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Effects of different vibration frequencies,
amplitudes and contraction levels on
lower limb muscles during graded
isometric contractions superimposed
on whole body vibration stimulation

Amit N Pujari1,2 , Richard D Neilson1 and Marco Cardinale3

Abstract

Background: Indirect vibration stimulation, i.e., whole body vibration or upper limb vibration, has been investigated

increasingly as an exercise intervention for rehabilitation applications. However, there is a lack of evidence regarding the

effects of graded isometric contractions superimposed on whole body vibration stimulation. Hence, the objective of this

study was to quantify and analyse the effects of variations in the vibration parameters and contraction levels on the

neuromuscular responses to isometric exercise superimposed on whole body vibration stimulation.

Methods: In this study, we assessed the ‘neuromuscular effects’ of graded isometric contractions, of 20%, 40%, 60%,

80% and 100% of maximum voluntary contraction, superimposed on whole body vibration stimulation (V) and control

(C), i.e., no-vibration in 12 healthy volunteers. Vibration stimuli tested were 30 Hz and 50 Hz frequencies and 0.5 mm and

1.5 mm amplitude. Surface electromyographic activity of the vastus lateralis, vastus medialis and biceps femoris were

measured during V and C conditions with electromyographic root mean square and electromyographic mean frequency

values used to quantify muscle activity and their fatigue levels, respectively.

Results: Both the prime mover (vastus lateralis) and the antagonist (biceps femoris) displayed significantly higher

(P< 0.05) electromyographic activity with the V than the C condition with varying percentage increases in EMG

root-mean-square (EMGrms) values ranging from 20% to 200%. For both the vastus lateralis and biceps femoris, the

increase in mean EMGrms values depended on the frequency, amplitude and muscle contraction level with 50 Hz–0.5 mm

stimulation inducing the largest neuromuscular activity.

Conclusions: These results show that the isometric contraction superimposed on vibration stimulation leads to higher

neuromuscular activity compared to isometric contraction alone in the lower limbs. The combination of the vibration

frequency with the amplitude and the muscle tension together grades the final neuromuscular output.
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Introduction

Vibration stimulation has been used as a diagnostic
tool in neurological studies since the 70 s.1 Vibration
has also been studied extensively for its negative effects,
especially for the conditions arising from occupational
hazards after prolonged exposure.2–4 However, in
recent years, vibration has been increasingly investi-
gated for its positive effects. Researchers have studied
the use of vibration stimulation for increasing muscle
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strength, muscle power, body balance and bone remo-
delling.5–10 Consequently, given the potential benefits
of vibration stimulation, it has been suggested for spe-
cific applications ranging from sports to therapeutics to
rehabilitation.10,11

Two main types of vibration exercise modalities have
been identified: whole body vibration (WBV) and upper
limb vibration (ULV). WBV is delivered generally
through the lower limbs with the user typically standing
in a half squat position on a vibrating platform. ULV
vibration devices deliver vibration stimulation to the
hand and arm and can consist of vibrating dumbbells
which the user grasps tightly to receive the stimulations.
Both of these vibration modalities deliver stimulation
indirectly, through the limbs, whereas most of our
understanding about the body’s neurophysiological
responses to vibration stimulation is based on earlier
diagnostic studies which delivered the vibration directly
to specific muscles and tendons.12,13

While the potential beneficial effects on muscle and
bone form and functions are recognized now in various
populations,14–16 a lack of consensus exists on the bio-
logical mechanisms responsible for such adaptations.
One suggestion is that the enhanced neuromuscular
activation found during WBV16,17 can be one of the
main mechanisms inducing improvements in skeletal
muscle function. For this reason, it has been suggested
that WBV can induce adaptations similar to resistance
training.16–19

Direct vibration stimulation has been shown to
enhance muscle spindle activity resulting in excitatory
response of the primary and secondary endings,1,12 the
excitatory response being known as tonic vibration
reflex (TVR).13,20 It has also been observed that the
TVR response is influenced by the vibration location,
the initial length of muscle, i.e., pre-stretch and the
vibration frequency and amplitude.21,22

Another theory proposed to explain the increased
neuromuscular response under indirect vibration is
muscle tuning.23 Muscle tuning theory suggests that
increased muscle contraction during vibration could
lead to higher neuromuscular response.24 Recent work
has suggested some degree of a temporary sustained
enhancement of corticospinal excitability concomitant
with spinal inhibition acutely after WBV,25 suggesting
that central aspects should not be discounted.

