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A Lagrangian Approach for Simulating Supercooled 

Large Droplets Impingement Effect 

C. Wang1 and S. Chang2 

Beijing University of Aeronautics and Astronautics, Beijing 100191, China 

H. Wu3 

School of Engineering, University of the West of Scotland, Paisley, PA1 2BE, United Kingdom 

In this article, a droplet tracking method (DTM) and a splashing model have been developed 

to calculate the droplet collection efficiency in super-cooled large droplets (SLD) regime using the 

Lagrangian computational method. In DTM, the droplet deformation and the droplet-wall effects 

(e.g. splashing, bouncing and re-impingement) which are the typical cases in SLD regime are 

incorporated by introducing the mass residual ratio. The effects of the transition from the 

conventional small droplets (CSD) impingement to SLD impingement as well as the splashed 

secondary droplets on the droplet collection are considered in the current splashing model. 

Performance and capacities of the DTM and the SLD splashing model are validated against the 

alternative experimental reference data. The mass loss ratio and the mass back ratio are 

introduced in order to explore the distribution and the quantity of the mass loss and mass back 

caused by droplet splashing and re-impingement. The predicted results show that the quantity 

and the distribution range of the mass back ratio on airfoil surfaces are relatively lower than that 

of the mass loss ratio. A significant mass back is observed when the airfoil is contaminated with 

ice. No mass loss or mass back is observed beyond the impinging region for the given conditions. 
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Nomenclature 

Cd = drag coefficient 

d = current droplet diameter [μm] 

d0 = initial droplet diameter [μm] 

dref = referred droplet diameter [μm] 

ds = splashed (secondary) droplet diameter [μm] 

din = incident droplet diameter [μm] 

dsi = total separation between the trajectories at impact on the surface [m] 

dyi = total separation between trajectories in the control volume in the free stream [m] 

fH, f = splashing mass loss fraction 

g = gravitational acceleration [m/s2] 

H = modified Mundo parameter  
2.0

1.25

d ,nOh Re  

i = control volume number, droplet id number 

Kf = momentum exchange coefficient 

LWC = liquid water content [g/m3] 

mf = droplet mass filmed on surface after splash [kg] 

ms = droplet splashed mass on impact [kg] 

md = initial incident droplet mass [kg] 

mre = re-impingement droplet mass [kg] 

Ms = total mass of droplet splashed out of the control volume [kg] 

M0 = mass collection of the control volume in the case of excluding droplet splashing and 

re-impinging effects [kg] 

Mre = total mass re-impinges into the micro control volume [kg] 

MVD = Median Volumetric Diameter [μm] 

n = number of the collecting droplets of the control volume, impact frequency 

ND =  Best number    3 2

a d a 0 a4ρ ρ ρ gd 3μ  

N = number of the splashed droplet 

Oh = Ohnesorge number  d 0 dμ d σρ  

Re = relative Reynolds number   a d a aρ u u d μ  

Red = droplet Reynolds number 
0 d d du dρ μ  

Red,n = droplet Reynolds number characterized by droplet normal velocity  d d ,n 0 dρ u d μ  



 

 

S = airfoil curvilinear length [m] 

t = time [s] 

ud = droplet velocity [m/s] 

ua = air velocity [m/s] 

ut = terminal velocity [m/s] 

us = splashed droplet velocity [m/s] 

udx = droplet velocity in the x direction 

udy = droplet velocity in the y direction 

ud,n = normal component of droplet velocity  

We = relative Weber number   
2

a a dρ u u d σ  

Wed = droplet Weber number  2

a d 0ρ u d σ  

Wed,n = droplet Weber number characterized by droplet normal velocity  2

a d ,nρ u d σ  

x, y, z = coordinators 

△y = initial length between neighboring droplets in the free stream [m] 

 

Greek Letters 

α = angle of attack, AOA [deg] 

βi = droplet collection efficiency 

ζ = eccentricity parameter  


  
6

1 1 0.007 We  

η =   residual ratio f dm m  

θ0 = droplet incident angle [deg] 

Λ = droplet frequency [1/s] 

μa = droplet shear viscosity [Pa·s] 

μd = air shear viscosity [Pa·s] 

ρa = air density [kg/m3] 

ρd = droplet density [kg/m3] 

σ = surface tension coefficient [N/m] 

ψls = mass loss ratio 

ψbk = mass back ratio 

 

Abbreviation 

CFD = Computational Fluid Dynamics 



 

 

CSD = Conventional Small Droplet 

DPM = Discrete Particle Model 

DTM = Droplet Tracking Method  

SLD = Super-cooled Large Droplets 

SIMPLE = Semi-Implicit Method for Pressure Linked Equations 

TP = terminal point 

UDF = User-Defined Function 

WSU = Wichita State University 

 

Subscripts 

a = air 

b = bouncing 

cr = critical 

d = droplet 

i = id number, control volume number 

n = the component in the normal direction 

ns = no splashing 

ns-re = re-impingement without splashing 

re = re-impingement 

ref = referred 

s = splash term 

s-re = re-impingement with splashing 

t = the component in the tangential direction 

0 = initial 

 

 

Ⅰ. Introduction 

IRCRAFT icing due to super-cooled large droplets (SLD), e.g. freezing drizzle and freezing rain, 

with median volumetric diameter (MVD) larger than 50μm has taken on more serious potential hazards 

in airplane flight than the conventional small droplet (CSD, MVD≤50μm) [1-3]. SLD tend to splash on 

impact creating a large number of smaller droplets which are also referred to as the secondary droplets 

A 



 

 

increasing the potential for ice contamination on unprotected surfaces. Therefore, droplet splashing has 

increased the randomness of the droplet impingement. Prediction of the droplet collection efficiency, 

which is the essential part of ice accretion simulation, has thus become a challenging issue in SLD 

regime.  

To the best of authors’ knowledge, the earliest issues on the SLD dynamics e.g. droplet 

deformation, breakup, splashing and bouncing are reported by Papadakis et al. [4-6]. Their 

experimental results show that the significant discrepancies of the droplet impingement curves are 

found between the numerical and the experimental data. And the reason for the higher numerical 

predictions could be mainly attributed to less consideration of the SLD dynamics, especially the mass 

loss due to droplet splashing. According to this, experiments on SLD dynamics have been expanded in 

order to obtain a better understanding of the dynamics of large droplets collisions with aircraft [7-9]. 

