100 and
6400 cells with respective increments of a factor of two and with the
standard cooling and heating. Top: density slices at different times (in-
creasing from left to right). Middle: evolution of thermal (thin lines)
and kinetic (thick lines) energy for the 100 (orange triple dot-dashed
lines), 800 (solid black lines), 6400 (red dashed lines) radial cells sim-
ulation. Additionally a simulation with 3200 radial cells and enhanced
cooling is shown (blue dot-dashed lines, see text for details). The left
part of the plot zooms into the first 2000 yr of the evolution. Bottom:
maximum compression at about 20 000 yr as a function of resolution.
The expected maximum compression at this time is four for a strong
adiabatic shock.

their 1D test run, Tenorio-Tagle et al. (1990) find the outer shock
at 11 pc (24 pc) at 5300 yr (47 806 yr). Our simulation (10.4 pc
at 5483 yr; 25.2 pc at 47990 yr) reproduces this within expecta-
tions. At 47990 yr, our outer shock is about 5% further out then
their solution at 47806 yr. This is likely related to the differ-
ences in the employed cooling functions (more details below).
The contact surface at 47 806 yr should be at 8 pc, which agrees
well with our result. During the energy conserving phase, i.e. up
to say 30 000 yr, we expect 28 % of the energy in kinetic form and
72% in thermal form, which is consistent with our energy tracks
(Fig. 1, middle, to be compared with Fig. 1a in Tenorio-Tagle
etal. 1990) Cooling should become significant around 33 000 yr,
which is also in good agreement. After the onset of cooling, the
thermal energy should decline strongly, this and the shape of the
energy tracks are quite similar to the findings of Tenorio-Tagle
etal. (1990). We also find a secondary shock wave in the shocked
ambient gas due to the non-uniform cooling of the shell, and
a corresponding increase in the track of the kinetic energy, as
in Tenorio-Tagle et al. (1990) (another weak shock from reflec-
tion at the origin is visible in the shocked ambient gas in Fig. 1,
top). The analytically expected compression ratio at the leading
shock front is four. Because of the strong decline of the solu-
tion inwards, one can however not expect to obtain exactly four
in a numerical representation, but the solution should converge
towards four with increasing resolution. Our highest resolution
run reaches a compression above 3.9 in the adiabatic phase, and
we show in Fig. 1 (bottom) that this value converges well with
increasing resolution.

The reduced density peak height decreases the cooling rates
slightly: The low resolution runs lag behind in thermal energy
decrease by at most about 3000 yr at 60 000-90000 yr. The en-
ergy track is entirely converged from about 400 cells. The cross-
ing point of thermal and kinetic energy is around 80 000 yr in our
simulation compared to about 46 000 yr in Tenorio-Tagle et al.
(1990). This significant difference is due to the employed cool-
ing curve: Tenorio-Tagle et al. (1990) use the cooling curve of
Raymond et al. (1976), which features particularly strong cool-
ing around 10°~107 K due to highly ionised Fe. The cooling rates
are uncertain by a factor of about two (Wiersma et al. 2009).
Many, more recent, cooling curves tend to have lower cooling
rates than Raymond et al. (1976), including the standard one for
the NIRVANA-code, Slyz et al. (2005), which we use. In order
to verify that this is the reason for the differences in the energy
tracks between Tenorio-Tagle et al. (1990) and our result, we
tested a case where we increased the cooling rates ad hoc by a
factor of two (Fig. 1, middle). This obviously shifts the result
into the right direction. The increased amount of thermal energy
probably also leads to the slightly further advanced outer shock
(compare above) at late times.

Thus, we reproduce the fundamental properties of the 1D test
of Tenorio-Tagle et al. (1990). The 3D nature of our simulations
demands some compromise regarding resolution. We expect that
this effect should affect energy tracks by at most a few per cent.
We account for this in the discussion below.

We initially selected the HLLD_CT solver but encountered
severe vacuum formation problems (very low pressure) near con-
tact surfaces for our high resolution runs. For all the simulations
presented in this article, we therefore employed CU_CT.

We use standard ISM thermodynamics with radiative cooling
and photo-electric heating (see Piontek et al. (2009) for details),
employing the standard iterative procedure of NIRVANA 3.5.
Cooling is always strong for our wind shells, which tend to get
thin and eventually also Rayleigh-Taylor and Vishniac-unstable.
The instabilities evolve differently for different flux limiters: test
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Table 1. Simulation parameters.

Label Star mass /M, X /pc
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simulations with all flux limiters provided (minmod, superbee,
monotonised-centred, and Van Leer) showed that for the
monotonised-centred and the superbee limiters, the instabilities
are systematically different for parts of the shell which move
parallel and diagonal to the grid axis. Van Leer and minmod
both yield almost isotropic results at our highest resolution, at
the expense of being more diffusive, as expected. We corre-
spondingly adopted the minmod flux limiter. NIRVANA 3.5 offers
an additional multi-dimensional limiter which we also use, and
where we adjusted the parameter experimentally to yield optimal
isotropy for shell instabilities.

