
Research Archive

Citation for published version:
Serkan Kirbas, Bora Caglayan, Tracy Hall, Steve Counsell,
David Bowes, Alper Sen, and Ayse Bener, ‘The relationship
between evolutionary coupling and defects in large industrial
software’, Journal of Software: Evolution and Process, Vol. 29
(4): e1842, April 2017.

DOI:
https://doi.org/10.1002/smr.1842

Document Version:
This is the Published Version.

Copyright and Reuse:
© 2017 The Author(s).
This is an Open Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Enquiries
If you believe this document infringes copyright, please contact the
Research & Scholarly Communications Team at rsc@herts.ac.uk

https://doi.org/10.1002/smr.1842
http://creativecommons.org/licenses/by/4.0/
mailto:rsc@herts.ac.uk

Received: 8 April 2015 Revised: 21 November 2016 Accepted: 2 December 2016

DOI: 10.1002/smr.1842

R E S E A R C H A R T I C L E

The relationship between evolutionary coupling and defects in
large industrial software

Serkan Kirbas1,2 Bora Caglayan3 Tracy Hall2 Steve Counsell2 David Bowes4

Alper Sen1 Ayse Bener3

1Department of Computer Engineering,

Bogazici University, Istanbul, Turkey
2Department of Computer Science, Brunel

University London, London, United Kingdom
3Data Science Laboratory, Ryerson University,

Toronto, Ontario, Canada
4School of Computer Science, University of

Hertfordshire, Hatfield, United Kingdom

Correspondence

Serkan Kirbas, Department of Computer

Engineering, Bogazici University, Istanbul,

Turkey.

Email: serkan.kirbas@boun.edu.tr

Funding information

Scientific and Technological Research Council

of Turkey (TUBITAK), Grant/Award Number:

B.14.2.TBT.0.06.01-214-115535; Bogazici

University Research Fund (7223) Turkish

Academy of Sciences and by Engineering and

Physical Sciences Research Council (EPSRC),

Grant/Award Number: EP/L011751/1; NSERC

Discovery, Grant/Award Number:

402003-2012

Abstract

Evolutionary coupling (EC) is defined as the implicit relationship between 2 or more software

artifacts that are frequently changed together. Changing software is widely reported to be

defect-prone. In this study, we investigate the effect of EC on the defect proneness of large indus-

trial software systems and explain why the effects vary. We analysed 2 large industrial systems:

a legacy financial system and a modern telecommunications system. We collected historical data

for 7 years from 5 different software repositories containing 176 thousand files. We applied cor-

relation and regression analysis to explore the relationship between EC and software defects, and

we analysed defect types, size, and process metrics to explain different effects of EC on defects

through correlation. Our results indicate that there is generally a positive correlation between

EC and defects, but the correlation strength varies. Evolutionary coupling is less likely to have a

relationship to software defects for parts of the software with fewer files and where fewer devel-

opers contributed. Evolutionary coupling measures showed higher correlation with some types

of defects (based on root causes) such as code implementation and acceptance criteria. Although

EC measures may be useful to explain defects, the explanatory power of such measures depends

on defect types, size, and process metrics.

KEYWORDS

evolutionary coupling, industrial software, legacy software, mining software repositories,

measurement, software defects

1 INTRODUCTION

Software constantly changes for many reasons.1–4 Studies have shown

that changing software may be a defect-prone activity.5–8 Code that

is changed most frequently is likely to be most defect-prone.7,9–11

Evolutionary coupling (EC) could explain some of this defect prone-

ness because when code with high EC is changed, a high number of

changes must be made to related parts of the system. The locations of

these related changes may be scattered within the application or even

across applications in a software ecosystem. Correctly making related

changes across these locations is likely to be challenging. Developers

may miss some locations, which should have been cochanged, and this

may cause unforeseen ripple effects and problems.

Evolutionary coupling information is generally extracted from the

commit history of version control systems (VCSs). It is based on the

assumption that artifacts committed together are logically coupled.

This makes EC relatively simple to calculate compared with other types

of coupling. For example, structural12 and semantic13 coupling are both

measured on the basis of the static and text analysis of source code.

Often, this source code is difficult to obtain from closed source devel-

opers. Dynamic coupling14 analyses execution traces and so requires

the software to be executed. Evolutionary coupling requires access to

only the VCS and is thus a relatively easy way to measure coupling,

particularly for industrial closed source systems.

Evolutionary coupling has previously been shown to indicate archi-

tectural and design problems. Gall et al15,16 showed that EC can dis-

cover design flaws such as God classes or Spaghetti code, without

analysing the source code. Gall et al’s results also identified archi-

tectural weaknesses such as poorly designed inheritance hierarchies

The copyright line for this article was changed on 14 November 2017 after original online publication.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2017 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.

J Softw Evol Proc. 2017;29:e1842. wileyonlinelibrary.com/journal/smr 1 of 19
https://doi.org/10.1002/smr.1842

https://doi.org/10.1002/smr.1842
http://orcid.org/0000-0002-9918-2822
http://creativecommons.org/licenses/by/4.0/

2 of 19 KIRBAS ET AL.

and blurred interfaces between modules and submodules. Breu and

Zimmermann17 showed that EC information and data mining tech-

niques could detect crosscutting concerns in software systems. Such

crosscutting concerns emerging overtime may contain functionality,

which does not align with its architecture. Furthermore, Eaddy et al18

argued that crosscutting concerns were harder to implement and

change consistently because multiple (possibly unrelated) locations in

the code have to be found and updated simultaneously. Their study sug-

gested that increased crosscutting concerns may actually cause or con-

tribute to defects. Our own previous study of EC in a banking system19

suggested that EC does impact defects.

Conversely, Graves et al8 showed that module-level EC measures

were a poor predictor of defect proneness. Knab et al20 also found that

EC did not predict defects in the Mozilla project; no studies exist to

explain these contradictory findings. Furthermore, EC in large commer-

cial systems has rarely been empirically investigated. Most previous

studies are based on the analysis of open source systems.

In this study, we analysed the correlation between EC measures

and the number of defects and defect density in 2 large software

systems in industrial software development environments. Cor-

relation analysis is performed separately for each module.* We

also built logistic regression models. In this study, multivariate

regression analysis is used to explore the relationship between

EC (independent variable) and defects (dependent variable) to

understand how helpful EC measures are in defect analysis com-

pared with other process metrics (we build correlation models

rather than prediction models). We also analysed the relationship

between EC and defect types. Our research questions are as follows:

• (RQ1) What is the relationship between EC and software defects?

The results of our study showed that there was, in general, a rela-

tionship between EC and software defects in the software mainte-

nance/evolution phase of the industrial software systems under study.

We detected a positive correlation between EC measures and defects.

Compared with other process measures such as the number of commits

and the number of developers, EC measures seem to contain additional,

sometimes important, information about defects: for every additional

EC, the module is 8% more likely to be defective. However, correlation

strength varied across modules and in some modules EC and defects

were not correlated. On the basis of these findings, we added the fol-

lowing research question to our study:

• (RQ2) What factors explain why the relationship between EC and

software defects is different for different modules?

Modules, which were small in Lines of Code (LOC) and developer

numbers, tended to be less correlated with EC. Fewer defects due to EC

seem to occur in small modules. Evolutionary coupling also appeared

to be more highly correlated with some types of defects such as code

implementation, acceptance criteria, and analysis problems. Overall,

*A module is part of a software system. A software system is composed of one or more inde-
pendently developed modules. Similar functionality is contained within the same module, and
a module is generally composed of many source files. A module is generally owned by a spe-
cific team, and the team members are responsible for its development and maintenance. In the
systems analysed in this study, modules are also part of subsystems. There is a one-to-many
relationship between subsystems and modules. A module can be part of only one subsystem,
and a subsystem may have many modules. But subsystems are not covered in the scope of
this work.

regression analysis showed that EC may be useful for explaining defects

in industrial systems.

We make the following contributions in this paper. Firstly, we analyse

large commercial systems, which have rarely been empirically stud-

ied to understand the relation between EC and defects. Secondly, we

show that the effect of EC on defects varies depending on the mod-

ule. Thirdly, the explanatory power of EC measures varies depending on

defect types and module features such as size and developer activity.

This paper is organised as follows: In the next section, we

summarise related work. In Section 3, we present our method-

ology including measures, data extraction, and analysis methods.

Section 4 shows the results of applying our methodology to 2

industrial systems. The discussions and threats to validity of

this study are then addressed in Sections 5 and 6, respectively.

Finally, in Section 7, we summarise and present our conclusions.

