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Abstract

In this paper we make two novel contributions to hierarchical clustering. First,
we introduce an anomalous pattern initialisation method for hierarchical clus-
tering algorithms, called A-Ward, capable of substantially reducing the time
they take to converge. This method generates an initial partition with a suf-
ficiently large number of clusters. This allows the cluster merging process to
start from this partition rather than from a trivial partition composed solely of
singletons.

Our second contribution is an extension of the Ward and Wardp algorithms
to the situation where the feature weight exponent can differ from the exponent
of the Minkowski distance. This new method, called A-Wardpβ , is able to
generate a much wider variety of clustering solutions. We also demonstrate
that its parameters can be estimated reasonably well by using a cluster validity
index.

We perform numerous experiments using data sets with two types of noise,
insertion of noise features and blurring within-cluster values of some features.
These experiments allow us to conclude: (i) our anomalous pattern initialisation
method does indeed reduce the time a hierarchical clustering algorithm takes
to complete, without negatively impacting its cluster recovery ability; (ii) A-
Wardpβ provides better cluster recovery than both Ward and Wardp.
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feature weighting.

1. Introduction

Clustering algorithms are a popular choice when tackling problems requiring
exploratory data analysis. In this scenario, analysts can draw conclusions about
data at hand without having information regarding the class membership of the
given entities. Clustering algorithms aim at partitioning a given data set Y
into K homogeneous clusters S = {S1, S2, ..., SK} without requiring any label
learning process. These algorithms summarise information about each cluster
by producing K centroids, often called prototypes, C = {c1, c2, ..., cK}. The
ability to partition data and to provide information about each part has made
the application of clustering popular in many fields, including: data mining,
computer vision, security, and bioinformatics [17, 26, 20, 35, 23, 24].

There are various approaches to data clustering, with algorithms often di-
vided into partitional and hierarchical. Originally, partitional algorithms pro-
duced only disjoint clusters so that each entity yi ∈ Y was assigned to a single
cluster Sk. This hard clustering approach has been variously extended to fuzzy
sets [42]. Fuzzy clustering allows a given entity yi ∈ Y to belong to each cluster
Sk ∈ S with different degrees of membership. There are indeed a number of par-
titional algorithms, with k -means [2, 22] and fuzzy c-means [3] being arguably
the most popular under the hard and fuzzy approach, respectively.

Hierarchical algorithms provide additional information about data. They
generate a clustering S and related set of centroids C, very much like partitional
algorithms, but they also give information regarding the relationships among
clusters. This information comes as a nested sequence of partitions. This tree-
like relationship can be visualized with a dendrogram (i.e., an ultrametric tree).
In this type of clustering, an entity yi ∈ Y may be assigned to more than one
cluster as long as the clusters are related and the assignment occurs at different
levels of the hierarchy.

Hierarchical algorithms can be divided into agglomerative and divisive [26].
Agglomerative algorithms follow a bottom-up approach. They start by setting
each entity yi ∈ Y as the centroid of its own cluster (singleton). Pairs of clusters
are then merged stepwise until all the entities have been collected in the same
cluster, or until a pre-specified number of clusters is found. Divisive algorithms
do the opposite by following a top-down approach.

There is indeed a wide variety of algorithms to apply when using hierarchical
clustering. The Ward method [39] is one of the most popular hierarchical algo-
rithms. It follows the agglomerative approach, merging at each iteration the two
clusters that minimise the within-cluster variance. This variance is measured as
a weighted sum of squares, taking into account the cardinality of each cluster,
and leading to the cost function as follows:

Ward(Sa, Sb) =
NaNb
Na +Nb

V∑
v=1

(cav − cbv)2, (1)
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where V is the number of features used to describe each entity yi ∈ Y . Na
and ca represent the cardinality and centroid of cluster Sa ∈ S, respectively.
Similarly, we have Nb and cb for cluster Sb ∈ S. The fraction in (1) ensures that
if two pairs of clusters are equally apart, those of lower cardinalities are merged
first.

Previously, we extended the traditional Ward algorithm by introducing Wardp
[8]. Our algorithm applies cluster dependent feature weights and extends the
squared Euclidean distance in (1) to the p-th power of the weighted Minkowski
distance. With these we: (i) ensure that relevant features have a higher impact
in the clustering than those that are less relevant; (ii) can set the distance bias to
other shapes than that of a spherical cluster, a problem traditionally addressed
by methods following model-based clustering [14].

The contribution of this paper is two-fold. First, we introduce what we be-
lieve to be the first non-trivial initialisation method for a hierarchical clustering
algorithm. Our method generates an initial partition with a sufficiently large
number of clusters. Then, the merging process applies starting from this parti-
tion rather than from the singletons. In this way, the running time of a given
hierarchical clustering algorithm is substantially reduced. Second, we advance
hierarchical clustering by introducing A-Wardpβ , an extension of Wardp to the
situation in which our initialisation method applies and the feature weight ex-
ponent can differ from the exponent of the Minkowski distance. We give a rule
for choosing these two exponents for any given data set. We run numerous
computational experiments, with and without noise in data sets.

It is worth noting that the “noise” in this paper has nothing to do with the
conventional meaning of measurement errors, which are usually modelled by
an additive or multiplicative Gaussian distribution affecting every data entry.
Here, the noise is modelled by either of two ways: (1) inserting additional
random noise features, and (2) blurring some features within some clusters. We
establish that: (i) the initial clustering generated by our method does decrease
the time a hierarchical clustering algorithm takes to complete; (ii) A-Wardpβ
provides a better cluster recovery under different noise models, than either the
Ward or the Wardp algorithms, especially for noisy data.

