
Research Archive

Citation for published version:
Alpa Shah, Yi Sun, Rod G. Adams, Neil Davey, Simon C. 
Wilkinson, and Gary P. Moss, ‘Support vector regression to 
estimate the permeability enhancement of potential 
transdermal enhancers’, Journal of Pharmacy and 
Pharmacology, Vol. 68 (2): 170-184, February 2016.

DOI: 
http://dx.doi.org/10.1111/jphp.12508

Document Version:
This is the Accepted Manuscript version. 
The version in the University of Hertfordshire Research Archive 
may differ from the final published version.  Users should 
always cite the published version.

Copyright and Reuse: 
This article may be used for non-commercial purposes in 
accordance with Wiley Terms and Conditions for Self-
Archiving.

Enquiries
If you believe this document infringes copyright, please contact the 
Research & Scholarly Communications Team at rsc@herts.ac.uk

http://dx.doi.org/10.1111/jphp.12508
http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms
mailto:rsc@herts.ac.uk


1 
 

 

Support Vector Regression to Estimate the Permeability 

Enhancement of Potential Transdermal Enhancers. 

 

A. Shah1, Y. Sun2, R.G. Adams2, N. Davey2, S.C. Wilkinson3, G.P. Moss4*. 

 

1Department of Software Engineering and IT, Ecole de Technologie Superieure, Montreal, Canada 

2School of Computer Science, University of Hertfordshire, Hatfield, UK 

3School of Pharmacy, Keele University, Keele, UK 

4Medical Toxicology Centre, Wolfson Unit, Medical School, University of Newcastle-upon-Tyne, UK 

 

 

*Corresponding author: 

Dr Gary Moss 

The School of Pharmacy 

Keele University 

Hornbeam Building HNB1.16  

Keele  

Staffordshire 

ST5 5BG 

UK 

 

Tel: +44(0)1782 734 776 

Fax: +44(0)1782 733 326 

Gary Moss (g.p.j.moss@keele.ac.uk) 

 

 

  



2 
 

Abstract 

 

Objectives: Searching for chemicals that will safely enhance transdermal drug delivery is a significant 

challenge. This study applies Support Vector Regession (SVR) for the first time to estimating the 

optimal formulation design of transdermal hydrocortisone formulations.  

Methods: The aim of this study was to apply SVR methods with two different kernels in order to 

estimate the enhancement ratio of chemical enhancers of permeability.  

Key Findings: A statistically significant regression SVR model was developed. It was found that SVR 

with a nonlinear kernel provided the best estimate of the enhancement ratio for a chemical enhancer.  

Conclusions: SVR is a viable method to develop predictive models of biological processes, 

demonstrating improvements over other methods. In addition, the results of this study suggest that a 

global approach to modelling a biological process may not necessarily be the best method and that a 

“mixed methods” approach may be best in optimising predictive models. 

Key words: Support Vector Regression; Support Vector Machine; Gaussian Processes; Transdermal 

Enhancer; Hydrocortisone. 
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Introduction 

 

Considerable success has been achieved in the delivery of drugs into and across the skin in the last 

thirty years. The advantages of this route of administration are well documented, and significant 

examples of successful therapies include transdermal patches for smoking cessation, pain 

management and hormone replacement therapy1. Nevertheless, the skin – and the stratum corneum 

in particular – remains a challenging barrier to the permeation of exogenous chemicals. This has 

resulted in a range of physical and chemical strategies to enhance drug delivery.  

 

One of the most widely investigated methods of skin permeation enhancement involves the 

incorporation of chemicals into a topical formulation with the aim of reducing the skin barrier function 

– usually by altering the conformation of skin lipids – thus facilitating greater permeability. Such 

chemical penetration enhancers are often classified by their mechanism and site of action2. While 

ideally one would wish such chemical enhancers to increase permeation without exhibiting any 

negative side effects – including irritation and poor patient compliance, such profiles are rare and, in 

practice very few significant chemical enhancers have found common use in topical pharmaceutical 

products3.  

 

Mathematical models of skin permeation have been widely researched but uncommonly applied to 

relevant endpoints for the last twenty years. Statistically-derived relationships between chemical 

transport across the skin (usually characterised as either permeability, kp, or steady-state flux, Jss) and 

the physicochemical properties of a penetrant – usually presented in the form of an easily understood 

algorithm – have found utility in this field4. However, such models have limitations, including their lack 

of relevance to formulation issues as they are predominately derived from permeability studies where 

permeation was determined from simple solutions, inferring that such models do not consider the 

influence of formulation on absorption4. 

 

Several approaches have been used to model formulation effects. For example, hybrid quantitative 

structure-permeability relationships (QSPRs) were used to examine the effect of solvent mixtures on 

the skin permeation of model penetrants5. 12 compounds and 24 mixtures were used, and this 

approach was able to yield improved models for the permeation of complex chemical mixtures. Finite 

dose systems were also considered6 by measuring the permeability of four chemicals from a range of 

24 solvent blends in a finite dose in vitro model using a pig skin membrane. This resulted in four 

quantitative structure-activity relationships (QSARs) which described permeability in terms of both 



6 
 

physicochemical properties and solvent blends, and suggested that compounds formulated with a 

small difference in the boiling point and melting point of the vehicle resulted in higher skin 

permeation.  

 

Discriminant analysis was used to classify the effect of skin penetration enhancers on the 

percutaneous absorption of hydrocortisone. Pugh et al. employed the “enhancement ratio” (of the 

enhancement in hydrocortisone skin permeation observed in the presence of a particular chemical 

enhancer, compared to a formulation without the enhancer) to define simple classifications of 

enhancement as either “good” (ER>10) or “poor” (ER<10)7. They found that the longest carbon chain 

length on a molecule, the molecular weight and the number of hydrogen bonding atoms on a molecule 

were significant for enhanced delivery. This approach was unable to provide a reliable prediction of 

ER for new enhancers. Thus, a range of Machine Learning methods were applied to Pugh’s dataset8. 

The Support Vector Machine (SVM) and Gaussian Process (GP, with the synthetic minority over-

sampling technique (SMOTE)) methods resulted in improved classification results7,8 and offered the 

additional advantages of fewer false-positive results and the ability to make predictions of an 

enhancer’s potential ability. 

 

The Support Vector Regression (SVR) method has not previously been applied to a pharmaceutically 

relevant endpoint. The SVC method previously reported does offer significant improvements in model 

quality compared to discriminant analysis7. However, SVC is limited in that it is essentially a 

classification method and was able to provide class membership only, as defined by the degree of 

enhancement benefit, rather than estimates of performance improvement8. Further, the novel 

comparison of two Machine Learning methods in this study will test the current perception that a 

single, “global”, model should be used to model a data set. A direct comparison between different 

methods (Gaussian Processes and SVR) will allow us to explore whether these methods provide distinct 

differences in model prediction and whether certain models should be used within a particular part of 

the “chemical space” in order to optimise predictive power and subsequent significance of the 

pharmaceutically relevant endpoint.  

