
Research Archive

Citation for published version:
Emmanuel Oluwatobi Salawu, Evelyn Hesse, Chris Stopford, 
Neil Davey, and Yi Sun, 'Applying machine learning methods 
for characterization of hexagonal prisms from their 2D 
scattering patterns – an investigation using modelled 
scattering data', Journal of Quantitative Spectroscopy and 
Radiative Transfer, Vol. 201, pp. 115-127, Nov 2017.

DOI: 
https://doi.org/10.1016/j.jqsrt.2017.07.001

Document Version:
This is the Accepted Manuscript version.
The version in the University of Hertfordshire Research Archive 
may differ from the final published version.  

Copyright and Reuse: 
© 2017 Elsevier Ltd. All rights reserved.
This Manuscript version is distributed under the terms of the 
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 
Unported (CC BY-NC-NC 3.0) license 
https://creativecommons.org/licenses/by-nc-nd/3.0/

Enquiries
If you believe this document infringes copyright, please contact the 
Research & Scholarly Communications Team at rsc@herts.ac.uk

https://doi.org/10.1016/j.jqsrt.2017.07.001
https://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:rsc@herts.ac.uk


1 

Applying machine learning methods for characterization of hexagonal prisms from their 

2D scattering patterns – an investigation using modelled scattering data 

 

 

Emmanuel Oluwatobi Salawu 1, Evelyn Hesse2, Chris Stopford2, Neil Davey3, Yi Sun3  

 
1 TIGP Bioinformatics Program, Academia Sinica, Taipei, Taiwan; Institute of 

Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; 

School of Computer Science, University of Hertfordshire, Hatfield, Herts, UK 

(emmanuel@gapp.nthu.edu.tw) 
2 The School of Physics Astronomy Maths, University of Hertfordshire, Hatfield, Herts, 

UK ({e.hesse, c.stopford}@herts.ac.uk) 

3 The School of Computer Science, University of Hertfordshire, Hatfield, Herts, UK 

({n.davey, comrys}@herts.ac.uk) 

 

 

 

 

 

 

 

  



2 

 

Abstract  

 

Better understanding and characterization of cloud particles, whose properties and 

distributions affect climate and weather, are essential for the understanding of present climate 

and climate change. Since imaging cloud probes have limitations of optical resolution, 

especially for small particles (with diameter < 25 µm), instruments like the Small Ice Detector 

(SID) probes, which capture high-resolution spatial light scattering patterns from individual 

particles down to 1 μm in size, have been developed. In this work, we have proposed a method 

using Machine Learning techniques to estimate simulated particles’ orientation-averaged 

projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional 

light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with 

Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID 

probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first 

step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are 

particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, 

and root mean square contrast as inputs to the advanced Machine Learning methods. We created 

one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) 

support vector classification models for predicting the prism aspect-ratios, 133 OS support 

vector regression models for estimating prism sizes, and another 133 OS Support Vector 

Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 

0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 

for estimating the particle’s size and size PADs. 

 

Keywords: Machine learning, scattering pattern, hexagonal prisms, ice crystals, size, 

aspect ratio, Ray Tracing with Diffraction on Facets, Zernike moments. 
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1.0 Introduction  

Cloud feedbacks are a large source of uncertainty in climate models [1]. In particular, 

there are uncertainties about the radiative forcing of clouds containing ice crystals, especially 

cirrus. Whether cirrus clouds warm or cool the Earth’s surface depends on ice crystal 

morphology [2]. Reducing this uncertainty requires detailed in situ characterization of cloud 

particles. Cloud probes based on imaging techniques, such as the Cloud Particle Imager (CPI) 

have limitations of optical resolution when dealing with particles smaller than about 25 μm [3]. 

These limitations do not apply to instruments detecting light scattering patterns of cloud 

particles, like the Small Ice Detector (SID) developed at the University of Hertfordshire [4].  

However, to obtain particle information from the scattering patterns requires solving the 

inverse scattering problem. This is often facilitated by previous knowledge of how scattering 

properties of small particles depend on the particle size parameter, morphology, relative 

refractive index and orientation. This knowledge may be the cumulative result of investigating 

many specific cases combined with interpolation or extrapolation of particle characteristics not 

covered by existing theoretical or experimental data [5]. In order for such databases to be 

created, either computational models which can determine the intensity of light scattered by a 

known particle into a given angular range, or experimental data are required. Scattering by 

spheres can be described by Lorenz-Mie theory. For computation of non-spherical particles, 

numerically exact methods like T-matrix [6,7] or Discrete Dipole Approximation (DDA) [8, 9] 

can be applied, however they are currently computationally very expensive and are therefore 

restricted to small particle sizes. This leaves a size parameter range that is covered neither by 

exact methods nor by geometric optics (GO). Approximate methods, such as the geometric optics 

approximation or physical optics, have to be used for scatterers much larger than the wavelength. In the 

classical geometric optics approximation, scattered light is divided into two parts, firstly light reflected 

or transmitted by the scatterer, and secondly externally diffracted light [e.g. 10]. Diffraction of reflected 

and refracted light is neglected, resulting in singular intensity peaks. Therefore, this method is 

not applicable for interpreting measured 2D scattering patterns. Improved methods including 

diffraction of the ray-tracing component have been presented e.g. in [11-15], and a volume 

integral method in [15,16]. Ulanowski et al. [17] retrieved the size of particles with rough and 

complex surfaces from two-dimensional scattering patterns by investigating the median surface 

area of intensity peaks. The RTDF model [14] has been used to generate a database of 2D light 

scattering patterns (2DLSPs) [18] investigated here. 

Machine Learning is ideally suited for estimating a range of properties of scattering 

particles from linked known parameters. Baran and Newman [19] have demonstrated the 

application of principal component analysis to estimate cloud ice water content and 

environmental temperature from bulk integral optical properties of ice cloud particles. Here, we 

wish to derive single particle properties from their 2DLSP, which are in general quite complex.  