On the numerical side, methods and models developed in Lagrangian [10] or Eulerian [11] frame of 

reference are always applied to calculate the droplet collection efficiency in CSD regime. However, the 

Lagrangian approach is more common in SLD regime, as droplet deformation, both the splashing and 

bouncing effects are basically Lagrangian in nature. Although the mass deposition and loss due to 

droplet splashing can be modeled in an Eulerian modelization through source or flux terms [12-14], the 

droplet splashing and the re-impingement of the secondary droplets are rather difficult challenges to be 

solved with a field approach. Recently, a significantly computational cost has been reported when 

droplets re-impingement is considered in Eulerian framework [15]. This work describes the methods 

and the models to perform the droplet collection efficiency calculations in SLD regime for the 

Lagrangian approach.  

In Lagrangian simulation of SLD impingement, the WSU (Wichita State University) splashing 



 

 

model which is obtained by applying appropriate curve-fit equations to the predicted droplet 

impingement efficiency [5, 16] is developed [17-18]. However, this model is not widely used since it 

requires a high level of details of the key parameters in the model correlations. Afterwards, another 

tentative model which is referred to as the LEWICE splashing/bouncing model is presented [19, 20]. 

This model is a modified version of Trujillo splashing model [21] and the significant characteristic of 

the model is that if droplets impinge perpendicularly to the surface, no matter whether splashing occurs 

or not, the predicted quantity of the mass loss is zero. Details of other splashing models as well as their 

performance in SLD regime are summarized in [22]. Additionally, it is suggested that the droplet 

splashing and the bouncing are the first-order effects on SLD impingement curve predictions while the 

droplet deformation and the breakup are the second-order effects [19, 22].  

Based on the above experimental and numerical investigations, it can be concluded that the 

mechanism of SLD impingement is quite complicated and much efforts are still needed to model SLD 

phenomenon and it is therefore imperative to develop more practical methods in SLD impingement 

computation. In the current study, a new approach based on the Lagrangian method as well as a 

splashing model is developed to calculate the droplet impingement in SLD regime. In the proposed 

approach, the droplet deformation drag, the splashing/bouncing and the re-impingement effects will be 

taken into account through semi-empirical correlations. The approach and the splashing model are 

validated against a set of experimental data reported by Papadakis et al. [6, 23]. Finally, the mass loss 

and the mass back (re-impingement) on airfoil surfaces will be addressed. 

 

Ⅱ. Droplet Trajectory Equation 

The following major assumptions are employed in the derivation of the governing equations:  



 

 

(i) The mass transfer and the resulting momentum exchange between the air phase and the liquid 

phase are assumed to be negligible;  

(ii) No heat transfer or evaporation in the process of droplets movement and impingement. Thus, 

the thermophysical properties of the droplets are assumed to be constant;  

(iii) As the ratio between the air density and the droplet density is very small and droplets do not 

rotate, the added mass force, the Basset history force, and the Magnus and Saffman forces are all 

negligible in the present study;  

(iv) No inter-droplet collision, coalescence or breakup before impacting on surface and the flow 

field is unaffected by the presence of the droplet. Other simplifications are described in the due course 

in the rest of the paper. 

A. Droplet Motion Equation 

When a droplet is subjected to flow with relative velocity, the forces induced by their motion 

relative to the continuous phase are followed. The force balance equates the droplet inertia with the 

forces acting on the particle, and can be written 

 
 d ad

f a d

d

ρ ρd
K

dt ρ


  

u
u u g                              (1) 

where  f a dK u u  is the drag force per unit particle mass and  

a d

f 2

d

18μ C Re
K

24ρ d
                                     (2) 

Here, 
du  is the droplet velocity, 

au  is the air velocity, t  is the time, g  is the acceleration due to 

gravity, 
aμ  is the molecular viscosity of the air, 

aρ  is the density of the air, 
dρ  and d  refer to the 

droplet density and diameter. 
dC  is the drag coefficient defined in the drag model, see Section B. Re  

is the relative Reynolds number defined as: 

 a a d

a

ρ u u d
Re

μ


                                    (3) 



 

 

B. Drag Model 

To account for the contribution of the droplet deformation to the drag coefficient in variable flow 

Reynolds number and Weber number, the following formulation is used 

 d d ,sph d ,diskC 1 ξ C ξC                                   (4)

 

0.573

d ,sph

24
C 0.36 5.48 Re

Re

                                (5) 

d ,disk

64
C 1.1

π Re
                                        (6) 

where d ,sphC  and d ,diskC  denote the drag coefficient of the sphere and the disk, respectively, We  is 

the relative Weber number and ξ  is an eccentricity function of We . These parameters are given as 

follows: 

 a d a aRe ρ u u d μ  ,  
2

a a dWe ρ u u d σ  , 

  
6

ξ 1 1 0.007 We


                       (7) 

It should be noted that d  denotes the current droplet diameter in Eqs. (2), (3) and (7), that is, in 

case of the droplet splashing, it denotes the secondary droplet diameter, σ  is the droplet surface 

tension coefficient. More details about the sphere and the oblate disk drag laws can be found in Ref. 

[24, 25]. 

C. Terminal Velocity 

The assumption that the droplet is initially travelling at the same speed as the local air velocity is 

no longer valid for SLD movement. In SLD regime, the terminal velocity of the droplet should be 

considered. The terminal velocity of a fluid particle in creeping flow is obtained by equating the total 

drag to the net gravity force,    
3

0 d a4π d 2 ρ ρ g 3 , giving 

 0 d a

t

a d

4d g ρ ρ
u

3ρ C


                               (8) 



 

 

where 
tu  denotes the droplet terminal velocity, 

0d  denotes the initial droplet diameter. However, it 

is not possible to calculate the terminal velocity directly from this relation since the drag coefficient 

depends also on Re  which depends on 
tu . To circumvent this difficulty, the Best number 

DN  

presented by Clift et al. [24] is used and which is only a function of physical properties of the droplet 

and air. 