  

The aims of the current study are to therefore assess the viability of the SVR method in providing 

improved estimates of the enhancement ratio of chemicals and whether the best approach to 

modelling such systems is to use a single model or a range of models which optimise predictive power 

in certain parts of the chemical space of the data set studied 9, 10. This study is the first time that SVR 

has been employed to estimate formulations effects. In doing so, results are benchmarked against 
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previous studies8. The effect of using different numbers of physicochemical descriptors on the quality 

of ER estimates is also considered. 

Methods 

 

Description of the data and descriptive statistical analysis 

 

The dataset employed in this study (Table 1) consists of seventy-one compounds, each with five 

commonly used and readily calculable physicochemical descriptors: the count of hydrogen bonding 

groups on a molecule (HB), the carbon chain length of the molecule (CC), molecular weight (MW), 

lipophilicity (as log P, the logarithm of the octanol-water partition coefficient); aqueous solubility (as 

log S) and the enhancement ratio (ER), described above. Enhancers were previously grouped into 

“good” (1) and “poor” (0) classes, and where ER=10 is an arbitrary threshold as an enhancer with 

ER>10 is considered to exert a sufficiently large effect to potentially be clinically relevant7.  

 

[INSERT TABLE 1 HERE] 

 

A quantile-quantile plot of MW by class (“good” or “poor”; Figure 1) shows that the linear reference 

line which joins the first and third quartiles of each distribution is distinct from the enhancer data – 

represented with the symbol ‘+’ – which shows a curved pattern with a slope decreasing from left to 

right. This suggests that the two defined subsets may have different distributions. Comparison of the 

distributions of the values in the two subsets by a two-sample Kolmogorov-Smirnov test suggests that 

the two subsets are not from the same continuous distribution. The same tests were performed on all 

five descriptors employed in this study and a significant difference between the “good” and “poor” 

enhancers was found for all descriptors except HB. 

 

[INSERT FIGURE 1 HERE] 

 

Principal Component Analysis 

 

Visualisation of the underlying distribution of the data was achieved by principal component analysis 

(PCA; varimax rotation). All the data were normalised so that all five descriptors had a zero mean and 

unit variance. PCA was applied and mapped the data to a low-dimensional space with a linear 

transformation whilst maintaining as much variance in the data as possible. Thus, a plot of the first 

two principal components using the logER (to allow the data to be suitably scaled; the use of logER 
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generally results in a more symmetrical plot7) values is shown in Figure 2. The first principal 

component (PC1 = 0.05HB – 0.47CC – 0.49MW – 0.53logP + 0.51logS) accounts for 66.97% of the total 

variance, and the second principal component (PC2 = 0.93HB – 0.10CC + 0.29MW – 0.20logP + 

0.08logS) accounts for 22.64%. It is also clear that most of the high values of logER are associated with 

-log PC scores. For example, many compounds with logER > 1 have scores of PC1 or PC2 lower than 

zero. The correlation coefficient between actual values of logER and scores of the first PC was -0.58 

(and -0.34 for the second PC). The p-values, 0.0000 and 0.0040 for PC1 and PC2, respectively, indicate 

that both correlations were statistically significant. It suggests a negative relationship between actual 

values of logER and scores of the first and second principal components.  

 

[INSERT FIGURE 2 HERE] 

 

Performance measures 

 

The indicators of performance used in this study were, in common with our previous studies, the mean 

squared error (MSE) and the correlation coefficient (CORR)11 – 15. A confusion matrix (Table 2) is also 

applied to further analyse the accuracy of predictions following the application of a threshold of logER 

equal to log10 to ensure that true negatives and true positives are both as high as possible. 

 

Data analysis methods 

 

A range of methods were used to analyse the data. These methods are based on those used 

previously8 and are summarised below. 

 

Fitted linear regression and simple linear regression 

 

Prior to the application of SVR modelling methods, results from two fitted linear regression methods 

reported previously7, 8 are used to benchmark Machine Learning results:  

 

logER = 0.318 – 0.0770HB + 0.668CC         (1) 

 

logER = 0.326 – 0.0756HB + 0.0677CC – 0.000072MW       (2) 
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Equation (2) produces the smallest MSE on the complete dataset. Simple linear regression considers 

the output, y, as the weighted sum of the components of an input vector, x 16:  

 

 

(3) 

 

 

where  d is the dimensionality of the input space  

w = (w1,…,wd.w0) is the weight vector, where weights are set so that the sum squared error 

function is minimised on a training set 

w0 is the bias. 

  

Support vector regression (SVR) 

 

Both -SVR and -SVR are applied to this study. Given a training dataset, {(x1, y1),…… (xn, yn)}, the aim 

of -SVR is to fit a function, 𝑓𝑥,using the training data so that the difference between the target value, 

𝑦𝑖, and the estimated value, 𝑦̂𝑖, is no larger than  for the ith training example. This is given by: 

 

 

          (4) 

 

 

 

 

 

 

 

where  w is a weight vector 

b is the bias and (xi) maps xi to a higher-dimensional space 

C is a constant (where C > 0 in all cases) which is referred to as the regularisation parameter 

and determines the trade-off between the soft margin, which is described by the constraints, 

and the amount up to which differences larger than 𝜖are tolerated.  

𝑦 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑤0

𝑑

𝑖=1

 

min
𝜔,𝑏,𝜉,𝜉∗

1

2
𝑤𝑇𝑤 + 𝐶 ∑ ξ

𝑖

𝑛

𝑖=1

+ 𝐶 ∑ ξ
𝑖
∗

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑤𝑇∅(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜖 + ξ𝑖 ,

𝑦𝑖 − 𝑤𝑇∅(𝑥𝑖) − 𝑏 ≤ 𝜖 + ξ𝑖
∗,

ξ𝑖 , ξ𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑛.
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ξ𝑖  and ξ𝑖
∗ are slack variables which are used to relax the constraints slightly to allow for bad 

estimations.  

 

Lagrange multiples () are applied to produce predictions for new chemicals. The solution for the 

estimation at each new point, x*, is determined by:  

 

 

            (5) 

 

 

Application of (5) avoids the need to calculate (xi) directly. Thus, kernel functions are used as: 

 

             (6) 

 

The solution for the estimation at the new point, x*, is equivalent to: 

 

             (7) 

 

 

Equation (7) is that which is normally used in practice, where a linear and radial basis function (RBF) 

kernels are applied to the data. Further information on the use of this approach, and the calculation 

of b, can be found elsewhere17. Scholkopf et al. proposed the use of a parameter, where 𝑣 ∈  [0; 1], 

to control the number of support vectors18: 

 

 

            (8) 

 

 

 

 

 

 

-SVR represents an upper bound on the fraction of training samples which are errors (badly 

predicted) and a lower bound on the fraction of samples which are support vectors18. Thus ∈ or are 

𝑦∗̂ = ∑(−𝛼𝑖 +

𝑛

𝑖=1

𝛼𝑖
∗)∅(𝑥𝑖)𝑇∅(𝑥∗) + 𝑏 

𝑘(𝑥𝑖 , 𝑥𝑗) = ∅(𝑥𝑖)𝑇∅(𝑥𝑗) 

𝑦∗̂ = ∑(−𝛼𝑖 +

𝑛

𝑖=1

𝛼𝑖
∗)k(𝑥𝑖 , 𝑥∗) + 𝑏 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑤𝑇∅(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜖 + ξ𝑖 ,

𝑦𝑖 − 𝑤𝑇∅(𝑥𝑖) − 𝑏 ≤ 𝜖 + ξ𝑖
∗,

ξ𝑖 , ξ𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑛, 𝜖 ≥ 0

 

min
𝜔,𝑏,ξ,ξ∗

1

2
𝑤𝑇𝑤 + 𝐶(𝑣𝜖 +

1

𝑛
∑(ξ𝑖 + ξ

𝑖
∗))

𝑛

𝑖=1

 



11 
 

different versions of the penalty parameter and the same optimisation problem is solved in either 

case, with the optimal solution set of -SVR being part of the optimal solution set of ∈-SVR 17. 