2.2. Setup

The computational domain is a cubic Cartesian grid, 400 pc on a
side resolved by 24 cells for the base level. The mesh is refined
whenever a combined threshold of first and second derivative for
density or respectively velocity is exceeded. Additionally, we al-
ways keep the wind injection region at the highest refinement
level. Effectively, the wind shell and everything inside is always
refined to the highest level. For most of our runs we use three
levels of adaptive mesh refinement, which would correspond to a
uniform grid of 1923 cells with a resolution of 2.1 pc. Simulation
3S1-mr and 3S1-hr use four and five levels of refinement, result-
ing in 1 and 0.5 pc resolution, respectively. Boundary conditions
are formally periodic, but we only use data from snapshots where
the shells are entirely contained in the computational domain.
We fill the grid initially with a homogeneous medium. Then
we choose one (three) injection regions of eight pc radius in ev-
ery case. Each injection region gets assigned a star of a particular
mass. We inject mass and thermal energy according to the stellar
evolutionary tracks of rotating stars of Meynet & Maeder (2005)
and wind velocities from Lamers et al. (1995) and Niedzielski &
Skorzynski (2002) for the Wolf-Rayet phase, as compiled in
Voss et al. (2009). We use 25, 32, and 60 M, stars, with super-
novae at 8.6, 7.0 and 4.6 Myr, respectively. The time resolution
of the stellar evolution table is 0.1 Myr. Cumulative mass and
energy input are shown in Fig. 2. The mass density is initially
set to 10my, cm™ everywhere in the computational domain. The
temperature is set in equilibrium between cooling and heating,
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Fig. 2. Cumulative energy (fop) and mass (bottom) input. We use the
output of a 25 M, (dashed, labels: Ms = M), 32 M (dotted) and a
60 M, star as input for our simulations, separately or combined. The
difference between the total mass output and the initial mass indicates
the mass of the dark remnant. The energy is given in “Bethe” = 10°! erg.

121 K. All velocities are initially zero. More details for each in-
dividual run are provided in Table 1.
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Fig. 3. Column density integrated over Z-direction and Y-direction (left and middle col., respectively) and midplane density (right column) for
three different snapshot times from top to bottom for run 3S1-hr. The projections of the three massive stars into the X—Y plane is indicated as
small red stars in the density plots on the right. The 60 M, star blows the biggest bubble from the origin. The 32 M, bubble towards its lower left
(XY-plots) is only slightly bigger than the one of the 25 M., star above. The shell forms spikes and dense clumps due to the combined action of
Vishniac and thermal instability. A movie is provided with the online version.

3. Results

The time evolution of our high resolution run 3S1-hr with three
stars at different locations is shown in Figs. 3 and 4. At a given
time, the bubble size increases monotonically with the mass of
the parent star, with the central 60 M, bubble dominating the
gas dynamics. As expected, the shocked ambient medium cools
very quickly and consequently gets compressed into a thin shell
for each bubble. The shell is subject to a combination of thermal
and Vishniac (1983) instabilities'. The bubbles start to merge

' Although we have carefully chosen the flux limiter, the shell insta-
bility evolves still somewhat anisotropically. This is similar to the 2D
results of Ntormousi et al. (2011) with the RAMSES code, where even
a five times higher spatial resolution could not get the shell instabilities
completely isotropic.

at around 2 Myr. At the first snapshot in Fig. 3 (1.95 Myr), the
shell interface between the 60 M, bubble and the 32 M bubble
has just burst. Up to this point, each bubble has had its individ-
ual bubble pressure, which is highest for the 60 M, bubble. Its
hot gas can be seen to stream through the hole in the shell. The
shell interface then behaves much like a cloud, being ablated
by a wind (Pittard et al. 2005): Kelvin-Helmholtz instabilities at
the contact surface lead to mixing of the cloud gas into the hot
phase. The shell interface has completely dispersed until the next
snapshot at 4.05 Myr. We checked the effect of different flux lim-
iters in this phase: Less diffusive ones allow smaller holes, which
delays the erosion process compared to the more diffusive case.
The final results are however very similar.

The density slice at 4.05 Myr shows the weaker winds of the
smaller stars to be pushed aside by the one of the most massive
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Fig. 4. Figure 3 continued, but with all scales adapted to the snapshots presented in this figure.

star. The larger part of the 60 M, bubble remains unaffected
by the action of the smaller stars. The 60 M, star explodes at
4.6 Myr. The sudden energy injection due to the supernova com-
presses the shell further (Fig. 5) and accelerates it, triggering the
Rayleigh-Taylor instability (RTI). The RTI may cause filamen-
tary structure inside the shell. Also, the outwards directed flow
field, centred on the most massive star before its explosion, is
no longer present. Thus, from this time on, we find filamentary
gas inside the shell, seen in the individual density slices. The
effect of the winds of the smaller stars in this phase can hardly
be noticed. The second supernova (7.0 Myr) leads to a further
acceleration and compression of the shell, causing more RTI fil-
aments. The snapshot at 8.53 Myr shows the superbubble when
2 stars have exploded already, and the third is in its Wolf-Rayet
phase. This snapshot demonstrates nicely that our ansatz with
thermal energy injection may also cope with situations when the
backward shock within the stellar ejecta is unusually far from the
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star: one can clearly see the declining density away from the star
due to adiabatic expansion (1D-slices in Fig. 6). The wind turns
supersonic immediately outside the driver and shocks roughly
20 pc away from the star. A second structure is visible at varying
distance from the star, up to about 50 pc: This is what we would
expect to be the forward shock in the standard picture. Due to
the high ambient pressure, it is only a sound wave. The pressure
inside of this structure is slightly reduced due to the ongoing ex-
pansion. The final supernova at 8.6 Myr causes again mass en-
trainment into the bubble due to the RTI. The bubble then keeps
expanding with decreasing interior density fluctuations until the
end of the simulation at 15 Myr.

