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Abstract:

The monitoring and diagnosis of rolling element bearings with Acoustic
Emission (AE) and vibration measurements has evolved as one of the much
used techniques for condition monitoring and diagnosis of rotating
machinery. Further, recent developments indicate the drive towards
integration of diagnosis and prognosis algorithms in future integrated
machine health management systems. With this in mind, this paper is an
experimental study of slow speed bearings in a starved lubricated contact.
It investigates the influence of grease starvation conditions on detection
and monitoring natural defect initiation and propagation using AE
approach. Further, the experiment is aimed at a comparison of results
acquired by AE and vibration diagnosis on-full scale axial bearing. In
addition, the paper also concentrates on the estimation of the Remaining
Useful Life (RUL) for bearings whilst in operation. To implement this, a
multilayer Artificial Neural Network model (ANN) has been proposed to
correlate the selected AE features with corresponding bearing wear
throughout laboratory experiments. Experiments confirm that the obtained
results were promising and selecting this appropriate signal processing
technique can significantly affect the defect identification.
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gg of the application of the condition monitoring techniques for bearing health monitoring
56 [1]. Although a lot of work has been undertaken in the area of bearing fault diagnosis,
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there is still an on-going need for the area of bearing prognosis. Most of the techniques
that are widely used for health monitoring and prediction of RUL are divided into two
models [2]. The first model is the model based (or physics-based) method, which
predicts the RUL based on the propagation of the damage mechanism. The second
approach involves the data driven methods. In this model, data acquired by sensors are
further processed in relevant models (parametric/non-parametric) to estimate the RUL
[3]. To use the data driven models, sufficient failure data should be provided to train the
prediction models such as Neural Networks, Bayesian Networks and Markova
Processes. Over a number of recent years, attempts to estimate the remaining useful life

of bearings have been addressed in number of publications.

Nathan et al. [4], for instance, undertook experimental bearing tests to predict the RUL
of an aircraft engine bearing. In this study a model based on the steps of developing the
spall propagation mechanism was used. To validate the results of the developed RUL
prediction method, a full-scale bearing test was performed. It was postulated that the
developed model could accurately predict the spall propagation and the corresponding
RUL. Shao et al. [5] proposed Progression Prediction of Remaining Life (PPRL) of
bearing. In this model, different prediction methods were applied to different bearing
running stages. Another model, Neural Network based, for predicting bearing failures
was developed by Gebraeel et al. [6]. Gebraeel came up with a conclusion that best
estimation of bearing failure times can be obtained by weighted average of the
exponential parameters. In his PhD study, Ghafari [7] extracted vibration signals
features that were used as the input of the diagnostic model. Adaptive Neuro-Fuzzy
Inference System (ANFIS) was used to evaluate the efficiency of bearing prognosis. It
was reported that the trained ANFIS could successfully capture the damage propagation
behaviour and predict the future states of the same series of bearings at different speed

and load conditions.

Comparative investigation of the accuracy between three different techniques to
estimate the bearing RUL was done by Sutrisno et al. [8]. Moving Average Spectral
Kurtosis and Bayesian Monte Carlo, Support Vector Regression and Anomaly
Detection have been applied to an experimental data set from seventeen ball bearings

provided by the FEMTO-ST Institute. Sutrisno reported that Anomaly Detection
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method was found to be the most accurate method overall. Goebel et al. [9] undertook
another comparative results between Relevance Vector Machine (RVM), Gaussian
Process Regression (GPR), and a Neural Network model. Obtained results showed that
each algorithm produced a significant different estimation of RUL from the others. A
machine prognostics model based on health state estimation using Support Vector
Machines (SVM) has been proposed in an undertaken investigation by Kim et al. [10].
Data from faulty bearing cases in pumps, used for High Pressure Liquefied Natural Gas
(LNG), were analysed. Results were used to identify the failure degradation process and

further validate the feasibility of the proposed model for accurate assessment of RUL.

An artificial neural network (ANN) based method was developed by Tian [11]. Features
such as age and multiple condition monitoring measurements at the present and
previous inspection points were employed as inputs for the proposed model. Based on
these inputs the ANN model produced the bearing life percentage as the output. Tian
reported that achieving accurate useful life prediction using the proposed method was
observed. Another ANN model based on the data driven prognostic method was
proposed by Ben Ali et al. [12]. In this proposed model, Weibull Distribution (WD)
along with the Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural
network was employed to estimate the bearings RUL. To fit and avoid the fluctuation in
the measured time domain data, a modified Weibull Distribution function was selected.
Features at present and previous inspection time points were first extracted from the
time domain signals and then fitted using the selected WD. Fitted RMS, kurtosis and
Root Mean Square Entropy Estimator (RMSEE), a fault indicator that was proposed by
the authors, were used to train the SFAM. It is worth mentioning that for the accuracy
assessment the proposed model was also applied to unfitted data. It was postulated that
the proposed technique could reliably predict the RUL and can be expanded to include

the prognosis of the other mechanical components.

Mejia et al. [13] utilized Wavelet Packet Decomposition (WPD) and Gaussians Hidden
Markov Models (MoG-HMM) to estimate the bearing RUL. WPD was used to extract
the relevant information from the vibration bearing signals. These features are then used
to train several behaviour models of MoG-HMM at different initial states and operating

conditions of the bearing. Comparative results between the estimation of RUL using the
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extracted time domain features and the extracted time-frequency domain features was
also presented. Mejia came up with a conclusion that is the extracted features from
time-frequency domain are more precise in achieving the RUL. In another investigation,
Loutas et al. [14] has presented another approach for condition assessment and life
prediction. This method is mainly based on nonlinear Support Vector Regression (SVR)
where a set of multiple statistical vibration features from the time domain, frequency
domain, and time scale domain through a wavelet transform features were extracted.
Further, the authors also utilized Wiener Entropy (WE) for the condition monitoring of
rolling bearings. Prior to testing, the SVR model was trained and tuned off-line using
the extracted features. Unseen data was then employed to online RUL prediction. The
authors claimed that the results obtained by the proposed model showed a significant

consistency with the corresponding actual bearing degradation level.

