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Abstract: Based on the method of fundamental solutions, we develop in this paper a 

new computational method to solve two-dimensional transient heat conduction 

inverse problems. The main idea is to use particular solutions as radial basis 

functions (PSRBF) for approximation of the solutions to the inverse heat conduction 

problems. The heat conduction equations are first analyzed in the Laplace 

transformed domain and the Durbin inversion method is then used to determine the 

solutions in the time domain. Least-square and singular value decomposition (SVD) 

techniques are adopted to solve the ill-conditioned linear system of algebraic 

equations obtained from the proposed PSRBF method. To demonstrate the 

effectiveness and simplicity of this approach, several numerical examples are given 

with satisfactory accuracy and stability.  
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1. Introduction 

 
Inverse heat conduction problems (IHCP) arise from the studies in many fields of science and 

engineering such as modeling and control of processes with heat propagation in thermo-physics and 

mechanics of continuous media. A typical inverse heat conduction problem is to compute the unknown 

temperature and heat flux at an unreachable boundary from scattered temperature measurements at 

reachable interior points or boundary of the domain. In practice, some kinds of non-destructive 

evaluation techniques to determine the interior heat flows in an inaccessible domain from exterior 

scattered data are indispensable for industrial and engineering applications. It is well known that 

inverse problems are by nature ‘unstable’ in the sense that small measurement errors in the input data 

may amplify significantly the errors in the solutions. Most traditional computational methods 

including the finite element method and boundary element method for well-posed direct problems 
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fail to produce acceptable solutions to these kinds of inverse problems. Several techniques have been 

proposed for solving a one-dimensional IHCP [1–5]. Among the methods proposed for higher 

dimensional IHCP, boundary element [6, 7], finite difference [8, 9], and finite elements [10, 11] have 

successfully been developed for two-dimensional IHCP and, more recently, the method of fundamen- 

tal solutions [12] for problems in three dimensions. 

 
Despite the great success of the finite and boundary element methods as effective numerical 

tools for the solution of boundary value problems, there is still a need for developing numerical 

schemes for multi-dimensional IHCP. The meshless methods are becoming popular due to their high 

adaptability and low cost to prepare input data for numerical analyses. Various meshless methods, 

such as the method of fundamental solutions (MFS) [13–15], meshless local Petrov–Galerkin method 

[16, 17], and element-free Galerkin method [18], have recently attracted great attention in science and 

engineering communities for numerically solving time-dependent problems. The MFS is a boundary- 

type meshless strong collocation method which is highly accurate for solving homogeneous equations 

if the fundamental solution of the given differential operator is known [13, 14]. The fundamental 

solution of a given differential equation, however, is not always available and often very difficult to 

derive. The ill-conditioning of the resultant matrix and the optimal placement of source points in using 

the MFS are still open research problems. To extend the MFS to solve inhomogeneous equations or 

time-dependent problems, some boundary-type meshless methods [19–21] have been introduced to 

evaluate the particular solution of the given differential equation. Since the particular solution is not 

unique, there is a rich variety of numerical techniques developed for this purpose. For instance, radial 

basis functions, polynomial functions, and trigonometric functions have been employed in Refs. 13 

and 21 as the basis functions to approximate the particular solutions of the given partial differential 

equations. 

 
In the last decade, the radial basis functions (RBF) have been under intensive research in the 

areas of multivariate function interpolation and partial differential equations solver [16, 18, 22]. A 

new non-iterative numerical method for solving inverse boundary value problems for linear elliptic 

equations of second order was presented by J. Li [23]. In this paper we propose an alternative method 

PSRBF for solving the inverse heat conduction problems using the particular or semi-particular 

solutions as radial basis functions. Applying the newly developed PSRBF, we can solve the elliptic 

equation in the Laplace domain. The solution of the IHCP is then obtained by using the Durbin 

inversion method. To solve the ill-conditioned linear system of algebraic equations obtained from the 

PRBS, boundary conditions and scattered measurement data of heat either on the boundary or in the 

domain, we adopt the use of the least-square method (LSM) and singular value decomposition (SVD) 

[24, 25]. For numerical verification, we solve a series of boundary value problems for various values 

of the Laplace transform parameter. Subsequently, the Durbin inversion method [26] is applied to 

obtain the solution in the time domain. Three numerical examples are given to demonstrate the 

effectiveness and stability of the proposed approach in comparison with analytical solutions. 
 