 

Gaussian process regression (GPR) 

 

Gaussian process modelling is a non-parametric method and has been used extensively in skin 

permeability and is described in detail elsewhere11 – 15.  To make a prediction in GP, y*, at a new input, 

x*, the conditional distribution (p(y*|y1,……yNtrn), where Ntrn denotes the number of training examples) 

on the observed vector should be calculated. The mean at x* is given by: 

 
 
            (9) 

 

where k* denotes the vector of covariances between the test point and the Ntrn training data 

 K denotes the covariance matrix of the training data 

is the variance of an independent identically distributed Gaussian noise, which infers that 

observations are noisy 

y is the vector of training targets 

 

The predictive variance at x* is given by:  

 
             (10) 

 

The mean and variance represent the prediction and its associated error. In this study the results of 

GPR reported previously8 are used compared with the new results.  

 

 

  

𝐸[𝑦∗] = k∗
𝑇(𝐾 +  𝜎𝑛

2𝐼)−1y 

𝑣𝑎𝑟[𝑦∗] = k(𝑥∗, 𝑥∗) − k
∗

𝑇(𝐾 +  𝜎𝑛
2𝐼)−1𝑘∗ 
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Experiments and Results 

 

Overview 

For each analysis of the dataset (Table 1, using either 3 or 5 descriptors) the leave-one-out technique 

is applied and performance metrics are computed in terms of all predictions. Linear and RBF kernels 

are applied for regression analysis on the datasets using SVR. The SVR experiments were completed 

using libsvm, which is available from http://www.csie.ntu.edu.tw/~cjlin/libsvm.  

 

Experiment 1 – analysis of a dataset with three molecular features 

Two types of SVR with linear kernels were tested on the dataset with three features (HB, CC, MW) 

(Table 3). This table (and, similarly in Table 4) also includes, for comparison, the results from the FLR 

and SLR reported previously8. FLR gives the best statistical performance on both measures used (MSE 

and CORR). It is notable that the other methods used exhibit a similar performance and are nearly as 

accurate in all cases in providing predictions on data that they have not previously seen.  

 

[INSERT TABLE 3 HERE] 

 

The first principal component is plotted against the experimentally measured logER value (Figure 3; it 

should be noted that this is a different PCA analysis from that presented in Figure 2, since it is based 

only on three descriptors).  The dots are estimations from the FLR analysis and circles are 

experimentally derived logER values. There are two estimated logER values just above 1.0, while the 

corresponding experimental values are lower than 1.0. There are approximately 11 chemicals where 

logER>1.0 while their estimated logER values from the FLR analysis are all lower than 1.0. Since 59 of 

71 chemical compounds have low logER values (logER<log (10)), the fitted linear hyperplane needed 

to match the majority of data points well. This suggests that the FLR method is unsuitable for finding 

good potential transdermal enhancers. Interestingly, when considering the use of Pugh’s  arbitrary 

threshold7 to classify enhancer effects as “good” or “poor”, a confusion matrix produced by the FLR is 

given by TN=57, TP=0, FP=2 and FN=12, while a confusion matrix produced by the -SVR is given by 

TN=56, TP=4, FP=3 and FN=8. It shows that this SVR method may not only provide a better true 

estimation but that it also reduces false negatives. The confusion matrix produced by the simple linear 

regression model is similar to that produced by the FLR (where TN=56, TP=0, FP=3 and FN=12). 

 

[INSERT FIGURE 3 HERE] 

 

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Experiment 2 – analysis of a dataset with five molecular features 

FLR was not applied to this study as it was produced using three features. Previously reported SLR 

analyses are used for comparison to the SVR methods8. The results (Table 4) show that SLR and -SVR 

have the same performance and that both are slightly better than -SVR on both performance metrics. 

When compared with Table 3, it can be seen that the -SVR method works better with five features 

than with three, but that the -SVR method, irrespective of the number of features used, has the same 

performance on MSE and only a slight improvement on CORR when five descriptors are used. Greater 

clarity on the significance of these results is not apparent and may be due to variance associated with 

both the source data and, potentially, variance associated with the use of predictive methods for 

estimating parameters such as log P and log S. 

 

 

[INSERT TABLE 4 HERE] 

 

Experiment 3 – application of the RBF kernel (3 molecular features) 

The RBF kernel was applied to both types of SVR and tested on the dataset with three features (Table 

3). For comparison, Table 4 also shows the results of the GPR with the Matern3 kernel reported 

previously8. The results show that the GPR method gives the best results. Comparing the results in 

Table 3 and Table 4 shows that the -SVR method has the same performance on both linear and RBF 

kernels with three molecular features. Further, the -SVR method gives a slight improvement on the 

CORR measurement using the RBF kernel while the MSE measurement remains the same for both 

kernels with three features.  

 

Experiment 4 – application of the RBF kernel (five molecular descriptors) 

The RBF kernel was then applied to the dataset with five molecular features, and the results are shown 

in Table 4. The best results were found with the -SVR method, which also provided the overall best 

result for any experiment in this study (or in previous studies). Comparing the results in Tables 3 and 

4 indicates that both types of SVR perform better when using five molecular features rather than 

three, although the differences between both SVR methods and the GPR method is quite small. 