The monitoring and diagnosis of rolling element bearings with the high frequency
Acoustic Emission (AE) technology has been on-going since the late 1960’s [15].
Jamaludin et al [16] conducted an experimental work for monitoring of slow-speed
rolling bearing using stress waves. This study presented an investigation into the
applicability of stress wave analysis for detecting early stages of bearing damage at a
rotational speed of 1.12 RPM (0.0187Hz). Attempts had been made to generate a
natural defect onto the bearing components by fatiguing. However, after allowing the
test bearing to operate for a period of 800 hours, while under conditions of grease
starvation, no defect and/or wear was visually detectable on any of the bearing
components. This was attributed to the low speed phenomena of 1 RPM and lack of
contaminants to initiate and accelerate defects. In further study, Morhain et al [17]
examined the application of standard AE characteristic parameters on a radially loaded
bearing. The use of typical AE parameters such as RMS and counts was validated as a
robust technique for detecting bearing damage. This study determined the most

appropriate threshold level for AE counts diagnosis, the first known attempt.

Al-Ghamdi et al [18] conducted a comparative experimental study on the use of
Acoustic Emission and vibration analysis for bearing defect identification and
estimation of defect size. This study showed that AE can offer earlier fault detection and

improved identification capabilities than vibration analysis. Furthermore, the AE
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technique also provided an indication of the defect size, allowing the user to monitor the
rate of degradation on the bearing; unachievable with vibration analysis. In another
work, Miettinen et al [19] described the use of the acoustic emission method in the
monitoring of faults in an extremely slowly rolling bearing. The study contains the
results of AE measurements where the rotational speed of the shaft was from 0.5 RPM
to 5 RPM. The measurements were carried out using a laboratory test rig with grease
lubricated spherical roller bearings of an inner diameter of 130 mm and a load of 70 kN.
Prior to testing the test bearing had been naturally damaged on its outer race during
normal use in industry. Choudhury et al [20] undertook a work for the detection of
defects in roller bearings using Acoustic Emission. Defects were simulated in the roller
and inner race of the bearings by the spark erosion method. AE of bearings without

defect and with defects of different sizes has been measured.

To date most published work on the application of the AE to monitoring bearing
mechanical integrity have been conducted on artificially (‘seeded’) damage or ground
metal debris that were introduced gradually into bearings. Few attempts were made to
assess the potential of the Acoustic Emission (AE) technology for detecting natural
cracks. Price et al. [21] showed the applicability of AE to monitor naturally generated
scuffing and pitting defects in a four ball lubricant test machine. The work undertaken
by Yoshioka [22] also identified the onset of natural degradation in bearings with AE. It
is worth mentioning that Yoshioka employed a bearing with only three rolling elements
which is not representative of a typical operational bearing. Moreover, Yoshioka
terminated AE tests once AE activity increased as such the propagation of identified

subsurface defects to surface defects was not monitored.

The only published work by Elforjani et al [23, 24, 25 and 26] could be considered the
first that directly addressed not only the identification of the initiation of natural cracks,
but also its propagation to spalls or surface defects on a conventional slow speed
bearing with the complete set of rolling elements. Elforjani also showed the significant
advantages of AE over the well-established vibration monitoring technique in detecting
the loss of mechanical integrity at early stages [23]. However, to speed up natural crack

initiation, Elforjani employed a combination of a thrust ball bearing and a thrust roller
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bearing. One race of ball bearing (SKF 51210) was replaced with a flat race taken from
the roller bearing (SKF 81210 TN) of the same size.

The useful operating life of a rolling element bearing is influenced by a number of
factors. Some of the factors are controlled by the designer while others are controlled by
the user. For instance, in the rolling bearing there is always a slight slippage between
the rolling elements and bearing ring. The rolling element is separated by a lubricant in
the bearing ring. To keep machines functioning at optimal levels, failure detection in a
starved lubricated contact must be investigated. Also, off the shelf, most of the
published attempts, for earlier bearing prognosis, have made use of vibration analysis,
in which the current and previous vibration data was used to predict the RUL of
bearings. There are potentially unlimited opportunities for a wide scope to develop
methods, tools and applications for effective prognostic systems. Keeping this in mind,
this work builds further on the work of Elforjani by monitoring the initiation and
propagation of natural cracks on slow speed bearing under grease starvation conditions

and estimating the remaining useful life for real world slow speed bearings.

2 EXPERIMENTAL PROCEDURE AND EQUIPMENTS

A specially designed test rig that encouraged the natural damage condition of a test
bearing was employed. To speed up crack initiation, a very small amount of lubricant
has been added to a thrust ball bearing (SKF 51210), shown in figure 1. It is worth
mentioning that this small amount of grease was neither weighed nor its thickness was
measured; just a random small amount of grease was added to the bearing ring prior to
testing. The reason behind this is to simulate the real world applications where the
measurements or prediction of the amount of lubricant inside the bearing, whilst in
operation, are very challenging. This is due to the accessibility problems such as bearing
location and/or bearing geometry. Further, very sophisticated and costly devices are
required to carry out the oil and lubricant analysis that is very often undertaken
offline. As a result of that, this approach allowed the test bearing to operate under
conditions of grease starvation within a few operating period depending on the load

condition before natural fatigue could be initiated on the bearing cage.
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Figure 1 Test Bearing