Considering the effect of muscle length, contraction
and vibration frequency as well as amplitude in grading
the neuromuscular responses to vibration stimulation,
one way to further improve the effectiveness of the vibra-
tion exercise could be represented by the superimpos-
ition of isometric exercises on vibration stimulation.
Recently authors have investigated neuromuscular acti-
vation in the upper limbs under vibration stimulation
with graded isometric contractions superimposed.26,27

In the lower limbs, limited studies exist, but it has been
shown that additional load determines an increase in
electromyographic (EMG) activity in the target
muscles.28

To the best of the authors’ knowledge, this is the first
study to investigate the effects of graded isometric con-
tractions superimposed on WBV exercise. This is also
the first attempt to understand collectively the effects of
different frequencies and amplitudes of vibration stimu-
lation when graded levels of contraction are superim-
posed on WBV. Another unique aspect of this study is
the investigation of agonist–antagonist co-activation in
the lower limbs under graded isometric exercise super-
imposed on WBV.

The purpose of this study was to quantify and analyse
the effects of variations in the vibration parameters and
contraction levels on the neuromuscular responses to
isometric exercise superimposed on WBV stimulation.

To investigate the above-mentioned novel aspects,
we hypothesized that compared to the control (C) con-
dition (i.e., no vibration):

(1) The vibration intervention, i.e., vibration (V) con-
dition would significantly enhance neuromuscular
activation EMG root-mean-sqaure (EMGrms) in
the vastus lateralis (VL), vastus medialis (VM)
and biceps femoris (BF) muscles.

(2) This neuromuscular activation (EMGrms) would
vary significantly between and would depend
upon the vibration frequency, amplitude and iso-
metric contraction level.

(3) The V condition would also significantly increase
the agonist–antagonist co-activation.

(4) The V condition would significantly increase the
peripheral fatigue indices (EMG – mean frequency
(MEF) and Median Frequency (MDF)) in the VL,
VM and BF muscles.

(5) These peripheral fatigue indices (EMG – MEF and
MDF) would vary significantly and depend upon
the vibration frequency, amplitude and isometric
contraction level.

Methods

Participants

A total of 12 healthy volunteer participants (six females
and six males; age 28� 7.24 years; height
173� 13.04 cm; weight 73.16� 11.19 kg) were recruited
through the University of Aberdeen, Biomedical
Engineering Laboratory. The level of physical training
of the participants varied from sedentary to amateur
athlete. Written and informed consent was signed by
each volunteer. Exclusion criteria included a history
of back pain, acute inflammations in the pelvis and/or

2 Journal of Rehabilitation and Assistive Technologies Engineering



lower extremity, acute thrombosis, bone tumours, fresh
fracture, fresh implants, gallstones, kidney or bladder
stones, any disease of the spine, peripheral vascular dis-
ease, or pregnancy.

Experimental setup

Trials were performed with the setup reported previ-
ously.29,30 A leg press machine was converted into a
WBV device which allowed the user to apply varying
levels of isometric contractions while receiving vibration
stimulation in a seated position (refer to Figures 1 and 2
for a photograph of the device and a schematic of the
experimental setup and instrumentation31). The leg press
machine was fitted with two contra-rotating motors
(Vibratechniques Ltd., UK; model: MVSI-S90) attached
to a spring mounted vibration plate. The vibration plate
was attached directly to the foot plate, against which
user pushed to receive the vibrations. This led to the
sinusoidal motion of the foot plate in the sagittal direc-
tion, towards and away from the user.

An accelerometer (Kistler Instrument Corp.; model:
KShear-8704B25) attached to the vibration plate sensed
the real-time acceleration of the vibrating plate.

A pancake type load cell (Procter & Chester
Measurements Ltd., UK; model: BD-PLC-C) sand-
wiched between vibration plate and the foot plate mea-
sured the real-time force applied by the user, i.e.,
maximal voluntary contraction (MVC).