 2 3 2

D d a d a 0 aN C Re 4ρ ρ ρ gd 3μ                         (9) 

More details about the Best number 
DN  are given in Appendix. 

Once the terminal velocity is obtained by Eq. (8), the initial conditions of the droplet velocity can 

be expressed as: 

dx ax T

dy ay T

u u u sinα

u u u cosα

  


  
                            (10) 

where 
axu  (

dxu ) and ayu  ( dyu ) denote the local air (droplet) velocity component in the x-direction 

and y-direction, respectively; α  denotes the angle of attack (AOA). 

Ⅲ. Droplet Tracking Method (DTM) 

When the droplet trajectories calculation is finished, the start and impact positions are available. 

The local value of the droplet collection efficiency, 
iβ , of the control volume i  on the airfoil solid 

surface is then obtained using the definition illustrated in Fig. 1  

i

i

i

dy
β

ds
                                    (11) 

where 
ids
 

is the total separation between the trajectories at impact on the surface, 
idy  is the total 

separation between the trajectories in the control volume in the free stream and it can be further 

expressed as 

 idy n 1 y                                  (12) 

here n  is the total number of the droplets collected in the control volume, y  is the initial length 



 

 

between neighboring droplets in the free stream. In SLD impingement, droplet splashing and 

re-impingement may occur at the same time and even at the same position. The total mass collected in 

one control volume may be composed of the incoming mass from far field and the splashed secondary 

droplets. At this point, the conventional method described above cannot be used directly to calculate 

the droplet collection efficiency in SLD regime. For this reason, the residual ratio definition is 

introduced to solve the problem. 

dsi

dyi
Droplet trajectories

Airfoil surface

Control Volume i

 

Fig. 1 Droplet trajectories and droplet collection of the control volume i 

C. Residual Ratio 

For a single droplet impact, the residual ratio η  is defined as the ratio of the mass sticks on 

surface, fm , to the initial mass of the incident droplet , dm , after impact.  

f dη m m                                  (13) 

The residual ratio on surface can be divided into two categories according to whether 

splashing/bouncing occurs or not. 

(1) No Splashing  

Two cases are considered in this impingement type, as shown in Fig. 2. In Fig. 2(a), for the initial 

impingement, all the incident mass sticks on surface, then the residual ratio is  

nsη 1                                   (14) 



 

 

For the re-impingement case, as shown in Fig. 2(b), the residual ratio is given as  

ns re re dη m m                                (15) 

where rem  denotes the secondary droplet mass. 

 

md

          

mre

 

(a) Initial impingement          (b) Re-impingement 

Fig. 2 Droplet-wall interaction without droplet splashing 

(2) Splashing  

In the case of droplet splashing as shown in Fig. 3, part of the incident mass sticks on surface and 

part is rejected on impact. Assume the rejected mass is sm , then the splashing mass loss fraction, f , 

is given as 

s df m m                                  (16) 

For the initial splashing case as shown in Fig. 3 (a), the residual ratio is  

sη 1 f                                    (17) 

The mass loss fraction, f , can be obtained from the splashing model described in Section D. 

However, if the impact energy is high enough or the solid surface is in a special condition such as 

covered with a thin film which is always the case for the icing surface, secondary splashing may also 

occur, as shown in Fig. 3 (b). Then the residual ratio is 

re

s re

d

m
η f

m
                                  (18) 

Droplet bouncing can be deemed as a special case of splashing, all the incident mass is rejected from 



 

 

surface as shown in Fig. 3(c), thus the residual ratio at the impact point is given as 

bη 0                                     (19) 

ms

md

 

mre
ms

 

md md

 

(a) Initial impingement   (b) Re-impingement    (c) Bouncing 

Fig. 3 Droplet-wall interaction with droplet splashing and bouncing 

For the micro control volume i  laying on the solid surface, it may contain all the impinging 

types mentioned above. Therefore, the total residual ratio in the control volume i  can be expressed as 

i ns ns re s s re bη η η η η η                            (20) 

where  denotes the sum of the residual ratio for the same impinging type within the control 

volume. Then the droplet collection efficiency of the micro control volume i , incorporated with the 

effects of droplet splashing/bouncing and re-impingement, can be written as 

i

i i

i

dy
β η

ds
                                  (21) 

D. Splashing Model 

Many splashing models exist in spray area (reciprocating engines, gas turbines, spray cooling 

systems, ink-jet printing, etc) [21, 27-29], but if these models are applied to predict the mass loss 

caused by SLD impingement directly, it will yield a very high mass loss and does not agree well with 

the experimental results presented by Papadakis et al. [23]. The reports of [12, 17, 19] have shown that 

the splashing mass loss fraction f  must be a decreasing function of the incident angle and the normal 

component of the incident droplet velocity, in order to be able to account for the experimental results 

obtained by NASA [4, 23]. After several times of trying to fit the mass loss ratio with the experimental 



 

 

database [4, 23, 29], a new splashing model which has been modified by Han et al. [29] as well as 

Trujillo et al. [21] is proposed. In the current splashing model, both the droplets splashing ( 0 f 1  ) 

and the bouncing ( f 1 ) are coupled and the effects of the transition from the CSD impingement to 

SLD impingement as well as secondary droplets on the droplet collection are considered. The 

components of the modified version are described as follows. 

(1) Splashing Threshold 

 
2.0

1.25

d ,nH Oh Re 20 
                            (22) 

where H  is a modified Mundo parameter [28, 29] represented as a function of the droplet Reynolds 

number d ,nRe  and Ohnesorge number Oh  which are defined as d d ,n 0 dρ u d μ  and d 0 dμ d σρ , 

respectively. Noting that the parameters of d ,nu  and dρ  in the droplet Reynolds number denote the 

normal component of velocity and density of the incident droplet, respectively. 

(2) Mass Loss Correlation 

The mass loss prediction is modified by Han et al [29], their original correlation is presented in Eq. 

(23) and the modified version is given as Eq. (24). The effects of the incident droplet diameter, 

including the secondary droplet, and the velocity on the droplet collection efficiency have been 

incorporated in the splashing model, see Eqs. (25)-(27).  