The test-rig, presented in figure 2, was employed for this investigation. It consisted of a
hydraulic loading device, an eclectic motor (MOTOVARIO-Type HA52 B3-B6-B7 j20,
46-Lubricated: AGIP), a coupling and a supporting structure. The test bearing was
positioned between the stationary thrust loading shaft and the rotating disk which
housed one of the bearing races. The second race was fitted onto the loading shaft in a
specifically designed housing. This housing was constructed to allow for placement of
AE sensor and thermocouple directly onto the bearing race. The thrust shaft was driven
by a hydraulic cylinder (Hi-Force HYDRAULICS-MODEL No: HP110-HAND PUMP-
SINGLE SPEED-WORKING PRESSURE: 700 BAR) which moved forwards to load
the bearing and backwards for allow periodical inspections and replacements of the test
bearing. The rotating disk was driven by a shaft attached to the motor with an output
speed of 72 rpm. A thrust bearing (SKF 81214 TN) was placed between the coupling
and the test bearing to react the axial load. A coupling system was carefully selected to

absorb any vibration as a result of attaching the shaft to the motor.

Figure 2 Test Rig Layout

The AE acquisition system, shown in the above figure, employed commercially
available piezoelectric sensor (Physical Acoustic Corporation type “PICO”) with an
operating frequency range of 200-750 kHz at temperature ranging from -65 °C to 177
°C. One acoustic sensor, together with one thermocouple (RoHS-Type: J x 1M 455-
4371) were attached to the back of the stationary raceway using superglue. To measure
the vibration in the axial direction, one accelerometer (ENDEVCO-236-M-ISOEASE-
PF44), was attached to the housing of the stationary bearing race. This accelerometer
was connected to the data acquisition system via a vibration meter, see figure 2-2. The
acoustic sensor was connected to the data acquisition system through a preamplifier, set
at 40 dB gain. The system was continuously set to acquire AE waveforms at 2 MHz
sampling rate. During testing AE, vibration and bearing temperature parameters were
recorded in a continuous mode. The AE absolute energy and RMS were acquired at a
sampling rate of 100 Hz and over a time constant of 10~ seconds. The absolute energy
is a measure of the true energy and is derived from the integral of the squared voltage

signal divided by the reference resistance (10 k-ohms) over the duration of the AE
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signal. An average value of bearing temperature over a time constant of 100 seconds

throughout the test period was recorded.

3 BEARING TESTS

Under normal conditions of rotational speed, load, good alignment and grease starvation
conditions, natural damage begins with small cracks, located on the rolling elements
cage, which generated detectable AE signals. For this particular paper four experimental
cases are presented that reflect the general observations associated with experimental
tests at loads ranging from 20, 25, 30 and 35 kN. The tests were terminated once a
significant rise in AE levels, vibration and temperature measurements, was
observed. This led to different test periods based on the operating conditions. In
addition to the load and operation wunder grease starvation conditions, this
variation might also be attributed to issues such as misalignment, unbalance, etc;

however, best efforts were made to minimise this.

Observations of continuous monitoring of the AE levels, in addition to vibration and
bearing temperature parameters are presented in figures 3 to 6. At the end of the test
(7200 seconds and Load = 35 kN) there was visible surface damage on the bearing cage.
It was observed that at approximately 4320 seconds into operation AE levels began to
increase steadily. This was not observed on the vibration measurements though
vibration levels increased after 5760 seconds of operation; much later that was detected
by AE, reinforcing the widely acknowledged view that AE is more sensitive than
vibration for bearing defect identification [23]. The increase in AE energy levels from
earlier in the test run between 720 to 2160 seconds to the condition of damage was in the
order of 600%, presented in figure 3. The percentage of the increase in AE levels in the
load cases of (20, 25 and 30 kN) was about 400%, 900% and 600% respectively.

After run-in stage in the low load cases (30, 25 and 20 kN), all measured AE and
vibration parameters remained almost constant. Significant increase in AE activity from
5400, 8000 and 8000 seconds of operation was observed whilst vibration measurements
showing transient increase at 7200, 12000 and 11000 seconds of operation in the load
cases of 30, 25 and 20 kN respectively, shown in figures 4 to 6. Observations from

figures also reinforce the global opinion that AE tends to be noisy and spiky when
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the well-developed defect is pronounced whilst the vibration steadily increases due to the
excitation of the natural structural frequency of the system component. Also continuous
monitoring of AE activity showed that the onset of the significant rise in AE levels was
earlier observed in the load case of 20 kN than the load case of 25 kN, see figures 5 and
6, reinforcing the acknowledged view that the variation in actual test period leading

to fully developed damage on the bearing was unpredictable.

It is also worth mentioning that simultaneous recording of bearing temperature from the

thermocouple channel attached to the back of the stationary bearing raceway stabilised
at an average of 35°C after the run-in stage. The measurement of temperature was

undertaken to assess the consistency of lubricant viscosity throughout the test
period. The significant variation in the trend of this indicator will also help to
identify whether the friction properties between the bearing elements are relatively

constant or not. On the termination of tests a maximum temperature of 46°C for the

load cases of 35 and 30 kN was recorded whilst lower temperature value of 36°C on the

termination of tests was registered for the load cases of 25 and 20 kN, see figures 3 to 6.
On termination of the tests, a visual inspection revealed a severe surface damage on the
bearing cage, see figure 7. This suggested that there was a slippage between the
rolling elements and the bearing rings as a result of the starving lubricant contact, which

greatly increased the pressure, friction and wear and eventually reduced the bearing life.
Figure 3 Test Conditions Case I (Load 35 kN)
Figure 4 Test Conditions Case II (Load 30 kN)
Figure 5 Test Conditions Case I1II (Load 25 kN)
Figure 6 Test Conditions Case IV (Load 20 kN)
Figure 7 Surface Damage on the Bearing Cage

Observations of the AE waveforms, sampled at 2 MHz showed changing characteristics
as a function of time. These AE waveforms, associated with the observations of the
bearing test shown in figure 3, are presented in figures 8, where a typical AE waveform

associated with spurious AE transient events is presented after 4320 seconds of
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operation. The waveform at this time of operation shows an AE transient bursts this is
attributed to the onset of ‘less mature’ damage on the bearing. At 7200 seconds
operation, significant AE transient events associated with the fully developed defect on
the bearing are clearly noted, see figure 8. This highlighted the fact that AE waveforms
are just as sensitive to changes in bearing mechanical state as the continuous

measurement of AE energy.