The highest densities in the shell, around 180 times the am-
bient density, are reached for roughly 1 Myr after each super-
nova, where for the later two supernovae, the compression peaks
have merged (Fig. 5). At late times the density increases again
(see below for details). We show a zoom on the highest density
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Fig. 5. Maximum density as a function of time for runs 3S1-hr (solid),
3S1-mr (dashed) and 3S1 (dotted). The horizontal lines correspond to
the critical compression above which the Vishniac instability is trig-
gered for supernova (lower line) and wind (thicker upper line) shells
according to Vishniac & Ryu (1989). The axis on the right shows the
overdensity factor over the undisturbed ambient medium.

3S1-hr: slice atY,Z = 10 pc, T = 8.53 Myr
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Fig. 6. One-dimensional slices in X-direction through run 3S1-hr at time
T = 8.53 Myr. The Y and Z coordinates are chosen appropriately for
the slices to include the position of the only remaining star at that time
(25 M, , at X = =30 pc, indicated by the star in the middle diagram).
Top: positive X-velocity (blue, dashed line), negative x-velocity (red
dash-dotted line) and sound speed (solid black). Middle: pressure (log-
arithmic). Bottom: density (logarithmic). See text for details.

region in the final snapshot in Fig. 7. The density maximum is
located in the dense shell, where two humps of the Vishniac
instability (compare Sect. 3.1 below) cross, and more towards
the interior of the bubble. The velocity field in the shell is still
dominantly outwards with substantial Mach numbers. Yet, prob-
ably enhanced by the large scale vortices which dominate the
shell interior at that time, there is also some non-radial mo-
tion. The slightly converging velocity field has to be responsi-
ble for the high density, as the region is substantially overpres-
sured compared to the environment. At earlier times (compare
above), such maxima in density and pressure could have been in
pressure equilibrium with their surroundings. At this late time,
the bubble interior is already underpressured with respect to the
environment, and so we expect that the maximum is temporary,
unless such clumps become self-gravitating. This seems quite

-50 -40 -30 -20 -10 -50 -40 -30 -20 -10
coordinates: X,Y / pc

Fig.7. Shell details for the final snapshot of run 3S1-hr. Shown is an
X-Y zoom of density, pressure, temperature and Mach number, as in-
dicated on the individual panels, around the position of the maximum
density, which is located at (X, Y, Z) = (=30, —79, —52) pc. Velocity
vectors are overlaid on the density plot. The high density region is over-
pressured and has a temperature below 20 K. See text for more details.

likely, given the pc-scale size, low temperature (below 20 K) and
high mass (few hundred My, ) of the clump (Jeans length: =2 pc).
Yet, self-gravity is not included in the simulations and therefore
details, such as triggered star formation, are beyond the scope of
this article.

3.1. Vishniac instability

The shells are subject to various instabilities. The
Rayleigh-Taylor instability is especially prominent during
the strong acceleration phases after each supernova. The
Vishniac instability develops when the shell decelerates. It is
an overstability: differences in column density for adjacent
regions of a shell cause gas flow from the high column density
region into the region with lower column density. This continues
in general until the situation is reversed and the region with
initially lower column density finally has the greater one.
Vishniac & Ryu (1989) derive a critical overdensity for the
shell over the unshocked ambient gas of a factor 10 and 25 for
a blastwave with initial energy injection and constant energy
injection rate, respectively, to become unstable, such that the
peak density increases in each cycle. The shell then develops
a characteristic spiky pattern (Ntormousi et al. 2011; Drake
2012, Fig. 3), in density slices. The 3D structure of the shell
is granular with a regular filamentary pattern (Figs. 3 and 4).
The regularity is of course related to the grid structure, because
this is the most important perturbation. In column density,
we find a web formed of polygons. These polygons have
typically four to six sides. The sides are however not always
aligned with the coordinate axis or the diagonals, and some
are clearly curved. The typical polygon diameter is about
10 pc. At the intersections of the filaments, density and column
density achieve their highest values. These points lag behind
the shell. Particularly high densities may be achieved, when
left and right part of an inwards spike merge. This seems to
have happened for the density maximum at the final snapshot
we show in Fig. 7. But from a detailed inspection of several
snapshots, we conclude that this should happen frequently. The
three-dimensional structure of our superbubble shells is very
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Fig. 8. Column density at a comparable late evolution time for runs 3S1
(top) and 3S1-hr (bottom). The high resolution bubble is more spherical,
larger, achieves higher peak column densities and the Vishniac instabil-
ity is more pronounced.

similar to the one of the smaller scale circum-stellar shells of
van Marle & Keppens (2012).