  1.57s

H cr

d

m
f 0.75 1 exp 10 H H

m

     
                   (23) 

where crH  denotes the criteria of droplet splashing in Ref. [29]. The modified version of the 

expression is given as: 

              s

1 0 ref 2 0 3 d ,n

d

m
f 0.75φ d d φ sinθ φ We

m
     

   
0.4

0.125 0.22

01 exp cosθ H 20


           
   0 f 1      (24) 

where 



 

 

   
4.0

1 0 ref 0 refφ d d 1 exp 0.80 d d    
  

                     (25) 

   
4.0

2 0 0φ sinθ 1 0.90 sinθ  
                             

(26) 

   
6.0

3 d ,n d ,nφ We 1 0.07 We


                              (27) 

where 0θ  denotes the impact angle between the incident droplet velocity and the surface normal 

vector (see Fig. 4). refd  denotes the referred droplet diameter and 50 μm is selected as the size of the 

referred diameter which is also the defined boundary between the CSD and SLD.   is the droplet 

incident frequency and d ,nWe  is the droplet Weber number characterized by the normal component of 

the droplet velocity, they are given as: 

 
1 3

d1.5 ρ LWC


  , 
2

d ,n a d ,nWe ρ u d σ                     (28) 

    One significant characteristic of the splashing model is that for the CSD impingement the mass 

loss fraction f  is increasing with the increase of the incident droplet diameter, while for SLD 

impingement the mass loss fraction performs a decreasing tendency with the increase of the incident 

droplet diameter. This behavior is inspired by Honsek et al. [12], Wright [19] and Tan et al. [17]. In 

Honsek’s work, an apparent deviation between the predicted droplet collection efficiency and the 

experimental data is observed at larger MVDs, and DROP3D shows a lower-prediction on droplet 

collection efficiency at the leading-edge area. In Tan’s reports, a decreasing tendency of the mass loss 

fraction due to droplet splashing is found with the increase of droplet size in SLD regime. The 

LEWICE splashing model presented by Wright reports zero mass loss if the droplet impact 

perpendicularly in the leading-edge area, however, their numerical results [13] show that the LEWICE 

model over-predicts the droplet collection efficiency in the stagnation point area especially for the 

impact of the smaller size droplets. Therefore, by combination analysis of the SLD splashing models 

above, the referred diameter 50 μm with the function  0 refd d  is introduced into the current model 



 

 

to modify the effect of the diameter on the droplet collection efficiency. It should be noted that, for the 

CSD impingement, the predicted mass loss is of the order of 10-2, while for SLD impingement, it is of 

the order of 10-1. This is reasonable because many experiments [4-6, 23] have served to demonstrate 

that the mass loss from splashing is very low for the case of CSD impingement but it performs a 

significant increasing tendency in the transition stage from the CSD impingement to SLD 

impingement.  

(3) Droplet Size and Velocity Profile 

    The size of the splashed secondary droplet sd  is determined by Eq. (29). Finally, splashed 

droplet number N  may be determined from the total mass and diameters of the secondary droplets 

combined with the principle of mass conservation, see Eq. (30). 

s d

0.5 0.25

0 ad d

d ρ3

d ρWe Re
                             (29) 

3

s s dN 6m πd ρ                                 (30) 

where the droplet Weber number 
2

d a d 0We ρ u d σ  and the droplet Reynolds number 

d d d 0 dRe ρ u d μ . However, due to the limitation of the capacity of the current computation and the 

complexity in tracking large number of the splashed secondary droplets during splashing, the total 

rejected mass from surface is assumed to be a mass package, as shown in Fig. 4. Therefore, the rejected 

diameter and the momentum are finally expressed as 3
s6m π  and s sm u , respectively. 

The velocity profile of the rejected droplet is described as [21]: 

s ,t

0

d ,t

s ,n

0

d ,n

u
0.85 0.0025θ

u

u
0.12 0.0020θ

u


  



 



                         (31) 

where the subscript t
 

and n  stand for the components of the droplet velocity in the tangential and 



 

 

normal directions; s  and d  denote the droplet splash and the original incident items. 

mdud
msus

n

θ0

 

Fig. 4 Mass and momentum change due to droplet splashing. 

E. Tracking the Residual Ratio on Solid Surface 

In order to include both the effects of droplet splashing and re-impingement for calculating the 

droplet collection efficiency, a droplet tracking method has been proposed. Three steps are mainly 

contained in this method, (1) Classifying According to the Impact Frequency and the Location of the 

Terminal Point. (2) Calculating the Residual Ratio at the Impact Point. (3) Sum All the Residual Ratio 

in the Control Volume. 

(1) Classifying According to the Impact Frequency and the Location of the Terminal Point 

Droplets impinging on the solid surface can be simply subjected to splashing or not. For the case 

without splashing, the residual ratio is 1, while if splashing occurs, the residual ratio is less than 1 and 

the induced secondary droplets may partly or totally captured by the solid surface, or totally swept 

away by the surrounding flow. Therefore, the residual ratio may be varying in different impinging cases. 

Thus, to identify the impact types has become a necessary step before calculating the SLD collection 

efficiency. Initially, every droplet is entitled with an id number at the released place and this id number 

will remain unchanged even in the case of droplet splashing, the id number of the secondary droplet is 

the same as the parent droplet. When the id number and the coordinates of the impact position (x, y, z) 

are available, classifying the impact types becomes possible. The location of the terminal point of the 



 

 

droplet trajectory provides a way to classify the impact types. 

According to whether the terminal point (TP) of the single droplet trajectory is located on the solid 

surface or not, the impact types can be classified into two categories. As shown in Fig. 5, the first is 

that the TPs are located on the surface. In this case, the total incident droplet, whether droplet splashing 

or not, is eventually caught by the surface. The solid surface appeared in Fig. 5 is an "iced" airfoil 

provided by Papadakis et al. [6]. The initial incident droplet diameter is 236 μm and n denotes the 

impact frequency. Since the rejected mass 
sm  is varying on splash for different incidents, the splashed 

diameter ( 3
s sd 6m π ) exhibits different colour as shown in the figures. For the case of n 1  as 

shown in Fig. 5(a), no splashing occurs and this impingement performs the same way with the CSD 

impingement. For the cases of n 1 , as shown in Fig. 5 (b) and (c), re-impingement occurs. 