As surface defects on the bearing cage, such as spalls, are continually developing it is
postulated that a newly formed spall will contribute relatively higher AE events as the
edges of this newly formed defect will be rougher in comparison to an already existing
spall which becomes smoothened with the passage of time. This assumption was made
based on the several tests undertaken prior to the reported cases. Results from these
pre-tests along with the visual inspection showed that significant rise in AE, vibration
and temperature is a clear indication of new formed spalls on the bearing cage. This also
explains the sharp bursts of AE activity noted during observations of continuously
monitored AE energy levels, see figure 3. Even though the overall levels are increasing
from 4320 seconds, relatively large transient rises were noted during the period from
5040 seconds to 7200 seconds. The author believes that these large transient burst
are attributed to regions that have newly developed surface damage; this is an

evolutionary process giving rise to peaks and troughs in AE levels.

Figure 8 AE Waveforms associated with 35 kN Load (Onset Rise of AE Levels

until the Termination)
4 ESTIMATION OF REMAINING USEFUL LIFE (RUL)

Thus far the observations have shown AE to monitoring the degradation of an
accelerated test. In this section the methodology, used for estimation the remaining
useful life (RUL) of the test bearings, is presented. The feature extraction, classification,

and prediction are also discussed.
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4.1 EXTRACTION AND REDUCTION OF AE FEATURES

In the application of the condition monitoring, signals are information provider. Hence,
it is global acceptance that more failure histories will lead to accurate results. The
acquired data normally tend to be high dimensional noisy data, such as the case of AE
data, and therefore it is necessarily needed to be cleaned, reduced and pre-processed
prior to further processing. However, excess in cleaning, reduction and pre-processing
the acquired data may lead to lose the significance of the carrying information.
Operators are, very often, careful in selecting representative fault index tools to interpret
the signal trend. It was thought prudent to ascertain which processing techniques could
employ the transient characteristics noted thus far in determining the bearing
mechanical condition. Based on the assumption that a feature that monotonically
increases over time is the ideal degradation signal [8], the author selected AE RMS
along with a new dimensionless fault indicator technique; Signal Intensity Estimator

(SIE), proposed by the author.
4.1.1 SIGNAL INTENSITY ESTIMATOR (SIE)

Whilst the Root Mean Square (RMS) is one of the widely used statistical parameters for
condition monitoring measurements, it is typically recorded over a predefined time
constant. As such the RMS values, for the case of denser data such as AE data, are not
necessarily sensitive to transient changes, which typically are of a few micro-seconds.
To overcome the inadequacy in the use of the RMS, a relatively more sensitive and
robust technique based on the cumulative sums has been proposed; the Signal Intensity

Estimator (SIE).

SIE can be defined as the ratio of the sum of cumulative sum of a defined segment,
window, (SCSsegment) in @ given signal to the overall sum of cumulative sum (SCSoveran)
of the same signal. This ratio is then multiplied by a magnification factor (MAGF). The
advantage of the dimensionless SIE is that it can reduce the complexity of the problem as
its result is numerical values without physical dimensions. This in turn will allow the
user to perform any analysis for any condition monitoring data (e.g. vibration, AE, etc.)
irrespective of their physical units. The SIE envelops the data without losing the

information carried by the signal. The advantage of the SIE over the classical
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envelope and the other parameters is that the SIE is a normalised piecewise
segment technique whilst the envelope is based on the entire signal. This means that
the SIE dose not only display the ratio of the total at any given time but also it can chart
statistic that involves current and previous data values from the process. This helps to
track how the sample values deviate from a target value and also improves the
ability to detect micro-changes. Besides it resolves the problem in the cases of small
values of the calculated SIE, the MAGF also plays a vital role to overcome the
problem of selecting the size of a given window. The author assumed that there is a
direct proportionality between the MAGF and the selected number of the windows
(W). This means the higher number of W the higher MAGF and vice versa. This
proportionality produced a constant (k) that is highly dependent on the type of the data.
For high dimensionality data, such as the case of continuous acquiring of AE data, high
W and small k are preferred whilst small W and high k are better for low
dimensionality measurements. Mathematical expressions that are required to perform

the SIE analysis are explained as following:

1. To obtain optimal SIE value, signal should be rectified as the first step.
2. The Signal Intensity Estimator (SIE) is calculated using the following equation:

SCS

SIE =M.MAGF
SCS
overall
(D

3. With the knowledge of the size of a given signal (N) and the size of each segment
(n), the MAGEF can be derived as:

MAGF a W (2)
Noverall

where W = —ZYerail 3)
nsegment

4. With the use of the proportionality constant (k), the MAGF can simply be

calculated as:
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k={2,3,4,5,6,...... @)
MAGF =kW 5)

k =2 forvery highW and high dim entionality data
2<k< 4 for highW and high dimentionality data
4<k <6 forlowW and low dimentionality data
k>6 forverylowW and low dimentionality data

where

It is worth mentioning that the above values of k have been suggested based on the
results of the iterative process, undertaken, to achieve the optimal values. Further, these
values are used for the continuous monitoring of the degrading bearing whilst large
values of k are used for the analysis of waveforms. In application, SIE value of one,
between two adjacent segments, is associated with non-transient type signals and
greater than one where transient characteristics are present. Selection the size of the
segment was justified by an iterative process. For this particular investigation AE
signals, recorded throughout the bearing tests, were split into several windows each of

which contains 20 segments and the optimal value of k was found to be 4.

