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Abstract 

In the present study, simulations have been carried out to study the relationship between 

wintertime precipitations and the large scale global forcing (ENSO) using the tropical band 

version of Regional Climate Model (RegT-Band) for 5 El Niño and 4 La Niña years. The RegT-

Band model is integrated with the observed sea-surface temperature and lateral boundary 

conditions from National Center for Environmental Prediction (NCEP)-Department of Energy 

(DOE) reanalysis 2 (NCEP-DOE2) reanalysis. The model domain extends from 50° S to 50° N 

and covers the entire tropics at a grid spacing of 45 km, i.e. it includes lateral boundary forcing 

only at the southern and northern boundaries. The performance evaluation of the model in 

capturing the large scale fields followed by ENSO response with wintertime precipitation has 

been carried out by using model simulations against NCEP-DOE2 and Global Precipitation 

Climatology Project (GPCP) precipitation data. The analysis suggests that the model is able to 

reproduce the upper airfields and large-scale precipitation during wintertime, although the model 

has some systematic biases compared to the observations. A comparison of model-simulated 

precipitation with observed precipitation at 17 station locations has been carried out. It is noticed 

that the RegT-Band model simulations are able to bring out the observed features reasonably 

well. Therefore, this preliminary study indicates that the tropical band version of the regional 

climate model can be effectively used for the better understanding of the large-scale global 

forcings.  

Key words: Winter precipitation, ENSO, RegT-Band. 
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1. Introduction 

Precipitation over the north Indian region (230 N – 370 N and 600 E -900 E) during winter 

seasons (December, January and February - DJF) has profound socio-economic impacts. 

Precipitation during winter occurs in this region mainly due to passage of Western Disturbances 

(WDs) (Pisharoty and Desai 1956; Mooley 1957) across north India from the west to east (Dutta 

and Gupta 1967; Singh and Kumar 1977; Agnihotri and Singh 1982).  During winters, most of 

the precipitation is concentrated over this region in the form of rain in the plains and snow at 

higher altitudes (Mohanty et al. 1999).  

There is significant interannual variation of precipitation amount over north India during 

winter season. Apart from the WDs, the hydrodynamic and thermodynamic instabilities during 

winter season are major indicator for the precipitation over this region (Dimri 2013). The winter 

precipitation is major source over north India for water management and agricultural planning. 

Therefore, prior information on seasonal scale winter precipitation will be helpful for effective 

planning in various sectors. Many studies reported that summer monsoon precipitation 

influenced by large scale forcing of Hadley cell and El Nino- southern oscillation (ENSO) events 

(Kripalani et al. 1997; Ihara et al. 2007).  On the other hand, limited studies on the association of 

the winter precipitation and large-scale fields (Krishna Kumar et al. 1999; Mariotti 2007; Yadav 

et al. 2010; Kar and Rana 2013). Yadav et al. (2010) suggested that the WDs intensify over 

northwest India due to a baroclinic response to a large-scale sinking motion over the western 

Pacific during the warm phase of ENSO that causes an upper-level cyclonic circulation anomaly 

north of India and a low-level anti-cyclonic anomaly over southern and central India. Kar and 

Rana (2013) found that the two dominant modes of interannual variability of zonal wind at 200 



 
 
 

 

3 

hPa of Northern Hemisphere winter were similar to that of ENSO and North Atlantic oscillation 

(NAO)/ Arctic Oscillation (AO) patterns respectively. The correlation of northwest India and 

adjoining (NWIA) precipitation with the ENSO mode is larger than its correlation with the NAO 

or AO modes.  

Therefore, a detail investigation with observational and numerical studies to understand 

the large-scale effects/teleconnections of ENSO during winter season over north India will 

provide insight into the predictability of precipitation over this region. In view of the relative 

absence of studies exploring the forces driving winter precipitation, the present study examines 

this precipitation regime as a response to the well-known determining factors to enhance 

forecasting abilities.  

