
*Corresponding author: f.bensaali@herts.ac.uk

A GENERAL FRAMEWORK FOR EFFICIENT FPGA

IMPLEMENTATION OF MATRIX PRODUCT

Faycal Bensaali
a,

*, Abbes Amira
b
, Reza Sotudeh

a

a
 University of Hertfordshire

b
 Brunel University, West London

ABSTRACT
High performance systems are required by the developers for fast

processing of computationally intensive applications.

Reconfigurable hardware devices in the form of Filed-

Programmable Gate Arrays (FPGAs) have been proposed as

viable system building blocks in the construction of high

performance systems at an economical price. Given the

importance and the use of matrix algorithms in scientific

computing applications, they seem ideal candidates to harness and

exploit the advantages offered by FPGAs. In this paper, a system

for matrix algorithm cores generation is described. The system

provides a catalog of efficient user-customizable cores, designed

for FPGA implementation, ranging in three different matrix

algorithm categories: (i) matrix operations, (ii) matrix transforms

and (iii) matrix decomposition. The generated core can be either a

general purpose or a specific application core. The methodology

used in the design and implementation of two specific image

processing application cores is presented. The first core is a fully

pipelined matrix multiplier for colour space conversion based on

distributed arithmetic principles while the second one is a parallel

floating-point matrix multiplier designed for 3D affine

transformations.

Keywords
Matrix Multiplication, Field Programmable Gate Array,

Distributed Arithmetic, 3D Affine Transformations.

1. INTRODUCTION
The nature of scientific computing applications involves

performing complex tasks repeatedly on a large set of data, often

under real-time requirements. Therefore, high performance

systems are required by the developers for fast computations.

Many researchers have begun to recognise the potential of

reconfigurable hardware in the form of Filed-Programmable Gate

Arrays (FPGA) in accelerating such computationally intensive

applications. A close examination of the algorithms used in these

applications reveals that many of the fundamental actions involve

matrix algorithms.

Several systems have been developed for matrix algorithms

implementation. The most important work done so far in this area

of research is the RCAMAT system centred around the Virtex-E

Xilinx FPGA series [1]. It consists of a Graphical User Interface

(GUI) for generating, browsing and mapping the matrix

algorithms on the RCMAT coprocessor, a library containing

structural and parametrazable VHDL codes and a coprocessor

which is basically the Virtex-E FPGA.

A coprocessor based on RISC architecture, has been developed at

Adelaide University under the MATRISC project. A range of

matrix algorithms such as Singular Value Decomposition (SVD),

matrix multiplication and addition, Discrete Fourier Transform

(DFT) and QR factorisation can be performed using this

coprocessor [2].

Another project (MATCH compiler project) concerning the

implementation of matrix algorithms is described in [3]. The

objective of this project is to develop various MATLAB libraries

on an FPGA board. These functions are developed in Register

Transfer Level (RTL) VHDL using the Sinplify logic synthesis

tool from Synplicity to generate gate level netlists, and the

Alliance Place And Route (PAR) tools from Xilinx. Some of the

functions which have been implemented on the FPGA board

include matrix addition, matrix multiplication, one-dimensional

Fast Fourier Transform (FFT) and Finite Impulse Response

(FIR)/Infinite Impulse Response (IIR) filters.

A range of matrix cores have been developed so far as part of an

ongoing research project for matrix operations [4, 5, 6], matrix

transforms [7, 8] and matrix decompositions [9, 10]. It is the aim

of the work presented in this paper to bring together the existing

cores under a general environment: Matrix Core Generator (MCG)

system to address a range of applications.

The MCG provides the user with a catalogue of optimised,

predefined set of building blocks for common matrix algorithms,

simplifying design steps and bringing the user design, based on

such blocks, to completion faster.

The developed cores can be ranged into two different categories:

(i) general purpose cores; and (ii) specific application cores. The

methodology used in the design and implementation of two matrix

multipliers for two different applications is presented in this

paper.

