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ABSTRACT 

This paper reviews the potential benefits that can be obtained by the implementation of data 

fusion in a multi-sensor environment. A thorough review of the commonly used data fusion 

frameworks is presented together with important factors that need to be considered during the 

development of an effective data fusion problem-solving strategy. A system-based approach  

is defined for the application of data fusion systems within engineering. Structured guidelines 

for users are proposed.  
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1 INTRODUCTION 

To ensure that systems are operating within defined conditions, measurements are taken 

which, when analysed, enable decisions to be made based on condition. These measurements 

can produce data that are either very similar, often from the same sensor, or completely 

different from different techniques. Experienced engineers and analysts have traditionally 

undertaken the analysis of this data. However, with the increased computer power and 

development of new and novel detection systems, the data produced needs to be handled in a 

robust and logical manner. As such computer systems have been developed that are capable 

of extracting meaningful information from the recorded data. The integration of data, 

recorded from a multiple sensor system, together with knowledge, is known as data fusion.  

 

Data fusion first appeared in the literature in the 1960s, as mathematical models for data 

manipulation. It was implemented in the US in the 1970s in the fields of robotics and 

defence. In 1986 the US Department of Defence established the Data Fusion Sub-Panel of the 

Joint Directors of Laboratories (JDL) to address some of the main issues in data fusion and 

chart the new field in an effort to unify the terminology and procedures. The present 

applications of data fusion span a wide range of areas: maintenance engineering
[1]

, robotics
[2]

, 

pattern recognition and radar tracking
[3]

, mine detection
[4] 

and other military applications
[5]

,
 

remote sensing
[6]

,
 
traffic control

[7],[8]
, aerospace systems

[9]
, law enforcement

[10]
, medicine, 

finance, metrology 
[11]

, and geo-science. 

 

Before undertaking a data fusion project a strategy needs to be established that can facilitate 

the solution of the problem in a robust and organised manner. Since the applications of data 

fusion are disparate, it is impossible to build a one-fits-all framework. Several generic 

platforms are described in the literature, which accommodate the application at hand. The 
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purpose of this paper is to characterise the common ground among the various data fusion 

frameworks available, and underline the importance of a robust strategy to analyse the data.  

 

Some success has been achieved in the use of neural networks for generic multi-parameter 

fusion, e.g. Taylor’s work on Kohonen networks 
[12]

, since the input vector, once normalised, 

takes in data from many sources, and the methodology fits many problems. The scope of this 

paper, however, is to examiner wider issues in the architecture, including frameworks, 

procedures and guidelines. 

 

2 MULTIPLE SENSOR ENVIRONMENTS  

Decisions regarding the condition of a system are seldom based upon the output of a single 

measurement parameter. More often, these decisions are made on the analysis of multiple 

parameters either from the same type of sensor or from a completely separate and different 

one. Thomopoulos
[13]

 gives a discussion regarding the advantages of multiple-sensor systems 

over single-sensor systems. This discussion states that there are numerous advantages in 

using multiple sensor systems including: 

 Higher signal-to-noise ratio; 

 Increased robustness and reliability in the evident of sensor failure; 

 Information regarding independent features in the system can be obtained; 

 Extended parameter coverage, rendering a more complete picture of the system; 

 Increased dimensionality of the measurement; 

 Improved resolution; 

 Reduced uncertainty; 

 Increased confidence; 
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 Increased hypothesis discrimination with the aid of more complete information 

arriving from multiple sensors; 

 Reduction in measurement time, and possibly costs - there is a trade off to consider in 

this issue. Thus, an optimal number of sensors to extract the required information 

from a system should be ideally pursued. 

 

The number of sensors used is an important factor in the cost equation in terms of time, 

money and effort and should be limited by the information gained. Therefore, there is a need 

to establish a sensor performance criterion in order to assess the reliability of the 

measurement system selected and, at the same time be able to assign weights of evidence in 

the data analysis process. Richardson and Mash
[14]

 describe an analytical proof, which states 

that in most situations decisions are more reliability made when there are more rather than 

less sensors. However, the definition and calculation of the optimal number of sensors 

required for a given system is complex and one that is beyond the scope of this paper.  