However, use of the -SVR method results in a 23.15% decrease in MSE and improves CORR by 6.8% 

when applied to a five-feature model. Comparison of Tables 3 and 4 indicate that both types of SVR 

with the RBF kernel outperform those with the linear kernel; e.g., the -SVR decreases the MSE by 

16.7% and increases CORR by 4% when using a RBF kernel. 
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Experiment 5 – removal of the hydrogen bonding molecular feature from models 

The final experiment removed the hydrogen bonding term (HB) from consideration for modelling in 

both 3- and 5-feature datasets. This was due to the quantile-quantile plot indicating that “good” and 

“poor” enhancers could not be discriminated from each other on the basis of hydrogen bonding. It is 

noteworthy therefore that PC1, which correlates well with logER, is only weakly influenced by 

hydrogen bonding but quite strongly influenced by log P and log S. PC2, however, is very strongly 

influenced by HB but it does not correlate well with logER. Table 4 (the last two rows) show that the 

result of removing hydrogen bonding from the models is to lessen their statistical quality slightly. This 

suggests that a variable which, by itself, is without merit but may, when combined with others, 

enhance the overall performance of the model12. In the case of the QSAR models parameters such as 

log P and MW, by themselves, produce little in the way of significant models but model quality 

improves when such features are combined. It should also be noted that the SVR method does not 

currently provide mechanistic information on the permeability enhancement process. This may be 

methodological, as no clear relationships were observed between chemical structure and 

enhancement effects, or it may be that any such trends are masked by the biological variation present 

in the data. It also does not currently allow us to discern now the enhancers function by altering Ksc or 

Dsc, for example. However, Machine Learning methods have previously been modified to provide 

significant mechanistic information (for example by using the Feature Selection methods described 

previously12) and it is possible that such methods may soon also be applied to SVR methods15.  

 

Experiment 6 – Statistical comparison of SVR and GP methods 

Errors in prediction for the GP and SVM methods were compared with a two-tailed binomial test. GP 

predictions were not significantly better than SVM predictions (P = 0.34). Further, the members of the 

dataset (n = 71) were ranked in terms of the absolute difference of prediction accuracy, using both 

Spearman and Kendall methods for rank correlation. The Spearman test yielded a correlation 

coefficient of 0.12 (P = 0.33) and the Kendall test gave a correlation coefficient value of 0.09 (P = 0.29). 

Thus, the null hypothesis (that the correlation is not zero) is not rejected, suggesting that GP and SVM 

predictions may have a certain degree of correlation. The Wilcoxon signed rank test returned a P-value 

of 0.3425, indicating that the test fails to reject the null hypothesis, suggesting that the GP and SVM 

predictions may be from a distribution with the same median. 
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Discussion 

 

Identification and treatment of outliers can be a contentious issue in the field of quantitative 

predictive model development. In particular the definition of an outlier – whether being a chemical 

atypical to the data set used, or an output following modelling that is itself atypical – is itself often 

unclear. The former may be dealt with using criteria described previosuly24 and can be dealt with by 

the construction of a data set which avoids skew, bias and outliers. The latter, however, is more 

problematic and is usually associated with, at best, semi-quantitative interpretation of the output of 

a model based on related criteria, such as the experimental conditions and context under which the 

data was obtained. In this, and similar, studies outliers are commonly identified by principal 

component analysis, followed by a comparison between the targets and predictions8, 11, 13. 

 

Equations 5 and 9 show that both estimates of permeation enhancement can be considered as a linear 

combination of kernels applied to both the best point and each training data point. In SVR, the 

corresponding coefficients are i +i
*. Since i + i

* are zeros inside the margin not all training 

examples are needed to contribute to the estimate; because of the zeros only about 50 of the 70 

training examples are used to estimate the logER values of the last test point in the dataset with five 

features. By comparison, in the GP method the covariance matrix (kernel) over the whole training set 

is used as weights, making more use of all the available data.  

 

Figure 4 shows the absolute differences between the actual logER values and the estimates from two 

models, the -SVR with RBF kernel and the GPR model. The two models produce a similar error trend 

over the whole range of scores for the first principal component. -SVR provides a better estimate on 

40 out of 71 potential chemical enhancers, while GPR has better performance on certain specific parts 

of the first two principal component spaces. For example, GPR has a better performance around PC1≥3 

and GPR gives a more reliable estimate on 8 out of 12 chemicals that have a PC1≥2.3. In addition, GPR 

has a better performance at PC1 ∈ [-1.17, -0.94] on all six chemicals. Figure 4 also shows that the two 

biggest errors produced by these two models correspond to the same scores of the first principal 

component, which belong to S,S-Dimethyl-N-(4-bromobenzoyl)iminosulfurane and S,S-Dimethyl-N-(5-

nitro-2-pyridyl)iminosulfurane (Table 1). Figure 2 indicates that S,S-Dimethyl-N-(4-

bromobenzoyl)iminosulfurane corresponds to the point which has a large value of logER 

(approximately 1.36) and that the score of its PC is approximately  0.73, and S,S-Dimethyl-N-(5-nitro-

2-pyridyl)iminosulfurane corresponds to the point having a logER value at about 1.0 and the score of 

the first PC at about 1.23. Both chemical compounds are far away from other compounds in having 
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similar large values of logER. Most of the compounds having a score for the first principal component 

greater than zero have smaller values of logER (usually smaller than 0.75). Thus, it would appear that 

S,S-Dimethyl-N-(4-bromobenzoy)iminosulfurane and S,S-Dimethyl-N-(5-nitro-2-

pyridyl)iminosulfurane are outliers in the range of PC1 ∈ [0, 4] as defined by the five molecular 

features employed in this analysis. This suggests that it may be difficult for current SVR and GPR 

methods to produce useful estimates for chemicals considered as outliers.  

 

[INSERT FIGURE 4 HERE] 

 

 

Clearly, the methods discussed herein sit with those described previously8, offering an incremental 

improvement to previously published methods. However, the novelty of the current study is that it 

offers substantially better estimates of skin permeability enhancement than those reported by Pugh 

et al. as well as a predictive model for new chemicals7. Thus, it again indicates the benefits – and, still, 

the enormous potential – in applying Machine Learning methods to biological systems15.  

  

Further, as the findings of this study show the validation of a new method is significant but its longer-

term potential may relate to the development of non-universal models – models that work best with 

small sub-sets of data and which may suit different methods of analysis in order to optimise specific 

data sets4. Certain chemicals perform better when one particular method is applied (Figure 4), but 

that the opposite may apply to other chemicals. Such an outcome may align itself to the considerations 

given by Flynn in proposing a series of models based on differing physicochemical properties, rather 

than a single ‘global’ model, and therefore estimating biological effects for chemicals with the most 

appropriate modelling method and not with a generic model19. 

 

No discernable trend in structure and predictive ability was found in this study, particularly when 

statistical ranking tests were applied (Table 1). While this might be surprising, given the structural 

diversity present in the enhancer dataset, but may be due to the inherent biological variation 

associated with results of this, and similar, experimental studies. This implies that small differences in 

estimated ER, in terms of statistical measures of performance, might not yield a significant difference 

between two enhancers. It should be noted that the underlying mechanistic understanding of the skin 

penetration enhancement was discussed previously7. In this study the authors determined that the 

key physicochemical descriptors for optimising the enhancement ratio of potential skin penetration 
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enhancers of hydrocortisone were carbon chain length, molecular weight and the total number of 

hydrogen bonding groups on a molecule. 