We show the peak density over time in Fig. 5. Clearly, the
densest parts of the shell of run 3S1-hr satisfy the criteria of
Vishniac & Ryu (1989) from before 2 Myr throughout the sim-
ulation, in agreement with Fig. 3. The low resolution simulation
3S1 generally stays below the wind criterion of Vishniac & Ryu
(1989). Correspondingly, the Vishniac instability is much less
pronounced (Fig. 8). Mac Low & Norman (1993) have shown
that the instability is connected to transonic motions in the shell
perpendicular to the expansion direction. We evaluate these non-
radial velocities for the undisturbed (with respect to the interac-
tion of the bubbles of the other two stars, here we use X > 0)
part of the shell in Fig. 9. The 2D mass weighted histogram over
logarithmic density and non-radial Mach number, with respect
to the local speed of sound, shows that only dense shell gas ac-
quires substantial non-radial Mach numbers. At high densities,
indeed most of the gas has Mach numbers around and below
unity.

3.2. Energy evolution: general observations

We show the total input energy over time together with the en-
ergy retained in the ISM where the initial thermal energy is sub-
tracted in Fig. 10. The retained energy is generally below the
input energy because the gas is initially in radiative equilibrium
and suffers net radiative losses during the course of the simula-
tion. We define the response R to be the energy retained in the
ISM divided by the input energy:

E -E
R(1) = ISM(g = ISM,0

A49, page 8 of 13

ey

3S1-hr: mass-weighted density vs. non-radial Mach number histograms

= 3.007]
o
o =
> 2.00| @
5 8
ke . n
> 7.47 Myr B
o C
= A . °
8 < 1 ooof @
=’ e b
= 4 K\ JE 1 100
© 0
0 1 2 3 4 0 1 2 3 4 5

Non-radial Mach number Non-radial Mach number

Fig.9. Analysis of the non-radial Mach number, i.e. the Mach num-
ber perpendicular to the direction of the shell’s expansion. Only the re-
gion with positive X-coordinate, which corresponds to the undisturbed
part of the 60 M, bubble, is taken into account. Left: 4.05 Myr, right:
7.47 Myr. The upper parts show the non-radial Mach number versus the
logarithm of the density. Colour encodes the mass per bin, where each
bin spans 0.05 in Mach number and 0.06 dex in logarithmic density.
No appreciable non-radial motions are found for the hot bubble inte-
rior, whereas the dense shell material shows Mach numbers of the order
of unity. The lower parts show mass weighted non-radial Mach number
histograms (vertically collapsed versions of the plots above). The plots
are dominated by the quiescent ambient medium. The mass with given
non-radial Mach number declines strongly around a Mach number of
unity towards higher Mach numbers as expected for shells dominated
by the Vishniac instability.
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Fig.10. Top part: input (solid) and retained (dotted) energy for
run 3S1-hr. The response R (retained energy divided by input energy)
is shown in the botrom part. See text for more details.

where we define as ISM the whole gas present in the compu-
tational domain, including the hot bubble interiors with their
stellar ejecta.

The response R is generally of the order of ten per cent. It
is higher whenever the energy input rate increases. This is es-
pecially well visible at the time of the three supernovae at 4.6,
7.0 and 8.6 Myr. Here, R reaches peak values between 20 to
40 per cent. R is lower for phases of decreasing energy input
rate. This is particularly well visible after a supernova. About
1 Myr after each supernova, R drops to roughly five per cent.
The characteristic decay time of the retained energy increases
for each consecutive supernova. When the energy input ceases,
the ISM energy is lost to radiation on a timescale of Myr, with R
dropping to 2 per cent roughly 4 Myr after the last supernova.
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381, 3S1-mr & 3S1-hr: energy tracks
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Fig. 11. Resolution effects on the retained energy. Top part: retained
energy for run 3S1-hr (solid line, high resolution), 3S-mr (dashed
line, intermediate resolution) and run 3S1 (dotted line, low resolution).
The bottom part shows the energy ratio 3S1-hr/3S1-mr (solid line),
3S1-mr/3S1 (dashed line) and 3S1-hr/3S1 (dash-dotted line). In each
case, the data for the higher resolution run has been interpolated to the
data output times of the lower resolution run. The spikes at the super-
nova times are artefacts of the interpolation process at the discontinu-
ities of the functions. The horizontal dashed line indicates equality for
comparison. The energy increases similarly for each doubling of reso-
lution. The general functional behaviour is independent of resolution.
See text for more details.

Steady, continuous energy injection is clearly more effective
in energising the ISM than sudden bursts such as from infrequent
supernovae.

3.3. Resolution effects

We repeated run 3S1-hr at a half and a quarter of the original spa-
tial resolution. Morphologically, the bubbles are less spherical,
smaller and the Vishniac instability is less developed at lower
resolution (Fig. 8). We compare the energy evolution of the three
runs in Fig. 11. The retained energy differs by much less than a
factor of two between simulations at different resolution. The
differences are more pronounced at later simulation times. Finer
spatial resolution always leads to more energy in the ISM. For an
increase of the resolution by a factor of two, we find an increase
of the retained energy by 20—30 per cent. This agrees with the
greater bubble diameter at higher resolution (Fig. 8). The overall
functional behaviour is very well converged.