2 RELATED WORK

2.1 Evolutionary coupling

Evolutionary coupling was first identified in 1997 by Ball et al.21 Early

studies on EC focused on the relationship between EC and architectural

problems with EC used as an indicator of architectural weaknesses and

modularity problems. Classes that were frequently changed together

during the evolution of a system were presented visually using EC infor-

mation by Ball et al.21 Clusters of classes were identified according to

EC measures. Ball et al showed that classes belonging to the same clus-

ter were semantically related. Evolutionary coupling among different

clusters was used as an indicator of ineffective class partitioning. Gall

et al analysed EC at a module level and reported that EC provides useful

insights into system architecture.15 They identified potential structural

shortcomings and detected modules and programs that should undergo

restructuring or even reengineering. Another study by Gall et al anal-

ysed EC at a class level on an industrial software system.16 This study

was important because it demonstrated that EC could be used to iden-

tify architectural weaknesses such as poorly designed interfaces and

inheritance hierarchies. Pinzger et al showed that candidate modules

for refactoring could be detected by showing ECs between modules

on Kiviat diagrams.22 Beyer and Hassan explored EC data in the cal-

culation of the distance between 2 files in a VCS and displayed results

as a series of animated panels.23 They showed how the structure of a

software system decayed or remained stable overtime.

Besides detecting architectural problems, EC has also been used

to predict possible cochanges and to recommend such cochanges to

developers. In a study by Ying et al, an approach using data mining

techniques was developed to recommend related source code parts

to software developers with assigned modification requests (MRs).24

Applying the approach to open source projects revealed important

dependencies. A study by Zimmermann et al presented a technique,

which predicted the parts of source code likely to change, given the

already changed parts of source code (at file, class, property, and

method levels).25 Association rule mining was used to detect ECs.

Several previous studies have used EC in the detection of crosscut-

ting concerns scattered across software systems. Breu et al17 leverage

EC information to mine aspect candidates (identifying crosscutting

KIRBAS ET AL. 3 of 19

concerns). Eaddy et al18 argued that crosscutting concerns were harder

to implement and change consistently because multiple (possibly

unrelated) locations in the code have to be found and updated

simultaneously. Their study suggested that increased crosscutting con-

cerns may cause or even contribute to defects. Adams et al26 developed

an aspect-mining technique based on coaddition or coremoval of

dependencies on program entities overtime. They suggest that detailed

knowledge about crosscutting concerns in the source code is crucial

for the cost-effective maintenance and successful evolution of large

systems.

In our recent study of EC measurement,27 we evaluated the mea-

surement of EC in software artefacts from a measurement theory per-

spective. We defined 19 evaluation criteria based on the principles

of measurement theory and metrology. We evaluated previously pub-

lished EC measures by applying these criteria. Our evaluation results

revealed that current EC measurement has the particular weaknesses

around establishing sound empirical relation systems, defining detailed

and standardised measurement procedures as well as scale type and

mathematical validation.

2.2 Relationship between EC and defects

Evolutionary coupling measures have also been used in defect predic-

tion studies. These studies are related to our first research question

(RQ1). First, we focus on the studies, which reported a relation between

EC and defects. Steff and Russo created sequential commit graphs of

evolutionary coupled classes.28 They showed that the graphs could

be used for defect prediction. A study by Tantithamthavorn et al pro-

posed improvements to existing defect localisation methods by using

EC information.29 The proposed method was applied and verified on 2

open source projects (Eclipse SWT and Android ZXing).

D’Ambros et al30 analysed 3 open source software systems and

detected correlation between EC and software defects. This was the

first study focusing explicitly on the relationship between EC and soft-

ware defects, which corresponds to our RQ1. They found a positive

correlation between EC and defects. Furthermore, they reported that

defects with a high severity exhibited a correlation with EC. This study

considered only EC between classes within a project. Another study

reported by Kouroshfar concluded that cross-subsystem EC measures

are more related to defects than within-subsystem EC.31 Kouroshfar’s

findings are related to our second research question (RQ2), as Kourosh-

far proposed different kinds of EC (between subsystems vs within sub-

systems) as a factor affecting the relationship between defects and EC.

Other studies using EC metrics suggest that EC does not contribute

to defects and is not useful for identifying defects. These studies could

not find any relationship between EC and defects, which is related

to our RQ1. In a study conducted by Graves et al, various statistical

models were developed to assess which features of the revision his-

tory of a module could be used for defect prediction.8 Results from

study showed that prediction performance of the models using EC mea-

sures were lower compared with other models. Another study by Knab

et al found that EC measures did not give good results for predicting

defects.20 In that study, the ability of EC to predict defect density was

tested. In our previous studies of EC,19,32 we examined the effect of EC

on software defects for an industrial legacy banking system. For some

modules, we observed significant correlation between EC and defect

measures, whereas for others, no relation was detected. This study

is different from our previous studies in companies involved and the

analysis applied. In this study, we analyse also a large modern telecom-

munication software and used different analyses such as multivariate

regression analysis, defect type, and module characteristic analysis.

The previous studies on EC focused on open source projects. Also,

most of these studies did not investigate large projects. Our study is

different in the sense that we investigate industrial projects, which

have very different software development processes and culture than

the open source projects. Moreover, the sizes of the projects we anal-

ysed are different to existing studies. For example, the sizes of the

projects studied by D’Ambros et al.30 were between 1 and 3 K (number

of classes). The sizes of the projects that we studied were 20 and 150 K

(as number of files). Large industrial systems have rarely been empiri-

cally studied to understand the relationship between EC and defects.

This is an important contribution of our work on existing knowledge

of EC.

In contrast to previous studies, we also show that the relationship

between EC and defects varies for different modules even in the same

system. We provide the distribution of numerical values for EC-defect

relationship as histograms. This introduces a more realistic and prob-

abilistic model for the EC-defect relationship and can be also used to

explain the contradictory results reported by different studies. Further-

more, we attempt to explain factors affecting the relationship between

EC measures and defects, which has not been explicitly addressed by

previous studies.

3 METHODOLOGY

This section explains the setting and data sources that we used as well

as how we extracted and analysed the data.

3.1 Study context

We performed our study on 2 large industrial systems. One of the sys-

tems was a large financial legacy system that had evolved for over

25 years to support the back-end business processes of a large financial

institution (henceforward known as “Company 1”). Much of the code

was written in PL/I and COBOL, but there were also files written in job

control language, a scripting language used on mainframes to develop

a batch job. The system consisted of 20 subsystems and 274 modules.

The company started using a VCS in 2009. We analysed all subsystems

and modules between 2009 and 2013, and the total size of the system

was 87 million LOC, consisting of 150 K individual files. The applications

analysed in this study are back-end banking applications. Company 1

uses a “modified” waterfall model for software development.

The other system studied was a large telecommunications system

written in Java (henceforward known as “Company 2”). The company

had used a VCS (SVN) since 2006; we analysed 4 subsystems and 11

modules between 2006 and 2013. Company 2 uses an agile method-

ology as well as test-driven development (TDD). The applications anal-

ysed in this study are web applications. Detailed information about the

systems under study is given in Table 1.

4 of 19 KIRBAS ET AL.

TABLE 1 Summary about industrial systems under study

Company 1 Company 2

Programming languages COBOL,PL/I, & JCL Java

Domain Finance Telecommunications

Versioning system CA SCM SVN

Defect-tracking system Developed in-house JIRA

Number of software subsystems 20 4

Number of software modules 274 11

Total number of developers 460 25

Total software size (LOC) 87 M 310 K

Total number of files 150 K 26 K

Total number of file versions 192 K 180 K

Total number of commits 50 K 24 K

Analysis period 2009-2013 2006-2013

Percentage of files changed %11 %15

Abbreviations: CA SCM indicates CA Software Change Manager; LOC, Lines of Code; JCL,
job control language.

FIGURE 1 Data collection overview

3.2 Data collection

We collected source code data from SVN and CA SCM VCSs, defect

data from JIRA and in-house developed defect repositories, and the

link between source code and defects from configuration management

database (CMDB) at Company 1.

Figure 1 presents an overview of our approach to mine the data.

We developed adapters for the 5 different data sources. The output

of adapters containing the data retrieved from the data source for

the specified period is stored in a database. For source code data, we

fetch all versions created during the specified period in the VCS and

store them in the database. We applied static code analysis on each

file revision providing method-level and program-level static metrics

(discussed in the next subsection). Commit information such as the

developer ID that created the version, date of creation, and the related

problem/request/project ID were available from the source code repos-

itory. We applied filtering to remove large commits that may have

contained logically irrelevant changes. Commits containing more than

30 files were ignored and were not considered while calculating EC

measures.