The trend of SIE was completely consistent with the general trend of AE energy
presented in figures 3 to 6. Steady trend of AE energy, SIE and RMS noted in the
termination of the tests is due an already existing spalls, which became smoothened with
the passage of time, see figure 7, and will not contribute relatively higher AE events until
newly defect is formed. This confirms the author’s belief that the SIE is reliable, robust
and sensitive to the detection of incipient cracks and surface spalls. It can

successfully be employed for condition monitoring of rotating machines.

4.1.1.1 CORRELATION COEFFICIENT

The next phase of this investigation involved the ascertainment of how strong the
monotonic relationship is between the SIE and the time duration of the tests. To
implement this, what-so-called correlation coefficient was calculated using Pearson's
Product-Moment Correlation. In general, correlation can be defined as a class of

statistical relationship between variables. From the results presented in table 1, it can be
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seen that true correlation between SIE with time is not equal to 0. From p-value that is
less 0.05 and the positive sign of the correlation coefficient, it can be concluded that SIE
is strongly correlated with time; association between these two parameters are strong

(Strong Monotonic Relationship).
Table 1 Correlation Analysis

4.2 FITTING OF AE SIGNAL FEATURES

As mentioned in the previous section that the acquired data is accompanied with an
external noise that significantly influences the final interpretation of the general trend.
Although it was observed in the previous sections that the bearing failure, throughout
testing period, was relatively a monotonic process, the acquired data cannot be directly
fed to the prediction models. This is because that any noise in the acquired data will
significantly disturb the performance of the model and subsequently its capability to
accurately predict the health condition of the bearings; prediction models in such a case
will follow the randomness. To overcome this issue, the raw data have to be fitted using
appropriate mathematical functions. To represent trends in the degradation signals,
originating from bearings, linear or exponential models were widely employed. In this
research work, several linear and exponential function have been applied to the acquired
data. Finally, the following exponential sigmoid model was proposed to fit the extracted

features first, and then use the fitted values as inputs to the prediction model.

a
= - 6
f=y,+ = (6)

1+e

This function could fit the different bearing cases that used for constructing, training,

validation and testing the prediction model. In the above function f is the magnitude of
the signal feature; here (f) is the value of SIE and/or RMS, (@, b and x,) are the model
constants, and (?) is the time. The constant (y,) is used here to indicate the value when
the degradation time is equal to zero. To find the optimal values for the above function
constants @, b, X, and y, that can fit all the tested measurement series, the popular least-

square method was applied to the four bearing cases; figures 9 and 10 show the fitted
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bearing cases. These cases will be used for constructing, training and validating the
prediction model, see the following sections. Tables 2 and 3 also summarize the
general optimal estimated constants and global goodness of fit for the exponential

model.
Figure 9 Actual and Fitted SIE
Figure 10 Actual and Fitted RMS
Table 2 Estimated Constants for the Exponential Model
Table 3 Global Goodness of Fit for the Exponential Model

Results from the fitted data and parameters of global goodness of fit showed that the
suggested model could well fit the extracted SIE and RMS values, see figures 9 to 10
and table 3.

4.3 MULTILAYER ARTIFICIAL NEURAL NETWORK (ANN)

Artificial Neural Networks (ANN) are a supervised machine learning type. They are
inspired by biological neural networks and each neuron is represented by a node [27]. It
is basically a directed graph where each edge has a weight. These neural networks are
capable of learning by changing the weights of their connections [28 and 29].
Components of ANN is defined as the Neural Network Architecture, which involves
input neurons, output neurons, hidden neurons, and bias neurons. The input neurons has
no processing and are used to provide input signals. On the other hand, output neurons
process the units and are used to get the output. The task of the hidden neurons is to add
additional processing for the units to achieve a converged solution. The bias neurons are

employed to avoid zero results even if the inputs are zero.

It is worth mentioning that the bias neurons are not connected to the input neurons and
normally their values set to one. Neurons are connected with each other through a
connection weights (synaptic weights) that are used to signify the strength of the
connection and therefore, the higher the weight the higher strength of that connection

[30]. This will also lead to higher of the effect of the processing. The edge weights have
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a random value at the beginning and they are updated accordingly. The connection
between the neurons is directional, namely, connection from, for instance nl to n2 is
different from the connection from n2 to nl [30]. In general there are two kinds of
neural networks; Hopfield Neural Network and Feedforward Neural Network. In the
former each neuron is connected to every other neurons whilst there are directed edges
from input layer to hidden layer and from hidden layer to output layer in the latter [30].
In the ANN structure, activation functions, for example linear function, hyperbolic
tangent and/or sigmoid functions, are extensively also used. These functions take some

weights of the input signals and perform some actions.

The model is called a trained model when the weights were adjusted for minimum error
(E). There are two types of errors; local error and global or network error. The local
error is the difference between the ideal value and the actual value whereas the global
error is a cumulative effect of all local errors. In the training process, interconnection
weights are adjusted so that the global error is less than some Predefined Level (PL).
This predefined limit is very sensitive as in the case of a high limit the model will be
under trained whilst low limit will lead to over trained model. For the training purpose,
different algorithms with different rules to update weights; different calculation
methods for global errors and different flow charts, are used. The most common training
algorithms include Back-Propagation algorithm, Resilient-Propagation algorithm,
Quick-Propagation algorithm and LMA algorithm [30 and 31]. The algorithm
terminates the training process when the network error rate is small. To select an
appropriate training algorithm, accuracy, required computational resources and training

time must be considered.