 Tiwari et al. (2014) have examined the performance of Regional climate model version 4 

(RegCM4) in simulating the wintertime circulation and precipitation patterns over northwest 

India with reasonable success. In such models for the region, impacts of SST variability 

occurring elsewhere (outside the domain) are included through lateral boundary conditions. The 

tropical band version of RegCM (Coppola et al. 2012) (hereafter referred to as RegT-Band) 

gives the possibility to run the model on global scale. Till now, only a few regional climate 

models (RCMs) have been run in such a configuration (Tulich et al. 2010; Murthi et al. 2011; 

Ray et al. 2011). RegT-Band offers the opportunity to explore a range of processes related to 

tropical climate interactions and to assess the performance of given physics parameterizations in 

a wide range of climate contexts (Ju and Slingo 1995; Giannini et al. 2003; Rauscher et al. 2010; 

Mariotti et al. 2011). In addition, in a tropical band configuration, the domain of the RCM model 

is large in terms of its longitudinal extent. There is no requirement of lateral boundary conditions 
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along zonal direction. Therefore, the processes within the domain (i.e. in the area of interest) are 

less strongly influenced by the lateral boundary conditions (LBCs), however this does not 

happen in a typical limited area configuration. The RegT-Band model performance reflects its 

ability to simulate large-scale circulations and processes not strongly forced by the lateral 

meteorological boundary conditions, as in traditional RCM experiments. In this regard, the 

tropical band RCM might behave more as a global model than as a regional one. On the other 

hand, the comparison with results from corresponding traditional RCM experiments over 

domains encompassed by the tropical band can provide useful information on the effects of the 

lateral boundary forcing in limited area domains. It should be stressed that the RegCM system of 

this kind is not used till now for studying the role of ENSO on winter precipitation over 

northwest India, so can provide information if this model is able to simulate this relationship. As 

the RegT-Band model covers entire tropical domain, examination of its skill in simulating the 

role of ENSO on the wintertime precipitation over north India becomes important in the context 

of mechanism proposed by Yadav et al. (2010) and Kar and Rana (2013). Therefore, for this 

study, wintertime simulations to diagnose ENSO influences using RegT-Band model have been 

chosen.  

In following paragraphs, Section 2 illustrates data and methodology used in the present 

study followed by results and discussion in Section 3. Finally, Section 4 brings out salient 

features out of this study under conclusions.  

 

2. Description of the Model, data used and Methodology 

2.1 Model: The regional climate model (RegCM4, version 4.1.1), developed at the International 
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Centre for Theoretical Physics, Italy, consists of hydrostatic dynamical core similar to the 

version of the Mesoscale Model (MM5) (Grell et al. 1994). The model has 18 vertical sigma 

levels in which five levels are in the lower troposphere (Giorgi et al. 1989; Pal et al. 2007) in its 

standard configuration. It is a hydrostatic, terrain following model with state-of-the-art physical 

parameterization schemes. The model can be configured by choosing physics options from 

among multiple schemes. The details of the other configurations including physical 

parameterization schemes in the model can be found in Pal et al. (2007). For the present 

experiment we use the following model configuration, which is given in Table 1.  

 The tropical band configuration (Coppola et al. 2012) implemented in the present work 

uses a Mercator projection horizontal grid with the grid interval: 

                                                              Rx =
2pr

n
                   ……………….(i) 

where n is the number of grid points in an east-west direction and r is the radius of the Earth. 

With this choice of Rx, the end points at the eastern and western boundaries exactly overlap; 

therefore, if periodic lateral boundary conditions are used in an east-west direction, a continuous 

field is obtained for a tropical band encompassing the entire Earth’s circumference. For our 

experiments we have chosen a grid interval of 45 km. The domain with control height of the 

model is shown in Figure 1.   

 

2.2 Data and Methodology: In this study, model forcing conditions at the northern and southern 

boundaries are obtained from the NCEP-DOE2 reanalysis (Kanamitsu et al. 2002) available at 

2.5°×2.5° resolution (hereafter referred to as NNRP2), SSTs at the lower boundary are taken 
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from National Oceanic and Atmospheric Administration Optimal Interpolation SST (version 2, 

NOAA_OISST_V2) available at 1°×1° resolution (Reynolds et al. 2002) and the geophysical 

parameters are provided by United States of Geophysical Survey (USGS) at 10’ resolution. 