Radial Basis Function (RBF) neural networks have been applied to solve the inverse light 

scattering problem for spheres [20]. In order to discriminate potentially hazardous respirable 

fibres, such as asbestos, Kaye et al. [21] have used experimental data to train RBF neural 

networks. Genuer et al. [22] applied machine learning on scatterograms of microcolonies for 

discriminating bacteria and yeasts at an early stage of growth. For this, they projected the 

patterns on either the Zernike orthogonal basis or a Fourier-Bessel function basis. The radial 

function of the latter was found to be more useful for analysis of the patterns, which consisted 

largely of concentric rings.  

The work presented here aims to investigate the applicability of advanced machine 

learning methods to solve the inverse problem for hexagonal prisms. They are a useful test case, 

since virtually all the ice on Earth’s surface and in its atmosphere is of a hexagonal crystalline 

structure. Due to their symmetry, scattering patterns of hexagonal prisms are quite different 

from the largely concentric patterns discussed in [22]. At this initial stage we disregard complex 
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crystals and any surface roughness. Since roughness has found to be important [2], this will 

restrict the direct applicability of the results obtained in this study, but we aim to demonstrate 

a proof of concept here. 

For any particle except a sphere the 2DLSP will depend on its orientation with respect to 

the incident laser beam. However, for a highly symmetric particle like a hexagonal prism there 

will be a continuous range of particle orientations which result in 2DLSP’s differing only by a 

rotation around the direction of incident light (see section 2). Such orientations should be 

attributed to one single representative orientation. This means that the representations of 

2DLSPs which are the inputs of each computational model should be rotationally invariant. 

Zernike polynomials, which were originally derived to assist the characterization of 

imperfections of concave mirrors by analyzing their diffraction pattern [23] and have been used 

for other surface reflectance applications [24,25] seem a suitable approach to achieve this. 

Building on Zernike polynomials and the general theory of moments, Teague [26] derived the 

Zernike moments, in which the Zernike polynomials have been used as the basis functions for 

the moments, and applied them to visual pattern recognition [27]. This method has been widely 

applied in pattern recognition [28–31]. 

The aim of this work is two-fold: 1) to investigate if machine learning methods can be 

applied for estimating characteristics of small particles from 2DLSP using the example of 

2DLSP of hexagonal prisms computed using RTDF; 2) to investigate if Zernike moments are 

suitable for representing 2DLSPs, and to know the range of the moments that should be used.  

We employ machine learning methods, such as Random Forests Classification (RFCs) 

[33], Support Vector Classification (SVC) and the Support Vector Regression (SVR) methods, 

to estimate characteristics of small particles based on sets of representations including Zernike 

moments, summed intensities and root mean square contrasts from each 2DLSP image. The 

hexagonal prism properties we wish to estimate from a 2DLSP are aspect ratio, projected size 

and orientation averaged projected size (generally, particle projected size is orientation 

dependent). By projected size we mean the diameter of a circle with the same area as the 

projected cross section of the particle. The orientation-averaged projected size is described by 

the diameter of a circle with the same area as the orientation averaged projected cross section 

of the particle (PAD denotes average projected area diameter). In our previous work [34], we 

have developed a method combining a Feed Forward Multi-Layer Perceptron neural network 

with Bayesian regularization back-propagation and rotation invariance with Fast Fourier 

Transform. However, the model could not deal with orientation averaged projected size, and 

the model could not predict the size of very small particles (between 3 and 10 μm size) with the 

same precision as it did for the larger particles.  

The rest of paper is organized as follows. In Section 2, we introduce the dataset used in 

this work. In Section 3, we describe our method and give details on approaches we have applied 

in this work. We evaluate our approach and show experimental results in Section 4. We 

conclude our paper in Section 5 by discussing the potential use of our approach.  

 

2.0 Dataset  

Atmospheric ice crystals are typically of an intermediate size range that can neither be covered 

by exact electromagnetic methods like T-matrix, because they are currently computationally 

very expensive, nor by classical geometric optics. Here, we used the Ray Tracing with 

Diffraction on Facets (RTDF) model [14], which is a hybrid method combining ray-tracing with 

a physical optics approximation for diffraction, for computing the 2DLSP of hexagonal prisms. 

The 2DLSP are azimuthally resolved phase functions 𝑃11 [32], i.e. the intensity has been 

normalised to 4π over the complete scattering sphere. In general, incident light can be described 

by its Stokes vector [𝐼𝑖𝑄𝑖𝑈𝑖𝑉𝑖]
T. As a result of the scattering event, it is transformed into the 
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Stokes vector [𝐼𝑠𝑄𝑠𝑈𝑠𝑉𝑠]
T of the scattered field. This corresponds to multiplying [𝐼𝑖𝑄𝑖𝑈𝑖𝑉𝑖]

T  

with the 4x4 phase matrix, P(θ,φ) of the particle (eq.1).   

(

𝐼𝑠
𝑄𝑠
𝑈𝑠
𝑉𝑠

) = (

𝑃11
𝑃21
𝑃31
𝑃41

𝑃12
𝑃22
𝑃32
𝑃42

𝑃13
𝑃23
𝑃33
𝑃43

𝑃14
𝑃24
𝑃34
𝑃44

)(

𝐼𝑖
𝑄𝑖
𝑈𝑖
𝑉𝑖

)            (1) 

 

Unpolarised light of unit intensity has the Stokes vector [1 0  0  0]T. This results in an 

intensity 𝐼𝑠 = 𝑃11 of the scattered light. The laser in the SID instrument emits circularly 

polarised light to minimize polarization-dependent variations in the captured particle scattering 

patterns [5]. Circularly polarised light of unit intensity has the Stokes vector [1 0  0  ± 1]T. The 

sign of the V parameter will be positive for right-handed and negative for left-handed light. This 

results in an intensity 𝐼𝑠 = 𝑃11 ± 𝑃14 of the scattered light. The phase matrix element 𝑃14, which 

is also called circular intensity differential scattering,  is very small for particles of non-chiral 

materials. Therefore, 𝐼𝑠 ≅ 𝑃11. 

For our analysis we chose the wavelength of 532nm, which is emitted by the laser in the SID 

instrument. The refractive index of water ice at this wavelength is n = 1.31 + 1.48∙10-9 i [35,36]. 