 

 

(a) No splashing occurs, n=1 

Iced airfoil surface 

Droplet trajectory 



 

 

 

(b) Splashing occurs, n=2            (c) Splashing occurs, n>2 

Fig. 5 Droplet trajectory with the TP on the solid surface (MVD=236μm) 

The second category is that after the splashing and re-impingement, part or all the incoming mass, 

under the influence of the surrounding airflow, finally escapes the solid surface, as shown in Fig. 6. For 

the first case as shown in Fig. 6 (a), splashing occurs and all the rejected mass flees the solid surface 

without re-impingement. Droplet bouncing, in which the total incoming mass is rejected from surface, 

can be classified into this category. For the second and the third cases, as shown in Fig. 6 (b) and (c), 

droplet splashing and re-impingement occurs at the same time. Finally, part of the secondary incoming 

mass flees away with the airflow. The quantity of the rejected mass shows a decreasing tendency with 

the increase of the impact frequency. It should be noted that the impact frequency n  is affected by 

many factors such as velocity, turbulent flow and the bump solid surface. For each impingement, the 

coordinators of the impact point, the diameters of the parent droplets (din) and the splashed secondary 

droplets (ds) together with the id number [(x, y, z), id, din, ds] will be recorded for the following 

calculation of the residual ratio. 

 



 

 

 

(a) Splashing occurs, n=1 

 

(b) splashing occurs, n=2            (c) splashing occurs, n>2 

Fig. 6 Droplet trajectory with the TP out of the solid surface (MVD=236μm) 

(2) Calculating the Residual Ratio at the Impact Point 

Based on the classification and the recorded information [(x, y, z), id, din, ds] above, the residual 

ratio at each impingement can be calculated and located. Fig. 7 shows an incident droplet titled with the 

id number i  impinging on the surface for about three times. At each impingement, it was ticked, e.g. 

1, 2 and 3, respectively. 

At point 1 the residual ratio is given as: 

 
3

1 i ,s1 i ,0η 1 d d 
                              

(32) 



 

 

At point 2: 

   
3 3

2 i ,s1 i ,0 i ,s2 i ,0η d d d d 
                      

(33) 

At point 3: 

   
3 3

3 i ,s2 i ,0 i ,s3 i ,0η d d d d 
                      

(34) 

Easy to conclude that if the impingement frequency is more than three times (n>3), the final residual 

ratio is given as: 

    
3 3

n i ,0 i ,sn i ,0i ,s n 1
η d d d d


                      (35) 

Nevertheless, if the TP of the droplet trajectory is located on the surface, the final residual ratio can be 

expressed as: 

 
3

n i ,s( n 1 ) i ,0η d d                              (36) 

 

Fig. 7 The splashed droplet trajectory (MVD=236μm) 

(3) Sum All the Residual Ratio in the Control Volume 

When the first two steps are finished, the information of the mass residual ratio on the solid 

surface, e.g. [(x, y, z), id, η], is available. Based on the coordinators of nodes of the control volumes lay 

on the solid surface, the residual ratio can thus be “collected” accordingly.  

di,0 di,s1 

di,s2 

di,s3 

1 

2 

3 



 

 

In the current study, we introduce the mass loss ratio lsψ  and the mass back ratio bkψ  in order 

to better illustrate the mass loss and gain due to the droplet splashing and re-impingement of the control 

volume, respectively. Both of the two definitions are given as 

s

ls

0 re

M
ψ

M M



,  

re

bk

0 re

M
ψ

M M



                       (37) 

where  

sM  denotes the total mass flows out the micro control volume, e.g. splashed mass;  

reM  denotes the total mass re-impinges into the micro control volume;  

0M  denotes the mass collection of the micro control volume in the case of excluding droplet splashing 

and re-impinging effects. Thus,  0 reM M  denotes the total droplet mass that flows into the micro 

control volume. 

F. Numerical Procedure 

    In the current study, the governing equations of the continuum described by Batchelor [31] are 

solved with FLUENT (v6.3) general-purpose solver [32]. The analysis employed the SIMPLE 

algorithm in the software together with the k-ε RNG turbulence model and near-wall functions. The 

droplet motion equation described by Eq. (1) is solved with fourth-order Runge-Kutta scheme. The 

deformation drag model together with the proposed splashing model are incorporated into the 

governing equations with the help of user-defined function (UDF) and programmed in C code. The 

macros used are mainly DEFINE_DPM_DRAG and DEFINE_DPM_BC. When the solutions of the 

droplet trajectories and the droplet-wall interaction are finished, the data of the droplet coordinators, id 

and diameters will become available. In the following step, all the parameters mentioned above will be 

converted into a data format for application into a DTM code programmed in Visual Basic language. 

Finally, the droplet collection efficiency is determined according to Eq. (21). 



 

 

IV. Results and Discussion 

    In the following sections, the capabilities of the DTM and the splashing model are tested and 

discussed. The physical models applied in this work are composed of a clean and 22.5-min “iced” Twin 

Otter airfoils, clean and 22.5-min “iced” NACA23012 airfoils, which are all presented by Papadakis et 

al. [6, 23]. The range of the droplet diameter varies from 11 μm to 236 μm, that is, the impingement of 

both the CSD and the SLD impingements are included. Other details of the calculation conditions are 

given in Table 1. 