In CMDB, each software product is defined as a separate con-

figuration item (CI) and each change is recorded and linked to the

corresponding CI. In our study, we collected all source code–related

changes performed in the scope of defect fixing or enhancement on the

software product analysed over the defined period. In CMDB and JIRA,

2 different sources for a change were defined: Problem or Request. We

could therefore distinguish between bug fixing and enhancement.

3.3 Data sources

3.3.1 Code repositories

Source code repositories are primarily used for storing and managing

changes to source code artifacts. The full history of changes, the owner

of the change, date of the change, and even the corresponding require-

ment or project task can be extracted. The tool used at Company 1

for managing the source code repository was a product of Computer

Associates (CA), called CA Software Change Manager (CA SCM).33 CA

SCM provides change management in addition to its version control

functionality. A developer must make changes in CA SCM in a change

package, similar to the notion of “change set” in other SCM tools. A

package groups and keeps all related changes together, corresponding

to the same defect fix or enhancement. The versioning system used at

Company 2 was Apache Subversion (SVN).34 SVN is a popular version-

ing tool and is used by nearly half of all open source projects according

to openhub.net.†

† The Open Hub tracks more than 650 000 free and open source software repositories and
generates several statistics on the hosted source.

KIRBAS ET AL. 5 of 19

3.3.2 Defect repositories: Company 1 (Finance)

We mined the defect repository to collect defect data reported.

The defect repository at Company 1 was developed in-house by the

company.

Mapping between defects and source code: We followed different

approaches for the 2 companies for finding a mapping between defects

and source code. For Company 1, we used the CMDB for this pur-

pose. For both companies, we assumed that files involved in a defect fix

contained the defect.

Configuration Management Database: Many companies store infor-

mation related to components of their information system in a CMDB,

which contains data describing the following entities35:

• managed resources such as computer systems and application soft-

ware,

• process artifacts such as incident, problem and change records,

• relationships among managed resources and process artifacts.

In our study, we used the CMDB system at Company 1 to extract

data about the relationship between MR and source code. The CMDB

system was developed in-house by the company.

3.3.3 Defect repository: Company 2
(Telecommunications)

Company 2 used JIRA,36 a proprietary defect tracking product, devel-

oped by Atlassian.

Mapping between defects and source code: For Company 2, we used

the defect IDs provided in the SVN commit comments by developers

and the revision numbers provided in JIRA issues. For both companies,

we assumed that files involved in a defect fix contained the defect. The

percentage of fixed bugs linked to version control is changed between

73% and 79% yearly. The bugs that are not linked to version control

include the defect fixes, which do not require source code change and

version control commit such as database-related fixes. The mappings

from SVN commit to defect and from JIRA issue to SVN commit were

generally consistent.

3.4 Descriptions of measures

Table 2 lists all the measures used in this study. The following sections

will provide the details of these measures.

3.4.1 EC measures

In the companies under study, any changes made to the source code

were made based on MRs. An MR represents a conceptual software

change, which includes modification of one or more source code files

by one or more software developers. These changes can defect fixes

or enhancements. We used an MR-based approach to calculate EC and

formalise our approach as follows.

Let MR denote the set of MRs, mr denote a specific MR in MR, and

f denote a source code file changed in the scope of mr. On the basis

of these definitions, we calculate evolutionary coupled files and EC

measures as follows:

The set of evolutionary coupled files of a file f:

SECF(f) = {fi|mr ∈ MR ∧ fi ∈ mr ∧ f ∈ mr ∧ fi ≠ f}

The total number of evolutionary coupled files of a file f:

NoECF(f) = |SECF(f)|

Set of evolutionary coupled files of a file f in the scope of a MR mr:

SECFMR(f,mr) = {fi|fi ∈ mr ∧ f ∈ mr ∧ fi ≠ f}

Sum of the number of evolutionary coupled files of a file f for all mr’s

in MR:

NoECFMR(f) =
n∑

i=0

|SECFMR(f,mri)|

NoECF counts a coupling between 2 files as one even if they are coupled

in the scope of multiple MRs. NoECFMR is different from NoECF in this

respect. If 2 files are cochanged in the scope of 5 MRs, NoECFMR is cal-

culated as 5, whereas NoECF is calculated as 1. NoECFMR considers the

number of MRs, in which 2 files are coupled. We aim to use NoECFMR

alongside NoECF to consider multiple MR cochanges, which may lead to

stronger EC.

The following 3 issues were considered in the calculation of EC mea-

sures: (1) the level at which measures are taken, (2) the approach for

grouping files, and (3) the boundary for finding coupled files. We cal-

culated EC measures at file level; we chose file level, since defects are

mapped to files in the companies under study. One approach for group-

ing file changes is using commit transactions of versioning systems that

are the unique commit operations of a developer. In this approach, it is

assumed that developers commit logically coupled files within a trans-

action. The system at Company 1 was a legacy system, and developers

rarely committed more than 1 file in one transaction. Therefore, we

found that a transaction-based approach was not appropriate to detect

EC. We followed an MR-based approach and grouped the file changes

according to the associated MR numbers.8 In our approach, file changes

spanning multiple transactions that were grouped together if they were

associated with the same MR. The third issue considered for EC calcula-

tion was the boundary for finding coupled files. We chose module level

to find coupled files that resided in the same module. We consider EC

only within module boundaries. Alternative module boundaries could

be subsystem or system level, which considers cross module couplings.

In this study, we ignore any cross-module ECs.

3.4.2 Size measures

Lines of Code was chosen for size measurement, and this is also used

for normalising derived measures. We also used LOC to detect out-

liers in the data. To this end, we identified files whose size was greater

than 10 K (0.4% of all files). These files were removed from the anal-

ysis as they were interpreted as outliers. Lines of Code is also used

to investigate file size as a possible confounding factor. We check for

correlation between LOC and other measures. Using defect density as

normalised measure in our study mitigates the risk of size as a possible

confounding factor.

6 of 19 KIRBAS ET AL.

TABLE 2 Summary of measures used in the study

Description

NoECF File level The number of unique evolutionary coupled files of a file

NoECFMR File level Sum of the number of cochanged files (in the scope of an MR) of a file

LOC File level LOC, size measure

NoD File level Number of defects reported for a file

DD File level Defect density

NoCommits File level Number of commits—process metric for comparison purposes

NoDevs File level Number of developers—process metric for comparison purposes

TNF Module level Total number of files in a module

TNEFC Module level Total number of evolutionary file couplings in a module

TNFR Module level Total number of file revisions in a module

TNDVLP Module level Total number of developers contributing to a module

TND Module level Total number of defects of a module

TFSC Module level Total file size change in LOC for a module

Abbreviations: LOC indicates Lines of Code; MR, modification request.

We use the following measures for defects: number of defects

reported for a file (NoD) and defect density (DD). We use the following

formula for calculating defect density:

DD = NoD∕LOC

3.4.3 Defect types

We used the defect types listed in the Appendix (Table A1) and provide

their descriptions. This defect type classification was used by Company

2 and each defect reported was tagged by one or more defect types

(the defect repository stored the defect type data for each defect). The

defect types in Table 13 are ordered on the basis of the defect type

codes used by the company.

3.5 Analysis method

3.5.1 Analysis method for answering RQ1

Spearman correlation analysis was used to find the relationship

between EC and defect measures. Since the data is not normally dis-

tributed, we apply Spearman rank correlation analysis. Spearman rank

correlation analysis is a nonparametric test of correlation and assesses

how well a monotonic function describes the association between vari-

ables. This is done by ranking the sample data separately for each

variable. We used the Shapiro-Wilk test37 to check for normality of

the data. The null hypothesis of this test is that the population is nor-

mally distributed; if the p value is less than the chosen alpha level (.05),

then the null hypothesis is rejected, and there is evidence that the

data tested is not from a normally distributed population. Razali et al38

report that Shapiro-Wilk is the most powerful normality test.

We set the p value (significance level) for Spearman correlation anal-

ysis to .05. If the data from the study results in a p value of less than .05,

we conclude that the correlation is significant. The correlation coef-

ficient or correlation strength is represented by 𝜌. It expresses the

relationship between EC and software defects by a value between − 1

and 1. 𝜌 values of 1 or −1 indicate perfect positive or negative cor-

relation, respectively. Values close to 0 indicate absence of correlation

between measures. We considered 𝜌 values less than 0.1 to be trivial,

between 0.1 and 0.3 as low, between 0.3 and 0.5 as moderate, between

0.5 and 0.7 as high, between 0.7 and 0.9 as very high, and above 0.9 as

almost perfect.39,40

Correlation analysis was applied on each module separately to

obtain𝜌, P and StdErr values for each. We used histograms to summarise

the correlation results and the SPSS41 tool was used for the statistical

analysis.