 

3 ESTABLISHING A MULTIPLE SENSOR SYSTEM 

The actual combination of sensors is dependant upon the requirements of the system. 

However, a number of things need to be considered when defining the type of fusion 

algorithm used and level at which fusion will occur. These include: 

 How are the sensors distributed? 

 What are the format, type and accuracy of the collected data? 

 What is the nature of the sensors used? 

 What is the resolution of the sensors used? 

 What is the computational capability at the sensors? 
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If identical sensors are used within the multi-sensor system then the data analysis process can 

be done with minimal effort. This can enhance the reliability of the results provided by the 

redundancy of the information. On the other hand, if different types of sensors are used then 

the information collected needs to be formatted into a common form and aligned in the time 

domain.  

 

Data can be combined either as it arrives into the system or at a defined level within the 

fusion process. The reliability of the data used within the fusion system will depend on the 

sensors available and the methodology employed for the fusion of the data. The selection of 

sensors as well as the number of sensors needed to increase the accuracy of the information 

transferred depends on the problem at hand. Different types of sensors can be used depending 

on the application and the output format sought. Table 1 gives a brief overview of sensors 

typically used in data fusion. Sensors are usually classified according to their physical nature. 

They are often based on the electromagnetic spectrum, sound waves, touch, odour, or the 

absolute position of the system.  
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4 FRAMEWORKS FOR THE IMPLEMENTATION OF DATA FUSION SYSTEMS 

A number of data fusion frameworks have been developed both within the research and 

commercial environments. These frameworks have been used in numerous projects to aid the 

development of fusion systems by establishing the most appropriate algorithm for the defined 

problem. 

 

4.1 JDL PROCESS MODEL 

One of the most widely used frameworks is the JDL Data Fusion Framework. The Joint 

Directors of Laboratories (JDL) data fusion sub-panel within the US Department of Defence 

originally defined this system in the early years of data fusion. This framework was 

developed to aid the developments in military applications. Llinas and Hall
[15]

 describe a 

number of levels at which data fusion could be undertaken: 

 Level 1, object refinement, attempts to locate and identify objects. For this purpose a 

global picture of the situation is reported by fusing the attributes of an object from 

multiple sources. The steps included at this stage are: Data alignment, prediction of 

Sensor system Output format 

Simple transducers Voltage signal time series 

Infra red Image  

Laser & camera Image 

Ladar Image 

Magnetic Resonance Image 

Optical  Image 

Particle image velocimetry (PIV) Image 

Radar Structured time series 

Sonar Structured time series 

Spectroscopy  Frequency spectrum 

Ultrasonics Structured time series 

X-Ray Image 

 

Table 1: Overview of commonly used sensor systems 
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entity’s attributes (i.e. position, speed, type of damage, alert status, etc.), association 

of data to entities, and refinement of entity’s identity. 

 Level 2, situation assessment, attempts to construct a picture from incomplete 

information provided by level 1, that is, to relate the reconstructed entity with an 

observed event (e.g. aircraft flying over hostile territory). 

 Level 3, threat assessment, interprets the results from level 2 in terms of the possible 

opportunities for operation. It analyses the advantages and disadvantages of taking 

one course of action over another.   

 

A process refinement, sometimes referred as Level 4, loops around these three levels to 

monitor performance, identify potential sources of information enhancement, and optimise 

allocation of sensors. Other ancillary support systems include a data management system for 

storage and retrieval of pre-processed data and human-computer interaction. The lay out of 

this model process is depicted in Figure 1.   
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The hierarchical distribution of the JDL model allows for the different levels to be broken 

down into sub-levels. In this manner, level 1 could be further divided into four processes: 

Data alignment, data association, object estimation, and object identity.  