Hexagonal prisms in ice clouds vary in shape from long columns to thin plates. Observations 

obtained from cloud campaigns in the tropics, Antarctic and mid-latitudes were analysed in 

[37]. We define the aspect ratio of the prisms as length divided by diameter, where the diameter 

is twice the edge length of the basal facet. This means that columns and plates have aspect ratios 

larger and smaller than one, respectively. For the database we chose an interval [1/8, 8] 

containing the following nine aspect ratios: [1/8, 1/5.5, 1/3, ½, 1, 2, 3, 5.5, 8]. This covers and, 

for columns, extends beyond the aspect ratio space reported in [37] and should be a suitable 

range for testing the method. For each aspect ratio we chose 18 different particle sizes defined 

by their PAD, ranging from 6 μm to 82 μm (the upper limit is related to the range of the SID 

instrument [18, 38]).  
Therefore, we have 9 ×18 = 162 particles in the dataset. Particle orientation is defined by 

the Euler angles α, β and γ, which describe the required rotations of the particle coordinate 

system with respect to the laboratory system: At the start, the prism axis is aligned along the z-

axis. Two prism edges are in the xz-plane (Fig. 1A). First, the particle system is rotated by an 

angle α around the z-axis, resulting in the new coordinate system [x’, y’, z’] (Fig. 1B). In a next 

step, the particle system is rotated by β about the x’ axis resulting in the new coordinate system 

[x’’, y’’, z’’] (Fig. 1C). Finally, the particle system is rotated by γ about the z’’ axis (Fig. 1D). 

The final particle system is denoted [X, Y, Z]. For the database we chose 133 unique orientations 

described by their Euler angles [α, β, γ]: Due to the hexagonal crystal symmetry, the α and γ 

rotations are not independent. Therefore, α was set to 0˚ and γ was varied between 0˚ and 30˚ 

in 5˚ steps. The Euler angle β was varied between 2˚ and 88˚, avoiding the extreme values β=0˚ 

and β=90˚. The step size between β=5˚ and β=85˚ was 5˚. This results in a dataset of 18 × 9 × 

133 = 21,546 2DLSP. The 2DLSPs contain only the angular region covered by the SID 

instrument: Elevation and azimuthal angle ranges are 6˚ to 25˚ and 0˚ to 360˚, respectively. Step 

size is 1˚. This results in 20 × 361 = 7220 data points.  

The database was generated automatically using the following algorithm: In the first 

step, a desired aspect ratio was selected. Next, for this aspect ratio and each desired size PAD 

a best guess for length and diameter was made and the PAD calculated. Finally, length and 

diameter were adjusted, until the appropriate size PAD was reached.  
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Figure 1. Particles orientations defined by α, β, and γ.  Rotation of a hexagonal 

column using the Euler angles. (A) is the original crystal orientation, (B) shows the first 

rotation by α about the z axis, (C) shows the second rotation by β about the x’ axis, (D) shows 

the third rotation by γ about the z’’ = Z axis. The rotated axes are denoted by X, Y, Z. (This 

figure is a copy from [39]. 

 

Figure 2 shows examples of 2DLSP. They are natural-log plots of mean-truncated 

intensities. To achieve mean-truncation, the intensities higher than the mean intensity are set to 

the mean intensity. The mean-truncation was done to reduce the contrast only for the purpose 

of better visualization and not for subsequent computations. Panels A and B are for the same 

hexagonal plate of length 8.9 µm and of diameter 26.6 µm but for different orientations: [α = 

0.0˚, β = 10.0˚, γ = 10.0˚] and [α = 0.0˚, β = 85.0˚, γ = 2.0˚], respectively. Panels C and D are 

for a column (length 36.0 µm, diameter 12.0 µm) with the same orientations as panels A and 

B, respectively. Whereas the patterns in panels A and C are dominated by a star-like feature 

with six arms due to diffraction at the hexagonal facet facing the incident beam (see inset), the 

patterns in panels B and D are dominated by cross-shaped features due to diffraction at the close 

to rectangular contour of the projected area of the crystal. For the column, which has smaller 

basal facets than the plate, diffraction arms in panels (A) and (C) are wider than for the plate. 
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Furthermore, the height of the plate is much smaller than the column height, therefore the 

vertical diffraction arc in panel (B) is much stronger than the one in panel (D). 

 

Table 1 shows the basic statistics of the dataset. The intensity has been normalised to 4π 

over the complete scattering sphere, i.e. the phase function [32] is presented. The intensities in 

the angular region of interest have a mean of 3.62 and a standard deviation (sd) of 28.75. The 

distribution of the intensities is highly skewed, but log-normal (mean: -0.89, sd: 2.10). Based 

on the discontinuous nature of the aspect ratio (nine possible values in the current study) we 

treated particles’ aspect ratios as a binary categorical variable (rather than a continuous 

variable) such that a particle having an aspect ratio less than and up to 1 is labelled “0”, a 

particle with an aspect ratio higher than 1 is labelled “1”. Figure 3 shows the distribution of 

aspect ratios as well as the distributions of size PAD and size in the complete data set, the 

training set and the test set. 

 

 

 

 
 

Figure 2. Two out of 133 orientations of 2DLSP for each small particle. A and B are 

for a hexagonal plate of length 8.9 µm and of diameter 26.6 µm (aspect ratio ~= 0.3), while C 

and D are for a hexagonal column of comparable volume but with a different aspect ratio (3.0) 

of length 36.0 µm and diameter 12.0 µm. Panel A (and panel C) is for the orientation where α 

= 0.0˚, β = 10.0˚, and γ = 10.0˚; while B (and D) is for the orientation where α = 0.0˚, β = 

85.0˚, and γ = 2.0˚. The data points here are limited to the intensities within the elevation range 

(6˚ ≤ elevation ≤ 25˚) that the SID detector captures. 
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Table 1. Descriptive statistics of the dataset  

 Intensity ln(Intensity) Size Size PAD Aspect Ratio 

Mean 3.62 -0.89 39.11 39.36 2.29 

Standard deviation 28.75 2.10 21.86 20.69 2.61 

Median 0.39 -0.95 37.46 38.82 1.0 

Coefficient of variation 7.94 2.36 0.56 0.53 2.29 

Minimum (m) 1.62e-11 -24.84 2.13 5.04 0.12 

Maximum (M) 7580.19 8.93 96.81 82.31 8.04 

Range (i.e. M – m) 7580.19 33.78 94.68 77.27 7.92 

Number of data points  155,562,120 155,562,120 21,546 21,546 21,546 
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Figure 3. Distributions of (A) aspect ratios (B) size, and (C) size PAD in the complete data 

set, training set and test set. 
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3.0 Methods  

To accurately characterize the hexagonal prisms from their 2DLSPs, we explored various 

feature (i.e. intensity) scaling methods and found natural-log-transformation appropriate as the 

intensities are log-normal (ln). To reduce the dimensionality while retaining the useful 

information contained in the 2DLSPs, and to make the 2DLSPs rotation-invariant (i.e. resistant 

to rotation), we calculated Zernike moments (ZMs) of the intensities and used the ZMs as the 

main features for the training of the machine-learning models.  