 

2. Formulation of Inverse Heat Conduction Problems 
 
 

Consider the following linear initial-boundary value problem: 
 

 

L[ux, t]  
u 

 fx, t, x  , t  0 
t 



 

f 0 


ux, 0  ux), x  

 

B[ux, t]  gx, t, x     (1) 
 
 

where L is a time-independent linear differential operator, B is a boundary operator, u denotes the 

temperature distribution, f(x, t) represents the heat source term, and  is a coefficient. The domain 

is simply connected and the boundary  is a simple closed boundary curve. In addition, u(x) is a given 

initial temperature in the domain and g(x, t) gives the boundary value. Assume that the boundary 

consists of three parts  = (u  q  0) and the boundary conditions are given as 

 
ux, t  u0x, t x  u 

 

qx, t  uix, tni  q0x, t x  q (2a) 

 
 

or 
 

 
B  1, gx, t  u0x, t x  u 

 

B   / xini, gx, t  q0x, t x  q (2b) 

 
 

where ni is the unit outward normal at the boundary. The IHCP to be investigated in this paper is to 

determine the temperature and heat flux on unreachable boundary 0 from given Dirichlet data on u, 

Neumann data on q and scattered measurement temperature data uT(x, t) at some points PT either in 

the domain  or on the Neumann data boundary q. We first apply Laplace transformation on Eq. 

(1) to obtain 
 

L[u~x, s]  su~x, s  
~ 

x, s  u x, x  
 

u~x, s  u~ x, s, x  


0 u 

q~x, s  q~ x, s, x  


0 q 

u~x, s  u~ x, s, x  P
 

 

(3)
 

T T 

 
 

in which s denotes the Laplace transform parameter and 
 

 


~
 

Fx, s  estFx, tdt (4)
 

0 

 
 

Based on the idea of radial basis functions, the approximation of a function R can be made by a finite 
n

 

series of radial basis functions {j}1 through the following interpolation 

 
n 

Rx  aiir 
(5)

 

i  1 



 

1 1 

1 

i}1 

n 1 n n 1 

where r = ||x – xi|| is the Euclidean distance, {xi, yi}
n
 

n
 

for 2-D or {xi, yi, zi}
n
 for 3-D is a unisolvent 

set of interpolation points, and {ai}1 

number of collocation points. 

are unknown coefficients to be determined and are the total 

 

2.1 Approximation by particular solutions 

 
By introducing an approximated solution of displacement: 

 
n 

u~x  aiir 
(6)

 

i  1 
 

 

where {i}
n

 are particular solutions which can be obtained analytically from Eq. (3) by solving 

 
L  2ir  ir, 1  i  n (7) 

 
where 2  s and ir is a set of radial basis functions. If L  2 and r  r2 ln r, the particular 

solution can be expressed as: 

 

                             (8) 

where K0z is the Bessel function of the second kind of order zero and  = 0.57721566. Therefore 

we obtain from Eq. (3) that 

 
n 

~
 

aiir  fx, s  u0x, x   
(9)

 

i  1 

 
 

for the points in the domain, and 

 
n 

aiir  u~ x, s, x  


0 u 

i  1 
 

n 

aiBi,krnk  q~ x, s, x  


0 q 

i  1 
 

n 

aiir  u~ x, s, x  P
 

 
(10) 

T T 

i  1 
 

 

for the points on the boundary. For numerical implementation, we let {x  
n

i
 

 

be the interior collocation 

points (ni), {xi}
n

i
n

b be the boundary collocation points (nb), and {xi}
n

i
n

b
m

u
m

q
m

T be   the given 
i i     b 



 

1 

boundary value points mu  mq and scattered temperature measurement points mT. Generally we 

should have ni  mu  mq  mT  m  n  ni  nb. By the collocation method we obtain from Eqs. (8) 

and (9) 

 
n 

~
 

aiirk  fxk, s  u0xk,  x  , 1  k  ni 
(11a)