 

Moreover, Figure 5 shows contour plots of the absolute differences between predictions and targets 

for the GPR and -SVR methods. The absolute differences between predictions and targets are treated 

as heights above the PCA plane. While Figure 5 shows that both planes are superficially similar it is 

interesting to focus in detail on the differences. For example, for the area where PC1<-1.5 and PC2<-

0.5 it is apparent that the GPR method is producing better estimates than the SVR method. In looking 

at the first two principal components, shown earlier, they suggest that, if the value of PC1 is low, the 

values of the descriptors HB, CC, MW and logP should be high; if the value of PC2 is low it means that 

the descriptors CC and logP should be high and that HB, MW and logS should have low values. Thus, 

for the area where PC1<-1.5 and PC2<-0.5 we should have larger values of CC and logP and a relatively 

smaller value for logS. It also appears that, for MW and HB, there is a compromise between PC1 and 

PC2. This is significant in considering the application of a global model to this problem domain.  

 

[INSERT FIGURE 5 HERE] 

 

Thus, the SVR method offered advantages over other methods, either as a complementary approach 

to solving the chosen problem domain but also in offering a different method to those currently used. 

It was also observed that the SVR method is more robust when dealing with chemical compounds 

whose properties have similar values, while Gaussian Process Regression does not work as well in such 

situations due to the numerical manipulations involved with the inversion operation (Equation 9). This 

is significant as it has implications for inherently variable biological data, including multiple or 

repeated experiments for the same chemical, where variability will inevitably be observed. This 

applies also to the generation of the physicochemical descriptors used in the modelling process, such 

as log P (or log Ko/w) which may be subject to variation when measured for subsequent use in models. 

This is also significant due to the other main finding of this study – that different models, as shown in 

Figure 5 and Table 1, appear to provide better estimates in different parts of the same “chemical 

space” for a large dataset, which is significantly larger than a substantial number of those reviewed 

previously. This allows significant developments in estimate quality to be made, particularly in the 

context of hyperparameter studies which show significant improvements in estimate quality in small 

datasets4, 22.  
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The use of Machine Learning methods in biological domains has been limited, mostly due to issues of 

technology transfer and model transparency – the latter is a particular issue as most Machine Learning 

methods work on a “black box” basis and, unlike more rudimentary statistical methods they do not 

yield a distinct descriptive algorithm, or equation, describing the biological process in the context of 

relevant physicochemical descriptors15. Thus, models often get used briefly and then fail to sustain 

their relevance in these fields. Several methods have been used to alleviate these shortcomings, 

including Feature Selection, which allows specific mechanistic information to be determined for each 

method. Indeed, it was shown previously that Feature Selection demonstrated that some 

physicochemical descriptors were interchangeable and that by changing these descriptors predictions 

of the same quality could be produced from a range of different descriptors12. One implication of this 

is that, if descriptors are used which are not subject to experimental variation (i.e. the use of MW, the 

count of hydrogen bonding groups) then models might yield less variance than those which use 

descriptors which are subject to such variation (i.e. log P, log S, melting point). 

 

However, it is important to note that the algorithms produced following Flynn’s work are 

predominately global models which are simple, to easily interpret and readily applied to relevant 

endpoints. In providing a single expression for skin permeability across a wide range (commonly, for 

the datasets discussed, this range is usually -3 < log P < 6 and 150 < MW < 750) such models are 

consistent with comments on transport across lipid lamellae23. They are also simplified to the point 

that any separate consideration of the aqueous pore pathway described by Flynn19 is absent, and is 

often being considered a matter that can be addressed by consideration of molecular volume rather 

than a discrete aqueous pathway21. For a toxicological endpoint, holistic modelling of the full biological 

process is preferred and models should not use individual steps for different parts of the process, such 

as transport or reactivity24, 25. Such comments clearly sit at odds with the inferences drawn from the 

current study. 

   

An increase in the number of descriptors, from three to five, improved model quality and utility. 

However, while this must be considered in the context of potential over-fitting the number of 

descriptors used in this study is neither excessive nor irrelevant, being based on those molecular 

features found previously to be significant24, 26. It might therefore be appropriate to consider a similar 

study using an expanded set of molecular features which have been optimised and whose relevance 

has been determined by the application of methods such as feature selection12, 27.  

 

Conclusions 
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The SVR method demonstrated comparable performance to previously reported Machine Learning 

methods (i.e. SVC) in the same field, but with the added significant advantage of being able to provide 

estimates of the effects of new chemicals; in this case, the enhancement ratio of new chemical 

enhancers. Performance of all Machine Learning methods was significantly better than discriminant 

analysis7. It is also apparent that different Machine Learning methods (SVR and GP) provided different 

outputs, suggesting that the use of a global model may not optimise model predictivity in all cases. 

This suggests that specific regression models, possibly following the use of a classification method, 

may be applied to different parts of the chemical space in order to improve predictivity. Given the 

potential of these methods to provide statistically significant estimates of enhancement it is clear that 

substantial potential exists to explore this field more deeply. In doing so it may be suggested that a 

combination of classification (i.e. SVC8) and regression methods (i.e. SVR), possibly combined with 

Feature Selection12, will allow further exploration of the links between mathematical methods and 

chemical structure which lies at the heart of such studies, and also allow improved modelling within 

local regions of a larger data set. 
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Table 1. Dataset used in this study, with outputs including rankings for GP and SVR methods and principal components. Note: HB represents the number of 
hydrogen bonding groups on a molecule; CC is the length of the longest continuous carbon chain present on a molecule; MW is the molecular weight of a 
chemical; log P is the mean of the octanol-water partition coefficient for a chemical; log S is the mean of the aqueous solubility for a chemical; ER Q is the 

enhancement ratio for a chemical, where permeation of hydrocortisone is compared for each chemical penetration enhancer to the same formulation 
without the chemical penetration enhancer; Formula is the chemical formula of each enhancer; SMILES a notation representing the Simplified Molecular In-

Line Entry System for each chemical; GP and SVR ranking and error values indicate the ranking, in terms of model accuracy (i.e. predicted vs. measured 
values) for the Gaussian Process and Support Vector Regression methods with the best-ranked in each list representing the least difference between target 

and prediction; PC1 and PC2 are the outputs from principal component analysis. 
 

Compound Names 

H 
bonds 
(HB) 

Carbon 
chain 
(CC) 

Molecular 
weight 
(MW) 

Mean 
logP 

Mean 
logS ER Q Formula SMILES  

GP 
rank GP error 

SVR 
rank SVR error PC1 PC2 

Urea 7 0 60.06 
-
1.692 0.565 1.5 C1H4N2O1 O=C(N)N 30 0.1285 32 0.1466 3.4842 1.9057 

2-Pyrrolidinone 3 0 85.11 
-
0.658 0.595 1.2 C4H7N1O1 O=C1CCCN1 13 0.0603 25 0.1184 3.2793 -0.3222 

1-Methylpyrrolidine 1 1 85.15 0.72 0.385 1.4 C5H11N1 C1CN(C)CC1 5 0.0114 47 0.2166 2.9275 -1.5707 

1-Methyl-2-pyrrolidinone 2 1 99.13 
-
0.328 0.685 1 C5H9N1O1 CN1C(CCC1)=O 26 0.1087 29 0.1384 3.1022 -0.8751 