In this research work, an ANN model was proposed to estimate the RUL for slow speed
bearings. The model is a Feedforward ANN model with three layers at beginning that
were used for constructing the ANN model; one input layer, one output layer and one
hidden layer with changeable number of neurons in the hidden layer. The model
parameters such as the number of hidden layers, algorithm type and learning rate were
kept changing until the best performance was achieved. The best results eventually were
obtained by an ANN model containing one input layer with two inputs parameters;

represents the SIE and RMS values, one output layer; represents the estimated RUL,
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and three hidden layers with seven neurons in the first layer, three neurons in the second
layer and seven neurons in the third layer. For the best training, the Resilient Back-

Propagation algorithm and the activation sigmoid function (logistic) were selected.

The SIE and RMS were calculated from the acquired AE data and further fitted prior to
the training process. The challenging question was that is the proposed SIE a good
choice for predicting RUL. Hens, a feasibility study or assessment was conducted for
three different ANN models. The first model involved the RMS and SIE as inputs to
the ANN model. The second model included SIE as a solely input whereas the third
model employed RMS only. The load case of 20 kN was selected to train the three ANN
models and the fitted data was passed to the models. The selected algorithm in turn
started to train the model. Several runs accompanied with adjusting and tuning the
ANN parameters such as weights, number of hidden layers etc. were made to
minimize the global error. Eventually, the used algorithm terminated the training
process once the error approached almost zero value (it recorded the minimum value).
The minimum registered error was 2.8, 2.5 and 8.4 for ANN model with two inputs,
ANN model with SIE and ANN model with RMS respectively. The next phase involved
validating the trained models. This implemented by passing the fitted data from the load
cases (35, 30 and 25 kN) to the trained models. The steps followed from the training of
the proposed ANN model until the estimation of the RUL are presented in figure 11.
Figures 12 to 14 show the final structure of the proposed ANN models that used to
estimate the bearing RUL.

Figure 11 Schematic of the Proposed ANN Model
Figure 12 ANN Structure (Two Inputs RMS & SIE)
Figure 13 ANN Structure (One Input SIE)
Figure 14 ANN Structure (One Input RMS)

The RUL, the Error and Sum of Square Error (ESS) were calculated using the equations
7, 8 and 9 respectively.

RUL=t,-1, -
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Actual (R UL) - Estimated (R UL)

x 100
Actual(RUL)

Error =

®)

Some Square Error(ESS) = 1 i Errorl.2

20 ©)
Where (fy) is the time at which the fully mature failure is formed, for more details; in
this particular investigation this time was selected as the termination of the test period.
The (%, is the current time at which the RUL is estimated. Results from ANN analysis
are detailed in figures 15 to 17 and table 4. By visually inspecting the plots, it can
obviously be observed that the predictions made by the ANN model with only SIE as
input are almost concentrated around the actual RUL line (a perfect alignment with the
line would indicate a low Sum Square Error (ESS) and thus an ideal perfect prediction),
whilst obvious difference and poor performance by the ANN model used RMS only as
input was observed, see figure 17. Also was noted that the performance of the ANN

model with two inputs, SIE and RMS, has been influenced by the RMS values, see
figure 15.

Figure 15 ANN Results (Two Inputs RMS & SIE)
Figure 16 ANN Results (One Input SIE)
Figure 17 ANN Results (One Input RMS)

Table 4 summarizes the error analysis where it can be seen that the obtained results
ascertain the feasibility of the proposed SIE as a representative input for the ANN
model. It can be seen that the lowest error values for the three tested cases (35, 30 and
25 kN) registered by the ANN model with SIE as input. For instance, ESS for the load
case of 35 kN was found to be 5237 using the ANN model with SIE whilst 6458 and
8358 were registered by ANN model with two input and by ANN model with RMS
respectively. Also interestingly observations were that some negative error values were
recorded by different ANN models, figures 15 to 17. These negative values imply that

the ANN models have overestimated the RUL. Results also showed that the maximum
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prediction error (21.65%) has occurred in the load case of 20 kN using ANN model
with RMS as input.

Table 4 Error Results

S CONCLUSION

Bearing run-to-failure tests under grease starvation conditions were successfully
performed. These tests demonstrated the applicability of AE in detecting crack initiation
and propagation on bearing cages whilst in operation. The four cases presented are
representative of other tests performed in this study and show that there is a clear
correlation between increasing AE energy levels and the natural propagation and
formation of bearing defects. The study demonstrated that AE parameters such as
energy are more reliable, robust and sensitive to the detection of incipient cracks and

surface spalls in slow speed bearing than vibration analysis.

RUL for slow speed bearing under starved lubricant contact conditions was also
successfully estimated using supervised machine learning techniques. It was shown that
the proposed ANN model with Back-Propagation learning could accurately estimate the
RUL for slow speed bearings. It can be concluded that the use of ANN as early alarm
tools not only minimizes the wasteful machine downtime but also the untimely
replacement of components. The study also showed that the continuous monitoring of
bearings employing a technique such as the SIE would offer the operator a relatively
more sensitive tool for observing high transient type activity. This study can be
considered as the first investigative step since it concerns a single application of the
proposed models (ANN) to a specific test rig and to unique specimens and therefore its
effectiveness, both technically and economically, has to be proved with further

investigations.

19

http://mc.manuscriptcentral.com/shmij



©CoOo~NOOOR,WNE

U U NnOoIT O ARrEDRADEMEDIMDIAMDEDNDNOWWWWWWWWWNNNNNNNNNNRERPRERRPERPERPERPERPRERRR
QUOWONODUPRARWNRPFPOOONOUOOPRWNRPOOONOURRWNPFRPOOONOOUOPRARWNRPOOONOUIAWDNEO

Structural Health Monitoring

REFERENCES

. Jammu, N.S., Kankar, P.K.: A Review on Prognosis of Rolling Element Bearings.