We direct readers interested to know more of feature weighting in the square-
error clustering to reviews such as [19], and references within.

2. Ward clustering using anomalous patterns

2.1. Ward and anomalous pattern Ward

K -means is arguably the most popular partitional clustering algorithm [17,
35]. It can be considered an analogue to the general expectation-maximisation
algorithm (EM) [12]. Note, however, that EM recovers a mixed distribution
density function, whereas k -means just finds a set of non-overlapping clusters
and their centres. K -means alternatingly minimises the within cluster sum of
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squares:

W (S,C) =

K∑
k=1

∑
yi∈Sk

V∑
v=1

(yiv − ckv)2 (2)

to obtain a partition of the given set of N entities in a set of non-overlapping
clusters Sk ∈ S, each represented by its centroid ck, k = 1, 2, ...,K. This
minimisation is usually done by following the three straightforward steps: (i)
set the coordinates of each centroid ck ∈ C to a randomly chosen entity yi ∈ Y ;
(ii) assign each entity yi ∈ Y to the cluster Sk whose centroid ck is the nearest
to yi; (iii) update each centroid ck ∈ C to the component-wise mean of yi ∈ Sk.
Steps (ii) and (iii) are repeated until convergence.

The popular Ward agglomeration algorithm [39] uses the same criterion to
build a sequence of partitions, each obtained by merging two clusters Sa and Sb,
that are the nearest according to (1), sometimes referred to as Ward distance
between the clusters. The Ward algorithm can be formulated as follows:

Ward agglomeration algorithm

1. Initial Setting. Set the initial number of clusters K = N and the related
singleton clustering S = {S1, S2, ..., SN} in which every cluster consists of
a single element of the data set, so that its centroid is the same element.

2. Merge clusters. Using (1), find the two nearest clusters {Sa, Sb} ⊆ S.
Merge Sa and Sb, creating a new cluster Sab. Remove all references to Sa,
Sb, ca, and cb.

3. Centroid update. Set the centroid of Sab to the component-wise mean of
yi ∈ Sab.

4. Stop condition. Reduce K by 1. If K > 1 or if K is still higher than the
desired number of clusters, go back to Step 2.

Both k -means and the Ward method minimise the sum of squared errors, but
there are considerable differences in their time-complexity. K -means has a linear
time-complexity on the number of entities, of O(NIKV ) [37], where I is the
number of iterations it takes to converge and K is the given number of classes.
The number of iterations, I, is often small and can be reduced even further if
k -means is supplied with good initial centroids.

The first implementations of Ward had the time complexity of O(N3) and
O(N2log2(N)) [13] when a dissimilarity matrix between entities of size (N×N)
was used as input. However, the optimal implementation of Ward, which is
due to the development of the nearest neighbour chain and reciprocal near-
est neighbour algorithms [18, 28], is in O(N2). For instance, Murtagh [29]
and, more recently, Murtagh and Legendre [30] discussed in detail the nearest
neighbour chain algorithm using either “stored data” or “stored dissimilarities”
implementations, leading to O(N2) computational complexity of Ward. Nowa-
days, optimal implementations of the Ward algorithm became standard and are
widely used in the popular software packages, such as R [32], Clustan [41] or
MATLAB [38].
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There are many initialisation methods for k -means [4, 31, 35]. Milligan [25]
pointed out that the results of k -means heavily depend on initial partitioning.
He suggested that a good final clustering can be obtained using Ward’s hier-
archical algorithm to initialise it, which was confirmed later in computational
experiments (see, for example, [35]). There are also other examples of using
hierarchical clustering to initialise k -means [36, 5, 6]. Conversely, k -means is
beneficial as a device for carrying out divisive clustering, see, for example, what
is referred to as the “bisecting k -means” [34, 26]. The author of the Clustan
package [41], David Wishart, was first to propose the k -means Cluster Model
Tree method which allows one to summarize a k -means cluster solution by a
hierarchy. For instance, a mini-tree for each k -means cluster, showing how the
entities combine within this cluster, can be constructed and visualized using
Clustan [41]. However, to the best of our knowledge, the problem of accelerat-
ing agglomerative clustering using k -means has not been addressed so far.

This problem is related to the problem of pre-selecting the right value for
the number of clusters K when running k -means. Such a pre-selected number
of clusters should be greater than the number of expected clusters, but not too
much. We propose using the method of intelligent k -means (ik -means) [7, 26]
for this purpose. This method finds and removes “anomalous” clusters, one-by-
one, from the data set, so that the number of these clusters is not pre-specified
but rather obtained according to the data set structure by using a threshold θ
that is the minimum number of entities required to form a cluster. When this
threshold is set to 1, the number of anomalous clusters has been experimentally
found to be always larger than the number of generated clusters. The ik -means
algorithm finds the current anomalous cluster St and respective centroid ct by
alternatingly minimising:

W (St, ct) =
∑
i∈St

d(yi, ct) +
∑
i/∈St

d(yi, 0), (3)

where d(yi, ct) is the squared Euclidean distance between entity yi and centroid
ct, and d(yi, 0) is the squared Euclidean distance between entity yi and the
centre of the data set Y . The algorithm then removes St from the data set
and re-applies the process to the remaining entities as explained below. Thus,
the number of anomalous clusters, K∗, is our criterion for a fast preliminary
estimation of the true number of clusters in the data set.