 

i  1 

 
n 

aiirk  u~ x , s, x   , n  1  k  n  m
 

 
(11b) 

0    k 

i  1 

u     i i u 

 
n 

aii,jrknj  q~xk, s, x  q, ni  mu  1  k  ni  mu  mq 
(11c)

 

i  1 

 
n 

aiirk  u~ x , s, x  P , n  m
 

 
 m   1  k  n  m   m   m

 
T    k 

i  1 

T     i u q i u q T 

(11d) 
 

 

If we choose n = m, all unknown coefficients {ai}
n

 can be easily computed by using a standard matrix 

solver such as Gaussian elimination and LU decomposition. Once the values of {ai} are determined, 

the approximated solution u~ can be evaluated from Eq. (6). Therefore, the unknown temperature and 

flux density can be determined on the unreachable boundary 0. 

 
 

2.2 Approximation by semi-particular solutions 
 
 

Similar to Section 2.1, we assume an interpolation of the displacement in Eq. (3) by the 
n
 

particular solutions {i}1 which can be obtained analytically by solving 
 
 

Lir  ir, 1  i  n (12) 
 

 
where ir is a radial basis function and the particular solution ir is determined by solving the 

above Eq. (12). Substituting Eq. (12) into Eq. (3) gives 
 

 
n 

~ 

ir  siai  fx, s  u0x, x   (13) 
i  1 

 

 
 

in the domain with the same boundary conditions given in Eq. (10). By collocation method we have 
 

 
n 

~ 

irk  sirkai  fxk, s  u0xk, x  , 1  k  mi (14) 
i  1 



 

with boundary equations (11a, 11b, 11c) and (11d). The approximated solution u~ can then be evaluated 

from Eq. (6) when n = m. For instance, if L = 2 we have the particular solutions 
 

 
r  r42lnr  1 / 32 for r  r2lnr (15) 

 
 

and 
 

 

r  4b2  r2r2b
2 / 9  b3lnb  r2b

2  / 3 for r  r2b
2 (16) 

 
 

where b is a free parameter. 
 
 

3. Inversion of Laplace Transformation 
 

 
 

3.1 Singular value decomposition of a square matrix 
 
 

Using the Laplace transform, we can rewrite the system of algebraic equations into a matrix 

form with unknown quantities on the left-hand side and prescribed quantities on the right-hand side 

as 

 
AmnXn  Ym (17) 

 
 

Since the original IHCP is ill-posed, the ill-conditioning of the matrix A in Eq. (17) still persists. It 

means that numerical results are sensitive to the noise of the right-hand side and the number of nodes 

used in the meshless approximation. The worst case will occur if no temperature data are given at 

internal points and the Dirichlet and Neumann boundary conditions are prescribed at the same points 

[17]. If n = m, the square matrix A can be decomposed according to the singular value decomposition 

(SVD) [25] and its inverse can be written as 

 
A1  V  [diag1 / wj]  U

T (18) 

 
 

where U, V, and W are all square matrices of the same size, W = [wj], U and V are orthogonal, i.e., 

 

 
n 

UikUij  kj 

i  1 

1  k  n 
 
 
1  j  n 

 

 
n 

VikVij  kj 

i  1 

1  k  n 
 
 
1  j  n (19) 



 



F  k 

L 



so that their inverses are equal to their transpose. The matrix W is diagonal and its inverse is the 

diagonal matrix whose elements are reciprocals of the elements wj. Based on the SVD, the solution 

for the ill-posed linear equations Eq. (17) is given by 

 

X  V  [diag1 / wj]  U
T  Y (20) 

 

 
We note here that in the case when the system Eq. (17) is over-determined, i.e., m > n the least-square 

technique should be used to solve Eq. (17) before using SVD. Now, applying the transpose of matrix 

A to both sides of Eq. (17) gives 

 

[AT]nm[A]mn{X}n  [AT]nm{Y}m 
(21) 

 

 
which gives the solution for the ill-conditioning matrix equation system. 