Observed data used for the model validation include the Global Precipitation Climatology 

Project daily precipitation dataset (GPCP, 2.5° x 2.5° resolution; Alder et al. 2003), Tropical 

Rainfall Measuring Mission (TRMM, 0.25° x 0.25° resolution daily precipitation product; 

Kummerow et al. 2001, Huffman et al. 2007), India Meteorological Department (IMD) gridded 

(1×1) precipitation data (Rajeevan et al. 2006) and CRU (Harris et al. 2013) surface air 

temperatures. Observed seasonal precipitation data obtained from Snow and Avalanche Study 

Establishment (SASE) for seventeen stations over the western Himalaya (Fig. 18) is also used to 

validate the model results at station locations. In addition to the above, global reanalysis data 

have been used in the present study. These are the NNRP2 atmospheric and surface fields, ERA-

Interim reanalysis (Dee et al. 2011). 

 Composite analysis and correlation maps are prepared to understand the variability of 

various meteorological parameters. We have categorized, warm and cold phases of ENSO for the 

period 1983 to 2010 based on Standard deviation. i.e., above (below) one standard deviation of 

SOI index over NINO 3.4 region is considered as El Nino (La Nina) years. Based on 

www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml, five El Niño years (1987-88, 

1991-92, 1997-98, 2002-03, 2009-10) and four La Niña years (1988-89, 1998-99, 2000-01, 

2007-08) are considered for preparing a set of two composites for comparisons. Therefore, in 

total, 9 years (5 El Niño years and 4 La Niña years) of model simulations have been used for the 

analysis in the present study. An effort has been made to explore the linkages between global 
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SST and observed area averaged winter rainfall over north India by using the composite maps for 

the El Nino and La Nina years. The SST data used is obtained from NOAA ERSSTv3b extended 

reconstructed monthly sea-surface temperature dataset for the whole globe (Smith et al. 2008). 

The model is integrated from November 1st to February 28th (29th for leap year) for each 

ENSO year. Model simulations from December to February are used in this study after 

considering the simulations of the first month as spin up time of the model. The model 

integration is carried out at horizontal resolution of 45 km.  

 

3. Results and Discussions 

The results obtained from the RegT-Band model simulations are analyzed in two broad 

sections. In the first section, upper air circulation features and precipitation distribution are 

described for the tropics while in the next section the above said feature are analyzed for the  

north India. For the sake of brevity, composite plots of upper air fields and precipitation from the 

RegT-Band simulations are presented here. The Student’s t-test is applied for statitical 

significance  for differences in composite plots, and the critical value is 2.8 at 10% significance 

level.  

 

3.1 Circulation features 

The RegT-Band model simulated results have been analyzed to examine the upper air 

circulation patterns for El Niño and La Niña years.  For this purpose, the model simulated upper 

air wind and precipitation fields are compared with NNRP2 reanalysis and IMD datasets. The 

seasonal mean (DJF) composite wind (El Niño, La Niña and El Niño minus La Niña) at 500 hPa 
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from verification analysis (NNRP2) and model simulations are shown in Figure 2 and 3 

respectively. The composite plots shows that in the case of El Niño and La Niña years (Fig. 2), 

strong westerly winds spread from Iran to the Himalayan region. However, the spatial extent and 

the wind strength is less in the La Niña years. The difference of composite winds for of El Niño 

and La Niña years show a cyclonic flow near 1600 E - 1200 W/ 250 N - 450 N. RegT-Band 

simulated composite wind fields are shown in Fig. 3. The figure shows that in case of El Niño 

and La Niña years, the model is able to depict the observed features up to certain extent, however 

the simulated wind fields have more spatial extent and higher strength. In the case of El Niño 

minus La Niña year composite there is a cyclonic flow but it is shifted eastward and has the less 

strength. From the difference plots in Fig. 2 (c) & 3 (c), it is seen that, when this cyclonic flow is 

hindered by the Himalayas, it intensifies precipitation over the hilly regions and adjoining plains. 