International Journal of Engineering Science and Technology (IJEST), ISSN: 0975-
5462, Volume 3, Issuel0 (2011)

. Zhigang, T.: An Artificial Neural Network Method for Remaining Useful Life

Prediction of Equipment Subject to Condition Monitoring. Journal of Intelligent

Manufacturing, ISSN: 0956-5515, Volume 23, Issue 2 (2012)

. Medjaher, K., Tobon-Mejia, D.A., Zerhouni, N.: Remaining Useful Life Estimation

of Critical Components with Application to Bearings. IEEE Transactions on

Reliability, Institute of Electrical and Electronics Engineers, DOI:
10.1109/TR.2012.2194175, Volume 61, Issue 2 (2012)

. Nathan, B., Hai, Q., Neil, E., Ed, H., Taylor, R.: Physics-based Remaining Useful

Life Prediction for Aircraft Engine Bearing Prognosis. Annual Conference of the

Prognostics and Health Management Society (2009)

Shao, Y., Nezu, K.: Prognosis of Remaining Bearing Life Using Neural Networks.

Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems

and Control Engineering, Volume 214, Issue 3 (2000)

Gebraeel, N., Lawley, M., Liu, R., Parmeshwaran, V.: Residual Life Predictions

from Vibration-Based Degradation Signals: A Neural Network Approach. IEEE

Transactions On Industrial Electronics, Volume 51, Issue 3 (2004)

Ghafari, S.H.: A Fault Diagnosis System for Rotary Machinery Supported by

Rolling Element Bearings. PhD Thesis, University of Waterloo, Ontario, Canada,

(2007)

20

http://mc.manuscriptcentral.com/shmij

Page 20 of 40



Page 21 of 40

©CoOo~NOOOA,WNE

OO ARrEEDRADEMEDIMDIAMDEDNDNOWWWWWWWWWNNNNNNMNNNNNRPRERRPERPERPERPERPRERRERR
QOO NOUPRARWNPFPOOONOUOPRWNRPOOONOUPRRWNPRPOOONOOUOPRARWNPOOONOUIAWDNEO

10.

11.

12.

13.

14.

15.

Structural Health Monitoring

Sutrisno, E., Oh, H., Vasan, A.S.S., Pecht, M.: Estimation of Remaining Useful Life

of Ball Bearings Using Data Driven Methodologies. Prognostics and Health
Management (PHM), IEEE Conference, DOI: 10.1109/ICPHM.2012.6299548

(2012)

Goebel, K., Saha, B., Saxena, A.: A Comparison of Three Data-Driven Techniques
for Prognostics. 62" Meeting of the Society for Machinery Failure Prevention

Technology (2008)

Kim, H.E., Tan, A., C.C., Mathew, J., Kim, E., Y., H., Choi, B.K.: Machine
Prognostics Based on Health State Estimation Using SVM. Proceedings of 3™
World Congress on Engineering Asset Management and Intelligent Maintenance

Systems Conference, Volume 199 (2008)

Tian, Z.:, An Artificial Neural Network Method for Remaining Useful Life
Prediction of Equipment Subject to Condition Monitoring. Journal of Intelligent

Manufacturing, Springer, ISSN: 0956-5515, Volume 23, Issue 2, Online (2009)

Ben Ali, J., Chebel-Morello, B., Saidi, L., Malinowski, S., Fnaiech, F.: Accurate

Bearing Remaining Useful Life Prediction Based on Weibull Distribution and

Artificial Neural Network. Mechanical Systems and Signal Processing, Volumes

56-57 (2015)

Tobon-Mejia, D.A., Medjaher, K., Zerhouni, N., Tripot, G.: Estimation of the

remaining useful life by using Wavelet Packet Decomposition and HMMs.

Aerospace Conference, IEEE, DOI: 10.1109/AER0.2011.5747561 (2011)

Loutas, T.H., Roulias, D., Georgoulas, G.: Remaining Useful Life Estimation in

Rolling Bearings Utilizing Data-Driven Probabilistic E-Support Vectors Regression.
IEEE Transactions On Reliability, Volume 62, Issue 4 (2013)

Mba, D., Rao, R.B.K.N.: Development of Acoustic Emission Technology for
Condition Monitoring and Diagnosis of Rotating Machines: Bearings, Pumps,
Gearboxes, Engines, and Rotating Structures. The Shock and Vibration Digest
(2006)

21

http://mc.manuscriptcentral.com/shmij



©CoOo~NOOOR,WNE

U U NnOoIT O ARrEDRADEMEDIMDIAMDEDNDNOWWWWWWWWWNNNNNNNNNNRERPRERRPERPERPERPERPRERRR
QUOWONODUPRARWNRPFPOOONOUOOPRWNRPOOONOURRWNPFRPOOONOOUOPRARWNRPOOONOUIAWDNEO

16.

17.

18.

19.

20.

21.

22.

23.

24.

Structural Health Monitoring

Jamaludin N., Mba, D., Bannister, R.H.: Condition Monitoring of Slow-Speed

Rolling Element Bearings Using Stress Waves. Proceedings of the IMECHE, Part E,

Journal of Process Mechanical Engineering, Volume 215, Issue 4 (2001)

Morhain, A., Mba, D.: Bearing Defect Diagnosis and Acoustic Emission.