 
3.2 Durbin inversion of the Laplace transform 

 
We first select a total number of (L + 1) samples in the transformation space sk, k = 0, 1, 2, . . 

. , L, as complex variables. The transformed variables are evaluated for these specified transform 

parameters respectively. The unknown solution in the time domain can then be determined by using 

the Laplace inversion technique. There are many inversion methods available for numerical comput- 

ing of the inverse Laplace transform. For instance, the sophisticated Stehfest algorithm [27] proposed 

by Sladek et al. [17] for solving IHCP is one such method. In this paper we adopt the method proposed 

by Durbin [26] which had been applied by Wen et al. [28] for solving elasticity wave propagation 

problems in two- and three-dimensional spaces. The formulae of the Durbin inversion method is 

written as 
 

2et    1 


Ft  
T     2 F

~
s0   Re{F

~
ske

2ki / T} (22) 

 k  0 
 

 

where 
~
s  denotes the transformed variable in the Laplace domain and i  1 . The parameter of 

the Laplace transform is taken to sk    2ki / T. The selection of two free parameters  and T has 

little effect on the accuracy of the inversion. By a large number of numerical tests, we can conclude 

that the Durbin inversion method is stable and convergent for a large range selection of free parameters 

 and T, particularly for the solid dynamic mechanics. 

 
4. Numerical Verification 

 

 

For simplicity, we assume that the heat conduction coefficient  = 1. For numerical error 

estimation, we define the relative average error by the following formula 
 

N 

1 

   i i

 

MEU  
Numax 

i  1
 

ux, t   ux, t 



 

Nq 

N 

MEQ  
    1  

  
qx, t   qx, t 


 

 
(23) 

   i i 
max  

i  1 

 

 

where N is the number of testing nodes located randomly within the domain. In our following 

computations, we choose N to be 101. Let u* and q* denote the analytical solutions at time ti in the 

region [0, tmax]. In the cases when the measurement data contain some random noises, we use noisy 
 



data input as uT (x, t) = uT(x, t) [1 +   rand(x)], where uT(x, t) is the exact data and rand(x) is a random 

number between [–1, 1]. The magnitude of  denotes the error level. 

 
4.1 A rectangular plate with one unknown boundary condition 

 
Consider a square plate with zero initial temperature and zero heat source f(x, t) = 0 as shown 

in Fig. 1. The boundary conditions are described as 

 
qx, t  0 x = 1 

 

qx, t  0 y = 0 and 1 (24a) 
 

                           (24b) 
 

whose analytical solution of temperature can be derived as [5] 
 

                          (25) 
 

and hence the temperature and flux in the Laplace domain are given by 
 

   (26) 
 
 
 

 
 

Fig. 1. Distribution of collocation points: (a) internal and boundary points; (b) boundary conditions 

for inverse heat conduction problems, where F domain point, ! unknown value boundary, A flux 

boundary, " Neumann and Dirichlet boundary; (c) PT in domain, where D indicates the gap. 



 

 

 
 
 
 
 
 
 
 
 
 

where 

Table 1. Relative Average Error with Varying Noise Inputs 

 

 

~qs  
 4 
e3s / 4  2es / 2  es / 4 (27) 

s2  
 
 

The interior and boundary points are selected as shown in Fig. 1 with ni = 9  9 = 81 internal 

points and nb  = 40 boundary points n  ni  nb, i.e., mu  0, mq  11  11  9  31 where the  

scattered temperature measurement points are collected on the right-hand side of the square plate 

with mT = 9. The unreachable boundary 0 is specified on x = 0. The particular solutions to be used 

are given in Eqs. (8), (9), and (10). Numerical tests show that these two free parameters should be 

selected as 

= 5/T and T = 2 are chosen in the Durbin inversion method of the Laplace transform. The number of 

sample points in the Laplace transform domain is selected as L = 100. In this case, as n = m = 121, 

the SVD can be applied directly to solve the linear system of equations for the solutions of the 

temperate and the heat flux. For illustration, the temperature ut and the heat flux qxt  u / x at 

the central point on the edge A (0, 0.5) with noisy data   rand(x) are displayed in Fig. 2. At point 
 



A, the analytical solution umax = 0.4359 when t = 0.59 and qmax = 1 when t = 0.5, respectively. The 

numerical results shown in Table 1 indicate that the proposed scheme is accurate and stable in 
 
 

 
 

Fig. 2. The boundary temperature ut and heat flux qt on point A with noisy data  rand(x) 

corresponding to the boundary condition (b). The solid line represents the exact solution. 