After correlation analysis was performed, we applied multivariate

logistic regression and multicollinearity analysis with basic process

metrics such as number of commits, number of developers, and prior

number of defects as well as EC metrics. With this analysis, we are aim-

ing to identify the relationship between metrics and metrics that do not

add any new knowledge about defects.

The following describes the steps taken to build a logistic regression

model for the EC metrics, process metrics, and the presence or absence

of defects. The first step is to binarise the defect count such that a data

point is labelled defective if the defect count is greater than 0. Then

we build a logistic regression model using all terms and no interactions.

Having built the model, we test for multicollinearity to find any inde-

pendent variables, which are correlated. Then we build a model, which

includes interaction terms and identify terms, which are correlated.

Finally, we build an interaction model without correlated terms and

apply stepwise reduction to remove terms, which are not significant.

By using regression models, we aim to determine whether a partic-

ular independent variable really affects the dependent variable and to

estimate the magnitude of that effect, if any.

We diagnose collinearity through variance inflation factor (VIF)

analysis.42 We used 2.5 as the cutoff value for the simple model and 10

for the interaction model where collinearity naturally occurs by default.

If a VIF value is greater than the cutoff value, the metric with the largest

VIF is removed and the model rebuilt until all VIF values are less than

the cutoff value.

3.5.2 Analysis method for answering RQ2

We used box plots to determine differences between the modules

where significant correlation was or was not observed. We drew box

plots for the following measures:

KIRBAS ET AL. 7 of 19

FIGURE 2 Company 1: Histogram of Spearman 𝜌 values for correlation between evolutionary coupling (NoECF measure) and number of defects

• TNF: Total Number of Files in a Module

• TNEFC: Total Number of Evolutionary File Couplings in a Module

• TNFR: Total Number of File Revisions in a Module

• TNDVLP: Total Number of Developers contributing to a Module

• TND: Total Number of Defects of a Module

• TFSC: Total File Size Change in LOC for a Module

These measures were chosen based on availability and their power

to reflect different attributes of modules characterising size, developer

activity, and defects. Many studies in the literature suggest that size

is generally an important factor. Since EC is dependent on developer

activity, we have also added it as a factor. To check whether the differ-

ence is statistically significant, we apply a t test if data is parametric

and a Mann-Whitney test if nonparametric. We again take a significance

level of .05.

To check the role of defect types, we repeated the correlation analy-

sis between EC and defect measures, but this time for each defect type.

We aimed to find defect types that were likely to be related to EC, and

we checked the distribution of defect types for each module.

4 RESULTS

4.1 RQ1: What is the relationship between EC

and software defects? Correlation analysis results

For 161 of 274 (59%) software modules analysed at Company 1 and 6 of

11 at Company 2, we observed significant correlation (p< .05) between

the NoD and EC measures using Spearman analysis. A Shapiro-Wilk

test indicated that data distribution was not normal (p = 0.0 < .05)

and so consequently, we used Spearman analysis. For 32 of 113 mod-

ules at Company 1 for which no significant correlation was observed,

the number of commit values was either 0 or low values (< = 10).

Evolutionary coupling measures need a lead period (Zimmerman

et al25) and sufficient version control activity (prerequisite for EC mea-

surement). Otherwise, they may not be useful. For Company 2, the

modules for which no significant correlation is observed were all small

and the number of defects was also low for these small modules.

The distribution of 𝜌 values of these 161 modules at Company 1

can be seen in the histogram in Figure 2.‡ The correlation observed

was generally low and moderate. For 21 modules, high correlation was

observed. Figure 3A,B shows the distribution of 𝜌 values on the his-

togram for Company 2. The correlation values do not seem to be high

but while interpreting these results, we need to consider that we are

only analysing one factor among many, which can have a relationship

with defects. From this perspective, having 59% of modules with sig-

nificant correlation and low to moderate correlation strength is an

important result.

If we compare the analysis results of the 2 companies, we observe

that Company 2 has relatively fewer modules with high correlation val-

ues. The practices such as Agile and TDD used by Company 2 may have

affected this result. Such practices may lead to lower coupling in sys-

tems. This result may also be due to the different architectures used

by these 2 systems. Company 2 used the Model-View-Controller archi-

tectural pattern in its projects, which divides a software application

into 3 interconnected parts, so as to separate internal representa-

tions of information from the ways that information is presented to, or

accepted from, the user. Whereas the architecture in the Company 1

systems is more ad hoc since these legacy systems have been evolved

over a long period. Organizational structure of the companies may also

have impact on the design and coupling of the systems analysed as sug-

gested by Conway law.43 However, this should be investigated further.

‡ This figure only shows the histogram of Spearman 𝜌 values for correlation between NoECF
and NoD. The histogram for correlation between NoECFMR and NoD is not shown in the main
text, as it is very similar to the former one. However, it can be seen in Figure A4 in the Appendix.

8 of 19 KIRBAS ET AL.

FIGURE 3 Company 2: Histogram of Spearman 𝜌 values for correlation between evolutionary coupling measures and NoD

FIGURE 4 Company 1: Histogram of Spearman 𝜌 values for correlation between evolutionary coupling (NoECF measure) and defect density

We also applied Spearman analysis for EC measures and DD. For

147 of 274 software modules analysed at Company 1, we observed sig-

nificant correlation (p < .05) between DD and EC measures by using

Spearman analysis. The distribution of 𝜌 values can be seen in the his-

togram in Figure 4. Although there are slightly fewer modules identified

as significant compared with the previous analysis, the distribution of

𝜌 values shown in the 2 histograms shows great similarity. In keeping

with the previous analysis results, the correlation observed was gener-

ally low and moderate; for a small number of modules, high correlation

was observed. The results for Company 2 were similar to the previous

analysis results.

We have also applied Spearman correlation analysis for basic pro-

cess metrics such as number of commits, number of developers, and

prior number of defects for comparison purposes. Table A3 summarises

the results.

4.2 RQ1: What is the relationship between EC

and software defects? Regression analysis results

After correlation analysis, we applied multivariate logistic regression to

build models, which indicate files which are likely to be defective. First,

we built a logistic regression model using all terms and no interactions

(Table 3).

Having built the model, we test for multicollinearity to find any inde-

pendent variables, which are correlated (Table 4). We assess the VIF. A

VIF > 2.5 is considered problematic requiring one or more variables

KIRBAS ET AL. 9 of 19

TABLE 3 First model with all terms and no interaction

Estimate Std. Error z value Pr(> |z|)

(Intercept) − 2.9369 0.0122 − 240.71 0.0000

NoECFMR 0.0287 0.0048 5.95 0.0000

NoECF 0.0274 0.0056 4.88 0.0000

NoCommits 0.0213 0.0059 3.63 0.0003

NoDevs 0.8340 0.0250 33.41 0.0000

TABLE 4 Test for multicolinearity

VIF

NoECFMR 21.29

NoECF 21.12

NoCommits 1.87

NoDevs 2.10

Abbreviation: VIF indicates variance inflation factor.

TABLE 5 Model for all Iindependent variables (IVs) without NoECFMR

Estimate Std. Error z value Pr(> |z|)

(Intercept) − 2.9432 0.0122 − 241.67 0.0000

NoECF 0.0601 0.0014 44.02 0.0000

NoCommits 0.0247 0.0057 4.33 0.0000

NoDevs 0.8362 0.0247 33.88 0.0000

to be removed. “NoECFMR” and “NoECF” are identified as being corre-

lated, and therefore, we remove “NoECFMR” from the model (Table 5).

Multicollinearity analysis results and odds ratio (OR)§ effect sizes after

removing ‘NoECFMR’ are also provided in Table 6 respectively. The OR

results suggest a rather low relation between EC and defects, although

slightly higher than that of the number of commits.

Having identified individual variables, which make a significant con-

tribution to the logistic regression model, we built a model that includes

interaction terms (Table 7) and identify terms that are correlated

(Table 8). Again, VIF values are highly likely to be correlated because

we are using interaction terms; therefore, VIF > 10 is considered prob-

lematic (Table 8). Odds ratio effect sizes for this model are provided in

Table 9.

Next, we built an interaction model without correlated terms and

applied stepwise reduction to remove terms, which were not significant

(Table 10). The multicollinearity analysis results and OR effect sizes for

this model are also provided in Table 11. This analysis shows how unique

the knowledge embedded in EC measures is compared to the other

process metrics.