Anomalous cluster identification algorithm (ik-means)

1. Initial setting. Set the user-defined θ. Set the centroid cY to be the
component-wise mean of yi ∈ Y .

2. Tentative centroid. Set St = ∅. Set ct, a tentative centroid, to coincide
with the entity yi ∈ Y that is farthest from cY according to the squared
Euclidean distance.

3. Entity assignment. Assign each entity yi ∈ Y to either ct or to cY de-
pending on which is the nearest. Those assigned to ct form the cluster St.
If there are no changes in St, go to Step 5.
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4. Centroid update. Update ct to the component-wise mean of yi ∈ St. Go
to Step 3.

5. Save centroid. If |St| ≥ θ, include ct into C.
6. Remove clusters. Remove each yi ∈ St from Y . If |Y | > 0, go to Step 2.
7. Cluster. Run k -means on the original data set Y , using as initial centroids

those in C.

The above is a rather successful initialisation for k -means [7]. We use it as a base
for our anomalous pattern initialisation method for agglomerative clustering
algorithms described later in this section.

The traditional Ward algorithm starts from a trivial clustering S = {S1, S2, ..., SN}
in which every cluster is a singleton. The sole purpose of S is to serve as a base
for the clustering generated in the next iteration of Ward. Obviously, this trivial
set is useless to any data analyst. With the above in mind, one could wonder
whether the clustering generated in the next iteration of Ward, that with N −1
clusters, would be of any interest to a data analyst. This will be a clustering in
which only one of the N − 1 clusters is not a singleton. Of course, we cannot
state if it is of any interest or not because the degree of usefulness of such clus-
tering is problem-dependent. However, classifying N entities into N − 1 classes
would be trivial in most of the practical situations.

If neither N nor N−1 clusters would constitute a useful clustering, we could
challenge the usefulness of the solution with N − 2 clusters and so on. Clearly,
at some stage we will reach a number of clusters, K∗, that leads to a useful
clustering in terms of partitions. K∗ is not a reference to the true number of
clusters in Y , even if such number is known. Instead, K∗ represents the number
of clusters in which the data begins to manifest some form of cluster structure.
Since in this paper we follow the agglomerative approach, K∗ can be also viewed
as the maximum number of anomalous patterns in Y .

Above, we described the ik -means. This is an algorithm able to find anoma-
lous patterns in a data set, as well as the related partitions. The maximum
number of anomalous patterns K∗ in Y is given by ik -means when the param-
eter θ is set to 1. This setting leads to two important points: (i) it allows for
the possibility of singletons; (ii) K∗ is greater than the true number of clusters
in Y .

Ideally, Ward should be initialised with K∗ and the related clustering gen-
erated by ik -means. The point (i) is important because Y may be a sample of
a larger real-world data set. It is possible that the larger data set contains a
cluster |Sk| > 1 for which the sample Y contains a single entity ∈ Sk. More-
over, since K∗ is an overestimation of the true number of clusters in Y (ii), our
version of Ward will generate a tree structure from K∗ until the true number of
clusters is found. If the latter is unknown, we can generate a binary hierarchy
beginning with K = K∗ and finishing with K = 2.

The main objective of our method is to reduce the number of steps Ward
takes to complete, and by consequence, the time required for its execution. The
results we present later in this section show that the gain in running time pro-
vided by this strategy can be very significant (see Figures 1 and 2). Now we can
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formalise Ward with anomalous pattern initialisation, further on referred to as
A-Ward, as follows:

A-Ward algorithm

1. Initial Setting. Set θ = 1. Obtain the initial number of clusters K = K∗ =
|C| and the related clustering S = {S1, S2, ..., SK} by running ik -means
on Y .

2. Merge clusters. Using (1), find the two closest clusters {Sa, Sb} ⊆ S.
Merge Sa and Sb, creating a new cluster Sab. Remove all references to Sa,
Sb, ca, and cb.

3. Centroid update. Set the centroid of Sab to the component-wise mean of
yi ∈ Sab.

4. Stop condition. Reduce K by 1. If K > 2 or if K is still higher than the
desired number of clusters, go back to Step 2.

2.2. Comparing Ward and A-Ward

When defining the A-Ward algorithm, we intended to define a method that
has a similar cluster recovery capability with Ward, while being somewhat faster.
To test a new clustering method, it is quite natural to define a collection of
data sets with a predefined cluster structure, which is the easiest to achieve by
generating synthetic data sets. Using synthetic data with and without noise,
we can apply both Ward and A-Ward clustering algorithm and assess both the
speed and the level of cluster recovery. To measure the level of cluster recovery,
we compare the cluster-found partition with the generated reference partition
by using the conventional Adjusted Rand Index [16]. This popular index is the
corrected for chance version of the Rand index:

ARI =

∑
ij

(
nij

2

)
− [
∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2 [
∑
i

(
ai
2

)
+
∑
j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

) , (4)

where nij = |Si ∩ Sj |, ai =
∑K
j=1 |Si ∩ Sj | and bi =

∑K
i=1 |Si ∩ Sj |. The range

of (4) is within the interval from -1 to 1. ARI reaches 1 if and only if the two
compared partitions coincide, i.e., Sp = Sq.

We begin by generating 20 synthetic data sets for each of the configurations
1000x6-3, 1000x12-6 and 1000x20-10 (for details see Table 1). In these data sets,
all clusters are spherical. That is, each cluster is generated from a Gaussian
distribution whose covariance matrix is diagonal with the same diagonal value
σ2 generated randomly between 0.5 and 1.5. Each of the centroid components
was generated independently using the standard normal distribution N(0, 1).
The cardinality of each cluster was selected from a uniform distribution, with
the constraint that it should have at least 20 entities.