There has been extensive work on designing and implementing

matrix multiplication on FPGAs using different design

methodologies and implementation approaches for different data

types [11, 12, 13, 14]. Most of the proposed architectures are for

general purpose used and based on the integer data type. Recent

improvements in the computing power of FPGAs have motivated

researchers to consider floating-point based matrix multiplication.

Very few recent implementations employed floating-point

arithmetic [15, 16, 17, 18].

In this paper, the first proposed matrix multiplier is a novel

architecture for efficient implementation of an RGB to YCrCb

colour space conversion suitable for FPGAs implementation. The

proposed Colour Space Converter (CSC) is based on Distributed

Arithmetic (DA) principles. It is fully pipelined, platform

independent, has a low latency and a high throughput rate. In

Addition, the architecture has shown outstanding results in

comparison with the existing CSCs available in the market such as

the cores from Amphion Ltd. [19], CAST Inc. [20] and ALMA

Tech. [21] where the same conversion operation is performed.

The second proposed matrix multiplier is a parallel floating-point

architecture designed for accelerating 3D affine transformations

on FPGA, which are the fundamental cornerstone of computer

graphics. These transformations require large amounts of

processing power since they are based on matrix multiplication.

The proposed core is based on a new parallelised approach for

processing the 3D objects.

The proposed cores were implemented and tested on the RC1000

board [22] equipped with a XCV2000E Virtex-E (bg560-6)

FPGA and in the meantime they were synthesised on other FPGA

devices in order to make a fairer and consistence comparison with

existing cores using the same platform or exploring the additional

features of recent FPGA devices.

The composition of the rest of this paper is as follows. The

description of the MCG general environment is given in Section

2. In section 3, the mathematical background, the proposed

architecture and the hardware implementation for the two selected

specific image processing application cores are presented. Finally,

section 4 concludes the paper.

2. MATRIX CORE GENERATOR

ENVIRONMENT
The MCG provides the user with a catalogue of optimized,

predefined set of building blocks for common matrix algorithms,

simplifying design steps and bringing the user design, based on

such blocks, to completion faster.

The developed cores can be ranged into two different categories:

(i) general purpose cores; and (ii) specific application cores. The

methodology used in the design and implementation of three

general purpose use transforms are described in the next sections.

Figure 1 illustrates the MCG general environment. It consists of

three basic parts:

1. A Graphical User Interface (GUI) allowing the user to

select and customize a core for generation;

2. A ready-made cores, data sheets and demos libraries;

and

3. A generator to generate different input files for synthesis

tools to configure the FPGA.

User

Generator

Matrix Core Type

Operations:

- CSC

- Multiplication

- Transpose...

Transforms:

- FWT

- FFT

- Wavelet...

Decompositions:

- SVD

- QR

- LU

Netlist Bitstream DataSheet

Core Parameters

 - Matrix Size

 - Data Type (e.g. Integer, Fixed-

 point, Floating-point)

 - Word-length

Matrix Core

Generator

GUI

FPGA

Configuration

- Edif file

- Bit file

- Core Description (schematic

view, different I/O)

General Purpose Core Application Specific Core

FPGA
GUI for

Specific

Application

Synthesis

Tools

Demo

Figure 1. The MCG general environment

The GUI allows the user to select between two main options:

General purpose core or application specific core. For each

selected option the user has the ability to customize his design to

meet the needs of his application.

For each core, the MCG system can deliver the following:

 A customized Electronic Design Interchange Format

(EDIF) netlist;

 A bitstream file, to be used for FPGA configuration;

 A datasheet which includes the core’s functional

information; and

 A demo, if a specific application core is selected for

generation.

The option of generating a bitstream file is provided if the user’s

design requires just the selected core. Thus, the user will be saving

the time consumed during the place and route stage. In the case

where the user’s design consists of several cores, an EDIF file can

be generated. Synthesis tools are then invoked for the general

bitstream file generation by combining all the EDIF files together.