 

3.2 Spatial distribution of precipitation  

In order to understand the skill of the RegT-Band model in simulating precipitation 

distribution and intensity, seasonal mean composite precipitation (DJF) for El Niño and La Niña 

years have been analyzed and shown in figure 4 and 5. A precipitation band can be seen in Fig. 4 

(a) along equator and 150 S with maximum intensity between 1700 E - 1300 W in observation. 

This observed feature is brought out well by the model, Fig. 4 (b), though with lower intensity.  

The difference between the model simulated and observed precipitation is shown in Fig. 4 (c). It 

is seen that there is a positive bias over the Indian Ocean and along the equator. Observed 

seasonal (DJF) mean composite precipitation for La Niña years shown in Fig 5 (a) indicate that 

the precipitation band is between the equator and 150 S and its intensity is more over the Indian 
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Ocean, South African and American region. The RegT-Band model simulated precipitation is 

shown in the Fig. 5 (b). It is seen that the model is able to delineate this observed feature 

reasonably well but with lesser spatial extent of precipitation. It is also seen that there is a 

northward shift in the precipitation along eastern coast of India and more intense precipitation 

over southern regions of Africa in the model compared to the observation. The difference 

between model simulated precipitation and observation in Fig. 5 (c) shows that there is a positive 

bias over the Indian Ocean and southeastern parts of Africa. 

Fig. 6 depicts the observed and model simulated composite seasonal mean precipitation 

difference (El Niño minus La Niña years). This difference is positive in the Niño region 

especially over the Niño 4 and 3.4 regions.  Over the Indian Ocean region, the difference is 

negative. The RegT-Band simulation (Fig. 6b) is able to delineate some of the observed 

precipitation features spatially however the strength is very less. The model is also not able to 

bring out the precipitation features over the Niño regions, which is a major flaw of the model. 

Overall, it is noticed from the difference composites for the season (DJF) that there is an increase 

in rainfall (~ 2 mm day-1) over north India and southeastern parts of Africa due to ENSO 

forcing. 

In order to examine how well did the distribution of model simulated precipitation values 

correspond to the distribution of observed values, a box-whisker plot has been drawn for global 

as well as for domain of interest for El Niño and La Niña years and shown in Fig. 7. The boxes 

indicate the 25th to 75th percentiles of the distribution, while the whiskers show the full width of 

the distribution. In case of both El Niño and La Niña years for global and region-specific 
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precipitation, it can be noticed that the distribution of the model-simulated values are comparable 

to the distribution of observed values, however, they are on higher side.  

 

3.3 Tropical circulation from observation and model simulations 

In lower latitudes the strong driving forces of the general circulation are large-scale tropical 

circulations such as Walker and Hadley circulations (Tanaka et. al. 2004; Pillai 2008). Therefore, 

to assess the model capability in capturing the equatorial east-west Walker circulation, we have 

plotted the vertical profile of u (zonal wind) and vertical velocity (omega) averaged over 100 S –

100 N. Fig. 8 (a) shows the observed Walker cell in which upward motion is seen over the Indian 

Ocean. Fig. 8 (b) shows the model simulated Walker cell in which the strength of the rising 

motion in the western pacific is more and the region of rising motion is extending up to date line 

at lower levels as compared to observation. To assess the models capability in capturing the 

north-south Hadley circulation the meridional wind (vertical profile of v) and vertical velocity 

(omega) averaged over 280 E - 1280 E is shown in Fig. 9. The rising motion is observed over 

north of the equator and sinking motion between 250 N to 400 N. The model is able to simulate 

the rising and sinking motion reasonably well. However the strength of ascending and 

descending cells is less than that is observed. 

Further, Fig. 10 compares the zonally averaged surface air temperature for the El Niño year 

(2009-10) between latitudinal belt of 500S -500N in CRU, ERA-Interim and RegT-Band 

simulation. For the seasonal mean of DJF, the RegT-Band model shows good agreement with 

observations north of 400N, while it underestimates the surface air temperature by about 30C 

between 300S and 250N compared to CRU and ERA-Interim observations. Similar behavior is 
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found for composite La Niña years (Figure not shown), with good agreement with observations 

north of 300N and an underestimation in rest of the region. 