The final model includes the following significant terms: NoECF,

NoCommits, NoDevs, and the interaction of NoECF with NoDevs. All

terms apart from the interaction term are greater than 1.0 showing

that when the independent variable increases, the propensity of a file

to be defective increases. The interaction term (NoECF:NoDevs 0.98)

is slightly less than 1.0 indicating that as both increase together, the lin-

ear model is adjusted to marginally decrease the increasing propensity

of the model to predict a file as being defective.

§ An odds ratio greater than 1.0 indicates that an increase in the variable will increase the
propensity for the file to be defective.

TABLE 6 Multicolinearity and odds ratio (OR) effect size (without
NoECFMR)

VIF OR

NoECF 1.29 (Intercept) 0.05

NoCommits 1.85 NoECF 1.06

NoDevs 2.09 NoCommits 1.03

NoDevs 2.31

Abbreviation: VIF indicates variance inflation factor.

To check the relationship between EC measures and defect prone-

ness of files from a different perspective, we drew box plots for EC

measures of files with and without defects. A separate box plot for each

module was created, and for some of the modules, these can be seen

in Figure A2 in the Appendix (1: represents files with defects and 2:

represents files without any defects).

We also performed manual analysis for some highly evolutionary

coupled files and their defects to show how software defects were

influenced by EC. In some defect instances, a highly evolutionary cou-

pled file was changed, but this change was not accumulated to all cou-

pled files correctly. This was the root cause of the fault. There was no

structural or dynamic coupling between these files. We also observed

similar instances but across different modules managed by different

teams. A change made in a module was not accumulated to the evolu-

tionary coupled modules. For some defect instances, a previous modifi-

cation to a highly evolutionary coupled file caused some unanticipated

behaviour in the coupled files.

4.3 RQ2: What factors explain why the relationship

between EC and software defects is different

for different modules? Box plot analysis results

Figures 5, 6, and 7 show the box plots of module-level measures for

modules where correlation is and is not detected. The y-axis of box plots

is represented on a logarithmic scale, and the range of measurement

values in Figure 6 (for Company 2) is perfectly separated. Although

there is an overlap in the box plots for Company 1, the difference is

statistically significant (< 0.05) for both companies according to the

Mann-Whitney test. All modules for which correlation is observed have

high values for total number of files, total number of evolutionary file

couplings, and total number of file revisions. On the other hand, we did

not observe a perfect separation of ranges for measures such as total

number of developers contributed, total number of defects and total

file size change in LOC for both companies. However, the difference

is still statistically significant (< 0.05) according to the Mann-Whitney

test. We also checked how balanced the set of modules were in defects

with and without correlation, and they were mostly unbalanced. There

are generally more files without defects than those with defects. We

also analysed the relationship between module size and Spearman 𝜌

values for the correlation between EC (NoECF measure) and num-

ber of defects. The results can be seen in Figure A3 and Table A5 in

the Appendix. The correlation analysis showed a significant negative

correlation (p = .005 < 0.05 and 𝜌 = − 0.218) between module size

and 𝜌 value.

10 of 19 KIRBAS ET AL.

TABLE 7 Model with interaction terms

Estimate Std. Error z value Pr(> |z|)

(Intercept) − 3.0191 0.0130 − 232.56 0.0000

NoECF 0.0817 0.0018 46.07 0.0000

NoCommits 0.0888 0.0116 7.63 0.0000

NoDevs 1.2002 0.0310 38.74 0.0000

NoECF:NoCommits − 0.0021 0.0007 − 3.13 0.0017

NoECF:NoDevs − 0.0356 0.0019 − 18.35 0.0000

NoCommits:NoDevs − 0.0576 0.0064 − 8.94 0.0000

NoECF:NoCommits:NoDevs 0.0024 0.0003 7.40 0.0000

TABLE 8 Multicolinearity (with interaction terms)

VIF

NoECF 2.52

NoCommits 8.20

NoDevs 3.79

NoECF:NoCommits 10.81

NoECF:NoDevs 7.34

NoCommits:NoDevs 10.21

NoECF:NoCommits:NoDevs 14.59

Abbreviation: VIF indicates variance inflation factor.

TABLE 9 Odds ratio (OR) effect size (with interaction terms)

OR 2.5% 97.5%

(Intercept) 0.05 0.05 0.05

NoECF 1.09 1.08 1.09

NoCommits 1.09 1.07 1.12

NoDevs 3.32 3.12 3.53

NoECF:NoCommits 1.00 1.00 1.00

NoECF:NoDevs 0.96 0.96 0.97

NoCommits:NoDevs 0.94 0.93 0.96

NoECF:NoCommits:NoDevs 1.00 1.00 1.00

TABLE 10 Reduced model with interaction terms with no collinearity

Estimate Std. Error z value Pr(> |z|)

(Intercept) − 2.9878 0.0126 − 236.95 0.0000

NoECF 0.0747 0.0015 48.92 0.0000

NoCommits 0.0324 0.0054 5.95 0.0000

NoDevs 0.9823 0.0248 39.63 0.0000

NoECF:NoDevs − 0.0184 0.0009 − 20.27 0.0000

TABLE 11 Multicolinearity and odds ratio (OR) effect size (final
model) with confidence limits

VIF OR 2.5 % 97.5 %

NoECF 1.89 (Intercept) 0.05 0.05 0.05

NoCommits 1.94 NoECF 1.08 1.07 1.08

NoDevs 2.39 NoCommits 1.03 1.02 1.04

NoECF:NoDevs 2.40 NoDevs 2.67 2.54 2.80

NoECF:NoDevs 0.98 0.98 0.98

Abbreviation: VIF indicates variance inflation factor.

4.4 RQ2: What factors explain why the relationship

between EC and software defects is different

for different modules? Defect type analysis results

The results of correlation analysis for each defect type are summarised

in Table 12. The columns of the table show the Spearman correlation

strength (𝜌 values) between 2 EC measures and defect measures. Rows

of the table represent different defect types. In the table, we include

only the defect types that have at least 1 significant correlation result.

Code Implementation has the highest correlation with EC, and moder-

ate correlation was observed here. One interpretation is that develop-

ers tend to make coding errors while they work on source files, which

are highly evolutionary coupled, and they should take into account

more relations with more files when coding these files. For the defect

types in the table, we observed low correlation, although they are sig-

nificant. Defect types such as Acceptance Criteria and Analysis can be

associated with external EC to other modules and applications. Involve-

ment of more modules and applications may make analysis and defining

acceptance test criteria more difficult. We can interpret the correlation

with Test Implementation type in a similar way to Code Implementa-

tion. We have checked the defects of Not An Issue type with the project

members. They explained that this defect type was generally used for

deployment problems. Correlation between defects of this defect type

and EC may be explained as that deploying highly evolutionary coupled

files and modules may be more error-prone due to more dependencies

to be considered and deployed together.

For the following defect types, correlation values observed were

trivial and are therefore ignored: Wrong Properties, De defect Value,

Process Failure, Database Upgrade Failure, Data Fix Errata, Unex-

pected Functionality, Incorrect Config, Infrastructure Issues, Missing or

Incomplete Data Migration, and Acceptance Criteria Impl.

For the following defect types, no significant correlation was

detected: Incorrect Environment, CRM Bug, User Error, and Database

Disconnect-Reconnect Error.

5 DISCUSSION

Our findings give insights to future researchers and practitioners on the

effect of EC on defects.

(RQ1) What is the relationship between EC and software defects?

Our results suggest that there is, in general, a significant positive cor-

relation between EC measures and defects. This finding is consistent

KIRBAS ET AL. 11 of 19

FIGURE 5 Company 1: box plots of different measures for modules in which correlation between EC and defects detected (Yes) and not
detected (No)

FIGURE 6 Company 2: box plots of different measures for modules in which correlation between EC and defects detected (Yes) and not
detected (No)

with the general opinion that low coupling is an important principle to

follow for a high-quality software design and that high coupling can be

related to defects.12,44,45 Fewer interconnections between elements

reduce the chance that changes in one element cause problems in other

elements. Fewer interconnections between elements are also reported

to reduce programmer time.46 It is essential to keep the effect of a

change in one element on another element low. However, our study

shows that correlation strength between EC and defects varies across

modules. Correlation strength had a wide range of values from 0 to 0.8.

Furthermore, there are also modules in which EC and software defects

are not correlated. This is an important finding, since it highlights that

the effect of EC is likely to vary depending on the module analysed.