 

 
 

Fig. 3. The boundary temperature ut and heat flux qt on point A corresponding to the boundary 

condition (c). The solid line represents the exact solution. 
 
 

comparing with most of the existing numerical methods. Apparently in the cases when  < 0.1, the 

numerical approximations are all close to the analytical solution. It is noted here that it is unusual to 

obtain such an accurate result for temperature with large noise. Furthermore, we change the scattered 

temperature data points from the boundary to the interior domain as shown in Fig. 1(c). Figure 3 

shows the variation of the temperature u(t) and heat flux q(t) on the boundary point A at time t with 

different gaps of D. Note that it becomes a well-posed problem without an unreachable boundary if 

D = 0. From Fig. 3 it can be observed that the more accurate solution could be obtained with a smaller 

gap. To illustrate the stability of the proposed method for solving IHCP, the relative average errors 

of temperature and heat flux at point A with different gaps are shown in Table 2. 

 
In addition, we observed the convergence with respect to the distribution density of nodes in 

t h e  do main  and  on  t h e  boundary.  The  interior  and  bou nd ary  poin ts  are  selected  as 

ni  15  15  255 internal points and boundary points nb = 64. The numerical results show that 

the differences between these two node distributions are very small. Regarding the choice of the 

optimal truncation number associated with the SVD, we used the source code in Ref. 25 directly 

and set the 

threshold for singular values allowed to be nonzero, i.e., WMIN = WMAX*1.0E–6. 
 
 
 
 

Table 2. Relative Average Error with Different Gaps D 

 

 



 

a 

b 

4.2 A ring with unreachable boundary on inner circle 
 

Consider a quarter of a ring as shown in Fig. 4. The differential heat conduction equation in 

a polar coordinate system can be written as 
 

2u
~ 

1  u
~ 

 1   
2u~ 

~ ~
 

r2  
 

r r 
 

r2 2 
 su  fr, , s  u0r,  (28)

 

 
 

For axial symmetric problems, the general solution of Eq. (28) is obtained by 
 

u~r, s  AI0s r  BK0s r

q~r, s  s [AI1s r  BK1s r] (29) 
 
 

where the coefficients A and B are to be determined by using the boundary conditions. The Neumann 

boundary conditions are given on the inner and outer circles as 

 

q~r, s  q~ s r  a 
 

q~r, s  q~ s r  b (30) 

Therefore, we obtain the analytical solution in the Laplace domain as 

    (31)

 

 

Assuming that the boundary conditions can be described in x, y coordinate system in time domain as 

 
qt  0 x  0  

qt  0 y  0   

qt  0 
 

 

qt  Ht  1  Ht  2

r  a 
 
 

 
r  b 

(32a) 
 

 
(32b) 

 

 

where Ht denotes the Heaviside function. Thus, the boundary conditions in the transform domain 

are 

 
q~s  0 x  0 

 

q~s  0 y  0 
 

q~s  0 r  a (33a) 



 

 

 
 

Fig. 4. Distribution of collocation points in a quarter of ring: (a) internal and boundary points; (b) 

boundary conditions for inverse heat conduction problems, where F domain point, ! unknown 

value boundary, A flux boundary, " Neumann and Dirichlet boundary PT. 
 
 

q~s  
 1 

[es  e2s] r  b (33b) 
s 

 
 

Figure 4 shows the distribution of interior and boundary points, where ni = 9  15 = 135 and nb = 

48, and mu  0, mq = 11 + 15 + 11 = 37. The measurement points are collected on the outer circle r 

= b with the number of points mT = 15. The temperature and flux on the unreachable boundary 0  

are specified at the inner circle r = a. The semi-particular solutions to be used are given by Eqs. (15) 

and (16). In this computation, we fix the parameters  = 1, a = 1, and b = 2, respectively. The two 

free parameters are chosen to be  = 5/T and T = 10 in the Durbin inversion method of the 

Laplace 

transform. The total number of sample points in the Laplace transform domain is selected as L = 100. 