5-Methyl-2-pyrrolidinone 3 1 99.13 
-
0.164 0.34 1.3 C5H9N1O1 C1C(=O)NC(C)C1 11 0.0554 13 0.0347 2.9506 -0.3428 

1-Methylsuccinimide 3 1 113.12 
-
0.688 0.465 1.4 C5H7N1O2 C1C(=O)N(C)C(=O)C1 2 0.0003 15 0.0364 3.01 -0.2522 

1-Ethyl-2-pyrrolidinone 2 2 113.16 0.228 0.445 1.1 C6H11N1O1 C1C(=O)N(CC)CC1 21 0.0909 5 0.0195 2.7647 -0.8998 

2-Pyrrolidinone-5-carboxylic acid 6 0 129.12 
-
1.102 

-
0.065 1.1 C5H7N1O3 C1C(=O)NC(C(=O)O)C1 31 0.1293 21 0.0988 2.8639 1.5057 

4-Acetylmorpholine 3 1 129.16 
-
0.598 0.645 1.3 C6H11N1O2 N1(C(C)=O)CCOCC1 19 0.0752 4 0.0137 2.9485 -0.1986 

N-acetylcaprolactam 3 1 155.2 0.58 
-
0.285 4.6 C8H13N1O2 C1CN(C(C)=O)C(=O)CCC1 66 0.5904 69 0.6733 2.3389 -0.2386 

Ethyl (R)-( )-2-pyrrolidinone-5-carboxylate 5 2 157.17 
-
0.226 -0.13 1.1 C7H11N1O3 C1C(=O)NC(C(=O)OCC)C1 28 0.1158 42 0.1973 2.3724 0.9323 

(R,R)-( )-2,5-bis(methoxymethyl)pyrrolidinone 4 1 159.23 0.214 
-
0.013 2 C8H17N1O2 C1C(COC)NC(COC)C1 25 0.1066 56 0.2818 2.4245 0.3718 

1-Cyclohexyl-2-pyrrolidinone 2 2 167.25 1.756 -1.02 1.2 C10H17N1O1 C2C(=O)N(C1CCCCC1)CC2 17 0.0703 10 0.028 1.7984 -0.8949 

1-Hexyl-2-pyrrolidinone 2 6 169.27 2.276 
-
1.365 1.2 C10H19N1O1 C1C(=O)N(CCCCCC)CC1 48 0.2363 57 0.29 1.2394 -1.0195 

S,S-dimethyl-N-(benzoyl)iminosulfurane 2 1 181.26 2.263 -2.54 0.74 C9H11N1O1S1 S(=NC(=O)c1ccccc1)(C)C 57 0.3393 52 0.2638 1.3326 -0.9286 

S,S-dimethyl-N-(4-nitrophenyl)iminosulfurane 3 1 198.25 2.52 -3.32 1.47 C8H10N2O2S1 S(C)(C)=Nc1ccc(N(=O)=O)cc1 23 0.0912 35 0.1589 0.9614 -0.3647 

S,S-dimethyl-N-(5-nitro-2-pyridyl)iminosulfurane 4 1 199.23 1.54 -2.86 9.03 C7H9N3O2S1 S(C)(C)=Nc1ccc(N(=O)=O)cn1 70 1.083 70 1.0391 1.2334 0.2893 

2-Nonyl-1,3-dioxolane 2 9 200.32 4.23 -3.64 8 C12H24O2 C(CCCCCCC1OCCO1)CC 34 0.1507 23 0.1081 -0.1552 -1.2143 

1-Methyl-3-(2-oxo-1-pyrrolidine)-E-caprolactam 4 1 210.28 0.242 
-
0.335 0.8 C11H18N2O2 N2(C1C(=O)N(C)CCCC1)C(=O)CCC2 59 0.356 24 0.1117 2.059 0.5254 

1,3-Diphenylurea 5 2 212.25 2.842 -3.37 2 C13H12N2O1 O=C(Nc2ccccc2)Nc1ccccc1 4 0.009 11 0.0313 0.6518 0.753 
S,S-dimethyl-N-(2-methyl-4-
nitrophenyl)iminosulfurane 3 1 212.27 2.88 -3.49 1.17 C9H12N2O2S1 S(C)(C)=Nc1ccc(N(=O)=O)cc1C 15 0.0611 8 0.0273 0.7701 -0.3522 



24 
 

S,S-dimethyl-N-(4-
chlorobenzenesulfonyl)iminosulfurane 2 1 215.7 2.75 -3.05 1.44 C9H10N1O1S1Cl1 S(=NC(=O)c1ccc(Cl)cc1)(C)C 51 0.2521 40 0.1769 0.9196 -0.8719 

S,S-dimethyl-N-benzenesulfonyliminosulfurane 3 1 217.31 2.007 -2.18 0.48 C8H11N1O2S2 S(C)(C)=NS(=O)(=O)c1ccccc1 63 0.4394 60 0.3329 1.2422 -0.2171 

2-Decylcyclopentanone 1 10 224.39 5.77 -5.23 6.7 C15H28O1 C1(CCCCCCCCCC)CCCC1=O 8 0.0281 30 0.1424 -1.0466 -1.8928 

S,S-dimethyl-N-(4-nitrobenzoyl)iminosulfurane 4 1 226.26 2.175 -3.61 0.77 C9H10N2O3S1 S(C)(C)=NC(=O)c1ccc(N(=O)=O)cc1 62 0.4343 41 0.1948 0.7719 0.3007 

1,3-Diphenylthiourea 5 2 228.32 2.752 -4.33 3.7 C13H12N2S1 S=C(Nc1ccccc1)Nc2ccccc2 65 0.4887 59 0.3166 0.3437 0.774 
S,S-dimethyl-N-(4-cyano-1-
naphthyl)iminosulfurane 2 1 228.32 3.49 -5.69 1.16 C13H12N2S1 S(C)(C)=Nc1ccc(C#N)c2c1cccc2 53 0.2584 37 0.1697 0.0476 -0.9925 

1-Dodecylurea 6 12 228.38 4.466 -3.3 2.8 C13H28N2O1 O=C(NCCCCCCCCCCCC)N 18 0.0712 39 0.1701 -0.6733 1.0501 

S,S-dimethyl-N-(o-tolylsulfonyl)iminosulfurane 3 1 231.34 2.492 -2.46 0.93 C9H13N1O2S2 S(C)(C)=NS(=O)(=O)c1ccc(C)cc1 22 0.0912 2 0.0119 0.9986 -0.2184 

2-Decylcyclohexanone 1 10 238.41 6.058 
-
5.475 7.9 C16H30O1 C1C(CCCCCCCCCC)C(=O)CCC1 24 0.0916 16 0.0368 -1.242 -1.878 

N-dodecyl-pyrrolidine 1 12 239.44 6.492 -5.45 5.2 C16H33N1 C1CN(CCCCCCCCCCCC)CC1 47 0.2356 61 0.3452 -1.5075 -1.9453 

1-Dodecyl-3-methylurea 5 12 242.4 4.908 
-
3.295 1.8 C14H30N2O1 O=C(NCCCCCCCCCCCC)NC 60 0.3784 55 0.2796 -0.8045 0.5048 