 

3.4 Circulation over the domain of interest 

3.4.1 Zonal and meridional wind 

The composite vertical structures of the seasonal mean (DJF) zonal and meridional winds 

for the El Niño and La Niña years are shown in Fig. 11 and 12 respectively. Zonal and 

meridional components of wind have been averaged over the longitudinal belt from 28º E to 128º 

E. The latitudinal cross-section of the sectorial (28° E - 128° E) zonal and meridional wind from 

NNRP2, RegT-Band and RegT-Band minus observed experiments for El Niño and La Niña years 

are shown in Figure 11. It is seen that the upper air westerly jet stream (WJS) is well represented 

in the RegT-Band simulation. However, the area with core WJS in model simulation is shifted 

northward compared to the verification analysis in case of El Niño years. Sectorial (averaged 

over 28º E -128º E) meridional composite wind for El Niño years is also shown in Figure 11 

(right panels). It reveals that the meridional winds at upper pressure levels (between 200-100 

hPa) are stronger in the verification analysis as compared to the RegT-Band simulation. The 

locations of the stronger meridional winds are shifted northward in model simulation as 

compared to the verification analysis. Moreover, the strength is weaker in the case of model 

simulated meridional composite winds. The difference between the model and observation for 

zonal and meridional composite winds for El Niño years is shown in Fig. 11 (c & f). It is seen 

that the sectorial composite of zonal wind shows stronger winds (> 8 m sec-1) at upper levels 

(above 400 hPa) from 350 N - 450 N. The difference between RegT-Band and observation in the 
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case of meridional composite winds in Fig. 11 (f) shows less strength compared to the sectorial 

composite of zonal wind at upper pressure levels.  

 The sectorial composite of zonal and meridional winds for La Niña years is shown in 

Fig. 12. The diagram indicates that the upper air westerly jet stream (WJS) is well represented in 

RegT-Band simulation, however, the area with core WJS in RegT-Band simulation is shifted 

northward about 3º compared to the verification analysis. The model simulated WJS are also 

stronger compared to the observation. Sectorial (averaged over 28º E - 128º E) meridional 

composite wind for La Niña years is shown in Figure 12 (right panels). It reveals that the 

meridional winds at upper levels (between 200-100 hPa) are stronger in the verification analysis 

compared to the RegT-Band simulation. The locations of the areas with stronger meridional 

winds are shifted northward in RegT-Band simulation as compared to the analysis, however, the 

strength is less in RegT-Band simulated meridional composite wind. The difference between 

RegT-Band and verification analysis for zonal and meridional composite wind for La Niña years 

is shown in Fig. 12 (c & f). In case of difference plot between RegT-Band and observation it is 

seen that the sectorial composite of zonal wind shows stronger winds (> 6 m sec-1) at upper 

levels (above 400 hPa) from 370 N - 450 N. Overall, the spatial pattern and intensity of the zonal 

as well as meridional composite winds are represented well by the RegT-Band simulations. 

 

3.4.2 Vertical structure of the temperature 

A composite analysis of the vertical structures of the sectorial (28º E - 128º E) seasonal 

mean (DJF) temperature has been made for the El Niño and La Niña years (Fig. 13). It is seen 

that during the El Niño and La Niña years, the RegT-Band is able to simulate the observed 
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temperature pattern well. The difference between RegT-Band and verification analysis for 

composite temperature for El Niño and La Niña years is shown in Fig. 13 (c & f). It is seen that 

the temperature is higher (> 2 0K) at upper levels (between 400- 200 hPa) from 290 N - 420 N. 

The difference between RegT-Band and observation in the case of composite temperature for La 

Niña year’s shows higher values compared to the composite El Niño years at upper levels that 

extends from 250 N - 420 N. Overall, the spatial pattern and intensity of the sectorial composite 

temperature for El Niño and La Niña years is represented well by the RegT-Band simulations. 

 

3.5 Precipitation over north India 

 In order to understand the skill of RegT-Band model in simulating the seasonal mean 

precipitation distribution and intensity over the north India, composite analysis has been carried 

out for El Niño and La Niña years (Fig. 14). The distribution and intensity of simulated 

precipitation is well represented by the RegT-Band model over north India for the composite El 

Niño and La Niña years. During El Niño years, it is noticed that the model is able to delineate the 

observed features up to certain extent, however, the spatial extent and amount is higher (> 5 mm 

day-1) compared to the observations. On the other hand, for the La Niña years, the RegT-band 

simulated precipitation agrees well with the observations. However, the model simulates higher 

amount of precipitation (> 2 mm day-1) compared to that in the observations. 