Then we introduced noise in these data sets according to either of the two
following noise generation models:

1. Noise model 1: Random feature to be inserted. A noise feature
is generated according to a uniform distribution in the range between the
minimum and maximum values in the data set.

7



Table 1: The nine cluster structure configurations used in simulations.

Entities Features Clusters Noise Cluster-specific
features noise (%)

1000x6-3 1000 6 3 0 0
1000x6-3 +3NF 1000 6 3 3 0
1000x6-3 50%N 1000 6 3 0 50

1000x12-6 1000 12 6 0 0
1000x12-6 +6NF 1000 12 6 6 0
1000x12-6 50%N 1000 12 6 0 50

1000x20-10 1000 20 10 0 0
1000x20-10 +10NF 1000 20 10 10 0
1000x20-10 50%N 1000 20 10 0 50

2. Noise model 2: Blurring a cluster over a feature. Any feature in
a generated data set contains K cluster-specific fragments. By randomly
selecting a feature and cluster, such a fragment is substituted by a uniform
random noise.

The noise model 1 addresses the issue of generic clustering methods based on
the least-squares criterion (2): they cannot distinguish between useful and in-
adequate features. It has been used in [11, 8, 9, 10] to test the weighted feature
versions of k-means and Ward algorithms; those showed good cluster recovery
properties against such noise features. The noise model 2 is novel. It is supposed
to be applied for testing the ability of clustering algorithms to perform under
the cluster-specific noise. In practice this type of noise can be found in various
fields, including computer vision [15], financial economics [40] and genomics[27].

We added 50% of noise data to each of the original data sets according
to each of the above-defined noise models. For example, each of the 20 data
sets generated according to the configuration 1000x12-6 contains 12 original
features; six noise features have been inserted into each of them (leading to a
total of 18 features). We refer to this new configuration as 1000x12-6+6NF,
where NF stands for ”noise feature”. Similarly, 50% of all the KV cluster-
specific fragments have been blurred according to the noise model 2, which is
denoted here as 1000x12-6 50%N.

Our simulations were carried out using a 64-bit computer equipped with
an Intel i5-4690T CPU, running at 2.5GHz, and 8Gb of RAM. Our algorithms
were implemented using MATLAB R2013 running on Linux (Ubuntu). We did
not use the partially pre-compiled MATLAB’s linkage function as it would
introduce bias to our experiments.

The results of running Ward and A-Ward over the 180 = 9 × 20 generated
data sets confirm our assumptions:

1. A-Ward is significantly faster than Ward (see Figures 1 and 2 demonstrat-
ing time box-plots for each of the data configurations);
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2. A-Ward and Ward have similar cluster recovery capabilities over each of
the data set configurations (see Table 2).

Table 2 reports the number of anomalous clusters K∗ found by ik -means.
The presented results suggest that this number is indeed greater than the num-
ber of generated clusters. We also computed the average ARI values between
the solutions provided by Ward and A-Ward (see the last two columns in Table
2). This additional ARI is close to the ARI between the solutions provided by
both algorithms and the known truth for data sets without noise. The ARI
values increase with the increase in the number of features, still for data not
affected by noise.

For data sets including noise, the trend is quite the opposite. In these cases,
we can conclude that the solutions yielded by Ward and A-Ward diverge, and
this divergence can be very significant as the quantity of noise increases. Clearly,
both Ward and A-Ward appear to be absolutely impractical in the presence of
noise.

The optimal time complexity of the Ward algorithm is O(N2V ) given that
an object-to-feature (N × V ) data matrix is used as input [30]. Our anoma-
lous pattern method initialises Ward with K∗ clusters instead of N , leading to
the time complexity of the remaining Ward operations of O(K∗2V ), i.e., after
initialisation with ik -means. The average values of K∗ over the processed data
sets (see Table 2) vary from 19.90 to 49.95. Obviously, the initialisation stage
of A-Ward has also a computational cost expressed via the time complexity of
ik -means, which is of O(NK∗IV ), where I is the number of iterations ik -means
takes to converge. Thus, we can claim, after dividing the involved time com-
plexities by V , that our A-Ward algorithm decreases the amount of time that
traditional Ward takes to complete as long as: Ok(NIK∗) < Ow(N2 − K∗2),
where Ok is the upper bound of ik -means and Ow is the upper bound of Ward.

Usually, hierarchical algorithms are sensitive to perturbations that affect all
entities in data sets. Thus, we carried out experiments to determine the impact
of our initialisation method in such a case. To do so we substituted 20% of the
entities, rather than features, of each data set by uniformly random noise. We
then calculated the ARI between the clusterings obtained with Ward and A-
Ward to the known truth, without taking the substituted entities into account.
We performed this set of experiments on data sets without any additional noise.
The obtained results are presented in Figure 3. We can observe that A-Ward
produces the largest ARI range for the 1000x6-3 and 1000x12-6 data set con-
figurations. However, A-Ward provides the highest first and third quartiles, as
well as the median, in all the cases.