3. IMPLEMENTATION STRATEGIES OF

TWO SPECIFIC APPLICATION CORES
This section describes the methodology used in the design and the

implementation of two typical examples. Basically, these are

matrix multiplication based DA principles for colour space

conversion and floating-point parallel matrix multiplication for

3D affine transformations.

3.1 Matrix Multiplier for Colour Space

Conversion
Decomposing an RGB colour image into one luminance image

and two chrominance images is the method that has been used in

many commercial applications such as face detection [23, 24], as

well as the JPEG and MPEG imaging standards [25, 26]. The

calculation of RGB colour components from YCrCb components

consumes up to 40% of the processing power in a highly

optimised decoder [25]. Accelerating this operation would be

useful for the acceleration of the whole process. Therefore,

techniques which efficiently implement this conversion are

desired. This section presents a novel architecture for efficient

implementation of a CSC suitable for FPGAs implementation. The

proposed architecture is based on DA ROM accumulator

principles.

3.1.1 Mathematical Background
A colour in the RGB/YCrCb colour space is converted to the

YCrCb/RGB colour space using the following equations:











































































1

 ,

1

b

r

b

r
C

C

Y

B

B

G

R

B

G

R

A

C

C

Y

 (1)

Where:





















128439.0291.0148.0

128071.0368.0439.0

16098.0504.0257.0

A (2)

























8.276017.20.0164.1

616.135392.0813.0164.1

912.2220.0596.1164.1

B (3)

Figure 2 shows the direct mapping of equations 1.

X

X

X

X

X

X

X

X

X

+

+

+

R / Y G / Cb B / Cr
16/-222.912

128/135.616

128/-276.8

0.257/1.164 0.504/0.0 0.098/1.596

-0.148/1.164 -0.291/-0.392 0.439/-0.813

0.439/1.164 -0.368/2.017 -0.071/0.0

round

round

round

Y / R

Cb / G

Cr / B

Figure 2. General block diagram for RGB  YCrCb

CSC

Consider an MN image. Let represent each image pixel

by ijkb ,   20 ,10 ,10  kMjNi where:

),,(),,(210 ijijijijijij BGRbbb  (4)

where),,(ijijij BGR are respectively the red, green and blue

components of the pixel in row i and column j.

Since the matrices A and B are constants, DA principles using

ROM ACcumulate (RAC) technique can be applied to compute

the elements of the converted image. By following the

mathematical development presented in [5], the elements of the

converted image ijkc can be computed using the following

equation:

3

7

0

2

0
, 2 k

l

l m
lijmkmijk AbAc 









  

 

 (5)

where lijmb , is the lth bit of ijmb .

Three ROMs (one for each matrix A row) with the size of

822 31 N are needed in order to store the precompute 23

possible partial products values. An input set of 3 bits

),,(,2,1,0 lijlijlij bbb is used as an address to retrieve the

corresponding stored values. Table 1 gives the content of each

ROM.

Table 1. Content of the ROM i   20  i

bij0,l bij1,l bij2,l The content of the ROM i

 0 0 0 0

0 0 1 Ai2

0 1 0 Ai1

0 1 1 Ai1 + Ai2

1 0 0 Ai0

1 0 1 Ai0 + Ai2

1 1 0 Ai0 + Ai1

1 1 1 Ai0 + Ai1 + Ai2

3.1.2 Proposed Architecture for CSC
Equation 5 can be mapped into the proposed architecture as

shown in Figure 3. It consists of 8 identical Processor Elements

(PEps)   70  p . Each PEp comprises three parallel signed

integer adders, three p right shifters and one Memory Block,

which consists of three ROMs.

It is worth noting that the architecture has a latency of 8 and a

throughput rate equal to 1. The entire image conversion can be

carried out in (Latency + (N *M) * Throughput) = 8 + (N *M)

clock cycles, while using the standard algorithm, the conversion

can be carried out in M) N (43 clock cycles, where)(43

is the constant matrix A or B size.