The difference in RegT-Band  simulated and observed precipitation is shown in Fig. 14 (c 

& f) for composite El Niño and La Niña years. In the case of El Niño years, a higher 

precipitation difference (> 3 mm day-1) is seen compared to the La Niña years over the north 

India. This analysis indicates that during El Niño years, this region receives more precipitation 



 
 
 

 

14 

compared to La Niña years. This result agrees with observational studies of Yadav et al. (2009). 

Overall, the model has the capability to reproduce the observed features; however, the intensity 

of the simulated precipitation is on higher side. This may be due to strengthening of circulation 

associated with ENSO in the model simulations, and hence enhanced precipitation during the 

winter. Fig. 15 & 16 present the Hovmoller precipitation diagram based on daily (DJF) 

precipitation for the El Niño year (2009-10) and La Niña year (2000-01) over north India from 

TRMM and RegT-Band model simulations. This diagram illustrates the evolution of zonal cross-

section of daily precipitation on intraseasonal time scale. It can be noticed in the Fig. 15 (a) that 

over north India, the precipitation band moves southward from about 30°-25°N till December, 

where it resides until mid-January and then starts moving northward. The RegT-Band (Fig. 15 b) 

clearly shows an overestimation of precipitation between mid-December and first week of 

February at low latitudes i.e. south of 30°N. Further, during the La Niña year, the RegT-Band 

model simulated precipitation band (Fig. 16 b) does reach up to 23°N during the mid-January, 

which is not seen in TRMM observations. Overall, the results indicate that the RegT-Band 

captures the daily evolution of the DJF precipitation over north India; however, it results in over 

estimation of precipitation compared to observations. This may be due to representation of 

convection as well as surface process in the model.  Therefore, more testing is required to assess 

which model options and parameters can improve this problem. 

Furthermore, to find out the teleconnection of north India winter precipitation to the zonal 

position of the El Nino warming, we have calculated the difference of observed SST for El Niño 

and La Niña years. Fig. 17 shows the core of maximum SST between 140°W and 110°W. The 
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other positive anomalies areas are northwest and south-central tropical Indian Ocean. This 

composite analysis confirms that whenever there is warmer SST, more precipitation is observed 

over the north India (Fig. 14).   

 

3.6 Validation against station observations  

 In this section, the RegT-Band simulated precipitation is validated against the 

observations over seventeen stations located over the Indian part of the Western Himalayas 

(IWH) region (Fig. 18). These observational datasets are made available by Snow and Avalanche 

Study Establishment (SASE). To validate the model gridded precipitation dataset to station level, 

a bi-linear interpolation method is applied to model data to obtain precipitation at station levels. 

Station-wise seasonal mean precipitation obtained from observations and model simulations are 

shown in Table 2. It is seen from the Table that performance of the RegT-Band model in 

simulating precipitation in El Niño and La Niña years is reasonably good and closer to 

observations. However, for most of the stations, the model shows a wet bias. 

 Based on the results of Table 2, the performance of the model has been evaluated through 

analyzing the variation in precipitation in El Niño and La Niña years. For this purpose, phase 

synchronizing events (PSE) have been computed. PSEs have been calculated using model output 

and observation for all the 17 stations of the SASE in the region. The PSE method matches the 

sign (positive or negative) of the precipitation difference (composite of El Niño minus composite 

of La Niña years) obtained from observations (data from SASE stations) and model simulations 

to evaluate the performance of the model.  
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The computation of PSE is as follows: 

                                      PSE =
E -E '

E

æ

è
ç

ö

ø
÷´100                  …………………..(ii)     

where E is the total number of events and E' is the number of events in model simulation that 

have opposite in sign as compared to observations (out of phase). Thus, PSE=100 for model 

results means that the sign of model anomalies (here the difference from composite of El Niño 

and La Niña years) is same as in the observations for all the stations and PSE=0 when none of 

the model results have a similar sign (i.e. either positive or negative both in model and 

observation) with observations. Using the results of Table 2, it is seen that the PSE value is the 

same (with 94%) for composite (i.e., model output matches the sign of with observations 94% 

times) of El Niño minus La Niña years. Therefore, it can be concluded that RegT-Band model 

simulations are able to represent the precipitation pattern and intensity with high fidelity.  