2.3. Case study

In this subsection we present an example of application of our A-Ward al-
gorithm. Our main objective is to demonstrate that the ik -means initialisation
used by A-Ward does not negatively impact its ability to recover clusters. To
do so, we considered the popular Zoo data set, which can be found in the UCI
machine learning repository [21].
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Figure 1: Time in seconds the conventional Ward algorithm takes to complete.
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Species hierarchies are usually relatively easy to understand and interpret.
The Zoo data set contains 101 entities, described over 16 features, and parti-
tioned into seven clusters. We have treated all features as numeric and stan-
dardised them as follows:

y′iv =
yiv − yv

max(yv)−min(yv)
, (5)

where yv is the average value of v over all entities in Y , and y′iv is the standard-
ised value of yiv.

Our choice of standardisation method has two important implications. First,
unlike z -score it does not favour a unimodal distribution. This is probably easier
to explain with an example. Consider a unimodal feature v1 and bimodal feature
v2. The standard deviation of v2 is likely to be higher than that of v1, leading
to y′iv2 < y′iv1 . This is particularly problematic because clustering would usually
target the groups associated with the modes in v2.

Second, if v is a binary feature its range will be one. This means that the
standardised value of yiv is simply yiv − yv. With this, features with a higher
frequency lead to lower standardised values than features with lower frequencies.
For example, the binary features with multiple zero values will have a very
significant impact on the clustering process.
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Table 2: The average ARI, its standard deviation and the number of pre-selected clusters K∗

for the Ward and A-Ward algorithms obtained over 20 synthetic data sets for each of the nine
parameter configurations.

Ward A-Ward Ward/A-Ward
ARI K∗ ARI

avg sd avg sd avg sd avg sd
1000x6-3 0.5448 0.231 0.5285 0.197 19.90 2.245 0.5217 0.204
1000x6-3 +3NF 0.0400 0.109 0.0501 0.132 22.70 2.934 0.3046 0.153
1000x6-3 50%N 0.0545 0.090 0.0877 0.108 20.20 2.262 0.2910 0.157
1000x12-6 0.6929 0.166 0.7102 0.188 33.55 6.082 0.6669 0.185
1000x12-6 +6NF 0.1375 0.130 0.1267 0.123 26.20 4.937 0.2093 0.079
1000x12-6 50%N 0.1276 0.089 0.1208 0.078 28.65 4.221 0.2096 0.057
1000x20-10 0.8998 0.060 0.9058 0.061 36.40 7.229 0.8704 0.078
1000x20-10 +10NF 0.2418 0.084 0.2326 0.096 49.75 8.226 0.1871 0.055
1000x20-10 50%N 0.1360 0.048 0.1283 0.043 49.95 8.636 0.1617 0.035

Since the complete Zoo data set is too large to be shown as a single tree, we
selected randomly four entities of each of its seven clusters; 28 entities in total.
The only misclassified species in the A-Ward hierarchy presented in Figure 4
is tortoise (from Class 3), which is clustered with the species of Class 2. It
is worth noting that a misclassification of tortoise is also characteristic for the
traditional Ward algorithm. However, A-Ward produces the top part of the
hierarchy, without the computational cost of Ward.

3. Using the weighted Minkowski distance

3.1. Weighted Minkowski k-means and Ward algorithms

We previously dealt with noise data sets by introducing the intelligent Minkowski
weighted k -means algorithm (imwk -means)[11]. This algorithm minimises the
following objective function:

W (S,C,w) =

K∑
k=1

∑
yi∈Sk

V∑
v=1

wpkv|yiv − ckv|
p, (6)

where p is a user-defined exponent related to what can be called the curvature
bias. Assuming a two-dimensional space (for an easier visualisation), the bias at
p = 1, p = 2, and p→∞ is towards diamonds, circles and squares, respectively.

The imwk -means criterion clearly sets the exponent of the distance and the
feature weight to the same value, p. Thus, the feature weights can be seen as
re-scaling factors for any value of p. These rescaling factors can be used in
the data pre-processing stage of a wide variety of tasks in machine learning.
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For instance, rescaling a data set with these factors increases the likelihood of
recovering the correct number of clusters contained in the data [9].

The weight of feature v at cluster Sk is inversely proportional to the disper-
sion of v at Sk since the first-order necessary minimum conditions of (6) imply
that:

wkv =
1∑V

u=1[Dkv/Dku]1/(p−1)
, (7)

where Dkv =
∑
i∈Sk
|yiv − ckv|p is the dispersion of v at Sk. The above is true

for crisp clustering where each entity yi ∈ Y is assigned to one and only one
cluster Sk, leading to

∑V
v=1 wkv = 1, for k = 1, 2, ...,K. At p = 1 the minimum

of (6) is reached at the median. Moreover, because this criterion has a linear
shape at p = 1, the first-order minimum conditions are not applicable here and,
therefore, formula (7) is not applicable either. Thus, we run experiments at
p > 1, only.

Given the success of the above-discussed imwk -means algorithm, the ag-
glomerative Wardp was introduced in [8], using a hierarchical clustering heuris-
tic in which cluster-dependent feature weights are determined according to (7).
Wardp is an agglomerative hierarchical clustering algorithm. At each iteration,
it merges the two clusters that minimise the following dissimilarity function:

Wardp(Sa, Sb) =
NaNb
Na +Nb

V∑
v=1

(
wav + wbv

2
)p|cav − cbv|p. (8)

Unlike the distance calculations in imwk -means, those of Wardp are only be-
tween centroids {ca, cb} ⊆ C. Thus, the weight in (8) is the average of wav and
wbv, each calculated using (7). Wardp minimises (8) following the steps below:

Wardp agglomerative clustering algorithm

1. Initial setting. Select the value of p, starting from a partition consisting
of N singleton clusters. Each centroid ck ∈ C is set to the corresponding
entity yi ∈ Y . Set wkv = 1/V for k = 1, 2, ...,K and v = 1, 2, ..., V .