It is likely that the context of each module affects the risk that mak-

ing change will create unanticipated changes within other elements.

A change made in source code may have different manifestations on

defects based on the module context (eg, development process char-

acteristics). Some modules carry higher risk than others. Therefore, it

is important to consider the EC-defect relationship in the context of

related modules.

The contradictory findings reported by previous EC studies such

as Graves et al8 and Knab et al20 may be partially explained in the

different systems and modules used in these studies. As shown by

12 of 19 KIRBAS ET AL.

FIGURE 7 Company 1: box plots of different measures for modules in which correlation between EC and defects detected (Yes) and not
detected (No)

existing studies,47 the context has an important impact on studies. We

have shown that EC has different effects on defects across different

modules, because EC seems to manifest differently in different mod-

ules. The characteristics of the modules in individual systems must

be accounted for in future studies, as suggested by Hall et al.47 This

finding also provides practitioners with valuable information on detect-

ing defects and problematic code hot spots. However, as for all other

code measures in relation to defects, EC does not contribute to defects

equally for every module in a system, so EC use is not consistently help-

ful. We recommend that practitioners use EC for assessing the quality

TABLE 12 Spearman correlation analysis results between
evolutionary coupling measures and different defect types (Appendix
9.1 provides more details of these defect types)

NoECFMR vs NoD NoECF vs NoD

(Spearman Corr.) (Spearman Corr.)

Code implementation 𝜌= .176* 𝜌= .182*

p = .000 p = .000

Acceptance criteria 𝜌= .111* 𝜌= .113*

p = .000 p = .000

Functionality not implemented yet 𝜌= .088* 𝜌= .091*

p = .000 p = .000

Analysis 𝜌= .083* 𝜌= .085*

p = .000 p = .000

Not an issue 𝜌= .052* 𝜌= .045*

p = .000 p = .000

Test implementation 𝜌= .060* 𝜌= .061*

p = .000 p = .000

3rd party system defect 𝜌= .047* 𝜌= .045*

p = .000 p = .000

Bad data 𝜌= .091* 𝜌= .093*

p = .000 p = .000

*Correlation is significant at the 0.01 level (2-tailed).

of their software design but also in conjunction with other module

characteristics. That way, practitioners will get the best of both worlds.

(RQ2) What factors explain why the relationship between EC and

software defects is different for different modules?

We also tried to explain possible reasons for the different effects

of EC on software defects. We considered this issue from 2 perspec-

tives: module characteristics and defect types. We found that EC was

less likely to have an effect on software defects for modules with fewer

files and where fewer developers contributed. This may be explained

by fewer defects being caused by EC in relatively small modules. Poten-

tially, there are fewer interconnections between elements in a small

module. Let n denote the number of files in a module. The potential

number of interconnections in a module is calculated as n∗(n−1)
2

= n2−n
2

.

Interconnections between files in a module can grow quadratically with

the number of files. The more interrelated the files are, the more dif-

ficult these modules are to understand, change, and correct and thus

the more complex the resulting software system. This may eventually

lead to defects. An alternative explanation at least for the nondensity

models would be that such files typically have fewer defects.

We also recommend that practitioners add EC measures to their

metric suite for software design evaluation. We recommend that

researchers report process and size metrics of modules in their EC

studies to account for the possible effect of context in their results. Fur-

thermore, we found that EC may be more related to some defect types

such as Code Implementation, Acceptance Criteria, and Test Imple-

mentation and less related to others such as Unexpected Functionality,

Infrastructure Issues, Missing or Incomplete Data Migration, Incorrect

Environment, and User Error.

We believe that defect types may be used to explain the contradic-

tory findings reported by previous EC studies in the literature. The dif-

ferent systems and modules used in these studies have different defect

types ,and EC has different relationships with different defect types.

It is more likely that high EC will cause Code Implementation and Test

Implementation defects, because a high number of changes must be

KIRBAS ET AL. 13 of 19

made to related parts of the system when code with high EC is changed.

The locations of these related changes may be scattered within the

application or even across applications in a software ecosystem; mak-

ing related changes across these locations is likely to be challenging, and

this can increase the cognitive load of developers.48 Moreover, devel-

opers may miss some locations, which should be cochanged, and this

may cause unforeseen code and test implementation problems. On the

other hand, EC is unlikely to contribute to defects whose root cause

is user error or infrastructure issues. If a module has defects caused

mostly by user error or infrastructure issues, EC measures will not be

useful for detecting defects and hot spots.

6 THREATS TO VALIDITY

6.1 Construct validity

Threats to construct validity relate to whether we measure what we

intend to measure. When calculating EC measures, there are 2 ways in

which to group file revisions in the source code repository: MR-based

and transaction-based. Evolutionary coupling measures calculated on

a transaction basis for the system under study that do not reflect the

coupling relations between files; therefore, we preferred an MR-based

approach to their calculation. The reason is that changes for a single

MR were frequently split across multiple commit transactions for the

systems under study. In contrast to open source systems previously

analysed, in this study, we had a good defect linking that enabled us to

use an MR-based approach.

Another threat is the potential overlap in knowledge of EC with exist-

ing process metrics. To mitigate this threat, we applied multivariate

regression and multicollinearity analysis to understand the overlap and

the unique knowledge embedded in EC measures.

The EC metrics used in our study do not consider the age and tem-

poral aspects of EC. Evolutionary couplings that are temporary or no

longer valid due to refactorings or restructurings could not be detected

in our study. This is a limitation of the study.

We assume that any change made to source code is committed to

code repositories. The software processes in both companies place

check points (at compilation, moving to test/production) to guarantee

this assumption. Practitioners should be careful in using EC measures,

because they may not be reliable for some modules if VCSs are not used

by their developers (or there is a low utilisation of VCS). Evolutionary

coupling measures make sense if the VCS is used long enough and con-

sistently. In this study, some modules had low utilisation for VCS, and

this may be an indication of problems with VCS adaptation for some

projects in the company. Variance inflation factor was introduced to

some projects at Company 1 a few years ago. As a consequence, we rec-

ommend excluding these types of modules or systems when calculating

EC measures and using EC measures in defect models.

All the files committed in a particular commit operation might not

be logically coupled. This threat is mitigated by ignoring commit trans-

actions having more than 30 files. Therefore large transactions, which

may possibly include files from more than 1 MR (eg, the merge of

a branch), are not used to calculate EC. Furthermore, we also per-

formed a manual analysis of randomly chosen commits and MRs and

checked the validity of this assumption. When huge commit transac-

tions are removed, there are very few exceptions to this assumption.

Another point is that there are differences between industrial and

open source software development regarding this assumption. Com-

panies generally place controls on MRs in the application life cycle

(eg, mandatory MR numbers during check-in, allowing only files asso-

ciated with an MR to move to the production, etc), and companies

usually rigorously follow such conventions, unlike many open source

projects.49

6.2 Internal validity

In this study, we used CIs from the CMDB (for Company 1 only)

attached to problem records and related requests (move to production,

code review, move to test, etc) with which to match defects to source

code files. Two assumptions were made at this stage:

1. Configuration items defined at CMDB correspond to source files

changed in the scope of the resolution of a defect.

2. Configuration items of the source files changed in the scope of the

resolution of a defect are linked to the problem record of the defect.

The validity of these 2 assumptions can be guaranteed for certain

record types (move to production and code review), but in general,

these cannot be guaranteed, that for each defect, all related source files

are detected.

Another assumption is that developers commit source files changed

in the scope of the same MR to the same package in the code

repository. This assumption is used in the calculation of EC mea-

sures. We rely on the data collected from versioning systems, and any

project, which is not managed in the versioning system (or any file

which is not committed to versioning systems), is not considered in

our study.

The measures and defect types chosen for answering RQ2 are not

exhaustive and do not cover all characteristics of a module and all

defect types, which can exist. An exhaustive examination may have

revealed other factors that have a greater effect on defects and which

may be confounding our results. In our study, we investigated file size

(LOC) as a possible confounding factor. We observed that code size

correlated with number of defects in some modules. Defect density

however had either no significant correlation or only minor negative

correlation. Using defect density in our study mitigates the risk of size

as a possible confounding factor. We are planning future investiga-

tions to explore the effect size of a large number of factors related

to defects.

6.3 External validity

External validity relates to the generalisation of our study results. We

only studied 2 industrial software systems. These systems may not be

representative of the way developers develop systems more generally.

We mitigate this risk by choosing 2 systems from different domains and

with different technologies. In future work, we would like to extend this

study by including more commercial systems and projects.

14 of 19 KIRBAS ET AL.