The reason for the changes with resolution is very likely
the details of the shell evolution. In the absence of other per-
turbations, instabilities are triggered on the resolution level.
Additionally, the Vishniac instability is only marginally devel-
oped at low resolution. This might lead to more non-radial
kinetic energy at higher resolution, which is not immediately
radiated away. Also, the peak density at a given time de-
pends strongly on resolution (Fig. 5), which also changes the
thermodynamics.

3.4. Energy evolution: varying stellar distances

We carried out a set of simulations, where we varied the posi-
tions and distances of the same three stars (Fig. 12). Because of
computational limitations, these simulations were carried out at
2.1 pc resolution. This is physically justified by the convergence

Energy tracks: stellar distance variation
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Fig.12. Energy tracks for different simulations, where only the posi-
tions of the three stars differ. Run labels in the legends are explained
in Table 1. S25 + S32 + S60 refers to the sum of the energy tracks of
the three simulations of the bubbles of the isolated 25 M., 32 M, and
60 M, stars, respectively, which corresponds to a very large distance.
3S0 is the opposite case, where three stars are in the same region. Top:
absolute values. Middle: three-stars simulations relative to the sum of
the three isolated bubbles. Interpolations always use the 3S0 time base.
Interpolation artefacts are visible at the discontinuities due to the su-
pernovae (4.6, 7.0 and 8.6 Myr). Bottom: difference of the very similar
energy tracks of runs 3S1 and 3S0, normalised to 3S0 as a percentage.
The solid red line marks zero. The difference has been set to zero for
the time intervals 10,000 yr around each supernova in order to mask the
interpolation artefacts. See text for details.

of the general shape of the energy tracks (Fig. 11). For obtaining
the large distance limiting case, we simulated each of the three
bubbles in a separate simulation (S25, S32 and S60), and added
their energy tracks for comparison to the other cases. We model
the closely-spaced extreme case, where the bubbles merge in-
stantaneously, by putting the driver regions of the three stars on
top of each other at the grid origin (3S0). Additionally, we per-
formed two simulations with intermediate star positions (com-
pare Table 1), where we actually observe the bubble merging
during the simulations (3S1 and 3S2).

We see small differences in the energy tracks during the
first ~0.5 Myr. They are expected because during this time, the
driver region is evacuated and the bubble shape is established.
It of course makes a difference if the three stars share the same
driver region (3S0), or if each star has its own. Also shifting
the driver region on the grid makes the volume of the individual
driver regions slightly different, by a few per cent, due to res-
olution effects at the driver boundary. This translates to a few
per cent difference in total energy, which is visible in Fig. 12
(bottom).

Once the bubbles are established properly on the grid, i.e.
after about 0.5 Myr, all configurations have essentially the same
energy response until the first supernova at 4.6 Myr. The rea-
son for this is the predominance of the energy injection of the
60 M, star. The energy tracks begin to differ slightly after the
first star has exploded. The divergence increases abruptly after
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each supernova. But for very long times after the final explosion,
the tracks converge again towards a common value.

Among the four configurations, the energy varies at times by
up to a factor of three. A typical value after the second supernova
is a factor of two. Throughout the simulation time, the energy
is essentially highest for run 3S0 (all stars at same place) and
lowest for very large distance (sum of S25, S32 and S60). The
two configurations with intermediate distances, where the bub-
bles merge during the respective simulations, show intermediate
energies. The run where the bubbles merge early (3S1) behaves
almost identical to the case where the driver regions are on top
of each other (3S0).

3.5. Shell widths

We find that our simulated shells are widened due to the Vishniac
instability. For the determination of the shell width, we average
the column density maps over the angle, and identify the shell as
radial interval where the column density is at least five per cent
higher than in the undisturbed medium. The shell width is shown
in Fig. 13 as a function of time and radius, respectively, for runs
3S1 and 3S1-hr. For this analysis, we only use late snapshots,
where the superbubbles are well established.

The shell width is typically in the tens of per cent regime
and increases with time. The result does not depend on the
resolution.

4. Discussion

We investigated the environmental impact of a group of three
massive stars via 3D hydrodynamic simulation. Herein, several
assumptions and simplifications were necessarily introduced:
We adopted a uniform background density of 10m, cm™>. On
scales of ten pc and smaller, the density will in reality be at least
a factor of ten higher (e.g. Kainulainen et al. 2011). On scales
of 100 pc, the density should become equal to or even smaller
than about 1m, cm™ (e.g. de Avillez & Breitschwerdt 2005).
Hence, our choice should be realistic for the tens of pc scales we
simulate (compare also Freyer et al. 2003, 2006; van Marle et al.
2012). The real ISM has a rich spatial structure, whereas we use
a homogeneous distribution. This is a significant difference. For
a porous ISM, the injected wind/SN energy could escape through
low density regions making the bubbles smaller (Fierlinger et al.
2012b, in prep.). For such a situation, one should also expect
pronounced bubble asymmetries. Indeed, such asymmetries are
found in observations (e.g. Churchwell et al. 2006). Yet, in order
to be able to compare the effect of different spatial configurations
of the stars, and not to be dominated by local environmental ef-
fects it is necessary to use a homogeneous background density.
We found that with the standard ISM thermodynamics, the
peak shell density does not converge with finer resolution. It is
not immediately obvious that this should be so, as the photo-
electric heating we take into account could in principle have
produced high enough pressure to limit the shell compression.
Yet, with our highest resolution of 0.5 pc, this has not been the
case. The shell density results from several effects: at a given
pressure level, there is a density and a temperature that corre-
spond to thermodynamic equilibrium. When the pressure in the
bubble increases, e.g. because a supernova has happened, the
shell can however not adjust immediately to the new equilib-
rium pressure level, because the gas has to be swept together
in a finite time. The inverse happens at late times (as demon-
strated in Fig. 7) when the bubble pressure strongly decreases,
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L