2. Merge clusters. Find the two nearest clusters {Sa, Sb} ⊆ S with respect
to (8). Merge Sa and Sb, thus creating a new cluster Sab. Remove all
references to Sa, Sb, ca, and cb.

3. Centroid update. Set the centroid of Sab to the component-wise Minkowski
centre of yi ∈ Sab.

4. Weight update. Using (7) compute weights wkv for k = 1, 2, ...,K and
v = 1, 2, ..., V .

5. Stop condition. Reduce K by 1. If K > 1 or if K is still greater than the
desired number of clusters, go back to Step 2.

The algorithm Wardp requires the computation of the Minkowski centre at
different values of p. This centre can be calculated using a steepest descent
method [11, 9].
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3.2. Wardpβ algorithm initialised with anomalous patterns

Both imwk -means and Wardp apply the same exponent p to the feature
weights and the distance in their respective criteria. There are two major reasons
to apply the same exponent. First, by doing so there is a single problem-specific
parameter to be defined by the user. Since the optimal value of this parameter
is usually unknown to the user, it can be estimated by analysing the clusterings
produced at different values of p. For instance, the user can carry out Wardp at
p = 1.1, 1.2, ..., 5.0 and choose as optimal the value of p that optimizes a given
cluster validity index. In our previous experiments, we successfully applied the
Silhouette width [8]. Obviously, there are many other cluster validity indices
that could be used instead (see a recent survey [1]).

The second reason is that if the same exponent is employed with the fea-
ture weights and the distance, then the weights can be seen as feature rescaling
factors. These factors can be used in the data pre-processing stage as an in-
strument to standardise a data set. For instance, rescaling data sets with these
factors improves the likelihood of clustering validity indexes to return the true
number of clusters in data sets, particularly in those comprising noise features
[9].

The above is helpful when the number of clusters in a data set is unknown.
Still, in this paper we deal solely with cluster recovery where the number of
clusters is known. Clearly, estimating a single parameter is easier than estimat-
ing two. However, by using two exponents we detach the cluster shape from the
weight exponent, increasing considerably the variety of clustering possibilities.

Taking all of the above into account, we extend here Wardp to allow the
use of different exponents for the distance and the feature weights. During the
initialisation step, our new algorithm, A-Wardpβ , measures the distance between
an entity yi ∈ Y and the centroid ck ∈ C of cluster Sk by:

dpβ(yi, ck) =

V∑
v=1

wβkv|yiv − ckv|
p, (9)

where p and β are user-defined parameters. In Section 3.4 we introduce a method
to estimate good values for these parameters. Our new algorithm makes use
of our anomalous pattern initialisation, this time also applying the weighted
Minkowski distance, as presented below:

Anomalous pattern initialisation for A-Wardpβ and imwk-meanspβ

1. Initial setting. Select the values of p and β. Set the data centre cY to be
the component-wise Minkowski centre of yi ∈ Y .

2. Tentative centroid. Set St = ∅. Set wkv = 1/V for k = 1, 2 and v =
1, 2, ..., V . Set ct, a tentative centroid, to the values of the furthest entity
yi ∈ Y from cY as per (9).

3. Entity assignment. Assign each entity yi ∈ Y that is closer to ct than to
cY as per (9) to the cluster St. If this step produces no changes in St, go
to Step 6.
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4. Centroid update. Update ct to the component-wise Minkowski centre of
yi ∈ St.

5. Weight update. Update the feature weights as per (7). Go to Step 3.
6. Save parameters. Include ct into C, and w into W .
7. Remove cluster. Remove each yi ∈ St from Y . If there are still entities in
Y , go to Step 2.

We can further minimise the distance between entities and centroids by using
centroids C and weights W generated above as starting points for the version
of our imwk -meanspβ algorithm below:

imwk-meanspβ algorithm

1. Initial setting. Set K = |C| = K∗, and S = ∅.
2. Entity assignment. Assign each entity yi ∈ Y to the cluster Sk ∈ S that

is represented by the centroid ck ∈ C that is the closest to yi as per (9).
If there are no changes in S, go to Step 5.

3. Centroid update. Update each centroid ck ∈ C to the component-wise
Minkowski centre of yi ∈ Sk.

4. Weight update. Update each weight wkv for k = 1, 2, ...,K and v =
1, 2, ..., V as per (7). Go to Step 2.

5. Output. Output the clustering S, centroids C and weights W .

Upon completion of the algorithm above we obtain a clustering S, centroids C
and weights wkv for k = 1, 2, ...,K and v = 1, 2, ..., V . As we will show in the
following sections, these parameters represent good initial settings for our A-
Wardpβ . We use this criterion for building a cluster hierarchy with the following
cluster-to-cluster dissimilarity measure:

Wardpβ(Sa, Sb) =
NaNb
Na +Nb

V∑
v=1

(
wav + wbv

2
)β |cav − cbv|p. (10)

Now we can run the agglomerative A-Wardpβ algorithm as follows:

A-Wardpβ agglomerative algorithm

1. Initial setting. Take the values of p and β used in the imwk -meanspβ
algorithm and start from the clustering S, centres C and weights wkv
provided by imwk -meanspβ .

2. Merge clusters. Find the two nearest clusters {Sa, Sb} ⊆ S with respect
to (10). Merge Sa and Sb, thus creating a new cluster Sab. Remove all
references to Sa, Sb, ca, and cb.