7 CONCLUSIONS

In this paper, we presented a study on the relationship between EC and

software defects in 2 large industrial software systems. We reported a

positive correlation between EC and defect measures in the software

maintenance/evolution phase of systems from 2 different companies.

Our results indicated low-level, moderate-level, and high-level correla-

tion, with varied correlation strength across modules. Our regression

analysis results indicated that EC measures could be useful for explain-

ing defects.

The box plots drawn for each module separately showed the poten-

tial of EC measures to distinguish defective and nondefective files. We

also observed that the company using practices such as Agile and TDD

had relatively fewer modules with high EC-defect correlation values.

However, this finding needs to be further investigated on more compa-

nies for generalisable conclusions.

We also tried to understand the reasons for variation of the observed

effect of EC on software defects for different modules. We found that

modules, which were small in file and developer numbers, tended to

be less correlated with EC. Interconnections between files in a module

can grow quadratically with the number of files. The more interre-

lated the files are, the more difficult these modules are to understand,

change, and correct and thus the more complex the resulting software

system. This complexity may eventually lead to defects, and this may

be one of the reasons for variation across modules. Furthermore, we

observed that EC measures showed higher correlation with some types

of defects (based on root causes) such as code implementation, accep-

tance criteria, and analysis problems. The dispersion of these defect

types could be another reason for these varying effects. Different mod-

ules have different defect types, and EC has different relationships with

different defect types.

Module characteristics and defect types may also explain why differ-

ent results are reported by different studies in the literature. Different

applications or modules analysed may have different characteristics

and defect types. We recommend that researchers report characteris-

tics and defect types of modules in their EC studies to account for the

possible effect of the context in their results. We also recommend that

practitioners add EC measures to their metric suite for software design

evaluation and consider the characteristics and defect types of their

modules in their evaluation.

ACKNOWLEDGMENTS

We would like to thank the Scientific and Technological Research

Council of Turkey (TUBITAK) for its financial support (B.14.2.TBT.0.

06.01-214-115535). This research was supported in part by Bogazici

University Research Fund (7223) and the Turkish Academy of Sciences

and by Engineering and Physical Sciences Research Council (EPSRC)

of the UK (EP/L011751/1). Dr. Bener and Dr. Caglayan are supported

by NSERC Discovery grant 402003-2012. We would also like to thank

Thomas Shippey for his contribution on data cleaning and analysis.

REFERENCES

1. Lehman MM. Programs, life cycles, and laws of software evolution. Proc
IEEE. 1980;68(9):1060–1076.

2. Bennett KH, Rajlich VT. Software maintenance and evolution: a
roadmap. Proceedings of the Conference on the Future of Software Engi-
neering. ACM, Limerick, Ireland; 2000:73–87.

3. Mens T. Introduction and Roadmap: History and Challenges of Software
Evolution. Springer Berlin Heidelberg; 2008.

4. Visser J. Change is the constant. ERCIM News. 2012;2012(88)3–3.

5. Śliwerski J, Zimmermann T, Zeller A. When do changes induce
fixes?ACM sigsoft Software Engineering Notes. 2005;30(4):1–5.

6. Moser R, Pedrycz W, Succi G. A comparative analysis of the efficiency
of change metrics and static code attributes for defect prediction.
ACM/IEEE 30th Internatinal Conference on Software Engineering, 2008.
ICSE’ 08. IEEE, Leipzig, Germany; 2008:181–190.

7. Nagappan N, Zeller A, Zimmermann T, Herzig K, Murphy B. Change
bursts as defect predictors. 2010 IEEE 21st International Symposium on
Software Reliability Engineering (ISSRE), San Jose, CA, USA; November
2010:309–318.

8. Graves TL, Karr AF, Marron JS, Siy H. Predicting fault incidence using
software change history. IEEE Trans Softw Eng. 2000;26(7):653–661.

9. Nagappan N, Ball T. Use of relative code churn measures to pre-
dict system defect density. 27th International Conference on Software
Engineering, 2005. ICSE 2005. Proceedings. IEEE, St. Louis, MO, USA;
2005:284–292.

10. Shin Y, Bell R, Ostrand T, Weyuker E. Does calling structure information
improve the accuracy of fault prediction? 6th IEEE International Working
Conference on Mining Software Repositories, 2009. MSR ’09, Vancouver,
BC, Canada; May 2009:61–70.

11. Moser R, Pedrycz W, Succi G. A comparative analysis of the efficiency
of change metrics and static code attributes for defect prediction.
ACM/IEEE 30th International Conference on Software Engineering, 2008.
ICSE ’08, Leipzig, Germany; May 2008:181–190.

12. Briand LC, Daly JW, Wust JK. A unified framework for coupling
measurement in object-oriented systems. IEEE Trans Softw Eng.
1999;25(1):91–121.

13. Poshyvanyk D, Marcus A, Ferenc R, Gyimóthy T. Using information
retrieval based coupling measures for impact analysis. Empirical Softw
Eng. 2009;14(1):5–32.

14. Arisholm E, Briand LC, Foyen A. Dynamic coupling measurement for
object-oriented software. IEEE Trans Softw Eng. 2004;30(8):491–506.

15. Gall H, Hajek K, Jazayeri M. Detection of logical coupling based
on product release history. International Conference on Software
Maintenance, 1998. Proceedings. IEEE, Bethesda, MD, USA; 1998:
190–198.

16. Gall H, Jazayeri M, Krajewski J. CVS release history data for detecting
logical couplings. Sixth International Workshop on Principles of Software
Evolution, 2003. Proceedings. IEEE, Helsinki, Finland; 2003:13–23.

17. Breu S, Zimmermann T. Mining aspects from version history. 21st
IEEE/ACM International Conference on Automated Software Engineering,
2006. ASE’06. IEEE, Tokyo, Japan; 2006:221–230.

18. Eaddy M, Zimmermann T, Sherwood KD, et al. Do crosscutting con-
cerns cause defects? IEEE Trans Softw Eng. 2008;34(4):497–515.

19. Kirbas S, Sen A, Caglayan B, Bener A, Mahmutogullari R. The effect
of evolutionary coupling on software defects: an industrial case study
on a legacy system. Proceedings of the 8th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, ESEM ’14.
ACM, Torino, Italy; 2014:6:1–6:7.

20. Knab P, Pinzger M, Bernstein A. Predicting defect densities in source
code files with decision tree learners. Proceedings of the 2006 interna-
tional workshop on Mining software repositories. ACM, Shanghai, China;
2006:119–125.

21. Ball T, Kim JM, Porter AA, Siy HP. If your version control system could
talk. ICSE Workshop on Process Modelling and Empirical Studies of Software
Engineering, Boston, Massachusetts, USA; 1997.

22. Pinzger M, Gall H, Fischer M, Lanza M. Visualizing multiple evolution
metrics. Proceedings of the 2005 ACM symposium on Software visualiza-
tion. ACM, New York, NY, USA; 2005:67–75.

KIRBAS ET AL. 15 of 19

23. Beyer D, Hassan AE. Animated visualization of software history using
evolution storyboards. 13th Working Conference on Reverse Engineering,
2006. WCRE’06. IEEE, Benevento, Italy; 2006:199–210.

24. Ying AT, Murphy GC, Ng R, Chu-Carroll MC. Predicting source
code changes by mining change history. IEEE Trans Softw Eng.
2004;30(9):574–586.

25. Zimmermann T, Zeller A, Weissgerber P, Diehl S. Mining ver-
sion histories to guide software changes. IEEE Trans Softw Eng.
2005;31(6):429–445.

26. Adams B, Jiang ZM, Hassan AE. Identifying crosscutting concerns using
historical code changes. Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering, ICSE ’10, vol. 1. ACM, Cape Town,
South Africa; 2010:305–314.

27. Kirbas S, Hall T, Sen A. Evolutionary coupling measurement: making
sense of the current chaos. Sci Comput Program. 2016;135:4-19 Special
Issue on Advances in Software Measurement.

28. Steff M, Russo B. Co-evolution of logical couplings and commits for
defect estimation. 2012 9th IEEE Working Conference on Mining Software
Repositories (MSR). IEEE, Zurich, Switzerland; 2012:213–216.

29. Tantithamthavorn C, Ihara A, Matsumoto KI. Using co-change
histories to improve bug localization performance. 2013 14th ACIS
International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD). IEEE, Honolulu,
HI, USA; 2013:543–548.

30. D’Ambros M, Lanza M, Robbes R. On the relationship between change
coupling and software defects. 16th Working Conference on Reverse Engi-
neering, 2009. WCRE’09. IEEE, Lille, France; 2009:135–144.