S,S-dimethyl-N-(4-nitro-1-
naphthyl)iminosulfurane 3 1 248.31 3.575 -4.92 1.28 C12H12N2O2S1 S(C)(C)=Nc1ccc(N(=O)=O)c2c1cccc2 36 0.1809 33 0.1483 0.0785 -0.3431 
S,S-dimethyl-N-(4-
chlorobenzenesulfonyl)iminosulfurane 3 1 251.76 2.6 -2.9 0.4 C8H10N1O2S2Cl1 S(C)(C)=NS(=O)(=O)c1ccc(Cl)cc1 67 0.6389 64 0.4408 0.7558 -0.1768 

1-Dodecanoylpyrrolidinone 2 11 253.43 5.19 
-
4.325 15.6 C16H31N1O1 N1(C(CCCCCCCCCCC)=O)CCCC1 3 0.0042 12 0.0345 -0.9879 -1.1776 

N-dodecylpyrrolidinone 2 12 253.43 5.494 -4.41 23 C16H31N1O1 C1C(=O)N(CCCCCCCCCCCC)CC1 44 0.2276 51 0.2367 -1.1595 -1.2235 
S,S-dimethyl-N-(2,4,6-
trichlorophenyl)iminosulfurane 1 1 256.58 4.292 -4.69 2.21 C8H8N1S1Cl3 S(C)(C)=Nc1c(Cl)cc(Cl)cc1Cl 40 0.2087 19 0.0573 0.0127 -1.4774 
S,S-dimethyl-N-(4-
phenylazophenyl)iminosulfurane 3 2 257.36 3.775 -4.06 2.81 C14H15N3S1 S(C)(C)=Nc2ccc(N=Nc1ccccc1)cc2 50 0.2461 62 0.3518 0.1124 -0.313 

1-Dodecyl-3-methylthiourea 5 12 258.47 5.18 -4.31 5.3 C14H30N2S1 S=C(NCCCCCCCCCCCC)NC 41 0.2138 31 0.1445 -1.1988 0.4965 

S,S-dimethyl-N-(4-bromobenzoyl)iminosulfurane 2 1 260.15 2.738 -2.83 23.12 C9H10N1O1S1Br1 S(C)(C)=NC(=O)c1ccc(Br)cc1 71 1.4111 71 1.4953 0.7326 -0.7152 
S,S-dimethyl-N-(4-
nitrobenzenesulfonyl)iminosulfurane 5 1 262.31 1.968 -3.33 0.68 C8H10N2O4S2 S(C)(C)=NS(=O)(=O)c1ccc(N(=O)=O)cc1 27 0.111 28 0.1332 0.6519 1.0053 

1-Dodecanoyl-2-pyrrolidinone 3 11 267.41 4.946 
-
3.895 10.1 C16H29N1O2 N1(C(CCCCCCCCCCC)=O)CCCC1=O 16 0.0626 67 0.5169 -0.9423 -0.5372 

1-Dodecanoylpiperidine 2 11 267.46 5.65 -4.56 14.7 C17H33N1O1 C1CCCCN1C(CCCCCCCCCCC)=O 20 0.0767 3 0.0122 -1.2154 -1.1753 

N-dodecyl-2-piperidinone 2 12 267.46 5.82 -4.62 22.2 C17H33N1O1 C(CCCCCCCCCC)CN1CCCCC1=O 39 0.1945 44 0.205 -1.3539 -1.2101 
Methyl-3-(2-oxo-1-pyrrolidine)-E-caprolactam-1-
acetate 6 1 268.31 0.156 -0.89 0.6 C13H20N2O4 N2(C1C(=O)N(CC(OC)=O)CCCC1)CCCC2=O 54 0.2684 27 0.1324 1.554 1.8184 

N-(1-oxododecyl)morpholine 3 11 269.43 4.488 -3.62 15.1 C16H31N1O2 N1(C(CCCCCCCCCCC)=O)CCOCC1 45 0.2298 38 0.1701 -0.7933 -0.485 

2-(Dodecyl-(2-hydroxyethyl)amino)ethanol 5 12 273.46 4.332 -3.62 6.4 C16H35N1O2 N(CCCCCCCCCCCC)(CCO)CCO 52 0.2576 26 0.1285 -0.9399 0.6376 
S,S-dimethyl-N-(2-
methoxycarbonylbenzenesulfonyl)iminosulfurane 5 1 275.35 2.117 -2.94 0.19 C10H13N1O4S2 S(C)(C)=NS(=O)(=O)c1ccccc1C(=O)OC 69 0.7408 68 0.5671 0.6471 1.0529 

1-Hexyl-3-(2-oxo-1-pyrrolidine)-E-caprolactam 4 6 280.41 2.69 -2.29 2.1 C16H28N2O2 N2(C1C(=O)N(CCCCCC)CCCC1)C(=O)CCC2 32 0.1373 43 0.2 0.2511 0.3965 

1-Dodecanoyl-2-piperidinone 3 11 281.44 5.36 
-
4.165 7.7 C17H31N1O2 N1(C(CCCCCCCCCCC)=O)CCCCC1=O 43 0.2173 48 0.2246 -1.1692 -0.5328 

Azone, laurocapram 2 12 281.48 6.254 -4.85 22.1 C18H35N1O1 C(CCCCCCCCCC)CN1CCCCCC1=O 49 0.2411 45 0.2074 -1.5749 -1.2056 

N-Dodecyl-N-(2-methoxyethyl)acetamide 3 12 285.47 5.22 
-
4.375 7.8 C17H35N1O2 N(CCCCCCCCCCCC)(CCOC)C(=O)C 46 0.2307 58 0.3092 -1.3048 -0.537 

4-(Dodecanoyl)-thiomorpholine 3 11 285.49 5.422 -4.49 21 C16H31N1O1S1 N1(C(CCCCCCCCCCC)=O)CCSCC1 64 0.4557 54 0.2794 -1.2844 -0.5372 

1-Dodecyl-3-phenylurea 5 12 304.48 6.675 -3.94 1.1 C19H32N2O1 O=C(Nc1ccccc1)NCCCCCCCCCCCC 68 0.6672 65 0.4593 -1.6594 0.5513 
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2-Ppyrrolidinone-1-acetic acid dodecyl ester 4 12 311.46 5.308 
-
4.105 11 C18H33N1O3 C1C(=O)N(CC(=O)OCCCCCCCCCCCC)CC1 42 0.2143 6 0.0255 -1.4312 0.1118 

N-Dodecyl-N-(2-methoxyethyl)butanamide 3 12 313.52 6.002 
-
5.045 6.1 C19H39N1O2 N(CCCCCCCCCCCC)(CCOC)C(=O)CCC 58 0.3471 66 0.5081 -1.7816 -0.5301 

1-Dodecyl-3-phenylthiourea 5 12 320.54 6.614 
-
5.085 3.4 C19H32N2S1 S=C(Nc1ccccc1)NCCCCCCCCCCCC 6 0.0135 1 0.0104 -2.019 0.5627 