The user sat on the device seat with a backrest, with
his/her legs half flexed (90� knee angles) and pushed
against the vibrating foot plate. This posture arrange-
ment differs from current WBV devices where the user
stands on a vibrating platform. While exercising, the
knee angle was kept at 90� and was continuously moni-
tored with a goniometer. The position of the seat and
backrest could be adjusted manually with respect to the
foot plate, to accommodate users of different height.
This also helped to keep the knee angle of 90�.
Appropriate toe and heel positions were marked on
the foot plate to ensure consistency inter and intra par-
ticipants. To avoid vibration damping and any variabil-
ity among participants, exercises were performed
barefoot. The foot plate had a rubber platform to pro-
vide traction while exercising.

The WBV device was set up to generate sinusoidal
vibrations of 30Hz or 50Hz frequencies with peak-to-
peak amplitudes of 0.5mm or 1.5mm.

 

Force plate/ 
foot plate 

Force plate 
backing plate 

Bearing 
mounting plate 

Accelerometer 
amplifier 

Motor 
mounting plate 

Load cell 
amplifier 

Figure 1. Photograph showing the arrangement of various plates delivering vibration of the motors to the user via footplate.
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Vibration device – Performance evaluation

To verify whether the WBV device generates specific
and repeatable vibrations (i.e., 30Hz and 50Hz fre-
quencies with peak-to-peak amplitudes of 0.5mm and
1.5mm), a simple procedure was followed. An input
voltage was delivered to the vibration device from the
central PC and the corresponding vibration character-
istics generated were recorded. This procedure was
repeated multiple times to make sure those vibration
characteristics values were consistent and hence reliably
repeatable. The experimental setup to generate the
vibrations is described in schematic in Figure 3.
The vibration characteristics were recorded by the

accelerometer situated on the vibration plate. These sig-
nals were recorded, observed and analysed on an oscil-
loscope. The signal to the oscilloscope from the
accelerometer was low-pass filtered with a cut-off fre-
quency 80Hz. This low-pass filtering made sure that the
frequency range of interest (30 Hz and 50Hz) was rec-
orded and analysed.

One set of representative data recording values are
presented in Figure 4.

Study design

A randomized crossover design was used to carry out
the exercise interventions. As a crossover experiment,

Figure 2. Schematic diagram showing operation of the complete WBV system; the direction of the arrow represents the flow of the

signal. The top part depicts interfacing of the controlling PC with the vibration device, through opto-coupler circuitry, motor drive and

vibrating motors. This top part also depicts how sensors attached to the vibration device (i.e., load cell and accelerometer) were

interfaced with the controlling PC. The bottom part of the figure depicts how sensors attached to the vibration device user (i.e., EMG

and accelerometer sensor) were connected to the controlling PC. sEMG: surface electromyography.
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Figure 3. Schematic showing experimental setup used for recording vibration characteristics to verify and evaluate the performance

of the WBV system. Vibration motors were interfaced with the central controlling PC via an interface board, an opto-coupler circuitry

and a motor drive. Oscillations of the vibration plate were measured through an acceleration sensor connected to the oscilloscope via

a low-pass filter.
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each participant was randomly allocated one of the sev-
eral possible sequences of interventions. 25 integers
were assigned to the 25 different interventions to be
performed. A ‘random sequence’, i.e., a sequence con-
sisting of 25 integers ffi25 interventions was assigned to
each participant to provide the interventions in a
random order. The MATLAB function ‘randperm’
was used to generate these random sequences.

The 25 interventions consisted of the exercise condi-
tions shown in Table 1.

The protocol is outlined in Figure 5. In the first visit,
each participant was familiarized with the WBV device.
Then the participant performed an isometric leg press
exercise of various intensities against the WBV device
foot plate with the knees flexed at 90� as a warm up.
After this initial warm-up and familiarization, the
MVC was established for each participant. For this,
the participant performed maximal efforts for 40 s.
This procedure was undertaken three times with each
effort separated by a 5-min period of rest. The average
of the three efforts was used as the baseline MVC value
for that participant.

In the second to sixth visits, the participants went
through the vibration exercise intervention outlined in
Table 1 with the randomized crossover design. The
vibration interventions consisted of an isometric leg
press exercise pushing against the WBV device foot
plate with the knees flexed at 90� at the target force,
for 60 s. Five minutes of rest was allowed between any
two consecutive interventions/measurements. Five
interventions were carried out per session with the
total of 25 measurements taken in the five sessions.