3. Centroid update. Set the centroid of Sab to the component-wise Minkowski
centre of yi ∈ Sab.

4. Weight update. Using (7) compute weights wkv for k = 1, 2, ...,K and
v = 1, 2, ..., V .

5. Stop condition. Reduce K by 1. If K > 1 or if K is still greater than the
desired number of clusters, go back to Step 2.
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Table 3: The best possible average cluster recovery, in terms of ARI, provided by Wardp and
A-Wardpβ . The ARI’s standard deviation and the pre-selected number of clusters, K∗, found
at the anomalous pattern initialisation step of A-Wardpβ are also indicated.

Wardp A-Wardpβ
ARI K∗

avg sd avg sd avg sd
1000x6-3 0.6568 0.154 0.7314 0.135 18.45 3.220
1000x6-3 +3NF 0.3193 0.249 0.6348 0.195 16.20 3.650
1000x6-3 50%N 0.2831 0.163 0.4851 0.190 16.50 3.502
1000x12-6 0.7412 0.148 0.8066 0.121 21.25 4.253
1000x12-6 +6NF 0.3440 0.212 0.7467 0.161 15.90 2.532
1000x12-6 50%N 0.2535 0.191 0.6138 0.147 17.10 3.655
1000x20-10 0.9119 0.035 0.9564 0.021 22.20 5.988
1000x20-10 +10NF 0.4638 0.098 0.9258 0.025 27.20 6.118
1000x20-10 50%N 0.2021 0.096 0.8440 0.042 23.25 4.833

3.3. Validation of the A-Wardpβ algorithm

Analogously to our previous simulation studies [10, 8], we first found a set
of partitions, each corresponding to a different combination of values of p and
β. The set of all possible values of p and β was modelled using a grid of p and
β values varying from 1.1 to 5.0 with the step of 0.1, as in [11]. We obtained
the results for Wardp by running it with p = 1.1, 1.2, ..., 5.0 and selecting the
clustering with the highest ARI in relation to the known truth. Similarly, the
results under Wardpβ are given with respect to the clusterings with the highest
ARI in relation to the known truth. These settings give us an indication of
the best possible results we could obtain if we were able to estimate the best
possible values of the exponents.

Table 3 shows that the best possible average ARI of Wardp and A-Wardpβ
decreases when noise is added to the data sets, but not as much as it decreases in
the case of traditional Ward (see Table 2). A-Wardpβ is particularly impressive
at the largest structure configuration, 1000x20-10. When 10 noise features are
added to data sets (configuration 1000x20-10 +10NF), the average ARI obtained
by Ward falls from 0.8998 to 0.2418. If instead of adding 10 noise features we
substitute 50% of the cluster-specific data with noise (configuration 1000x20-10
50%N), the ARI falls even further to 0.1360. That is a decrease of over six times.
Wardp presents considerable falls of ARI in the same scenario, too. In contrast,
the accuracy decrease of Wardpβ is only about 0.03 when 10 noise features are
added to the data. Furthermore, the average ARI obtained with A-Wardpβ over
the data sets 1000x20-10 + 10NF is nearly twice that of Wardp, and nearly four
times that of Ward. The experiments with the data sets 1000x20 50%N show a
very similar trend. The average ARI obtained by A-Wardpβ is about four times
higher than that of Wardp, and about six times higher than that of Ward.

Thus, in an ideal situation of the known best p and β, A-Wardpβ is capable
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of obtaining really good clusterings that are much superior to those yielded by
Ward and Wardp.

3.4. Estimating the optimal values of the exponents p and β

To find good values for p and β in an unsupervised situation, we opted for
the Silhouette width cluster validity index [33] which proved successful in the
literature [1] as well as in our previous experiments [10, 8, 9]. The Silhouette
width of a partition S is the average Silhouette width of entities yi ∈ Y , defined
as follows:

Sil(yi) =
b(yi)− a(yi)

max{a(yi), b(yi)}
, (11)

where a(yi) is the average dissimilarity of yi ∈ Sk to all other yj ∈ Sk, and
b(yi) the minimum dissimilarity over all clusters Sq ∈ S, to which yi is not
assigned, of the average dissimilarities to yj ∈ Sq, q 6= k. Therefore, −1 ≤
Sil(yi) ≤ 1. A Sil(yi) value near zero indicates that yi could be assigned to
another cluster without much damaging both cluster cohesion and separation. A
negative Sil(yi) suggests that yi’s cluster assignment is damaging to the cluster
cohesion and separation, whereas an Sil(yi) closer to one means the opposite.
We can then quantify the validity of the whole clustering S by the Silhouette
index, defined as Sil = 1/N

∑
i∈Y Sil(yi).

Table 4 reports the average ARI and standard deviations of Wardpβ , ob-
tained with the estimated values of p and β, for each of the nine parameter con-
figurations. The exponents p and β have been estimated as those corresponding
to the highest values of the average Silhouette width (11). We have experi-
mented with the Silhouette width validity index measured using the squared
Euclidean, Manhattan and Minkowski distances. The exponent of the latter
was set to the same value of p that was used in A-Wardpβ .