1-Decyl-3-(2-oxo-1-pyrrolidine)-E-caprolactam 4 10 336.52 4.682 
-
3.945 8.8 C20H36N2O2 N2(C1C(=O)N(CCCCCCCCCC)CCCC1)C(=O)CCC2 14 0.0609 7 0.026 -1.2245 0.2872 

Hexyl-3-(2-oxo-1-pyrrolidine)-E-caprolactam-1-
acetate 6 6 338.45 2.706 

-
2.605 1 C18H30N2O4 N2(C1C(=O)N(CC(OCCCCCC)=O)CCCC1)CCCC2=O 29 0.1247 9 0.0279 -0.2149 1.6916 

S,S-dimethyl-N-[4-[(4,6-dimethylpyrimidine-
2yl)aminosulfonyl]phenyl]iminosulfurane 7 1 338.45 1.777 -3.83 0.83 C14H18N4O2S2 S(C)(C)=Nc2ccc(S(=O)(=O)Nc1nc(C)cc(C)n1)cc2 1 0 49 0.2255 0.0823 2.3682 
S,S-dimethyl-N-[4-[(5-methoxypyrimidin-
2yl)aminosulfonyl]phenyl]iminosulfurane 8 1 340.43 1.495 -4.3 0.72 C13H16N4O3S2 S(C)(C)=Nc2ccc(S(=O)(=O)Nc1ncc(OC)cn1)cc2 56 0.3335 53 0.2785 -0.0217 2.9355 

1-Dodecyl-3-(2-oxo-1-pyrrolidine)-E-caprolactam 4 12 364.57 5.688 -4.46 11 C22H40N2O2 N2(C1C(=O)N(CCCCCCCCCCCC)CCCC1)C(=O)CCC2 9 0.052 20 0.0986 -1.8868 0.2444 
Octyl-3-(2-oxo-1-pyrrolidine)-E-caprolactam-1-
acetate 6 8 366.5 3.704 

-
3.505 2.2 C20H34N2O4 N2(C1C(=O)N(CC(OCCCCCCCC)=O)CCCC1)CCCC2=O 7 0.0161 14 0.0361 -0.971 1.6338 

1-Tetradecyl-3-(2-oxo-1-pyrrolidine)-E-
caprolactam 4 14 392.63 6.432 -4.97 18.6 C24H44N2O2 N2(C1C(=O)N(CCCCCCCCCCCCCC)CCCC1)C(=O)CCC2 55 0.3323 50 0.2279 -2.4954 0.2216 
Decyl-3-(2-oxo-1-pyrrolidine)-E-caprolactam-1-
acetate 6 10 394.55 4.648 -4.16 4 C22H38N2O4 N2(C1C(=O)N(CC(OCCCCCCCCCC)=O)CCCC1)CCCC2=O 10 0.0528 22 0.1078 -1.6556 1.59 

N, N-didodecylacetamide 2 12 395.71 9.684 -6.55 8.9 C26H53N1O1 C(CCCCCCCCCC)CN(CCCCCCCCCCCC)C(=O)C 61 0.4104 63 0.4042 -3.3109 -1.1543 

1,3-Didodecylurea 5 12 396.7 9.484 -6.85 1.9 C25H52N2O1 O=C(NCCCCCCCCCCCC)NCCCCCCCCCCCC 33 0.1442 17 0.0395 -3.45 0.5275 

1,3-Didodecylthiourea 5 12 412.77 9.702 -7.81 1.6 C25H52N2S1 S=C(NCCCCCCCCCCCC)NCCCCCCCCCCCC 38 0.1945 46 0.2163 -3.8198 0.5255 
1-Hexadecyl-3-(2-oxo-1-pyrrolidine)-E-
caprolactam 4 16 420.68 7.382 

-
5.455 9.6 C26H48N2O2 N2(C1C(=O)N(CCCCCCCCCCCCCCCC)CCCC1)C(=O)CCC2 12 0.0588 34 0.1554 -3.1391 0.1842 

Dodecyl-3-(2-oxo-1-pyrrolidine)-E-caprolactam-1-
acetate 6 12 422.61 5.652 -4.72 9.1 C24H42N2O4 N2(C1C(=O)N(CC(OCCCCCCCCCCCC)=O)CCCC1)CCCC2=O 35 0.1738 36 0.1594 -2.3287 1.5456 
Tetradecyl-3-(2-oxo-1-pyrrolidine)-E-caprolactam-
1-acetate 6 14 450.66 6.394 -5.29 9.6 C26H46N2O4 N2(C1C(=O)N(CC(OCCCCCCCCCCCCCC)=O)CCCC1)CCCC2=O 37 0.1853 18 0.0423 -2.9517 1.5205 
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Table 2. An Example Confusion Matrix. 
 

 Predicted 
negatives 

Predicted 
positives 

Actual 
negatives 

True Negatives 
(TN) 

False Positives 
(FP) 

Actual  
positives 

False Negatives 
(FN) 

True Positives 
(TP) 
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Table 3. Comparison of statistical measures of model quality for fitted linear regression (FLR), 

simple linear regression (SLR) and -and -Support Vector Regression models using three (MW, CC 
and HB) or five descriptors MW, CC, HB, log P and log S). Note: MSE represents the Mean Square 

Error and CORR the linear regression coefficient. 
 

MODEL MSE CORR 

FLR (three features) 0.11 0.76 

SLR (three features) 0.12 0.73 

SLR (five features) 0.11 0.76 

-SVR with linear kernel (three features) 0.13 0.72 

-SVR with linear kernel (five features) 0.11 0.76 

-SVR with linear kernel (three features) 0.12 0.74 

-SVR with linear kernel (five features) 0.12 0.75 
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Table 4. Comparison of statistical measures of model quality for Gaussian Process Regression (GPR) 

 and -and -Support Vector Regression models for models with Radial Basis Function (RBF) kernels 
using different numbers of descriptors. Note: MSE represents the Mean Square Error and CORR the 

linear regression coefficient. 
 

MODEL MSE CORR 

GPR (three features) 0.11 0.77 

GPR (three features) 0.11 0.77 

-SVR with RBF kernel (three features) 0.13 0.74 

-SVR with RBF kernel (three features) 0.10 0.79 

-SVR with RBF kernel (three features) 0.12 0.74 

-SVR with RBF kernel (three features) 0.10 0.78 

GPR with four features  0.14 0.68 

GPR with two features  0.14 0.68 

 
 

 
                             
Figure 1: A quantile-quantile plot of MW for those enhancers classified as “good” and “poor”.  
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Figure 2:  Plot of the target ER against the first two principal components. 
 



30 
 

 
Figure 3: Plot of the first principal component against the target enhancement ratio (logER) and the 

predicted logER from FLR analysis. 
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Figure 4: Plot of the relative values of differences of actual logER values and estimates against the first 

principal component. 
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Figure 5:  Contour plots of the principal components for (a) Gaussian Process Regression (GPR) and (b) 

Support Vector Machine (SVR) methods.   
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