Table 1 Calculation Parameters 

 Twin Otter “iced” Twin Otter NACA23012 
“iced” 

NACA23012 

Velocity/m·s-1 78.25 78.25 78.25 78.25 

MVD (d0)/μm  11, 21, 79, 168 79, 168 111, 236 111, 236 

LWC/g·m-3 
0.05, 0.19, 

0.496, 0.75 
0.496, 0.75 0.73, 1.89 0.73, 1.89 

AOA/deg 0 0 2.5 2.5 

Chord/m 1.448 1.448 0.914 0.914 

Pressure/kPa 99.974 99.974 99.974 99.974 

Static Tem./K 280.37 280.37 280.37 280.37 

References [17, 23] [17, 23] [6, 17] [6, 17] 

 

G. Droplet Impingement Distribution on the Clean Airfoil Surface 

The distribution of the droplet collection efficiency β  on the airfoil is calculated using the DTM 

including or excluding the effects of droplet splashing and re-impingement (namely “Incl. Spl. & 

Re-imp.” and “Excl. Spl. & Re-imp.” for short). The computed results are validated against a set of 

data originating from previous studies performed by Papadakis et al. [6, 23] at NASA Glenn’s Icing 

Research Tunnel. Comparisons of the β  plots are also performed with the numerical reference data of 

LEWICE [6, 23]. The β  curves are given as a function of the airfoil curvilinear length “ S ” starting 



 

 

from the aerodynamic stagnation point of the airfoil ( S 0 ). The negative “ S ” denotes the lower 

surface distance from the stagnation point of the airfoil, while the positive “ S ” denotes the upper 

surface distance.  

(1) Clean Twin Otter Airfoil 

    Fig. 8 reports the impingement distributions for the four MVDs on the clean Twin-Otter airfoil 

surface. As the focus of the present paper is put on SLD impingement, therefore, only two size droplets, 

MVD=11μm and MVD=21μm, are applied to test the capability and accuracy of the DTM method in 

CSD impingement predictions. It can be seen from Fig. 8(a) and (b) that the β  curves obtained with 

DTM performed better agreement with the experimental data throughout the whole impingement 

region than LEWICE’s results. Both the calculated results and the experimental data are performed a 

higher collection efficiency at the stagnation point and a gradually decreasing tendency along the 

chord-wise direction. The predicted maximum droplet collection efficiencies are given as 0.32 

(MVD=11μm) and 0.52 (MVD=21μm), while the corresponding experimental results are 0.33 

(MVD=11μm) and 0.52 (MVD=21μm). Since the mass loss due to the droplet splashing is very low as 

previously mentioned in Section D(2), both the two β  curves, “Incl. Spl. & Re-imp.” and “Excl. Spl. 

& Re-imp.”, are almost totally coincided throughout the whole impinging region. 

    For SLD impingements as shown in Fig. 8(c) and (d), however, deviations between the β  curves 

obtained with and without Spl. & Re-imp. are observed. Both LEWICE and the curves excluding 

splashing & re-impingement effects perform a significant higher prediction over the experimental 

curves at the stagnation point and in the region where the impinging limits are approached. At MVD of 

79 μm, see Fig. 8(c), the β  curve obtained with splashing & re-impingement effects shows a perfect 

agreement with the experimental results throughout the whole impinging region. The maximums of the 



 

 

predicted and the experimental droplet collection efficiencies are given as 0.74 and 0.73, respectively. 

At MVD of 168μm, see Fig. 8 (d), good agreement is also observed between the Spl. & Re-imp. curve 

and the experimental curve except for a little deviation in a relatively small region ( S 0.08  and 

S 0.2 ) on the upper surface. The maximums of the predicted and the experimental droplet collection 

efficiencies are given as 0.85 and 0.82, respectively. One potential reason for the mismatch could be 

due to the use of the droplet median volumetric diameter in the computation. Considering the 

fluctuations in the experiments as reported in [6, 23], therefore, this deviation could not be only 

attributable to the deficiency of the method or the splashing model.  

(2) Clean NACA23012 Airfoil 

    Another test is performed on the clean NACA23012 airfoil, the numerical results and the 

experimental reference data are plotted in Fig. 9. Perfect matches between the β  curves obtained 

including splashing & re-impingement effects and the experimental reference data as shown in Fig. 9(a) 

and (b) have again demonstrated the significant contribution of the proposed splashing model to the 

improvement of the droplet collection efficiency prediction. In splashing cases, the predicted maximum 

droplet collection efficiencies are given as 0.87 (MVD=111 μm), 0.96 (MVD=236 μm), and the 

corresponding experimental results are 0.85 (MVD=111 μm) and 0.95 (MVD=236 μm), respectively. It 

should be noted that, at MVD=236 μm as shown in Fig. 9(b), the predicted droplet collection 

efficiencies obtained by including and excluding splashing & re-impingement effects are almost 

coincident in the vicinity area around the stagnation point, when comparing with the predicted β  

curves, as shown in Fig. 8(c), (d) and Fig. 9(a). This is because the splashing model gives a lower 

evaluation of the splashing mass loss with the increase of the droplet size, as previously illustrated in 

Section D (2). It should be noted that the LEWICE’s results are obtained excluding the SLD dynamics 



 

 

either [6, 23], that’s why good matches are also observed between the Excl. Spl. & Re-imp. curves and 

LEWICE’s predictions, as shown in Fig. 8(c), (d), and Fig. 9(a), (b).  

 

  

(a) MVD=11μm                         (b) MVD=21μm 

 

(c) MVD=79μm                        (d) MVD=168μm 

Fig. 8 Comparison of β distribution between computational and experimental results on the clean 

Twin-Otter airfoil surface 



 

 

 

(a) MVD=111μm                         (b) MVD=236μm 

Fig. 9 Comparison of β distribution between the numerical and experimental results on the clean 

NACA23012 airfoil surface 

H. Droplet Impingement Distribution on the Iced Airfoil Surface 

    In this section, the capacities of the DTM together with the splashing model in predicting the 

droplet collection efficiency of more complicated surface are examined. The rugged surfaces applied 

are the Twin Otter airfoil and the NACA23012 airfoil, both with leading-edge double-horn glaze ice 

contamination after 22.5 minutes [6, 23]. The rugged surface increases the complexity of splashing, 

bouncing and re-impinging effects which is a more challenging test than the clean ones. The general 

shapes of the iced airfoils are shown in Fig. 13. The droplet impinging area is divided into two regions, 

region A and region B, by the ice horns, as shown in Fig. 10. It can be seen that the curves of the 

droplet collection efficiency have changed greatly when comparing the “iced” β curves with the clean β 

curves as shown in Fig. 8 and Fig. 9. As expected, both the Excl. Spl. & Re-imp. curves and LEWICE 

curves give a higher prediction over the experimental reference data in the impinging region especially 

in region A. However, when the droplet splashing and re-impingement effects are included, the 

predicted β  curves exhibit a significant improvement on the agreement with the experimental 