3.1.3 Hardware Implementation and Results
The proposed architecture has been implemented and verified

using the Celoxica RC1000 FPGA development board. The

RC1000 board used is a standard PCI bus card fitted with the

XCV2000E (bg560-6) Virtex-E FPGA.

The proposed architecture can be used for the inverse conversion

(YCrCb to RGB) by:

 Duplicating the ROMs and using a selector signal which

allows the user to choose the appropriate converter); or

 Setting the contents of the ROMs in advance, depending

on the desired conversion.

The precomputed partial products are stored in the ROMs using

13 bits fixed point representation (8 bits for integer part and 5 bits

for fractional part). 13-bit arithmetic is used inside the

architecture. The inputs and outputs of the architecture are

presented using 8 bits and the outputs are rounded. Rounding

usually looks at the decimal value and if it is greater than or equal

to 0.5, then the result is increased by one. This implies a condition

of verifying followed by another arithmetic operation. A more

efficient way to round a number is to add 0.5 to the result and

truncate the decimal value. This technique has been applied in our

proposed architecture. The initial value for each PE’s ACC (for

the serial architecture) and for the first PEs adder (for the parallel

architecture) is set in advance to  0.5 i3 A , where   20  i . The

MACs and parallel signed adders have been implemented using

Xilinxs CoreGen utility, which contains many efficient designs

that can often save time for a programmer [27]. The shifters and

ROMs initialization have been implemented using VHDL. All

design components have been connected together using Handel-C

[28].

The CSC implementation consumes 186 of the total available

slices on the XCV2000E chip and runs with a maximum

frequency of 277 MHz. In order to make a fairer and consistent

comparison with some existing FPGA based CSCs using the same

technology [19, 20, 21], the XCV50E-8 FPGA device has been

targeted. A comparison with other FPGA platforms utilizing the

new available features has been also performed [29, 30]. Table 2

illustrates the performances obtained for the proposed architecture

in terms of area consumed and speed which can be achieved.

The proposed architecture shows significant improvements in

comparison with the existing implementations [29, 30, 19, 21,

20], which perform the RGB to YCrCb conversion, in terms of the

area consumed and the maximum running clock frequency.

3.2 Floating-Point Matrix Multiplier for

3D Affine Transformations
Floating-Point Matrix Multiplication (FPMM) is a basic operation

in many scientific computing applications involving large

dynamic range. In this section, the floating-point adder and

multiplier proposed in [6] are used as basic components for the

implementation of a parallel FPMM designed for 3D affine

transformations.

3.2.1 Mathematical Background
In computer graphics the most popular method for representing an

object is the polygon mesh model. In a simplest case, a polygon

mesh is a structure that consists of polygons represented by a list

of),,(zyx coordinates that are the polygon vertices. Thus the

information we store to describe an object is finally a list of points

or vertices [31]. 3D affine transformations are the transformations

that involve rotation, scaling, shear and translation. A matrix can

represent an affine transformation and a set of affine

transformations can be combined into a single overall affine

transformation [31]. Using matrix notation, a Vertex V is

transformed to *V (* denotes the transformed vertex) under

translation, scaling and rotation, which are the most commonly

used transformations in computer graphics, as:

VTV * (6)

































































110001

*

*

*

z

y

x

LIFC

KHEB

JGDA

z

y

x

 (7)

Consider an object represented with N vertices. The New Position

(NP) of the object when applying a transformation can be

calculated as follows [4]:

OPTNP  (8)

where:

 T is the matrix transform.

 OP is a (4,N) matrix contains the Old vertices Position.

 NP is a (4,N) matrix contains the New vertices Position.

Table 2. Performance comparison with existing CSC

CSC Core Hardware

Platform

Resources Speed

(MHz)

Proposed

Architecture

Xilinx [29]

Architecture

in [30]

CAST. Inc

[20]

ALMA.