During each measurement, the neuromuscular acti-
vation of the designated muscles was recorded in the
form of surface electromyographic (sEMG) response
and stored for analysis along with the vibration char-
acteristics and the force production details. The vibra-
tion being delivered was continuously monitored and
recorded. Vibrations transmitted to the participant
were recorded and stored by a tri-axial accelerometer
(Analog Devices Inc.; model: ADXL-330) attached to
the lower limb of the participant. Real-time graphical
and numerical representations of the vibration charac-
teristics as well as the force levels produced by the par-
ticipant were available on the main computer.

All the procedures were non-invasive. Participant
wore shorts to facilitate sensor placement on the
lower limbs.

Instructions to the participants

Participants were asked to maintain consistency in their
foot positions and knee angles. Both of these variables
were measured continuously throughout the tests.
Participants received both verbal and visual (real-time

graphical values on the PC) feedback to assist them in
maintaining a constant force level.

Isometric contraction with the required postural
conditions was practiced with and without vibrations
before the actual trials until the participants became
familiar with the test conditions. Trials were repeated
if postural conditions changed from the required
position.

Fatigue and safety

A minimum of 72 h of recovery time was allowed
between any two testing sessions to avoid any residue
of fatigue and/or delayed onset of muscle soreness.
Also, a general log of each participant’s daily physical
activity excluding the trials was kept, e.g., any form of
regular/irregular physical exercise like running,
strength or resistance training. This was done to
ensure that the participant did not undergo the WBV

Table 1. Characteristics of the 25 interventions and the

integers assigned to them.

Integer

assigned

Characteristics of the corresponding

intervention/treatment performed

1 Control – 20% of MVC (C)

2 Control – 40% of MVC (C)

3 Control – 60% of MVC (C)

4 Control – 80% of MVC (C)

5 Control – 100% of MVC (C)

6 30 Hzþ0.5 mmþ20% of MVC (V)

7 30 Hzþ0.5 mmþ40% of MVC (V)

8 30 Hzþ0.5 mmþ60% of MVC (V)

9 30 Hzþ0.5 mmþ80% of MVC (V)

10 30 Hzþ0.5 mmþ100% of MVC (V)

11 30 Hzþ1.5 mmþ20% of MVC (V)

12 30 Hzþ1.5 mmþ40% of MVC (V)

13 30 Hzþ1.5 mmþ60% of MVC (V)

14 30 Hzþ1.5 mmþ80% of MVC (V)

15 30 Hzþ1.5 mmþ100% of MVC (V)

16 50 Hzþ0.5 mmþ20% of MVC (V)

17 50 Hzþ0.5 mmþ40% of MVC (V)

18 50 Hzþ0.5 mmþ60% of MVC (V)

19 50 Hzþ0.5 mmþ80% of MVC (V)

20 50 Hzþ0.5 mmþ100% of MVC (V)

21 50 Hzþ1.5 mmþ20% of MVC (V)

22 50 Hzþ1.5 mmþ40% of MVC (V)

23 50 Hzþ1.5 mmþ60% of MVC (V)

24 50 Hzþ1.5 mmþ80% of MVC (V)

25 50 Hzþ1.5 mmþ100% of MVC (V)

Control (C) refers to ‘no vibration’.

MVC: maximum voluntary contraction; C: control conditions; V: vibra-

tion conditions.
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stimulation trials immediately after finishing their regu-
lar exercise. At least 72 h of time gap was allowed
between the regular physical exercise and WBV trials,
to avoid any effect of muscle fatigue.

Participants were encouraged to report any pain
and/or discomfort, during or after the trials, to the
test operator. Apart from the feeling of exertion
during the exercises performed at an individual’s peak
capacity, no adverse effects were reported by the par-
ticipants during or after the trials.

An emergency stop button to halt the vibration deliv-
ery was located near the WBV device seat. Participants
were advised to make use of the button in case they felt
unsafe or were in pain. None of the participants used the
emergency stop button during the trials.