 At the data alignment stage, the data is processed to attain a common spatial and 

time frame;  

 The data association could be further divided as association performed among data 

units of the same variable and between data units of different variables. At this stage 

the degree of proximity among the variables is measured; 

 Object estimation, on the other hand, could be sub-divided in terms of the processing 

approach taken (sequential or batch), parameter identification and estimate equations 

available, best-fit function criteria, and the optimisation of best-fit function approach 

sought. At this stage the data fusion centre estimates the object’s position, velocity, 

or attributes; 

 The object identity stage could be subdivided into feature extraction, identity 

declaration, and combination of identity declarations. At this stage a prediction of 

the object’s identity or classification is declared. 

Figure 1: The JDL data fusion framework 
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At each of these lowest sub-levels, the mapping of different types of techniques could be 

easily allocated, and selected according to the case at hand. 

Fusion can be performed on raw data in the fusion centre (centralised process) or on pre-

processed locally fused data (decentralised process). A hybrid data fusion system, consisting 

of the integration of both raw and pre-processed data, could also be considered. The 

combination of the first three JDL levels into a blackboard data structure has been proposed 

by Paradis
[16]

. This framework is further integrated with a process refinement via fusion 

agents, which act as fusion centres.  

 

4.2 THOMOPOULOS ARCHITECTURE 

Thomopoulos
[13] 

posed an architecture for data fusion consisting of three modules, each 

integrating data at different levels or modules to integrate the data, namely: 

 Signal level fusion, where data correlation takes place through learning due to the 

lack of a mathematical model describing the phenomenon being measured. 

 Evidence level fusion, where data is combined at different levels of inference based 

on a statistical model and the assessment required by the user (e.g. decision making 

or hypothesis testing). 

 Dynamics level fusion, where the fusion of data is done with the aid of an existing 

mathematical model. 

 

Depending upon the application, these levels of fusion can be implemented in a sequential 

manner or interchangeably. If continuous health monitoring of a machine is the objective, the 

combination of data could be done at the signal level, whilst higher order fusion (e.g. 

evidence fusion) would need to be applied if a wide range of decisions ought to be made from 
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the signals. Figure 2 gives a summary of the architecture. Thomopoulos stressed the point 

that any data fusion system should consider three essential criteria to achieve the desired 

performance, these are:  

 Monotonicity with respect to the fused information;  

 Monotonicity with respect to the costs involved;  

 Robustness with respect to any a-priori uncertainty.  

 

In addition, factors such as the delay in the transmission of data, channel errors, and other 

communication aspects, as well as the spatial/temporal co-alignment of the data should also 

be taken into account in the data fusion system.  

 

4.3 MULTI-SENSOR INTEGRATION FUSION MODEL 

Luo and Kay
[17] 

introduced a generic data fusion structure based on multi-sensor integration. 

In this system, data from various sources was combined within embedded fusion centres in a 

hierarchical manner. They made a clear distinction between multi-sensor integration and 

multi-sensor fusion. The former refers to the use of multiple sensor information to assist in a 

Signal 

Level 

Dynamics 

Level 

Evidence 

Level 
 

Sensors 
 

Database 

Figure 2:  Thomopoulos’s Data Fusion architecture 
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particular task, whilst the latter refers to any stage in the integration process where there is an 

actual combination of the data.  

 

Figure 3 shows a diagram of Luo and Kay’s framework to represent multi-sensor integration 

and fusion simultaneously. From this diagram, the data collected at the sensor level is 

transferred to the fusion centres, where the fusion process takes place, in a hierarchical and 

sequential manner. The entire framework shown in Figure 3 is a representation of multi-

sensor integration. A description of the measured phenomenon is obtained after the outputs of 

the n sensors are processed, with the aid of the information system whenever appropriate. 

The fusion process is facilitated with the incorporation of an information system, containing 

relevant databases and libraries. 

 

As the information is combined at the different fusion centres, the level of representation 

needed is increased from the raw data or signal level to more abstract symbolic 

representations of the data at the symbol level. Table 2 shows a comparison of the different 

fusion levels classified by the representation of information.  