Tech [21]

Amphion

Ltd [19]

XCV50E-8

XC2V500-5

Cyclon-II

XCV50E-8

XCV50E-8

XCV50E-8

186 (Slices)

131 LUTs + 5

[ 1818 MULTs]

292 (Logic

Elements)

222 (Slices)

222 (Slices)

204 (Slices)

263

185

216

112

105

90

PE
0

PE
7PE

1
A

23
 + 0.5

A
03

 + 0.5

A
13

 + 0.5

c
ij0

c
ij1

c
ij2

ROM1 ROM2 ROM3

+

+

b
ij0,p

b
ij2,p

b
ij1,p

<< p

(P-1) delays

+

+

<< p

+

+

<< p

To

PE
p+1

From

PE
p-1

(a) (b)

Figure 3. Proposed CSC architecture based on DA principles: (a) Overall structure, (b) Internal structure of the PE













































































111

1000111

*
1

*
1

*
0

*
1

*
1

*
0

*
1

*
1

*
0

*
1

*
1

*
0

*
1

*
1

*
0

*
1

*
1

*
0

















N

N

N

N

N

N

zzz

yyy

xxx

LIFC

KHEB

JGDA

zzz

yyy

xxx

 (9)

3.2.2 Proposed Architecture
Equation 9 can be mapped into the proposed architecture shown

in Figure 4.

Bank 0

iMac

Host

1st row

2nd row

3rd row

4th r0w

0 1 0 1 x

AL columns

Bank 1

Bank 2

Bank 3

PE0

PE1

PE3

PE2

M

U

X

M

U

X

M

U

X

M

U

X

Counter

Matrix T Matrix OP

B
lo

c
k

 0

B
lo

c
k

 1

B
lo

c
k

 2

B
lo

c
k

 3

t
ik

P
ip

e
li
n

e
d

F
lo

a
ti

n
g

-p
o

in
t

M
u

lt
ip

ly

a
c

c
u

m
u

la
to

r

S
E

OP
kj

NP
ij

PE : Processor Element

SE: Storage Element

A
L

-1

AL: Adder Latency

Figure 4. The proposed parallel FPMM architecture

for 3D affine transformations

The multiplier consists of four identical Processor Elements

(PEs). Each PE comprises a pipelined floating-point Multiply

ACcumulator (MAC) and a register for final result storage. The

vertices coordinates are represented using the IEEE single-

precision real numbers. The MAC has been implemented using

two different approaches:

 The pipelined floating-point library from Celoxica [32].

It is a platform-independent core. It allows the

programmer to perform floating-point operations in a

pipelined manner on single precision floating-point

numbers.

 The proposed floating-point adder and multiplier

described in the [6]. The floating-point multiplier used

is the Xilinx CoreGen based approach.

For both approaches, the floating-point adders and multipliers

used are pipelined and have different latencies. The floating-point

Adder and Multiplier Latencies from Celoxica’s library are

10AL and 10ML respectively. The input transform matrix T

is partitioned into four rowwise blocks, which gives one row per

block. Each block is stored in one of the four available banks. The

matrix OP is partitioned into four columnwise blocks, likewise

matrix T, each block is stored in one of the banks. In addition, due

to AL value, each block of the matrix OP is partitioned into

columnwise sub-blocks. Each subblock contains AL columns and

the last one is padded with columns of zeros if 10 mod ALN

(N is the number of vertices).

Figure 5 illustrates the timing diagram when performing a

multiplication of one row of the transform matrix T with one sub-

block of the matrix OP as shown in equation 10 in the case of

10AL :

   























393100

292100

191100

090100

3210910

OPOPOP

OPOPOP

OPOPOP

OPOPOP

ttttNPNPNP iiiiiii











 (10)

The number of clock cycles required for the entire computation of

the matrix NP is:

       ALMLALALpNC  41/ (11)

where:

 p Number of PEs

 AL is the Adder Latency

 ML is the Multiplier Latency

  AL4 is the size of the OP sub-matrices

3.2.3 Hardware Implementation and Results
The proposed architecture has been implemented and tested on the

RC1000 prototyping board. The implementation based Celoxica’s

floating-point library consumes 99% of the available FPGA area

and runs with a maximum frequency of 50 MHz, while the

implementation based on the proposed floating-point adder and

multiplier consumes 70% of the target FPGA area and can be run

at a maximum clock frequency of 85 MHz. The parallel FPMM

architecture has been synthesized on Virtex-II Pro FPGA in order

to exploit the additional features and resources available on this

device. Table 3 illustrates the performance obtained for the

proposed architectures when using the two different design

approaches for the MAC implementation.

Results obtained show that the parallel FPMM based on our

proposed floating-point addition and multiplication cores gives

better performance in comparison with the one based on the

pipelined floating-point library from Celoxica. This mainly,

because of the suitability of the different components used in our

implementation for the targeted FPGA device.

Table 3. Area/Speed Implementation report for the

proposed FPMM-Target FPGA XC2VP125 (ff1704-7)

MAC used

Area

Speed

(MHz)

 Logic

(%)
1818

Mults

Proposed floating-

point adder /

multiplier

Celoxica pipelined

floating-point

library

39

43

16

64

215

119

It is worth noting that, due to the application requirements, the

sizes of the manipulated matrices T and OP are  44 and

 N4 respectively. The maximum value of N depends only on

the available off-chip storage resources.

On the RC1000 board, N can be any value up to 218. Other sizes

can be performed using the proposed architecture by applying a

different partitioning strategy on the matrices T and OP at the host

level.

In [15], which is the most recent work concerning 32-bit floating-

point matrix multiplication, two implementations are presented.

The results presented are only the one obtained for 64-bit input

data. Therefore, a fair comparison can not be made with our

implementation. The work presented in [16], studied the

implementation of floating-point arithmetic and used matrix

multiplication as an example application. Results obtained show

that a 9696 FPMM, implemented on a Virtex XC4044XL

FPGA device, can achieve a maximum running frequency of 50

MHz. In [18], the authors investigated the influence of the

floating-point MACs on the performance of a matrix

multiplication algorithm. Results obtained, show that the

maximum and best running frequency for a 10241024 FPMM is

33 MHz on the Annapolis MicroSystems board.

4. CONCLUSION
This paper describes a system for matrix algorithm cores

generation used in image processing applications. The system

provides a catalogue of user-customisable cores ranging in three

different matrix algorithm categories: (i) matrix operations, (ii)

matrix transforms and (iii) matrix decomposition.

The system includes a GUI to help the users customize the cores

to be generated to meet the requirements of their applications.

The design process for the core generation can be broken down

into four main steps:

1. Selecting the algorithm category;

2. Selecting the operation, transform or decomposition;

depending on the selected category;

3. Setting the design parameters; and

4. Generating the core.

The output from the system can be an EDIF or a bitstream file.

The developed cores can be ranged into two different categories:

(i) general purpose cores; and (ii) specific application cores. The

methodology used in the design and implementation of two

specific application cores is presented. The first core is a fully

pipelined matrix multiplier for colour space conversion, which is

used in many commercial applications such as face detection as

well as the JPEG and MPEG imaging, based on distributed

arithmetic principles while the second one is an efficient parallel

matrix multiplier designed for 3D affine transformations used in

computer graphics applications such as entertainment (e.g. movies

and computer games), Computer Aided Design (CAD), medical

visualisation (e.g. MRI/CT and virtual surgery).

The performance in terms of the area used and the maximum clock

frequency has been assessed for the CSC and has shown that it

can be run with a higher frequency and consumes less area when

compared with existing systems. Result obtained for the core

dedicated for 3D affine transformations has shown that FPGA

implementation can achieve the performance of a graphics card.