EMG measurements and processing

sEMG was recorded from the VL, VM and BF during
all exercise conditions according to recommendations

reported in the literature.32 Active bipolar electrodes
(DelSys, Inc.; model: DE 2.1) were aligned with the
muscle fibre direction and placed between the tendon
and the muscle belly. To minimize the impedance and
to ensure a proper contact, the skin was shaved as
necessary, lightly abraded and cleaned with 70% iso-
propyl alcohol. The reference electrode was placed on
an electrically inactive area of the lumbar spine (the
anterior superior iliac spine). To ensure consistency in
the placement of the sEMG electrodes between the ses-
sions, electrode locations were marked with a skin
marker and kept throughout the entire duration of
tests, i.e., from the first MVC measurement visit to
the last visit. The sEMG electrodes and cables were
secured to subject’s skin with medical tape. Active
grounding and shielding of the cables was carried out
to minimize electromagnetic inference.33 The sEMG
signals were sampled at 1000Hz, amplified with a
gain of 1000 and analogue filtered for a 20–450Hz
band pass with DelSys hardware (DelSys, Inc.; model:

Figure 5. Schematic describing the arrangements/research protocol of the experiment. WBV: whole body vibration; MVC: maximal

voluntary contraction.
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Bagnoli-4). Data acquisition was performed through a
16-bit data acquisition card (National Instruments
Corp.; model: PCI-6220M) and EMGWorks (DelSys,
Inc.) software.

Subsequent data processing and analysis was per-
formed with custom written MATLAB code (The
Mathworks, Inc.; version 8) routine. Any baseline
offset of the sEMG data was removed by subtracting
the mean.

The root mean square (RMS, i.e., EMGrms) was
used to estimate the neuromuscular activation. The
RMS was calculated using the moving window tech-
nique. Initially, the RMS was calculated for each
window, and then, the RMS for the entire data length
was obtained by averaging the individual RMS values
of each window. Exactly same RMS windowing char-
acteristics were employed to obtain the MVC EMGrms
values as well as EMGrms for the C and V conditions.

The MEF and power spectral density (PSD) of the
sEMG data were also obtained. The MEF was used as
an indicator of muscle fatigue. These spectral estima-
tors were also derived by moving window technique.

For both amplitude and spectral estimation, the
hamming window with a length of 1 s and no overlap
was used. It has been shown that the choice of the
window does not have a critical bearing on the spectral
estimators like MEF and PSD.34 Further, for isometric,
constant force and fatiguing contractions, the signal is
regarded as stationary for epoch/window duration of 1
to 2 s. Previous studies suggest that epoch durations
between 500ms to 1 s provide better spectral estima-
tion.34–36 Also, it has been shown that window over-
lapping does not provide any significant benefits.34

Based on these recommendations, the window length
was kept to 1 s without any overlap.

Line artefact removal

The power spectral analysis of the sEMG revealed
peaks coinciding with 50Hz and to a lesser degree
with 30Hz. Peaks at the integer harmonics of 50Hz
and 30Hz were also observed however their power
was almost negligible (Figure 6).

Some authors have filtered the peaks in sEMG spec-
tra coinciding with the vibration stimulation frequen-
cies assuming them to be motion artefacts.37 However,
it is still unclear whether the spectral peaks correlating
with the stimulation frequencies are in fact motion arte-
facts36 or stretch reflexes.18 Recent evidence suggests
that these peaks can indeed be stretch reflexes.38

Considering the present ambiguity about the existence
of motion artefacts and increasing evidence towards the
presence of stretch reflex,18,38 only the spectra exhibit-
ing the largest power and hence potential to skew the
results were removed. The largest spectra were found to
be at 50Hz irrespective of the stimulation frequency of
30 Hz or 50 Hz. Hence, a Butterworth notch filter (10th
order, cut-off frequencies 49.5–50.5Hz) was employed
to remove the components at this frequency. Figure 7
shows the effect of the filtering.