Low 

High 

Level of representation 

Fusion 

Fusion 

Fusion 

X 
1 X 2 X 3 X N 

X 
1,2 

X 
1,2,3 

X 1,…,N 
Information System 

S1 S2 S3 Sn 

Symbol 

Signal 

Feature 

Pixel 

Figure 3:  Luo and Kay’s architecture
 [16]
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4.4 BEHAVIOURAL KNOWLEDGE BASED DATA FUSION MODEL 

Pau
[18]

 describes another data fusion framework based upon behavioural knowledge 

formalism. It can be seen from figure 4 that the framework consists of a number of basic 

stages that must be completed before the overall output is established. A feature vector is first 

extracted from the raw data. This vector is then aligned and associated to defined features. 

Fusion is then undertaken at the sensor attribute and data analysis levels. The final step is 

composed of a set of behavioural rules, which can be extracted in terms of the final 

representation of the fused output. Rather than assuming the blackboard architecture typically 

found in knowledge-based systems, this process model uses a hierarchical approach 

containing three levels of representation:  

 

 The lowest level contains, for each sensor, a vector space with coordinate 

dimensions and measured parameters.  

 The next level extracts relevant features from these vectors, and attaches labels to 

them. 

 The third level contains a set of formalisms about the world model that relate feature 

vectors to events.  

 

Characteristics Signal level Pixel level Feature level Symbol level 

Representation 

level of 

information 

Low Low Medium High 

Type of sensory 

information  

Multi-dimensional 

signal 

Multiple images Features extracted 

from signals/images 

Decision logic from 

signals/image 

Model of sensory 

information 

Random variable 

with noise 

Random process 

across the pixel 

Non-invariant form 

of features 

Symbol with degree 

of uncertainty 

 

Table 2:  Characteristics of data fusion levels
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Examples are given in the field of human detection and identification (e.g. intelligent 

buildings, security control, monitoring).  

 

4.5 WATERFALL MODEL 

Harris
[5]

 described another example of hierarchical architecture commonly used by the data 

fusion community, called the waterfall model. A representation of this model is shown in 

figure 5. It can be seen from this figure that the flow of data operates from the data level to 

the decision making level. The sensor system is continuously updated with feedback 

information arriving from the decision-making module. The feedback element advises the 

multi-sensor system on re-calibration, re-configuration and data gathering aspects.   

 

 

There are three levels of representation in the waterfall model, as shown in Figure 5:  

 At level 1, the raw data is properly transformed to provide the required information 

about the environment. To achieve this task, models of the sensors and, whenever 

S1 S2 S3 Sn 

Feature Extraction 

Association Fusion 

Sensor Attribute Fusion 

Analysis and Aggregation 

Representation 

Figure 4:  Pau’s sensor data fusion process 
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possible, of the measured phenomena are necessary. These models could be based 

on experimental analysis or on physical laws; 

 Level 2 is composed of feature extraction and fusion of these features. These 

processes are done to obtain a symbolic level of inference about the data. Their aim 

is to minimise the data content whilst maximising information delivered. The output 

of this level is a list of estimates with probabilities (and beliefs) associated with 

them; 

 Level 3 relates objects to events. Possible routes of action are assembled according 

to the information that has been gathered, the libraries and databases available, and 

the human interaction.  

  

Sensors

Pre-processing

Feature extraction

Situation assessment

Pattern processing

Decision making

Signal

Processed

signal

Features

Description of state

Controls

Interrogation

Level 1

Level 2

Level 3

Figure 5: Waterfall model 
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4.6 DISTRIBUTED BLACKBOARD DATA FUSION ARCHITECTURE 

Schoess and Castore
[9]

 describe an example of a distributed blackboard data fusion model. 

This model is shown in figure 6 where 2 sensors (s1 and s2) are connected to a number of 

transducers (T). These sensors also have a supervisor, which controls how conflicting sensor 

measurements are handled. This is often based upon confidence levels assigned to each 

sensor. The set of transducers are used to acquire as much information as possible from the 

physical system under analysis (temperature, pressure, etc.). The fusion algorithm produces a 

value, F, which is dependent upon the data available to the two sensors. Confidence in the 

measurements is assigned to each of the sensor readings by the supervisors. This method 

could be defined as a database that contains sensory information and operates the 

communication channels available among the knowledge sources.   