Clock

OP
00

OP
09

t
i0

OP
10

OP
19

OP
20

OP
29

OP
30 OP

39

0 9 1917

Mult_In_1

Mult_In_2

Mult_Out

/

Add_In_1

7

t
i0

 x OP
00

47

NP
i0

51

Don’t care

Add_In_2

Add_Out

t
i1 t

i2
t
i3

t
i0
 x OP

01
t
i0
 x OP

02
t
i0
 x OP

09
t
i1
 x OP

10 t
i1

 x OP
11

t
i0
 x OP

00
t
i0

 x OP
01

NP
i9

t
i3
 x OP

33
t
i3
 x OP

39

x x x x x x x x x x x x

+ ++ + + + + +

Figure 5. Timing diagram when performing a multiplication of one row of the transform matrix T with one

sub-block of the matrix OP

REFERENCES
[1] A. Amira, “A Custom Coprocessor for Matrix Algorithm”,

PhD thesis, School of Computer Science, The Queen’s University

of Belfast, 2001.

[2] A. Beaumont-Smith, M. Liebelt, C. C. Lim and K. To, “A

Digital Signal Multi-Processor for Matrix Application”,

Proceedings of the 14th Australian Microelectronics Conference,

Melbourne, October 1997.

[3] S. P. Periyacheri, A. Jones, A. Nayak, D. Zaretsky, P.

Banerjee, N. Shenoy and A. Choudhary, “A MATLAB Compiler

for Distributed, Heterogeneous, Reconfigurable Computing

Systems”, Proceedings of the 11th International Conference

Parallel and Distributed Computing and Systems, Cambridge,

MAUSA, November 1999.

[4] F. Bensaali, A. Amira and A. Bouridane, “Accelerating Matrix

Product on Reconfigurable Hardware for

Image Processing Applications”, IEE Proceedings on Vision,

Image and Signal Processing-Special Issue on Rapid Prototyping

of Signal Processing Algorithms, Vol. 153, Issue 6, pp 739-746,

December 2006.

[5] F. Bensaali and A. Amira, “Accelerating Colour Space

Conversion on Reconfigurable Hardware”, Image and Vision

Computing, Elsevier, Vol. 23, Issue 11, pp 935-942, October

2005.

[6] F. Bensaali, A. Amira and R. Sotudeh, “Floating-Point Matrix

Product on FPGA”, ACS/IEEE International Conference on

Computer Systems and Applications, Jordan, May 2007.

[7] I. S. Uzun, A. Amira, A. Ahmedsaid and F. Bensaali,

“Towards A General Framework for an FPGA-based FFT

Coprocessor”, Preceedings of the Seventh IEEE International

Symposium on Signal Processing and its Application, Vol. 1, pp.

617-620, Paris, France, July 2003.

[8] I. S. Uzun and A. Amira, “Design and FPGA Implementation

of Non-Separable 2-D Biorthogonal Wavelet Transforms for

Image/Video Coding”, Proceedings of the IEEE International

Conference on Image Processing, Vol.4, pp. 2825-2828,

Singapore, October 2004.

[9] A.Ahmedsaid and A.Amira, “Accelerating SVD On

Reconfigurable Hardware For Image Denoising”, Proceedings of

the IEEE International Conference on Image Processing, Vol. 1,

pp. 259-262, Singapore, October 2004.

[10] A. Ahmedsaid, A. Amira and A. Bouridane, “Improved SVD

Systolic Array and Implementation on FPGA”, Proceedings of the

IEEE International Conference on Field-Programmable

Technology, pp. 35-42, Tokyo, Japan, December 2003.

[11] O. Mencer, M. Morf, M. J. Flynn, “PAM-Blox: High

Performance FPGA Design for Adaptive Computing”,

Proceedings of the IEEE Symposium on Field-Programmable for

Custom Computing Machines, Napa, California, pp. 167-174,

April 1998.

[12] R. S. Grover, W. Shang, Q. Li, “An Improved Architecture

for Bit-Level Matrix Multiplication”, Proceedings of the

International Conference on Parallel and Distributed Processing

Techniques and Applications, Vol. IV, Las Vegas, Nevada, pp.