0.030 [ ]

. 00251 -

c L |

o | 4

o L 4

= L 1

(72}

5 0.020 — B

3 L |

c L 4

£

=] L 4

[s}

8 L |
0.015 -
0.010 [ | | L | | ]

0 20 40 60 80 100 120
R/pc
Shell width / outer radius over time
40 [T SN - e e .
i + ]
30 -
b + .

g C *‘:‘ ]

S 20 x‘; * -

& r %K& ]

r » 1
r ** 1
C + 1
10~ "'& B
0 o, [ [ [ [ [ ]
0 10 20 30 40 50 60
Time / Myr
Shell width / outer radius over outer radius
D A B T S .
i + ]
30 -
r + 1

£ E * b

2 20 * )s:& ]

e * %&& ]

E ™ ]

C + 1

10F o, E

g s :

0 t | | . | ]
0 50 100 150 200

Outer radius / pc

Fig. 13. Shell width for column density maps. Top: angle-averaged col.
density over radius for run 3S1-hr at 12.56 Myr. From such plots, the
shell width has been determined as the radial range where the column
density is at least five per cent greater than at large radii (undisturbed
gas). The shell width determined in this way is shown in the middle plot
as a function of time, and in the bottom plot as a function of outer radius.
Black pluses are for run 3S1, red stars for run 3S1-hr. The average shell
width does not depend significantly on resolution.

but the clumps in the shell cannot expand fast enough to remain
in pressure equilibrium. The compression is of course also lim-
ited by the resolution. The non-convergence therefore means that
the bubble pressure is high enough for a sufficiently long time so
that compression of the shell, or some clumps therein, to even
higher densities may occur if one would repeat the simulation
with an even higher resolution. For gas on the thermodynamic
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equilibrium curve in the relevant density regime, higher den-
sities correspond to lower temperatures. Compared to observa-
tions (e.g. Preibisch et al. 2012), the ISM in star forming regions
rarely reaches temperatures below about 20 K, and 20 K to 100 K
are typical for the dense phase. Similar temperatures are also
found in our simulated shells. Other effects like magnetic fields,
self-gravity or feedback by the new stars, which in reality might
form in our dense clouds, may affect the cloud compression, but
are not included in our simulation. Thus, even if the compression
would increase still further if one would carry out the simula-
tions at yet higher resolution, this would not necessarily be more
realistic, as the high density clumps may be regarded as physi-
cal systems of their own with some of the physics necessary to
describe them properly not being present in our simulations.

The absolute value of the energy deposition is also resolution
dependent. It increases by about a factor of 1.2 if we double the
resolution. The reason for this is likely related to the Vishniac
instability: Vishniac & Ryu (1989) estimate the wavelength at
which the growth rate is largest as:

p 10-"2dyncm™2) (107 cms2
103 gem2 P; a ’

/lVl,max =~ 03 pC(

where we plugged in typical values for the column density X,
the internal pressure P;, and the shell deceleration a. This is com-
parable to our best resolution. Therefore, finer resolution should
still trigger strongly unstable Vishniac modes, which seem to
have an effect on the result. The minimum unstable wavelength
is predicted to be 0.5y max. Unfortunately, for the present study
we did not have the computational resources to probe these
scales, but this should become possible in future. In contrast
to the Vishniac instability, the Rayleigh-Taylor instability con-
tinues to grow faster for smaller wavelengths. Thermal conduc-
tion would be expected to be important at even smaller scales
of about 0.01 pc/n, where n is the number density in the shell
(McKee & Cowie 1977). Thus, our absolute efficiency numbers
are lower limits.

At the level of this accuracy, 3D effects might be important,
because the shell instabilities should be 3D in nature. Up to the
first supernova, our simulations are dominated by the wind of
the 60 M, star, and may thus be compared to the 2D results of
Freyer et al. (2003). We find an energy response of at least 10 per
cent, which compares to 9 per cent in the simulation of Freyer
et al. (2003), which is very similar. It might point to some effect
in the direction that more energy is retained in the ISM in 3D
simulations, but could also be related to numerical details or the
slightly higher density they use.

The general shape of the curves is however well converged
(compare Fig. 11). As a further check, we also resimulated run
3S0 at the resolution of 3S1-hr. The energy deposition ratio
between the two high resolution simulations is very similar to
the one at low resolution. We therefore believe that the relative
trends of the energy deposition we report here are reliable.