After producing representations of 2DLSPs, we used ZMs together with summed 

intensities and root mean square contrast of the intensities as the features for machine-learning 

models. We then trained a random forests classifier for predicting the orientation for a given 

2DLSP.  Accurately predicting the orientation of the hexagonal prism forms the first stage of 

the characterization, and the second stage of the characterization builds on this. For the second 

stage, we trained 133 orientation-specific support vector regression models for predicting size 

of hexagonal prisms, 133 orientation-specific support vector regression models for predicting 

size PAD of hexagonal prisms, and 133 orientation-specific support vector classifiers for 

predicting aspect ratio of hexagonal prisms. As we have discussed in Section 2, we consider 

aspect ratio as a binary classification problem (aspect ratio ≥ 1 or <1).  

When a new 2DLSP (or a new test example) was received, we first produced its 

representation, then we used the trained random forests classifier to predict its orientation 

thereby completing its “stage 1” characterization. The predicted orientation was then used to 

select the appropriate model for predicting its size, size PAD, and aspect ratio (for its stage-2 

characterization). Figure 4 shows a schematic representation of the nature of our datasets and 

our proposed modelling methods.  

We introduce the computational models used in this work in the following sub-sections. 
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Figure 4. Schematic representation of the dataset and the methods used 

 

 

3.1 Representations of 2DLSP  

3.1.1 Zernike moments in image processing 

Figure 5 shows two example images (A and C) of one particle (length 89.1 µm and 

diameter 29.7 µm) in  two different orientations (α = 0.0˚, β = 10.0˚, and γ = 10.0˚; and α = 0˚, 

β = 10.0˚, and γ = 20.0˚). Images B and D are produced by rotating A and C anticlockwise 

respectively. The model must be robust enough to know that A and B (or C and D) are from 

exactly the same particle with the same particle orientation (defined by the Euler angles) and 

contain the same information (and that the rotation through an arbitrary angle does not change 

the characteristics of the particle whose 2DLSPs is being considered). 
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Figure 5. Depiction of the need for rotation-invariant models using images from one 

particle (length 89.1 µm and diameter 29.7 µm; A: α = 0.0˚, β = 10.0˚, and γ = 10.0˚; and C: 

α = 0˚, β = 85.0˚, and γ = 2.0˚). A (or C) has been rotated anticlockwise through 90o to 

produce B (or D). The rotation of A (or C) to B (or D) should not change its features. 

 

 

To create rotation-invariant computational models for the smooth hexagonal prisms such that a 

mere rotation of the 2DLSP of a smooth hexagonal prism through an arbitrary angle does not 

change its features, Zernike moments (ZMs) based on Zernike polynomials [23] have been 

applied in this work. Zernike polynomials were introduced by Frits Zernike [23]. ZMs can be 

obtained by projecting an image function 𝑓(𝑥, 𝑦) onto a set of orthogonal basis functions, called 

Zernike polynomials. These Zernike polynomials are a set of complex polynomials which are 

orthogonal over a unit circle, that is, 𝑥2 + 𝑦2 = 1, and are defined as follows [28]:  

 

 𝑍𝑛
𝑚(𝑥, 𝑦) = 𝑅𝑛

𝑚(𝜌)𝑒𝑗𝑚𝜃 (2) 

 

where 𝑛 denotes the order (or power) of the radial polynomial (𝑅𝑛
𝑚(𝜌)) and 𝑚 denotes the 

azimuthal order. 𝑚 can be either positive or negative integers subject to constraints that |𝑛 −
𝑚| should be an even number, and 𝑛 ≥ |𝑚| ≥ 0. ρ is the length of the vector from the origin to 

the (𝑥, 𝑦) pixel, and θ is the angle between vector ρ and 𝑥 axis in counterclockwise direction, 

i.e. 𝑥 = 𝜌𝑐𝑜𝑠𝜃 and 𝑦 = 𝜌𝑠𝑖𝑛𝜃. The radial polynomial, 𝑅𝑛
𝑚(𝜌), is defined as follows.  

 

 𝑅𝑛
𝑚(𝜌)

=

{
 
 

 
 

∑
(−1)𝑙(𝑛 − 𝑙)!

𝑙! [
1
2
(𝑛 + 𝑚) − 𝑙] ! [

1
2
(𝑛 − 𝑚) − 𝑙] !

𝜌𝑛−2𝑙      𝑓𝑜𝑟 (𝑛 −𝑚) 𝑒𝑣𝑒𝑛

(𝑛−𝑚) 2⁄

𝑙=0

0                                                                                               𝑓𝑜𝑟 (𝑛 − 𝑚)   𝑜𝑑𝑑

 
(3) 
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Figure 6 shows the first 28 Zernike polynomials. As can be seen, for each order, that is each 

row in the figure, there are a number of polynomials satisfying the constraints, that are: 

𝑛 − |𝑚| is an even number, and 𝑛 ≥ |𝑚|. 
 

 
Figure 6. The first 28 Zernike polynomials. Zernike polynomials form the basis for Zernike 

moments. 