As n = m = 135 + 37 + 15 = 187, the SVD can be applied directly to obtain the solutions. The normalized 

temperature u and the flux q = u / r at point A 2 / 2, 2 / 2 of the interior circle with noisy data 

 rand(x) are shown in Fig. 5. It can be observed that there is very little difference between the analytical 

solution and the numerical approximation of temperature when  < 0.01. The relative average error 

of the temperature increases only to 15% for the noise magnitude when  = 0.1. 
 
 

4.3 A rectangular plate with a circular hole 
 
 

Consider a square plate containing a circular hole with zero initial temperature as shown in 

Fig. 6. Let the exact solution of temperature be 
 

 

ur, t  1  e1  tr2et (34) 
 
 

and heat flux 



 

 

 
 
 

Fig. 5. The boundary temperature ut and heat flux qt at point A corresponding to the boundary 

condition (b). 
 
 

 t     


t (35)
 

qxr, t  2xte , qyr, t  2yte 
 
 

with the source term 

 
fr, t  [4t  1  tr2  1]et (36) 

 
 

 
 

 

Fig. 6. Distribution of collocation points in a quarter of ring: (a) internal and boundary points, 

where F domain point and A boundary; (b) boundary conditions for inverse heat conduction 

problems, where ! unknown value boundary, " Dirichlet point PT in domain. 
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Fig. 7. The boundary temperature ut and heat flux qt at point A corresponding to the boundary 

condition (b). 
 
 

Then the exact solution in the Laplace domain is given by 

 

u~r, s  
     r   

 
  1  

, q~r, s  
    2x    

, q~r, s  
    2y   (37) 

s  12 ss  1 
x
 s  12 y

 s  12 

 
 

In this example, the semi-particular solutions to be used are given by Eqs. (15) and (16). The IHCP 

to be investigated is to determine the temperature and heat flux on the unreachable boundary from 

given scattered measurement data at all interior points. The interior and boundary collocation points 

are distributed with ni = 177 and nb = 64. We assume that the whole boundary is unreachable boundary 

0, i.e., mu  mq  0, and the scattered temperature measurement are collected in the interior domain 
at each collocation points, that is mT  ni = 177. In this case, the total number of collocation points is 

n  ni  nb = 241 and the number of linear equations is m  ni  mT = 354. Due to m > n, the least-square 

technique is used first before applying the SVD. The parameters are selected by  = 1, a = 1, and b 

=2, respectively. The two free parameters are  = 5/T and T = 10 in the Durbin inversion method of 

the  Laplace  transform.  The  temperature u and  the  heat  fluxes  q  =  u / r at  central  point 

A2 / 2, 2 / 2 of the plate with noisy data   rand(x) are displayed in Fig. 7, where the analytical 

solutions are plotted in solid lines for comparison. Apparently the numerical results using the proposed 

method are efficient and satisfactory even for large measurement noises. 
 

 
5. Conclusions 

 

 
In the past, the availability of fundamental solutions and particular solutions are equally 

important for solving inhomogeneous problems. In this paper, we propose that only the particular 

solution is required without the need of a fundamental solution for solving these inhomogeneous 

problems. The approach based on using the particular solution as the radial bases function approxi- 



 

mation together with using the Laplace transform technique for time variable is presented for solving 

the transient heat conduction inverse problems. The domain and boundary formulations can be easily 

implemented and the coefficients of the particular solutions can be obtained by solving the linear 

system of equations. Singular value decomposition (SVD) is applied to solve the ill-conditioned linear 

system of algebraic equations obtained from the differential equation, boundary conditions, and 

scattered temperature measurement data. Stable and accurate results for inverse heat conduction 

problems are obtained even with considerable large noise contained in the scattered input measure- 

ment data. We believe that the proposed method of using particular/semi-particular solutions provides 

an efficient scheme for solving these kinds of inverse heat conduction problems. 
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