2257-2264, June 2000.

[13] L. Jianwen and J. C. Chuen, “Partially Reconfigurable Matrix

Multiplication for Area and Time Efficiency on FPGAs”,

Proceedings of the EUROMICRO Systems on Digital system

Design, pp. 244-248, Rennes, France, August 2004.

[14] C. R. Wan and D. J. Evans, “Nineteen Ways of Systolic

Matrix Multiplication”, International Journal in Computer

Mathematics, Vol. 69, pp. 39-69, 1998.

[15] L. Zhuo and V. K. Prasanna, “Scalable and Modular

Algorithms for Floating-Point Matrix Multiplication on FPGAs”,

Proceedings of the 18th International Parallel and Distributed

Processing Symposium, pp. 92- 1001, New Mexico, USA, April

2004.

[16] I. Sahin, C. Gloster, and C. Doss “Feasibility of Floating-

Point Arithmetic in Reconfigurable Computing Systems”,

Proceedings of the 3rd Military and Aerospace Applications of

Programmable Devices and Technology Conference, Maryland,

USA, September 2000.

[17] Y. Dou, S. Vassiliadis, G. Kuzmanov and G. Gaydadjiev,

“64-bit Floating-Point FPGA Matrix Multiplication”, Proceedings

of the 13th international Symposium on Field-Programmable Gate

Arrays, California, February 2005.

[18] W. B. Ligon III, S. McMillan, G. Monn, K. Schoonover, F.

Stivers and K. D. Underwood, “A Re-Evaluation of the

Practicality of Floating- Point Operations on FPGAs”,

Proceedings of the IEEE Symposium on Field-Programmable

Custom Computing Machines, pp. 206-215, Napa, California,

April 1998.

[19] Datasheet (www.amphion.com), “Color Space Converters”,

Amphion semiconductor Ltd, DS6400 V1.1, April 2002.

[20] Application Note (www.cast-inc.com), “CSC Color Space

Converter”, CAST Inc, April 2002.

[21] Datasheet (www.alma-tech.com), “High Performance Color

Space Converter”, ALMA Technologies, May 2002.

[22] Datasheet, “RC1000 Development Platform Product

Brief”, v1.1, Celoxica Ltd., August 2002.

[23] A. Albiol, L. Torres and E.J. Delp, “An unsupervised

color image segmentation algorithm for face detection

applications”, Proceedings of the International Conference on

Image Processing, pp. 681-684, Vol. 2, October 2001.

[24] P. Kuchi, P. Gabbur, P. S. Bhat and S. David, “Human Face

Detection and Tracking using Skin Color Modelling and

Connected Component Operators”, The IETE Journal of

Research, Special issue on Visual Media Processing, Vol. 38, No.

3 & 4, pp. 289-293, May 2002.

[25] M. Bartkowiak, “Optimizations of Color Transformation for

Real Time Video Decoding”, Digital Signal Processing for

Multimedia Communications and Services, EURASIP ECMCS

2001, Budapest, September 2001.

[26] J. L. Mitchell and W. B. Pennebaker, “MPEG Video

Compression Standard”, Chapman & Hall, 1996.

[27] Application Note, “Xilinx CoreGen and Handel-C”, AN 58

v1.0, 2001.

[28] Manual , “Handel-C Language Reference Manual”, RM-

1003-4.2, Celoxica Ltd., 2004.

[29] L. Pillai, “Color Space Converter: Y’CrCb to R’G’B”’,

Application Note, XAPP283 (v1.3.1), Xilinx Inc., March 2005.

[30] Application Note, ”Color Space Converter: MegaCore

Function User Guide”, (v.2.2.0) Altera, June 2004.

[31] A. Watt, “3D Computer Graphics,” Addison-Wesley, 2000.

[32] Manual, “Pipelined Floating-Point Library Manual”,

Celoxica Ltd., 2005.