Proceedings of the IMECHE, Part J, Journal of Engineering Tribology, Volume 217,
Issue 4 (2003)

Al-Ghamdi, A.M., Mba, D.: A Comparative Experimental Study on the Use of

Acoustic Emission and Vibration Analysis for Bearing Defect Identification and

Estimation of Defect Size. Mechanical Systems and Signal Processing, Volume 20,

Issue 7 (2006)

Miettinen, J., Pataniitty, P.: Acoustic Emission in Monitoring Extremely Slowly

Rotating Rolling Bearing. Proceedings of 12" International Congress on Condition

Monitoring and Diagnostic Engineering Management, COMADEM, England (1999)

Choudhury, A., Tandon, N.: Application of Acoustic Emission Technique for the

Detection of Defects in Rolling Element Bearings. Tribology International, Volume

33, Issue 1 (2000)

Price, E.D., Lees, A.W., Friswell, M.I.: Detection of Severe Sliding and Pitting

Fatigue Wear Regimes Through the use of Broadband Acoustic Emission. IMechE
Journal of Engineering Tribology, DOI: 10.1243/135065005X9817, Volume 219,

Issue 2 (2005)

Yoshioka, T.: Detection of Rolling Contact Subsurface Fatigue Cracks Using

Acoustic Emission Technique. Journal of the Society of Tribologists and

Lubrication Engineers Volume 49, Issue 4 (1993)

Elforjani, M., Mba, D.: Monitoring the Onset and Propagation of Natural

Degradation Process in a Slow Speed Rolling Element Bearing With Acoustic

Emission. Journal of Vibration and Acoustics, DOI: 10.1115/1.2948413 (2008)

Elforjani, M., Mba, D.: Detecting the Onset, Propagation and Location of Non-

Artificial Defects in a Slow Rotating Thrust Bearing with Acoustic Emission,

22

http://mc.manuscriptcentral.com/shmij

Page 22 of 40



Page 23 of 40

©CoOo~NOOOA,WNE

OO ARrEEDRADEMEDIMDIAMDEDNDNOWWWWWWWWWNNNNNNMNNNNNRPRERRPERPERPERPERPRERRERR
QOO NOUPRARWNPFPOOONOUOPRWNRPOOONOUPRRWNPRPOOONOOUOPRARWNPOOONOUIAWDNEO

25.

26.

27.

28.

29.

30.

31.

Structural Health Monitoring

Insight  Non-Destructive  Testing and  Condition = Monitoring,  DOI:
10.1784/ins1.2008.50.5.264 (2008)

Elforjani, M., Mba, D.: Condition Monitoring of Slow Speed Shafts and Bearings
with Acoustic Emission. Strain, Doi:10.1111/.1475-1305.2010.00776.x (2011)

Elforjani, M., Mba, D.: Accelerated Natural Fault Diagnosis in Slow Speed
Bearings with Acoustic Emission. Engineering Fracture Mechanics, Volume 77,

Issue 1 (2010)
Murphy P.K.: Machine Learning A Probabilistic Perspective. MIT Press (2012)

Livingstone, J.D.: Artificial Neural Networks: Methods and Applications. Humana
Press, 2009 Edition (2008)

Hopgood, A.A.: Intelligent Systems for Engineers and Scientists. CRC Press, 2nd
Edition (2001)

Heaton, J.: Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural

Networks. CreateSpace Independent Publishing Platform (2015)

Apolloni, B., Bassis, S., Marinaro, M., Apolloni, B.: New Directions in Neural
Networks. 18th Italian Workshop on Neural Networks, WIRN, Frontiers in
Artificial Intelligence and Applications, Volume 193 (2009)

23

http://mc.manuscriptcentral.com/shmij



©CoOo~NOOOR,WNE

OO aORrEEDRMDEMEDMDIAMDEDINDNOWWWWWWWWWNNNNNNNNNNRERRRPERPERPERPERPERRR
QUOWONODUPRARWNRPFPOOONOUOOPRWNRPOOONOURRWNPFRPOOONOOUOPRARWNRPOOONOUIAWDNEO

Structural Health Monitoring

Figure 2 Test Rig Layout
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Figure 8 AE Waveforms associated with 35 kN Load (Onset Rise of AE Levels

until the Termination)
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Table 1 Correlation Analysis

Pearson's Product-Moment Correlation

t-test 95% Confidence

Interval

Feature p-value

Correlation Coefficient

SIE 22,92 22x107°  0.7760493 : 0.8568358

0.820498

140000
120000
100000
80000
60000
40000
20000

SIE
SIE

0 1440 2880 4320 5760 7200 0 1800

Time [sec]
= Actual SIE
—— Fitted SIE

3600 5400 7200 9000

Time [sec]

60000

SIE
.
:

SIE

0 2800 5600 8400 11200 14000 0 3200

Time [sec]

Figure 9 Actual and Fitted SIE
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Figure 10 Actual and Fitted RMS
Table 2 Estimated Constants for the Exponential Model
Load SIE RMS
(kN) Vo a b X, Yo a b X,
35 12942.18 83050.16 309.27  4851.73 0.0057  0.0363 308.08 4849.31
30 15432.17 47410.43 585.66  5579.44 0.0057 0.0175 592.80 5580.54
25 4047.15 40883.46 503.61  9073.62 0.0003  0.0031 506.03 9075.09
20 429543 40747.27 963.25 11072.94 0.0003  0.0032  969.40 11067.83

Table 3 Global Goodness of Fit for the Exponential Model

&N TR i R R adi R’
35 0.9561 0.9561 0.9267 0.9266
30 0.8671 0.8669 0.8156 0.8155
25 0.9438 0.9437 0.8733 0.8732
20 0.9247 0.9246 0.8817 0.8817
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Update Weights

Training Data

Model Training

Figure 11 Schematic of the Proposed ANN Model
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Figure 15 ANN Results (Two Inputs RMS & SIE)
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Figure 16 ANN Results (One Input SIE)
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Figure 17 ANN Results (One Input RMS)
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Table 5 Error Results
Error

Model Inputs ESS Max (%)
35kN 30kN 25kN 35kN 30kN 25kN
RMS & SIE 6458 9020 15122 15.43 15.40 20.54
SIE 5237 7686 11457 13.38 10.58 20.30
RMS 8358 8526 14815 15.19 16.59 21.65

40

http://mc.manuscriptcentral.com/shmij

Page 40 of 40