 

4.7 OMNIBUS DATA FUSION MODEL 

Bedworth and O’Brien
[19]

 describe another framework called the Omnibus model. This 

process model is a hybrid of three other models called the Boyd loop, Dasarathy, and 

Waterfall models. Figure 7 shows the general layout of this framework, which consists of 

four main modules. These modules are used to address the various tasks in data fusion and its 

functional objectives. The authors describe the Boyd control loop as an iterative process with 

S 1 

T 1 … T n 

Sensor Supervisor 1 

S 2 

T 1 … T n 

Sensor Supervisor 2 

IF  (( S 1 , T 1 )>( S 2 , T 2 )( C 1 > C 2 )) 

THEN   F =( S 1 ,  T 1 ) 

ELSE   F =( S 2 , T 2 ) 

Shared Memory 

Figure 6:  Distributed blackboard data fusion 
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four elements (observe, orient, decide, and act) operating in a close loop. On the other hand, 

the Dasarathy model consists on the three basic levels of data fusion: Data, feature, and 

decision. 

 

 

5. ISSUES IN THE CONSTRUCTION OF A MODEL PROCESS 

Before a robust data fusion strategy can be legitimately submitted, there is a need to 

underline some of the difficulties arising with the application of data fusion, as well as other 

features that could be incorporated into the proposed model process. Some of the difficulties 

arising in multi-sensor data fusion could be summarised as follows: 

 Diversity of sensors used: nature, synchronisation, location, and sensor outputs. 

 Diversity of data representation: image, spatial, statistical, and textual. 

 Registration: the information refers to the same entity. There is a need to check the 

consistency of the sensor measurements
[20]

. This can be improved by objectively 

eliminating fallacious data sets. 

 Calibration of the sensors when errors in the system operation occur. 

 Limitations in the operability of the sensors. 

  

Signal processing sensing   

  
  

  
  

Control Resource tasking   
  

Sensor data fusion   

Feature fusion   

  

Soft decision fusion   Hard decision fusion 

Orientate   Act   

Observe   

Decide   

Decision making 

Context processing 

Pattern recognition 

Feature extraction 

Sensor Management 

Figure 7:  Omnibus data fusion model 
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 Deficiencies in the statistical models of the sensors and limitations in the algorithm 

development. 

This is by no means an exhaustive list of problems and the practitioner needs to be aware of 

the inherent difficulties arising in any data acquisition and data analysis tasks. 

Some important architectural issues needed for the implementation of a process model for 

data fusion are: 

 Network configuration of sensors: parallel or serial multi-sensor suite, or a 

combination of the two. A parallel sensor arrangement is best suited for either 

identical or dissimilar sensors. Serial sensor configurations are very practical when 

one sensor delivers complementary information to the next. 

 Level of representation of the information: Although a three level system is 

commonly used, description of the fusion process based on input/output modes, as 

shown in Table 3, can aid in level selection, and adds flexibility to the JDL model
[21]

.  

 Feedback within the data fusion network of fused information with the aid of a sensor 

management suite. The suite would coordinate the data, handle information flow, and 

store the data in a database. 

Mode Example 

Data in-data out Fusion of multi-spectral data 

Feature in-feature out Fusion of image and non-image data 

Decision in-decision out When sensors are not compatible 

Data in-feature out Shape extraction 

Feature in-decision out Object recognition 

Data in-decision out Pattern recognition 

 

Table 3. Data Fusion in terms of the input/output provided [23]. 
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 The fusion of data can be done on either raw data (centralised process) or on pre-

processed locally fused data (decentralised process).  Hybrid data fusion, consisting of 

fusion of both raw and pre-processed data, can also be considered.  The centralised 

architecture (see figure 8) is computationally intensive, but it carries the advantage of 

developing a global view of the object from the original data. On the other hand a 

decentralised architecture (c.f. figure 4) is less demanding on computational 

capabilities at the cost of adding complexity to the data fusion process, since each 

sensor has a processing unit.  