 

 

reference data particularly in region A. Nevertheless, in the horn region (region B), a more challenging 

match between the numerical and the experimental reference data is observed. Although the splashing 

model is activated, the predicted droplet collection efficiency is still higher than the experimental data 

for the case of MVD=79 μm impingement as shown in Fig. 10(a). At MVD=79 μm, the predicted 

maximum droplet collection efficiency in splashing case is given as 0.73 and the experimental result is 

0.62. The reason for this mismatch may be attributable to the simple assumption that the rejected 

secondary mass from surface is taken as a mass parcel, as shown in Fig. 4. Other potential reasons 

could be attributed to median volumetric diameter in the computation and the fluctuations in the 

experiments. For the larger size droplet impingements involving 168 μm, 111 μm, 236 μm as shown in 

Fig. 10(b), (c), and (d), it can be seen clearly that good agreement between the numerical and the 

experimental reference data are observed when the droplet splashing and re-impingement effects are 

included. In case of droplet splashing, the predicted maximum droplet collection efficiencies are 0.91 

(MVD=168 μm), 0.78 (MVD=111 μm), 0.92 (MVD=236 μm), and the corresponding experimental 

results are 0.95 (MVD=168 μm), 0.71 (MVD=111 μm), 0.88 (MVD=236 μm), respectively. Close 

agreements between the numerical and the experimental reference data above allow to be concluded 

that the DTM incorporated with the splashing model is able to predict the droplet collection more 

accurately in SLD regime. Droplet splashing and re-impingement effects are relatively strong in the 

horn regions. Calculation and analysis on the droplet splashing mass loss and the mass back (droplet 

re-impingement) are expanded in the following sections.  

 



 

 

  

(a) MVD=79μm                         (b) MVD=168μm 

  

(c) MVD=111μm                      (d) MVD=236μm 

Fig. 10 SLD impingement distributions on the iced airfoil surfaces of the 

Twin Otter [(a) and (b)] and the NACA23012 [(c) and (d)] 

I. Effects of Droplet Splashing and Re-impingement 

    In this section, the trajectories of the splashed secondary droplets are presented. The distributions 

of the mass loss ratio and the mass back ratio on the clean and iced airfoil surfaces are calculated and 

exhibited. The aim is to explore the characteristics of SLD impingement on the airfoil surfaces, which 

is expected to provide a support for the experimental and numerical simulation of ice accretion in SLD 

regime. 

 

 

 

Region B 

Region A 

Region A 



 

 

(1) Trajectory 

The effects of surface characteristics on droplets splashing trajectories are presented in Fig. 11. It can 

be seen that the droplet splashing is occurring almost in the whole impinging region. For the 

impingement on the clean airfoil, as shown in Fig. 11(a), most of the ejected mass is escaping from the 

surface when splashing occurs, no significant phenomenon of droplet re-impingement is observed in 

the vicinity area of the leading edge. However, as shown in Fig. 11(b), for the impingement of droplet 

on the more complex iced airfoil surface, the re-impingement of the ejected mass on the surface is 

relatively more significant, especially in the area between the horns. Since the parameters of the 

incident droplets, e.g. the incident angles, velocities and the existing surface curvature, are varying on 

the solid surface, which make the secondary droplet diameters ejected from the surface is different 

either, and the figures of droplet splashing are much like a kaleidoscope. It can be seen that the sizes of 

the secondary droplets are gradually increasing along the chord-wise direction. As the shape of the 

solid surface is changing with the increase of ice accretion, droplet splashing and re-impingement may 

play an increasing important role in determining the droplet collection efficiency during the icing 

process. 

 

(a) Clean airfoil surface                  (b) Iced airfoil surface 

Fig. 11 Droplet splashing and re-impingement on the clean (left) and iced (right) Twin Otter airfoil 

surface at MVD=168μm 

Clean airfoil surface Iced airfoil surface 



 

 

(2) Mass Loss Ratio 

    The mass loss ratio lsψ  denotes the ratio of the quantity of the splashed mass to the total liquid 

mass collected by the control volume. Fig. 12 demonstrates the distributions of the mass loss ratio on 

the clean airfoil surfaces. The impingement limits obtained in the condition of excluding droplet 

splashing and the re-impinging effects are also presented on the airfoil surface. It can be seen clearly 

that the droplet impinging range is enlarged with the increase of the incident droplet size. The mass loss 

ratio is relatively lower at the leading edge of the airfoil and performs a general increasing tendency 

when the impingement limits are approached. At the stagnation point, the mass loss ratio is 0.11 

(MVD=79 μm), 0.08 (MVD=168 μm), 0.10 (MVD=111 μm), 0.05 (MVD=236 μm), respectively. A 

gradually decreasing tendency is observed when the incident droplet diameter is increased for the given 

conditions. However, the mass loss ratio performs a vibration distribution in the vicinity area near the 

impingement limits, as shown in Fig. 12(a) and (b). It could be that the droplet splashing and 

re-impingement occur at the same time in this area. For the impingements of 111 μm, 236 μm as shown 

in Fig. 12(c) and (d), the mass loss ratio is sharply reduced to zero at the impingement limit points on 

the upper and lower surfaces.  

    The distributions of the mass loss ratio on the iced airfoil surfaces are presented in Fig. 13. It can 

be seen that the distribution of 
lsψ  in the horn region (region B) is much irregular. It could be the 

reason that the droplet incident angle has been changed greatly due to the accidented iced surface and 

thus the mass loss caused by the droplet splashing is influenced accordingly. The level of 
lsψ

 
is in the 

range of 0.05~0.22 in the horn region (region B). At the leeward side of the horns, as no droplet 

impingement, the mass loss is zero. However, the mass loss ratio performs a similar distribution with 

the clean surface in the region outside the horns (region A).  