 

Furthermore, Zernike moments (ZMs) for a digital image are defined as follows [28]: 

 

 

𝑍𝑀𝑛
𝑚   =

𝑛 + 1

𝜋
∑∑𝑓(𝑥, 𝑦)

𝑦𝑥

𝑍𝑛
𝑚∗(𝜌, 𝜃) (4) 

 

where 𝑍𝑛
𝑚∗(𝜌, 𝜃) is the conjugate of 𝑍𝑛

𝑚(𝜌, 𝜃) 
 

To reconstruct an image (𝑓(𝜌, 𝜃)) from Zernike moments, we can obtain the following by the 

orthogonality of Zernike polynomials as previously shown in [28]: 
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𝑓(𝜌, 𝜃) = ∑ ∑𝑍𝑀𝑛
𝑚

𝑚

𝑍𝑛
𝑚(𝜌, 𝜃)

𝑛𝑚𝑎𝑥

𝑛=0

 (5) 

 

The number of ZMs, i.e. dimension of the array, ZM, formed by them, depends on the order 

nmax of radial Zernike polynomials considered. It can be seen in Table 2 that the number of 

azimuthal Zernike polynomials increases dramatically when the radial order of Zernike 

polynomials (DZM), which is equal to nmax, increases from 0 to 100. It is worthy of note that 

different DZMs produce arrays of ZMs with different numbers of elements.  In turn, the useful 

information contained in the ZMs depends on their dimension. However, the amount of useful 

information contained in ZM does not essentially monotonically increase with increasing DZM 

[28,40–42]. We used image reconstruction from ZMs to evaluate each order of ZM in section 

4.1.1. 

 

Table 2. DZM and number of elements in (i.e. dimension of) the corresponding ZM array 

DZM Number of elements in ZM’s array, ZM, for (m ≥ 0)* 

0 1 

1 2 

2 4 

3 6 

4 9 

6 16 

8 25 

10 36 

15 72 

20 121 

30 256 

60 961 

90 2116 

95 2352 

100 2601 

*Only the ZMs for m ≥ 0 are considered because |ZMn
-m| ~= |ZMn

m| for any given pair 

of n and m. 

 

3.1.2 Features for the Characterization of a Particle  

In addition to the ZMs, two other features – summed intensity, and root mean square 

contrast (RMS) – derived from untransformed intensities, are found to be important and are 

used in the training of the machine learning models.  

Unlike the ZMs, which were calculated from ln-transformed intensities, summed 

intensities and RMS contrasts were calculated directly from the original intensities of the 

2DLSPs. The summed intensity for a given 2DLSP is the summation of the intensities at all its 

pixels. RMS Contrast was calculated as square root of the sum over all pixels of the squares of 

the deviations of pixel intensity, In, from the mean intensity, 𝐼, divided by the total number of 

pixels, N (where N>>1), in the 2DLSP of interest, as shown in equation (6). 

 

 
𝑅𝑀𝑆  𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = √

1

𝑁
∑ (𝐼𝑛 − 𝐼)

2𝑁
𝑛=1   (6) 
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3.2 Random forests classification (RFC) 

Random forests are an ensemble classifier that consists of multiple decision trees. One type 

of widely used decision trees is called CART [43]. Ho [44] first proposed random forests. In 

[44] each tree is built in randomly selected subspaces of the feature space.  This means one can 

use a randomly selected feature vector when constructing a tree. Breiman [43] further developed 

the algorithm by combining the idea of randomly selecting features and the technique of 

bootstrap aggregating to the training sets. This approach has been widely adopted [45,46].  

The RFC algorithm can be summarized as follows: 

             For each tree: 

1. Draw a bootstrap sample from the data.  Those not in the bootstrap sample are 

called the “out-of-bag” data. 

2. Construct a tree, where at each node, the best split is chosen among a number of 

randomly selected features.  The tree is grown to the maximum size and not 

pruned back. 

3. Use the tree to predict out-of-bag data, which is used to estimate the 

classification error. 

 

To predict the class label for a new pattern, the pattern is pushed down the tree and is 

assigned the label of the training sample in the terminal node it ends up in. This procedure is 

iterated over all trees, and the modal vote of all the trees is reported as the random forests 

classification’s result. 

3.3 Support Vector Machine  

Support Vector Machine (SVM) has been widely used in the machine learning field over 

the past two decades. SVM can be applied in both classification and regression problem 

domains. 

 

3.3.1 Support vector classifier (SVC) 

The basic idea of SVC is to find the maximal-margin decision hyperplane, such that the 

distance of the closest data points to the hyperplane is maximized. Given a training dataset 

{𝐱𝑛, 𝑡𝑛}𝑛=1,…𝑁, where 𝑡𝑛is the target for the corresponding input 𝐱𝑛, one would be interested in 

creating an accurate model that can assign each new input 𝐱 to one of the classes, 𝑐𝑖, where 𝑖 =
1,⋯ , 𝐶. If y denote the predictor of each input, then the very general form SVC decision 

function [47] is 

 

 

𝑦(𝐱) = ∑𝛼𝑛𝑡𝑛𝑘(𝐱, 𝐱𝑛) + 𝑏

𝑁

𝑛=1

 , (7) 

 

subject to constraints ∑ 𝛼𝑛𝑡𝑛 = 0
𝑁
𝑛=1  and 0 ≤ 𝛼𝑛 ≤ 𝐴, where 𝑏 is a threshold, the 𝛼𝑛 are 

Lagrange multipliers in the constrained optimisation problem, and 𝐴 is a constant for 

determining the trade-off between the minimization of the training error and the maximization 

of the margin. The kernel function 𝑘(𝐱, 𝐱𝑛) defines a similarity measure for 𝐱 and 𝐱𝑛, and 

implicitly maps the data points into a higher-dimensional feature space, and takes the inner-

product in that feature space. The use of a kernel function often allows the data to be linearly 

separable in the feature space. We used a Radial Basis kernel Function (RBF) in our 

experiments. During the training, only a few 𝛼𝑛 are non-zero and the entries with non-zero 𝛼𝑛 

are called the support vectors. 
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3.3.2 Support vector regression (SVR)  

The ε-SVR [28] is used in this study. Given a training dataset, {(x1, y1), …, (xn, yn)}, ε –

SVR aims to fit a function, 𝑓𝐱, based on the available training dataset such that the difference 

between the target value, 𝑦𝑖, and the estimated value, 𝑦𝑖, is no larger than ε for the ith training 

example. This can be expressed as follows. 
 

 
min
𝐰,𝑏,𝛏,𝛏∗

𝜏(𝐰, 𝛏, 𝛏∗, 𝑏) =
1

2
𝐰𝑇𝐰+ 𝐶∑𝜉𝑖

𝑛

𝑖=1

+ 𝐶∑𝜉𝑖
∗

𝑛

𝑖=1
 

 

(8) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 {

𝐰𝑇𝛷(𝐱𝑖) + 𝑏 − 𝑦𝑖 ≤ ε + 𝜉𝑖 ,

𝑦𝑖 −𝐰
𝑇𝛷(𝐱𝑖) − 𝑏 ≤ ε + 𝜉𝑖

∗,

𝜉𝑖, 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,… , 𝑛.