 

4. Conclusions 

 The skill of RegT-Band model at horizontal grid spacing of 45 km in simulating the 

large-scale effects/teleconnections of ENSO has been studied in the present work. For this, an 

assessment of capability of the model in simulating the large-scale fields (e.g. upper air wind and 

precipitation) for a composite of five El Niño and four La Niña years has been made. The ability 

of the RegT-Band model in capturing the wintertime precipitation over the north India has also 

been examined. The major findings, advantages of RegT-Band simulations and future scope of 

the study are as follows: 
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 The analysis presented here indicates that the RegT-Band model is able to reproduce the 

basic characteristics of the upper airfields and large-scale precipitation during wintertime, 

although with some systematic biases as compared to the observations. In the RegT-Band 

model it is found that there is a consistency between circulation and precipitation. 

 RegT-Band model simulations are able to delineate the observed features of winds, 

temperature and precipitation over north India reasonably well. However, the 

precipitation amount simulated by the model is higher than the observed amount.   

 To understand the model performance in simulating the precipitation at station locations 

over the Indian part of western Himalayas (IWH) region, phase synchronizing event 

(PSE) has been computed and it has been found that the RegT-Band model simulations 

are able to bring out the observed features with high fidelity for the El Niño and La Niña 

years.  

 The main advantage of RegT-Band simulation is that within the computational domain, 

the impact of LBC is not large over the region of interest. Entire tropical circulation can 

also be simulated including the direct impact of ENSO and other tropical processes which 

can’t be done in other Regional Models.  

Although, for the present work, a particular set of El Niño and La Niña years has been 

selected, the results are encouraging for the use of the RegT-Band configuration for tropical 

climate process studies. In our future work, it is proposed to take up the issue of impact of ENSO 

on Indian Summer Monsoon Rainfall (ISMR) by using RegT-Band configuration. 
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                             Figure 1: The domian with control height (in m) of the model. 
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Figure 2: Observed seasonal mean composite wind (in m sec-1) at 500 hPa for DJF in (a) El Niño 

(b) La Niña and (c) El Niño minus La Niña years. 
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Figure 3: RegT-Band simualted seasonal mean composite wind (in m sec-1) at 500 hPa for DJF in 

(a) El Niño (b) La Niña and (c) El Niño minus La Niña years. 
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Figure 4: Seasonal mean composite (El Niño years) precipitation (in mm day-1) for DJF in (a) 

GPCP (b) RegT-Band and (c) difference between RegT-Band and GPCP. 
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Figure 5: Seasonal mean composite (La Niña years) precipitation (in mm day-1) for DJF in (a) 

GPCP (b) RegT-Band and (c) difference between RegT-Band and GPCP. 
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Figure 6: Seasonal mean composite (El Niño minus La Niña years) precipitation difference (in mm 

day-1) for DJF in (a) GPCP and (b) RegT-Band. 
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Figure 7: Distributions of observed and RegT-Band model simulated precipitation (mm/day) for El 

Niño and La Niña years. 
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Figure 8: Composite (El Niño years) of Omega (vertical velocity) and zonal wind at pressure 

levels 1000 to 100 hPa for (a) Observation, (b) RegT-Band during DJF to show the 

Walker circulation represented by zonal wind and omega (multiplied by 600) averaged 

between 10° S and 10° N.  
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Figure 9: Composite (El Niño years) of Omega (vertical velocity) and meridional wind at pressure 

levels 1000 to 100 hPa for (a) Observation, (b) RegT-Band during DJF to show the 

Hadley circulation represented by meridional wind and omega (multiplied by 600) 

averaged between 28°E and 128°E. 
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   Figure 10. Seasonal mean (DJF) zonally averaged surface air temperature for composite El Niño 

years. 
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Figure 11:  Sectorial (28ºE-128ºE) zonal seasonal mean composite wind (in m sec-1) (a) Observed, 