 Other issues are related to these difficulties arising in data fusion, and the ability of 

the system to deal with them (i.e. sensor failures, corrupted data, compatibility of 

sensors). 

Incorporation of data mining techniques to facilitate the process of data fusion should also be 

taken into account
[22]

. Data mining searches, in a systematic manner, for general relationships 

among data units contained in large amounts of raw data. Application of data mining 

techniques (clustering, neural networks, etc.) will certainly aid in the positional fusion and 

object identity processes. 

Performance assessment is another factor that needs special consideration.  Oxenham et al. 

described a measure of the quality of the data fusion process based on the correlated 

enhancement of the output information
[23]

.  This sort of metric is determined by the 

Sensor 1 Sensor 2 Sensor n

FUSION CENTRE

DECISION

Information

Figure 8. Centralized architecture 
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uncertainty in the system:  a decrease in uncertainty yields an increase in information 

delivered. Kewley gives another measure of uncertainty, provided by the system, in terms of 

ambiguity and vagueness
[24]

. 

 

6 A SYSTEM BASED STRATEGY: ENGINEERING GUIDELINES 

The demands for data fusion processes in a wide range of applications have made possible 

the proliferation of data fusion models. Providing a well-structured way to identify the 

system under study, regardless of the nature of the data collected, would efficiently aid in the 

subsequent implementation of the most convenient data fusion model. This generalised 

approach would allocate the necessary resources to develop data fusion into systems, rather 

than a data fusion system. Successful projections of particular data fusion models have been 

presented in the literature.  

 

The system-based approach to data fusion proposed by the authors is shown in Figure 9. This 

framework was developed as part of a collaborative programme measuring flames within a 

harsh combustion environment
[25]

. It is not the authors’ intention to demonstrate applications 

in this paper, but to examine the reasoning of the architecture. In particular, it is an attempt to 

meet the requirements for engineering guidelines, the need for which was emphasised by 

Hall
[26]

. These are an important structure to link the terms of the practical problem with a 

multi-level algorithmic solution, which is essential to the user community.  

The defined framework uses three fundamental steps in the analysis of the system. These are 

identification, estimation, and validation. 
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6.1 IDENTIFICATION 

The identification process is aided, whenever appropriate, by the application of data mining 

techniques. At this stage, inference about the system takes place, interrogating the various 

factors used in the data fusion process: 

 What is the information gained by using data fusion? This would be the first question 

one ought to ask before characterising a problem. It is important to identify 

performance criteria to identify if the data fusion process is worth doing. 

 Understand the physical-chemical phenomenon under study: collect information 

available by fusing people’s knowledge about the problem and propose a model 

and/or state equations describing the phenomenon. If a model already exists, it should 

be used and understood. 

 Know all your data sources (e.g. sensors, databases, libraries). Especially, identify 

how the data have been collected, measuring techniques used, availability of 

processed data, and other issues regarding the fine tuning of the data sources, such as 

calibration, effects of human interaction, and missing data. 

Data Mining 

Identification 

Info gained by data fusion 

Know your data sources  
Understand the system 

Analyse the data 

Identify level of inference 

Estimation Validation 

Benchmark 

Performance 

assessment 

Administration 

Signal level 
Pixel level 

Feature level 

Symbol level 

Positional fusion 

Identity fusion 

Sources 

Data fusion centre 

Figure 9:  System-based data fusion architecture. 
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 Analyse the data in more depth before mathematical manipulation takes place. Issues 

to consider include:  

 checking and adjusting for the synchronisation of separate data streams; 

 identifying the true dimensionality, and trying ways to reduce it, without reducing 

the information content; 

 identifying whether the data is concentrated or sparse, and hence choosing 

appropriate methods for pre-processing;  

 checking the repeatability of measurements, and likely error; 

 examining the built-in redundancy of the sensor system to ensure a robust data 

collection process. 