  

   

where w is a weight vector, b is the bias and 𝛷(𝐱𝑖) maps the input 𝐱𝑖 to the feature space. C is 

a constant (and C > 0 in all cases) named the regularization parameter. C determines the trade-

off between the soft margins described by the constraints and the amount up to which 

differences larger than ε are tolerated. 𝜉𝑖 and 𝜉𝑖
∗are slack variables which are used to relax the 

constraints slightly to allow for bad estimations. Lagrange multipliers 𝛼 are applied to produce 

predictions for data points. The solution for the estimation at each new point, 𝐱∗, is determined 

by:  
 

𝑦∗̂ =∑(−𝛼𝑖 +

𝑛

𝑖=1

𝛼𝑖
∗)Φ(𝐱𝒊)

𝑇Φ(𝐱∗) + 𝑏 (9) 

 

In practice, the solution for the estimation at the new point, 𝐱∗, is given by: 

 

 
𝑦∗̂ =∑(−𝛼𝑖 +

𝑛

𝑖=1

𝛼𝑖
∗)k(𝐱𝒊, 𝐱∗) + 𝑏 (10) 

 

where 

 

 𝑘(𝐱𝒊, 𝐱𝒋) = Φ(𝐱𝒊)
𝑇Φ(𝐱𝒋) (11) 

 

In this work, radial basis function (RBF) kernel is applied to the data. Further information 

on the use of this approach, and the calculation of b, can be found in [48].  
 

3.4 Performance measurements 

Each of the machine-learning classifiers or predictors was trained with two-thirds of the 

dataset (the training set), and evaluated with the remaining one-third of the dataset (test set). 

For the machine-learning classifiers, accuracy, and F1 score (eq. 11) were used as performance 

metric. Accuracy as well as F1 score for a given machine-learning classifier can have values 

between zero (worst possible performance) and one (best possible performance). Coefficient of 
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determination (R2) and normalized mean square error (NMSE) were used as performance metric 

for evaluating the machine-learning predictors. R2 for a given machine-learning predictor can 

have values between zero (worst possible performance) and one (best possible performance). 

NMSE also have values that range from zero to one, but with a value of zero corresponding to 

best performance and one to worst performance. 

 

 
𝐹1𝑠𝑐𝑜𝑟𝑒 =

2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (12) 

where 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) + (𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
  

and  

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) + (𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
  

 

4. Experimental Results and Discussion 

To investigate whether the proposed framework works properly, we have carried out the 

following three experiments. Firstly, we validate the reliability of Zernike moments. Secondly, 

we apply RFC to the representations of 2DLSPs to predict the orientation for each given test 

pattern. Finally, we created 133 orientation-specific support vector regression models for 

predicting size of hexagonal prisms, 133 orientation-specific support vector regression models 

for predicting size PAD of hexagonal prisms, and 133 orientation-specific support vector 

classifiers for predicting aspect ratio of hexagonal prisms.   

Most of the computations have been done using the Python programming language and 

Scikit-learn [26] – a well-documented Python machine-learning toolbox. With 

multidimensional grid search in Scikit-learn [26], parameter spaces have been explored using a 

10-fold cross-validation. Parameters that produced best models have been retained as the 

optimal model parameters.  

 

4.1 Studies on Zernike Moments  

4.1.1 Reliability of the Zernike Moments  

First, we randomly selected 17 particles (10% of the 162 particles, at β=10, γ=10) and 

rotated them through 50, 100, 150, 200, 250, 300 and 350 degrees. Table 3 lists the means, the 

standard deviations, and the coefficient of variations for the ZMs of the particles, for DZMs of 

2, 4, 5, 20, 35, 50, 65, 80, and 95. The coefficient of variation is obtained by dividing the 

standard deviation by the corresponding mean value. It can be seen that the coefficients of 

variation are reasonably small when the order of ZMs not greater than 65, especially for those 

orders less than 20, the corresponding coefficient of variation are consistently smaller than 0.1. 

When the order of ZM equals to 80 or 95, the coefficient of variation is greater than 0.2. 

However, we notice that their ZM values are also very small since the value of ZMs is 

dramatically decreased as the order of ZMs increases. Overall, the ZMs from the original un-

rotated images are (within a very narrow margin of error) similar to those from the rotated 

images (Table 3). 

Furthermore, we reconstructed each image from its ZMs and checked how similar an 

image reconstructed from ZMs is to the original image by calculating the Pearson correlation 

between the intensities of the original image and the intensities of the reconstructed image. 

The order of ZMs we have used is from 1 to 105.  This is an intuitive way of assessing the 

reliability of the information retained in the ZMs. We show examples of such image 

reconstruction from ZMs alongside the Pearson correlation coefficients between the original 

images and the reconstructed images in Table 4. 
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Table 3. Comparison of the ZM of unrotated and rotated images 
Rotation Angle  ZM2

0 ZM2
2 ZM3

1 ZM3
3 ZM4

4 ZM5
5 ZM20

20 ZM35
35 ZM50

50 ZM65
65 ZM80

80 ZM95
95 

0o 3.49e+03 2.62e+01 4.12e+02 6.09e+00 3.94e+00 2.81e+00 2.20e-06 1.29e-11 9.95e-18 4.96e-23 5.66e-29 1.47e-34 

50o 3.48e+03 2.48e+01 4.11e+02 6.57e+00 3.69e+00 2.83e+00 2.52e-06 1.30e-11 1.08e-17 4.36e-23 4.35e-29 1.61e-34 