31. Kouroshfar E. Studying the effect of co-change dispersion on soft-
ware quality. 2013 35th International Conference on Software Engineering
(ICSE). IEEE, San Francisco, CA, USA; 2013:1450–1452.

32. Kirbas S, Sen A, Caglayan B, Bener A. Değişiklik bağlaşımı ve
yazılım hataları ilişkisinin incelenmesi. Proceedings of the 8th Turkish
National Software Engineering Symposium, Güzelyurt, KKTC, Turkey;
September 8-10, 2014:419-430.

33. CASCM. Web page of ca software change manager. 2013.

34. SVN. Web page of apache subversion. 2015.

35. DMTF Configuration management database (cmdb) federation specifi-
cation - dsp0252 1.0.1. April 2010.

36. JIRA. Web page of jira; 2015.

37. Shapiro SS, Wilk MB. An analysis of variance test for normality (com-
plete samples). Biometrika. 1965:52(3-4):591–611.

38. Razali NM, Wah YB. Power comparisons of shapiro-wilk,
kolmogorov-smirnov, lilliefors and anderson-darling tests. J Stat Model
Analytics. 2011;2(1):21–33.

39. WG H. A new view of statistics SportScience; 2003.

40. Lu H, Zhou Y, Xu B, Leung H, Chen L. The ability of object-oriented met-
rics to predict change-proneness: a meta-analysis. Empirical Softw Eng.
2012;17:200–242.

41. SPSS. Web page of spss. 2s013.

42. Montgomery DC, Peck EA, Vining GG. Introduction to Linear Regression
Analysis, vol. 821: John Wiley & Sons, Hoboken, New Jersey; 2012 .

43. Conway ME. How do committees invent. Datamation. 1968;14(4):
28–31.

44. Briand LC, Wüst J, Daly JW, Porter DV. Exploring the relationships
between design measures and software quality in object-oriented sys-
tems. J Syst Softw. 2000;51(3):245–273.

45. Baldwin CY, Clark KB. Design Rules: The Power of Modularity. Cambridge,
Massachusetts, US, vol. 1: Mit Press; 2000.

46. Harrold MJ, Kolte P. A software metric system for module coupling.
J Syst Softw. 2003;20(3):295–308.

47. Hall T, Beecham S, Bowes D, Gray D, Counsell S. A systematic literature
review on fault prediction performance in software engineering. IEEE
Trans Softw Eng. 2012;38(6):1276–1304.

48. Sweller J. Cognitive load during problem solving: effects on learning.
Cognitive Sci. 1988;12(2):257–285.

49. Herzig K, Zeller A. The impact of tangled code changes. Proceedings
of the 10th Working Conference on Mining Software Repositories; San
Francisco, CA, USA, 2013:121–130.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the support-

ing information tab for this article.

How to cite this article: Kirbas S, Caglayan B, Hall T,

et al. The relationship between evolutionary coupling and

defects in large industrial software. J Softw Evol Proc.

2017;29:e1842. https://doi.org/10.1002/smr.1842

https://doi.org/10.1002/smr.1842
https://doi.org/10.1002/smr.1842

16 of 19 KIRBAS ET AL.

APPENDIX A

A.1 Defect root causes list and details

TABLE A1 Defect type list

Defect Root Causes Descriptions

1 Bad data defects caused by invalid / unexpected data at persistence storage (databases)

2 Wrong properties defects caused by properties set incorrectly for the application like timeout, thread pool size, etc.

3 Default value defects caused by the de defect values of the deployed application

4 Process failure defects caused by problems in software processes such as insufficient communication between teams

5 3rd party system defect defects caused by problems occurred at other systems running in the same environment

6 Database upgrade failure defects caused by incomplete/unsuccessful database schema updates / migrations

7 Data fix errata defects caused by incorrect scripts that are added to fix the data at persistence

storage as part of another defect

8 CRM defect defects caused by problems at Customer Relationship Management (CRM) system

9 Functionality not implemented yet defects caused by API methods or functionalities which are not implemented yet

or not deployed with the existing software version

10 Unexpected functionality defects experienced by users as an unexpected functionality such as response

failures and performance problems

11 Incorrect environment defects caused by non-satisfied prerequisites at the running environment of the application

12 Acceptance criteria impl defects caused by missing / incomplete / incorrect automated acceptance tests

13 Database disconnect/reconnect error defects caused by database (persistence storage) connection problems

14 Analysis defects caused by missing / incomplete/ incorrect requirements / user stories

15 Incorrect config defects caused by incorrect application configuration such as versions of feeds / services pointed

16 Infrastructure issues defects caused by application infrastructure problems such as exhausted server

swap memory or incorrect load balancing

17 Acceptance criteria defects caused by missing / incomplete / incorrect acceptance criteria

18 Missing or incomplete data migration defect s caused by incomplete / missing data migrations affecting a specific environment (test, qa, etc.)

19 User error defects or unexpected behaviour due to a invalid usage of the application

20 Not an issue defects which are not interpreted as defects (not supported scenario, no longer

required behaviour, already fixed, etc.)

21 Test implementation defects caused by missing / incomplete / incorrect automated (unit / integration) tests

22 Code implementation defects caused by the defects inserted during implementation of new features or defect fixing

KIRBAS ET AL. 17 of 19

A.1.1 Defect root causes-frequencies:

Code Implementation and Not An Issue were the 2 most popular defect types, ≈%28 and ≈%20, respectively. The following defect types followed

these 2 defect types: Incorrect Config (%5.2), Functionality Not Implemented Yet (%4.1), Bad Data (%3.7), 3rd Party System Defect (%3.4), Analysis

(%3.2), Default Value (%2.9), Unexpected Functionality (%2.3), Wrong Properties (%2.1), and Acceptance Criteria (%2.0).

A.2 Box plots

FIGURE A2 Box plots of evolutionary coupling measures for selected modules—files with defects vs files without defects: (1) represents files with
defects and (2) represents files without any defects. Y-axes of box plots are removed to prevent revealing sensitive company data

18 of 19 KIRBAS ET AL.

A.3 Correlations analysis of the main variables

TABLE A3 Spearman correlation results of the process metrics

NoECF NoECFMR NoD NoCommits

NoECFMR 𝜌= .99

p = .000

NoD 𝜌= .28 𝜌= .28

p = .000 p = .000

NoCommits 𝜌= 0.57 𝜌= 0.57 𝜌= .24

p = .00 p = .00 p = .00

NoDevs 𝜌= 0.57 𝜌= 0.57 𝜌= .24 𝜌= 0.99

p = .00 p = .00 p = .000 p = .00

A.4 Histogram for correlation between NoECFMR measure and number of defects

FIGURE A4 Company 1: histogram of Spearman 𝜌 values for correlation between EC (NoECFMR measure) and number of defects

KIRBAS ET AL. 19 of 19

A.5 Module size vs 𝜌 values of EC-defect correlation

FIGURE A3 Module Size vs 𝜌 values of EC-defect correlation. LOC indicates Lines of Code

TABLE A5 Spearman correlation results

LOC

rho 𝜌=− 0.218*

p = .005

Abbreviation: LOC indicates Lines of Code.

	UHRA full text deposit cover sheet pub version TEMPLATE.pdf
	Kirbas_et_al-2017-Journal_of_Software__Evolution_and_Process.pdf
	The relationship between evolutionary coupling and defects in large industrial software
	Abstract
	Introduction
	Related Work
	Evolutionary coupling
	Relationship between EC andxmltex	?> defects

	Methodology
	Study context
	Data collection
	Data sources
	Code repositories
	Defect repositories: Company 1 (Finance)
	Defect repository: Company 2 (Telecommunications)

	Descriptions ofxmltex	?> measures
	EC measures
	Size measures
	Defect types

	Analysis method
	Analysis method forxmltex	?> answering RQ1
	Analysis method forxmltex	?> answering RQ2

	Results
	RQ1: What is thexmltex	?> relationship between EC andxmltex	?> software defects? Correlation analysis results
	RQ1: What is thexmltex	?> relationship between EC andxmltex	?> software defects? Regression analysis results
	RQ2: What factors explain why thexmltex	?> relationship between EC andxmltex	?> software defects is different forxmltex	?> different modules? Box plot analysis results
	RQ2: What factors explain why thexmltex	?> relationship between EC andxmltex	?> software defects is different forxmltex	?> different modules? Defect type analysis results

	Discussion
	Threats toxmltex	?> Validity
	Construct validity
	Internal validity
	External validity

	Conclusions
	References