We find that the Vishniac instability dominates the shell evo-
lution. We show that the instability in our simulations is con-
nected to the shells’ overdensity and to non-radial motions in
the shells, in agreement with the predictions of Vishniac & Ryu
(1989) and Mac Low & Norman (1993). Limiting the shell’s
overdensity by e.g. magnetic fields would therefore directly af-
fect the Vishniac instability.

From the column density plots (Figs. 3, 4 and 8), it is obvious
that the observational appearance of the shell is dominated by the
Vishniac instability: if the shells were smooth, and the maximum
density would increase with resolution as seen in our simulations

(Fig. 5), one would expect that the shell gets thinner with finer
resolution, as the smaller cells allow higher compression. Yet,
we find a radially averaged shell width of tens of per cent of the
outer radius independent of resolution (Fig. 13). In the low res-
olution simulation, much of the width is due to the large-scale
distortion influenced by the grid directions. For the high resolu-
tion simulation the width is due to small wavelength modes.

In their survey of 322 interstellar bubbles, Churchwell et al.
(2006) find typical shell widths of 20—40 per cent of the outer
radius. Thus, it seems unlikely that the development of the
Vishniac instability is frequently impeded by anything, e.g. lim-
ited compression due to magnetic fields, as this would again
make the shells thin. In other words, in order to study the effects
of magnetic fields one probably needs much higher numerical
resolution than adopted in our models.

The column density should give a rough indication on ob-
served morphologies. From the corresponding plots, we find
that the Vishniac instability should also lead to observable fil-
amentary structure inside the bubbles. This seems to be the
case for some shells associated with supernova remnants (e.g.
Crab, Hester 2008, compare also the discussion in van Marle &
Keppens 2012), which confirms the above analysis. More de-
tailed comparison would of course be interesting.

We find that the best way to inject energy into the ISM, i.e.
to achieve a high energy response is a continuous, steady energy
injection. Supernovae dissipate their energy within about 1 Myr.
We show the kinematics for run 3S0 (all stars at same position) in
Fig. 15. After each supernova, the shell accelerates significantly.
This means more kinetic energy in the shell. Yet the increased
expansion leads to fast adiabatic pressure loss of the shell in-
terior. The increased kinetic energy is quickly dissipated at the
leading radiative bow shock, as long as it is strongly supersonic.
In contrast, the energy fraction deposited in the ISM in the wind
phase remains roughly constant at ten per cent. Thus, retaining
the injected energy in an interstellar bubble requires continuous
energy injection.

The energy tracks of merging bubbles are entirely dominated
by these shell kinematics effects. For example, in run 3S1, the
merging process has clearly set in at 2 Myr (compare the high
resolution version, Fig. 3) and continues for a few Myr there-
after. Yet, the energy track for this time interval is indistinguish-
able from run 3S2 (different positions of the stars) and even from
3S0 (no shell merging because drivers are at same location) and
the sum of S25, S32 and S60 (no shell merging because the stars
are sufficiently far away, realised by having them in different
simulations).

Exploding a supernova in a superbubble and not in its own
wind bubble leads to weaker radiative losses: each supernova
shock heats first the bubble interior. It then makes a difference
how large the respective bubble is in communicating the thermal
energy to the shell: for larger bubbles, the heat energy is dis-
tributed over a greater volume. Thus the overpressure is lower.
The force on the shell is correspondingly smaller. Hence, shell
acceleration and adiabatic losses of the bubble interior happen
on a longer timescale. This is the reason for the longer energy
decay timescale for each subsequent supernova. Consequently,
after a supernova, the energy decays fastest if the bubbles remain
isolated, as each star has a small bubble of its own.

Off-centre explosions are another significant effect for the
energy tracks: the first supernova always explodes roughly in
the middle of the superbubble. This must of course be so at least
for coeval stars, since its parent star also has the highest energy
output and is the dominant driver of the superbubble before it
explodes. The energy tracks of the simulations with different
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3S0: shell kinematics

120
90~ 7
=
< 60 1
30 7
0 "
"o 87++~H'H' + —
e 6 + o+ + 7
X
3 4 + ++ Lt . _
ok + + |
— 0 *
©  gr * WK X B
g * * ++;x*
+ + X *
5 oF * + B
— ++t *
(2]
2 0 +
0 5 10 15 20 25 30
Time / Myr

Fig. 15. Shell kinematics (fop: radius, middle: velocity, bottom: accel-
eration), as functions of time for run 3S0. The velocity points are av-
eraged over time intervals of varying length, which correspond to shell
radii differences of at least 2 cells. The shell velocity converges towards
the ambient sound speed (red line). Each supernova leads to a signifi-
cant acceleration of the shell (black crosses, bottom plot), followed by
a comparably strong deceleration (red stars).

spatial configurations of the stars show little difference up to the
point when the second star explodes. This happens necessarily
significantly off-centre. The explosion accelerates first and most
efficiently the parts of the super-shell which are most nearby
(compare the pressure maps in Fig. 14). Yet, if the bubbles are
fully merged at the time of the explosion (3S1) the effect is only
at the per cent level. This is due to the high sound speed within
the bubble, which communicates pressure differences quickly.
We notice a considerable effect on the energy track for run 3S2,
where the individual bubbles are still well identifiable at the time
of the final supernova.