Table 4 replicates the best possible average ARI values of A-Wardpβ from
Table 3. The results reported in Table 4 show some interesting patterns. Prob-
ably the most striking of them is that all the average ARI values obtained by
A-Wardpβ using the estimated values of p and β are much better than the
average ARI values of the conventional Ward shown in Table 2. The results
obtained by A-Wardpβ are also superior to the best possible results of Wardp in
a number of occasions. This is particularly true for the experiments carried out
at greater numbers of clusters: 1000x12-6 6NF, 1000x12-6 50%N, 1000x20-10
10NF, and 1000x20-10 50%N. It should be pointed out that, in these experi-
ments, using Manhattan distance for calculation of the Silhouette width index
leads to better cluster recovery results overall. It would be fair to say that the
results provided by A- Wardpβ , with the exponents p and β estimated using the
Silhouette cluster validity index, are promising indeed.

4. Conclusion

This paper makes two novel contributions to hierarchical clustering. First,
we introduced an initialisation method, A-Ward, for hierarchical clustering algo-
rithms. This method generates initial partitions with a sufficiently large number
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Table 4: Average ARI and its standard deviations for clustering solutions found using A-
Wardpβ . The best possible results for this algorithm are presented under the column Best.
Under Silhouette, we present the results for p and β estimated using this cluster validity index,
with either the squared Euclidean distance, or Manhattan distance, or Minkowski distance.
In the latter case, the Minkowski exponent was set to the same value of p that was used in
A-Wardpβ .

Silhouette
Best sq. Euclidean Manhattan Minkowski

avg sd avg sd avg sd avg sd
1000x6-3 0.7314 0.135 0.6476 0.189 0.6351 0.193 0.6706 0.170
1000x6-3 3NF 0.6348 0.195 0.1785 0.269 0.3475 0.299 0.1838 0.289
1000x6-3 50%N 0.4851 0.190 0.1285 0.219 0.1715 0.243 0.1026 0.199

1000x12-6 0.8066 0.121 0.7109 0.178 0.7035 0.183 0.7200 0.185
1000x12-6 6NF 0.7467 0.161 0.4693 0.237 0.6279 0.236 0.5818 0.232
1000x12-6 50%N 0.6138 0.147 0.2596 0.213 0.2937 0.237 0.2592 0.237

1000x20-10 0.9564 0.021 0.9254 0.035 0.9216 0.037 0.9185 0.036
1000x20-10 10NF 0.9258 0.025 0.8585 0.076 0.8849 0.052 0.8732 0.044
1000x20-10 50%N 0.8440 0.042 0.5122 0.211 0.7271 0.096 0.6363 0.195

of clusters. Thus, the cluster merging process begins from this partition rather
than from a trivial partition composed solely of singletons. The anomalous
pattern initialisation method can reduce substantially the time a hierarchical
clustering algorithm takes to complete without negatively impacting its cluster
recovery ability.

Second, we introduced A-Wardpβ , a novel hierarchical clustering algorithm
which can be viewed as an extension of the popular Ward algorithm. Wardpβ
applies a feature weighted version of the Minkowski distance, making it able
to detect clusters with shapes other than spherical. The feature weights are
cluster-specific. They follow the intuitive idea that the relevance of a feature at
a particular cluster is inversely proportional to its dispersion within that cluster.
Thus, a feature with a low dispersion within a certain cluster has a higher degree
of relevance than a feature with a high dispersion. The computation process
according to A-Wardpβ incorporates this concept via the use of cluster specific
feature weights. The new algorithm is initialised with our anomalous pattern
identification method.

We empirically validated the anomalous pattern initialisation method in the
framework of both Ward and Wardpβ by running a number of simulations with
synthetic data sets. We experimented with numerous data sets containing Gaus-
sian clusters, with and without noise added to them. In contrast to our previous
experiments, here noise has been added in two different ways: (i) each data set
was supplemented with features composed entirely of uniform random values,
the number of features added was equal to the half of the number of original
features; (ii) cluster specific noise was generated by substituting 50% of the
cluster-specific data fragments by uniform random values.

In our experiments we compared the Ward, A-Ward, Wardp and A-Wardpβ
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algorithms in terms of cluster recovery. To do so, we measured the average
Adjusted Rand Index for the obtained clustering solutions found by these algo-
rithms in relation to the known truth. Our main conclusion is that A-Wardpβ is
capable of good cluster recovery in difficult practical situations. It produces su-
perior results to those of Ward and Wardp, especially when data sets are affected
by the presence of noise features. This is in fact the case for most real-world
data.

Our future research will investigate other methods for estimation of p and
β as well as further advancements into the problem of evaluation of the true
number of clusters using both divisive and agglomerative hierarchical clustering
algorithms.
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Figure 2: Time in seconds the A-Ward algorithm takes to complete.
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Figure 3: ARI of Ward (left of each pair of boxes) and A-Ward (right of each pair of boxes)
for data sets in which 20% of entities were substituted by within-domain uniformly random
noise. The ARI was calculated without taking the substituted entities into account.
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Figure 4: Zoo hierarchy found by our A-Ward algorithm for 28 species of the Zoo dataset (4
species from each of the 7 original Zoo classes were selected randomly). The species content
by class is as follows: Class 1: porpoise, platypus, reindeer, fruitbat; Class 2: dove, gull, swan,
rhea; Class 3: pitviper, slowworm, tortoise, tuatara; Class 4: herring, sole, carp, stingray;
Class 5: frog1, frog2, newt, toad; Class 6: wasp, honeybee, housefly, gnat; Class 7: crayfish,
seawasp, crab, clam. Red circles in the tree represent 11 clusters found by ik -means during the
initialization step of A-Ward. Red edges of the hierarchy represent the tree found by A-Ward
during its tree building step. Green edges of the hierarchy represent mini-trees found by the
conventional Ward algorithm (this step is optional) for the 11 clusters provided by ik -means.
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