 

 

 

(a) MVD=79μm                       (b) MVD=168μm 

 

(c) MVD=111μm                       (d) MVD=236μm 

Fig. 12 Mass loss ratio distributions on the clean airfoil surfaces of the twin-otter [(a) and (b)] and the 

NACA23012 [(c) and (d)] 

 

(a) MVD=79μm                       (b) MVD=168μm 

Region B 

Region A 

Impingement limits 



 

 

 

(c) MVD=111μm                       (d) MVD=236μm 

Fig. 13 Mass loss ratio distributions on the iced surfaces of the Twin-Otter [(a) and (b)] and the 

NACA23012 [(c) and (d)] airfoils 

(3) Mass Back Ratio 

The mass back ratio 
bkψ  denotes the ratio of the quantity of the re-impingement mass to the total 

liquid mass collected by the control volume. The distributions of 
bkψ  on the clean airfoil surface are 

presented in Fig. 14. It shows that the range of the 
bkψ  distribution on the clean surface is relatively 

narrowed comparing with 
lsψ , particularly on the NACA23012 airfoil surface, as shown in Fig. 14(c) 

and (d), no significant mass back is observed. In Fig. 14(a), for the impingement of MVD=79 μm, a 

slight mass back on the upper surface is noticed, while for the impingement of MVD=168 μm in Fig. 

14(b), the phenomenon of droplet re-impingement (mass back) is more significant. The results may 

allow to be concluded that the droplets re-impingement is not only related to environmental conditions 

but also the shape of the airfoil (length, depth, etc) is playing a key factor. However, when the airfoil is 

covered with ice horns as shown in Fig. 15, the droplets re-impingement is observed in all the cases 

and it mainly occurs in the horn region. The distribution level of the mass back ratio bkψ  in the horn 

region falls in the range of 0~0.22. In all cases, no mass back is observed out of the impinging region. 

Through the analysis of the distributions of the mass loss ratio and the mass back ratio on the clean and 



 

 

iced surfaces above, we can see that the effects of SLD dynamics, e.g. splashing and re-impingement, 

on the droplet collection efficiency may be changed greatly due to ice accretion. At this point, it is 

reasonable to conclude that the multi-step icing simulation is required especially in SLD icing 

numerical simulation area in order to obtain accurate ice shapes. 

 

 

(a) MVD=79μm                       (b) MVD=168μm 

 

(c) MVD=111μm                       (d) MVD=236μm 

Fig. 14 Mass back ratio distributions on the clean surfaces of the twin-otter [(a) and (b)] and the 

NACA23012 [(c) and (d)] airfoils 



 

 

 

(a) MVD=79μm                       (b) MVD=168μm 

 

(c) MVD=111μm                       (d) MVD=236μm 

Fig. 15 Mass back ratio distributions on the “iced” surfaces of the twin-otter [(a) and (b)] and the 

NACA23012 [(c) and (d)] airfoils 

V. Conclusions 

    This article presented an overview of the physical phenomena associated with ice accretion on 

super-cooled large droplets (SLD), as well as developing a new Lagrangian droplet tracking method 

(DTM) for the calculation of a two-dimensional droplet impingement, which is applicable in the CSD 

and SLD regimes. The method has incorporated the effects of the droplet splashing/bouncing and 

re-impingement by introducing the definition of the residual ratio. A SLD splashing model was 



 

 

proposed to assess the mass loss during droplet-wall interactions. Capacities and performance of the 

DTM and the splashing model were validated against a set of experimental reference data available for 

different airfoils and SLD conditions. The results show that the DTM can predict droplet collection 

efficiency accurately in SLD regime as well as the CSD impingement. The mass loss predicted by the 

splashing model has contributed a great deal to the agreement between the numerical and the 

experimental data. The slight deviations from experimental data observed in the simulation of the 

validation test cases especially in the iced airfoil conditions maybe attributable either to the use of the 

droplet median volumetric diameter in the computation or the simple assumption that the rejected 

secondary mass from surface is taken as a mass parcel or to a deficiency in experimental measurement 

methods.  

    The mass loss ratio and the mass back ratio caused by droplet splashing and re-impingement in 

different SLD impinging conditions were addressed. The mass loss ratio generally performs an 

increasing tendency from the stagnation point at the leading edge to the area where the impingement 

limits are approached, but sharp to zero at the impinging limits on the clean airfoil surfaces. At the 

stagnation point, a generally decreasing tendency of the mass loss ratio with the increase of droplet size 

is observed at the given conditions. Distributions of the mass loss ratio on the iced airfoil surface are 

more irregular and it could be attributable to the changes of the droplet incident angle caused by the 

accidented iced surface and thus the quantity of the mass loss due to splashing is finally changed.  

The range and level of the distributions of the mass back ratio on airfoil surfaces are relatively 

narrowed and lower than that of mass loss ratio and no significant mass back is observed on the clean 

NACA23012 airfoil at the given conditions. However, when the clean airfoil surfaces are contaminated 

with horn ice shapes, a significant droplet re-impingement event is observed in the horn region. No 



 

 

mass loss or mass back is observed beyond the impinging limits at the given conditions. Comparisons 

of the droplet impingements, the mass loss ratio and the mass back ratio between the clean and iced 

airfoils serve to conclude that SLD dynamics are affected greatly by surface shapes. Therefore, 

multi-step icing simulation is thus becoming a strong requirement especially in SLD ice accretion 

prediction.  

 

Appendix 

    When more accurate predictions are required Cd vs. Re relationships are inconvenient for 

determining terminal velocities since both groups involve ut. Hence an iterative procedure is needed. It 

is more convenient to express Re as a function of ND, the latter being independent of ut. Empirical 

correlations of this are presented in Table 2 [24].  

Table 2 Correlations for Re as a Function of ND, W=log10ND 

Range Correlation 

(A) DN 73;Re 2.37   

4 2 7 3

D D D

10 4

D

Re N 24 1.7569 10 N 6.9252 10 N

2.3027 10 N

 



    

 
 

(B) D73 N 580;2.37 Re 12.2     2

10log Re 1.7095 1.33438W 0.11591W     

(C) 
7

D

3

580 N 1.55 10

12.2 Re 6.35 10

  

  
 

2

10

3

log Re 1.81391 1.34671W 0.124271W

0.006344W

   


 

(D) 
7 10

D

3 5

1.55 10 N 5 10

6.35 10 Re 3 10

   

   
 

2

10

3

log Re 5.33283 1.21728W 0.19007W

0.007005W
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