100o 3.48e+03 2.72e+01 4.07e+02 6.12e+00 3.84e+00 2.79e+00 2.74e-06 1.36e-11 1.16e-17 4.87e-23 4.43e-29 1.58e-34 

150o 3.47e+03 2.67e+01 4.05e+02 6.49e+00 3.92e+00 2.71e+00 2.52e-06 1.26e-11 1.29e-17 4.57e-23 5.23e-29 1.50e-34 

200o 3.47e+03 2.54e+01 4.07e+02 6.21e+00 3.79e+00 2.70e+00 2.40e-06 1.25e-11 1.05e-17 6.00e-23 6.72e-29 2.99e-34 

250o 3.47e+03 2.54e+01 4.14e+02 6.01e+00 3.68e+00 2.67e+00 2.56e-06 1.23e-11 9.04e-18 5.50e-23 6.13e-29 2.45e-34 

300o 3.46e+03 2.90e+01 4.20e+02 7.22e+00 4.00e+00 2.86e+00 3.36e-06 1.15e-11 1.46e-17 5.35e-23 8.04e-29 2.37e-34 

350o 3.45e+03 2.71e+01 4.25e+02 5.88e+00 4.11e+00 3.04e+00 2.76e-06 1.26e-11 1.01e-17 5.17e-23 4.96e-29 1.61e-34 

Mean 3.47e+03 2.64e+01 4.13e+02 6.32e+00 3.87e+00 2.80e+00 2.63e-06 1.26e-11 1.12e-17 5.10e-23 5.69e-29 1.95e-34 

Std* 1.25e+01 1.25e+00 6.35e+00 4.03e-01 1.41e-01 1.10e-01 3.21e-07 5.75e-13 1.67e-18 4.93e-24 1.17e-29 5.37e-35 

CoV** 0.004 0.047 0.015 0.064 0.036 0.039 0.122 0.046 0.149 0.097 0.206 0.276 

* Std=Standard deviation; ** CoV = Coefficient of Variation = std/mean
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We observe a correlation of up to 0.76 between the original image and the images 

reconstructed from the ZMs with order of 95 across all different rotations. The data shown in 

Table 4 is averaged over 17 (~10% of the 162) particles. An example of image reconstruction 

from ZMs before and after rotation is shown in Fig. 7 for a hexagonal prism with a length of 

108.9 µm, and a diameter of 36.3 µm at orientation β=10˚, γ=10˚. Table 5 shows correlation 

coefficients for this particle only. It can be seen that the highest correlation value is obtained 

with the order of either 95 or 100 for this particle. 

 

Table 4. Correlation between intensities of original and reconstructed images 

DZM Un-

rotated  

Rotated 

50o 

Rotated 

100o 

Rotated 

150o 

Rotated 

200o 

Rotated 

250o 

Rotated 

300o 

Rotated 

350o 

1 0.126 0.126 0.125 0.124 0.124 0.126 0.129 0.132 

2 0.427 0.420 0.412 0.404 0.399 0.391 0.382 0.370 

4 0.443 0.435 0.426 0.418 0.412 0.404 0.394 0.382 

8 0.477 0.467 0.456 0.446 0.438 0.428 0.418 0.403 

16 0.513 0.497 0.483 0.470 0.460 0.448 0.437 0.423 

20 0.515 0.501 0.488 0.477 0.470 0.462 0.455 0.447 

40 0.638 0.630 0.624 0.619 0.615 0.612 0.610 0.609 

60 0.702 0.699 0.695 0.693 0.692 0.691 0.692 0.692 

85 0.751 0.745 0.741 0.739 0.738 0.738 0.741 0.744 

90 0.755 0.751 0.748 0.746 0.746 0.748 0.750 0.754 

95 0.760 0.756 0.754 0.752 0.753 0.754 0.756 0.760 

100 0.739 0.742 0.745 0.748 0.753 0.757 0.760 0.766 

105 0.534 0.518 0.550 0.557 0.546 0.537 0.452 0.439 

* DZM: Order of Zernike Moment  

 

From above results, we have seen that as the order of ZMs increases from 1 to 95, the 

Pearson correlation between the original image and the constructed image increases from 0.12 

to 0.76. Although values of ZMs with larger orders are small, they contribute significantly to 

the reconstructed images. It suggests either 95 or 100 can be used as a suitable value for the 

order of ZMs in this application. However, the bigger the order of ZMs, the larger the size of 

the ZM array. Therefore, we choose 95 for the order of ZMs in the following experiments.   
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Figure 7. Construction of rotated images from ZMs of original un-rotated images. 

ZMs obtained from unrotated image (2DLSPs in this case) is able to reliably reconstruct 

rotated images. The example shown here is for a hexagonal prism with a length of 108.9 µm, 

and a diameter of 36.3 µm at orientation β=10˚, γ=10˚. 

 

Table 5. Correlation between intensities of original and reconstructed images shown in Fig. 7 

DZM Rotated 

50o 

Rotated 

100o 

Rotated 

150o 

Rotated 

200o 

Rotated 

250o 

Rotated 

300o 

Rotated 

350o 

85 0.739 0.738 0.736 0.735 0.739 0.739 0.739 

90 0.741 0.741 0.741 0.741 0.746 0.747 0.748 

95 0.744 0.745 0.746 0.747 0.751 0.751 0.752 

100 0.737 0.744 0.748 0.752 0.758 0.757 0.758 
105 0.595 0.651 0.658 0.639 0.629 0.582 0.559 

* DZM: Order of Zernike Moment  

 

 

4.1.2 Relationship between the Overall Symmetry/Patterns of 2DLSP and ZMs 

From our careful observation of Zernike polynomials (Table 6), it became apparent that 

some of the ZMs have high values due to the symmetric nature of a given 2DLSP. Therefore, 

we investigated 𝑍𝑛
𝑚 that satisfies m = n. Our experiments show that indeed 𝑍𝑛

𝑚 that satisfies 

m =  n can describe the 6/6, and 4/4 symmetry nature of our dataset. We present the results in 
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Table 6. It is observed that values of ZM are generally higher whenever the symmetry nature 

of the image whose ZM is being computed has similar symmetry pattern as the given Zernike 

polynomial (because the Zernike polynomials form the basis for the ZMs). These can explain 

why the 4/4-symmetric 2DLSP has higher values for ZM2
2 and ZM4

4 compared to the 6/6-

symmetric 2DLSP, and 6/6-symmetric 2DLSP has higher values for ZM3
3 and ZM6

6 compared 

to the 4/4-symmetric 2DLSP (Table 6).  