 Identify the dominant uncertainty in the system and whether this can be corrected or 

minimised. Uncertainty could take three forms: 

 stochastic noise which cannot be corrected per se, but which could be 

compensated statistically; 

 systematic error which might be corrected by calibration or modelling; 

 unknowns, e.g. the transfer function between the real state and the measured state 

in a non-invasive measurement, or simply a missing parameter. 

 Identify the level at which fusion must take place. Usually, data collected from similar 

sensors can be combined at the lowest level of inference, while data arriving from 

dissimilar sensors must be fused at higher levels. Fusion at a feature level, or 

integration of knowledge for decision-making, always occurs at a higher level. 

 

6.2 ESTIMATION 

Once a thorough identification of the system has been made, the process continues with the 

estimation of the data at the appropriate level of inference. Two taxonomies have been 
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selected to select the data fusion algorithm in order to deal with a range of data sources, 

including time series and images:  

 A four level hierarchy consisting of signal, pixel, feature, and symbol levels.  

 At the signal and pixel levels of fusion, data correlation takes place due to the lack 

of a mathematical model describing the phenomenon being measured. The main 

difference between the two is the nature of the data analysed.  

 At the feature level fusion, features are extracted from the raw data and then 

combined.  

 At the symbol level fusion, the data is combined with the aid of a mathematical 

model and the analysis is based on statistical and logical inference.  

 A classical JDL model of data fusion including positional fusion. This will attempt 

to determine the location and kinematic information of an entity. Following on from 

this is will identity the level of fusion required to transform the raw data into a 

meaningful representation of the system.  

Both of these fusion processes complement each other, i.e. positional fusion could be 

exercised to facilitate the process of identity fusion, and vice versa. This taxonomy maps very 

closely the analytical processing needs found in the engineering community, e.g. positional 

fusion techniques can track down the location of the damage in a system, while identity 

fusion can aid in identifying the type of damage. 

  

After the core hierarchical architecture has been selected according to the type of data and 

application at hand, algorithm selection is made at each levels. The information obtained at 

the identification stage will aid in this task. 

 

6.3 VALIDATION 
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The processed data and the fused information is confirmed at the validation stage, where 

performance assessment and a benchmark procedure are implemented: 

 Assessment on the performance of the data fusion model can be made measuring the 

uncertainty content in the solution (e.g. a probability measure, false alarm rate, or 

classification of accuracy); 

 Build-up a benchmark procedure to improve the output results from the data fusion 

model, and to properly allocate the most optimal techniques. 

 

The information gained at the validation stage can be passed onto the administration function 

of the model. In this manner, knowledge can be transferred and proper adjustments can be 

made to the model (e.g. sensor calibration, fusion techniques, measured parameters). The 

framework can then be most optimally mapped onto the problem at hand, leading to a 

sensible and methodical way to extract meaningful information from the measured 

phenomenon. 
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7 CONCLUSIONS 

This paper reviewed some of the most widely used architectures for the implementation of 

data fusion solutions to problems from different industries, for example defence, maintenance 

and medical. Other issues, not normally treated in detail on the framework literature, are also 

considered. The methodology behind successful implementation of data fusion solutions is 

examined in detail. The main observations are that: 

 the architecture chosen is critical to successful data fusion; 

 stepwise implementation including identification, estimation and validation is 

important for consistency, and to avoid presumptive choices; 

 tailoring of the methodology, and bespoke choice of technology, based on gathered 

information and data from a variety of physical and human sources, is likely to lead to 

an optimal solution. 

 

The authors have developed a flexible systems-based approach to data fusion which is used 

for a range of dissimilar sensor inputs, including time series and image arrays. The 

methodology allows models and information to be combined, and does not pre-determine the 

fusion technology. Engineering guidelines have been proposed which assist the practitioner 

in information gathering and decision-making. The guidelines also propose methods for 

validating the solutions but these need further testing. 
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