(b) RegT-Band, (c) RegT-Band minus observed precipitation; Sectorial (28ºE-128ºE) 

meridional seasonal mean composite wind (in m sec-1) (d) Observed, (e) RegT-Band and 

(f) RegT-Band minus observed precipitation for El Niño years. 
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Figure 12: Sectorial (28ºE-128ºE) zonal seasonal mean composite wind (in m sec-1) (a) Observed, 

(b) RegT-Band, (c) RegT-Band minus observed precipitation; Sectorial (28ºE-128ºE) 

meridional seasonal mean composite wind (in m sec-1) (d) Observed, (e) RegT-Band and 

(f) RegT-Band minus observed precipitation for La Niña years. 
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Figure 13: Sectorial (28ºE-128ºE) zonal seasonal mean composite temperature (in 0K) (a) Observed, 

(b) RegT-Band, (c) RegT-Band minus observed precipitation for El Niño years; (d) 

Observed, (e) RegT-Band and (f) RegT-Band minus observed precipitation for La Niña 

years. 
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      Figure 14: Seasonal mean composite precipitation (in mm day-1) (a) Observed, (b) RegT-Band, 

(c) RegT-Band minus observed precipitation for El Niño years; (d) Observed, (e) 

RegT-Band and (f) RegT-Band minus observed precipitation for La Niña years. 
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      Figure 15. Hovmoller precipitation diagram for the El Niño year (2009-10) over the north 

India for (a) TRMM and  (b) RegT-Band model. 
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Figure 16. Hovmoller precipitation diagram for the La Niña year (2000-01) over the north India 

for (a) TRMM and  (b) RegT-Band model. 
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  Figure 17: Seasonal mean (DJF) composite (El Niño minus La Niña years) for observed SST (in 

0C).   
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     Figure 18: Seventeen station locations obtained from Snow and Avalanche Stud Establishment 

(SASE). These station observations of precipitation are used for validation of model 

results. 
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     Table 1: Configuration of RegT-Band model used in the present study 

Dynamics Hydrostatics 

Main Prognostic Variables  u, v, t, q and p 

Model domain 50˚S – 50˚N; 180˚W – 180˚E; Res.= 45 km 

Map projection  Mercator  

Vertical co-ordinate  Terrain-following sigma co-ordinate  

Cumulus convection Grell with Fritch & Chappell closure (Grell 1993; 

Fritch and Chappell 1980) 

Land surface processes CLM3.5 (Oleson et al. 2008; Tawfik and Steiner 

2011) 

Planetary boundary layer Holtslag et al. (1990) 

Radiation parameterization  NCAR/CCM3 radiation scheme (Kiehl et al. 

1996) 
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Table 2: Seasonal Mean precipitation over seventeen (17) stations obtained from SASE 

observation and RegT-Band simulations for El Nino and La Nina years.  

   

Station Name   

(number) 

      

Composite El Niño 

   

Composite La Niña 

SASE Model SASE Model 

1. Bahadur  2.98 4.16 2.31 2.98 

2. Banihal  5.00 5.71 2.78 3.41 

3. Bhang 4.75 5.69 3.83 4.37 

4. Dhundi  8.15 9.87 5.70 7.18 

5. Dras 2.33 3.81 1.60 3.41 

6. Gulmarg 4.71 6.39 4.27 6.12 

7. H-Taj 7.36 8.12 4.57 5.17 

8. Kanzalwan 5.50 6.86 5.77 4.61 

9. Kumar 1.55 3.74 0.93 3.56 

10. Neeru 4.03 6.61 2.63 

 

4.21 

11. Patsio 3.28 5.38 2.50 3.69 

12. Pharki 8.10 7.62 5.36 4.74 

13. Solang 5.70 7.16 4.45 6.23 

14. Stg-II 7.73 10.53 4.60 5.81 

15. Z-Gali 6.37 7.47 4.30 3.19 

16. Gugaldhar 5.34 5.03 2.25 4.16 

17. Dawar 4.52 7.15 3.75 4.93 
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