 

Table 6. ZMs for selected 6/6, 4/4, and 2/2 symmetry particles  

  6/6 Symmetry 4/4 Symmetry 

DZM Zernike  

Polynomial 

 
 

l=196.9, d=24.6,  

β=2 , γ=2  

 
 

l=19.2, d=19.2,  

β=88 , γ=2  

ZM1
1

 

 

13.87 144.25 

ZM2
2 

 

34.72 94.8 

ZM3
3 

 

15.09 7.2 

ZM4
4 

 

1.66 123.03 

ZM5
5 

 

6.10 5.05 

ZM6
6 

 

20.32 7.16 

ZM8
8  6.93e-02 6.29e-01 

ZM10
10  2.25e-02 6.67e-02 

ZM12
12  5.12e-02 3.63e-02 

ZM16
16  1.07e-04 1.05e-03 

ZM20
20  6.45e-07 5.73e-07 

ZM24
24  2.88e-05 2.30e-05 

ZM35
35  6.42e-12 9.78e-12 

ZM36
36  5.71e-11 6.67e-12 

ZM48
48  5.87e-16 2.40e-16 

ZM50
50  1.13e-16 1.09e-16 

ZM65
65  4.77e-22 7.37e-23 

ZM80
80  3.57e-28 4.62e-28 

ZM95
95  2.62e-33 1.35e-33 

ZM96
96  8.78e-34 1.04e-33 
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4.2 Performances of the Machine-Learning Models 

Our computational characterization of the particles is two-staged. The first stage involves 

prediction of particle orientation. The predicted orientation is then used to select the appropriate 

models for predicting the particle’s size, size PAD, and aspect ratio in the second stage of the 

characterization. The random forests classifier that had been trained with 14,362 training 

examples was tested with a test set consisting of 7,182 randomly pre-selected 2DLSP (which 

were not part of with the training set). Our model achieves an accuracy of 0.84 (F1-score = 

0.85). The 133 by 133 matrix showing the true versus the predicted orientations is represented 

as a heatmap in Fig. 8A. It can be seen that some orientations with lower values of β are difficult 

to discriminate. Further investigations into this shows that the ZMs for the 2DLSPs for particles 

at orientations with lower values of β (e.g. for β=2 ) have relatively lower variance across γ and 

across the particles (e.g. Fig. 8D, for ZM2
2), hence the difficulty in predicting their orientations. 

The SVR model for estimating particle size PAD achieves a coefficient of determination, 

R2, of 0.983, normalized mean square error of 0.003, and correlation of 0.991 between the true 

and the estimated (predicted) size PAD (Fig. 8B). The SVR model for estimating particle size 

achieves a coefficient of determination, R2, of 0.987, normalized mean square error of 0.003, 

and correlation of 0.994 between the true and the estimated (predicted) size (Fig. 8C). 
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Figure 8. Performances of the machine-learning models. (a) The 133 by 133 matrix 

showing the true versus the predicted orientations. The 133 orientations are defined by the 

Euler angles α, β, and γ (in degree) as described in Fig. 1. (b) Performance of SVR model for 

estimating size. (c) Performance of SVR model for estimating size PAD. (d) Boxplot showing 

the distribution of the ln(ZM2
2) for all the 162 particles and across the 133 orientations 

defined by the Euler angles α, β, and γ as described in Fig. 1. 
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Our SVC model for predicting aspect ratio achieves an accuracy of 0.99 (F1-score = 0.99). 

We show the associated correct and in-correct classifications in Table 7.  

 

Table 7. Performance of the support vector classifier in the aspect-ratio-based classification 

problem 

  Predicted label 

  Aspect ratio ≤ 1 Aspect ratio > 1 Marginal total  

 

True label 

Aspect ratio ≤ 1 3813 44 3857 

Aspect ratio > 1 44 3281 3325 

Marginal total 3857 3325 7182 

 

5.0 Conclusions 

A machine learning based computational method has been proposed in this work for 

estimating a range of properties for hexagonal prisms from their 2DLSP (elevation and 

azimuthal angle ranges are 6˚ to 25˚ and 0˚ to 360˚, respectively, as covered by the SID 

instrument). The method has been validated on a dataset including 162 particles with 133 

orientations, generated using the Ray Tracing with Diffraction on Facets model.  

Our experimental results show that the use of the combination of the random forests 

classification and the support vector method can provide good estimations for both the particle 

size PAD and the particle size with a normalized mean square error of 0.003, and correlation 

coefficients of 0.99, although we found a slightly weaker accuracy rate for identifying particle’s 

orientation, especially for particles having a lower value of β.  The method can also give good 

predictions for aspect ratio with an accuracy rate of 0.99. These results suggest that advanced 

machine learning methods can be potentially used for estimating properties of single particles 

from their 2D scattering patterns.  

The use of Zernike moments is a key stage in the proposed work, since they are 

particularly suitable for the analysis of scattering patterns of particles with high symmetry, such 

as ice crystals. The highest correlation between the original images and the reconstructed 

images is obtained when we used the degree of Zernike moments of 95.   

Overall, this work contributes to the existing body of knowledge in interpreting light 

scattering patterns, i.e. solving the ‘inverse problem’ of deriving particle geometry from its 

scattering pattern. Here we have concentrated on the specific case of hexagonal columns. This 

led to the creation of computational models with which sizes, size PAD, and aspect ratios of 

atmospheric particles can be estimated for a given 2DLSP. The Python Programming Language 

codes developed in this work can also serve as the basis for others who may be interested in 

computing Zernike moments using Python Programing Language and for those who seek to 

develop additional computational models for studying other characteristics (such as surface 

roughness, shape, etc.) of hexagonal prisms and other atmospheric particles from their two-

dimensional light scattering patterns and similar data. Such an extended and refined method 

would need to be validated against light scattering data measured at particles which are well 

characterized with respect to the parameters under investigation. 
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