Thus, especially where the shells are not yet fully merged
at the time of explosion, the off-centre location leads to a cer-
tain extent to a behaviour closer to the isolated bubble case.
Therefore, the energy tracks (Fig. 12) of runs 3S1 and 3S2 es-
sentially do not leave the range spanned by the isolated bubbles
case (S25 + S32 + S60) and the cospatial parent star case (3S0).

Another finding which might seem curious is that all the
energy tracks in Fig. 12 converge at late times. Long after the
energy injection has ceased, the energy of the affected gas is
dominated by the kinetic energy of the shell. Because the swept
up mass is dominated by the action of the 60 M star and
the final shell velocity is always similar to the sound speed of
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the ambient medium, the overall energy increase is very similar
in all simulations.

Population synthesis of stellar groups/subgroups combined
with energy injection data from stellar evolutionary models
(Voss et al. 2009) show that the wind energy dominates within
the first few Myr after the star formation event. Later, the en-
ergy input is dominated by supernovae. Observed subgroups
have an age difference of the order of a few Myr (Voss et al.
2010, 2012). Thus, it appears possible that the energy response
(compare Eq. (1)) is kept high for >10 Myr by the wind con-
tributions of different subgroups coming in at slightly different
times. Observations find energy responses of about ten per cent
or higher (e.g. Oey & Garcia-Segura 2004; Voss et al. 2012).
This agrees very well with the results in the wind phase of our
highest resolution run and might suggest that additional effects,
which are not taken into account in our simulation and which
we believe should only increase the energy response, may not
dominate.

A similar energy response has also been inferred observa-
tionally for galactic winds (e.g. Veilleux et al. 2005), though
only the supernova energy has been taken into account for the
calculation. Galactic winds are thought to arise as a final merg-
ing stage from central superbubbles in star-forming galaxies. If
one wants to keep the energy response high in order to match
the constraints from the galactic wind observations, the individ-
ual bubbles should be closely spaced and merge early in order
to have as constant an energy input rate as possible. This is of
course the case for wind galaxies, such as M82, with their star
clusters and even super-star clusters (e.g. Forster Schreiber et al.
2003; Westmoquette et al. 2009). The same effect that we ob-
serve for individual stars, namely that their energy deposition is
higher, if they are closer together, should also apply to clusters
of stars: If two clusters are closer together, they should deposit
more energy into the ISM as if they were further apart.

5. Conclusions

We simulated isolated interstellar bubbles and emerging super-
bubbles which form from adjacent interstellar bubbles with stel-
lar distances of the order of 10 pc. Thus, our simulations apply,
within the limitations outlined in Sect. 4 above, well to hierar-
chically clustered star formation complexes like the Orion (Voss
et al. 2010), Scorpius-Centaurus (Diehl et al. 2010) or Carina
(Voss et al. 2012) regions.

We find in our simulations that up to about the second su-
pernova the total energy of superbubbles is not strongly depen-
dent on the spatial configuration of the group of parent stars,
including zero and infinite distance. Off-centre energy injection
reduces the ISM energy response significantly only if the in-
dividual bubbles are not yet fully merged. Thus, from before
the second supernova onwards the energy response is higher for
more closely packed configurations. We find on average about a
factor of two difference in energy response between the isolated
stars-case and the cospatial stellar configuration.

Supernovae increase the ISM energy only for very short
timescales of about 1 Myr, increasing with the size of the su-
perbubble at the time of the explosion. After that time, the re-
tained energy is lower than immediately before the supernova
(Fig. 10). The energy response drops by a factor of two shortly
after the supernova compared to the main sequence wind phase.
Our simulations are quite realistic regarding the time intervals
in between subsequent supernova events (compare Voss et al.
2009). Thus, we conclude that for realistic star clusters energy is
built up in the wind phases. Supernovae lead to large short-term
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energy variations, but only keep up the bubble energy in the long
run, at a roughly constant level.

We also find that supernovae that explode inside larger bub-
bles have a longer energy decay time. The 60 M, star has pro-
duced a bubble of >80 pc diameter at the time it explodes. Thus
in order to obtain a physically sound feedback model, which is
currently lacking in studies of disk galaxies (Scannapieco et al.
2012), it seems essential to account for the wind phase. Further,
since the energy deposition does essentially not depend on the
spatial configuration of the stars, up to stellar distances of about
30 pc in our simulations, it seems reasonable to use stellar clus-
ters as fundamental feedback units, not individual stars, or in
other words superbubbles rather than individual bubbles of indi-
vidual stars, at least for a clustered star formation mode, which
should according to our simulations be more efficient for feed-
back purposes.

We verified by comparison to theoretical work that the ap-
pearance of our wind shells is dominated by the Vishniac in-
stability, which is now for the first time prominently seen in
3D simulations (this article and van Marle & Keppens 2012).
High resolution is essential to obtain the necessary shell over-
densities which are crucial for the development of the instabil-
ity. This effect widens the shell significantly in col. density plots,
which we suggest may explain the large observed shell widths of
20 per cent of the outer radii and more. It also produces filamen-
tary structure in the shell which is also easily visible in our col-
umn density plots. We conclude that filamentary structure inside
interstellar bubbles may be related to the Vishniac instability.
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