Statistical analysis

Normalization was performed by dividing the
EMGrms of the entire section of the data value to be
normalized by the maximum value obtained from the

Figure 6. EMG frequency spectra from the VM under 30 Hz, 1.5 mm, 60% MVC (blue) and 50 Hz, 1.5 mm, 60% MVC (red)

stimulation frequencies without 50 Hz notch filter application. VM: vastus medialis.
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MVC effort of each participant. To identify whether the
EMGrms values differ significantly between the effort
levels and between the control and vibration conditions,
a two-way ANOVA test was employed. The two inter-
ventions (control and vibration) and five intensities of
contractions (effort levels) were used to compare between
the EMGrms of different effort levels as well as between
the control and each vibration condition one at a time.
Alpha was set at 0.05. In each case, a significant difference
was defined for a computed P-value� 0.05. Paired stu-
dent t-tests (one tail, different variance) were employed
at each effort level to compare the sEMG responses
between the C and V conditions and to establish the sig-
nificance level (P value) of the deviations from the means.
The distribution of grouped data was assessed for nor-
mality using the Lilliefors test with a significance detec-
tion level of� 0.05. Statistical analysis was carried out
using the SigmaPlot statistical software package (Systat
Software Inc.; Version SigmaPlot 12).

Results

Overall effects of vibration on EMG amplitude

For the VL and BF muscles, at all contraction levels,
isometric contraction superimposed on vibration stimu-
lation produced higher mean EMGrms activity than
isometric contraction (control) alone. However, the
VM did not show any increases in neuromuscular activ-
ity under vibration conditions, instead its mean
EMGrms values were similar to the control condition
and in some cases lower.

As a prime mover/agonist in the leg press exercise,
the VL displayed higher EMG activity than the control
condition. The percentage increase in mean EMGrms
values with vibration was highly variable depending on
the frequency, amplitude and contraction level and
ranged from 5% to 165%. The EMGrms data for the
various cases are shown in Figures 8 to 11.

As an antagonist, the BF seemed highly active and
showed higher levels of EMG activity under vibration
compared to the control condition. Similar to the VL,
the percentage increase in mean EMGrms values of BF
was highly variable and depended on the frequency,
amplitude and muscle contraction level. Compared to
the control, the BF’s mean EMGrms increase ranged
from 28% to 206%. The EMGrms data for the various
cases are shown in Figures 12 to 15.

The effects of frequencies 30 Hz and 50 Hz and
amplitudes 0.5 mm and 1.5 mm

Among the four combinations of the vibration vari-
ables investigated, 50Hz–0.5mm stimulation induced
the largest neuromuscular activity in the VL and BF
muscles with the highest increases of 165% and 206%
in mean EMGrms values, respectively (Table 2 and
Figures 8 to 15).

Interestingly, the VL did not display significantly
higher EMG amplitude values under the higher level
stimulation of 50Hz–1.5mm (Figure 11), whereas it rec-
orded significantly higher (P< 0.05) EMG activity under
30Hz–1.5mm at both 20% and 60% of MVC effort
(Figure 9). However, for the same vibration input, i.e.,

Figure 7. EMG frequency spectra from the VM under 30 Hz, 1.5 mm, 60% MVC (blue) and 50 Hz, 1.5 mm, 60% MVC (red)

stimulation frequencies with 50 Hz notch filter application. VM: vastus medialis.
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30Hz–1.5mm, the BF did not respond well compared to
50Hz–1.5mm, for which the BF generated significantly
higher (P< 0.05) EMG activity at all effort levels with
63% to 120% increases in mean EMGrms values
(Figures 13 and 15). Thus, apart from the 50Hz–
0.5mm stimulation there was no clear combination of
vibration variables which was able to generate consist-
ently significant levels of neuromuscular response in
both agonist and antagonist muscles simultaneously.

Broadly speaking, based on the percentage increases
in mean EMGrms activities of the VL and BF muscles,

the 50Hz–0.5mm stimulation induced the largest neuro-
muscular response followed by 50Hz–1.5mm and
30Hz–1.5mm (refer Table 2). However, the EMG amp-
litudes under 50Hz–1.5mm and 30Hz–1.5mm stimula-
tions were not significantly different to each other.

EMGrms amplitude differences between the effort
levels and between the control and vibration

Table 3 shows the comparison between the EMGrms of
different effort levels (i.e., between 20%, 40%, 60%,

Figure 8. Normalized mean EMGrms values for VL at 20%, 40%, 60%, 80% and 100% MVC under 30 Hz–0.5 mm V against C (no

vibration) condition. MVC: maximal voluntary contraction; VL: vastus lateralis; EMGrms: EMG root-mean-square.

Figure 9. Normalized mean EMGrms values for VL at 20%, 40%, 60%, 80% and 100% MVC under 30 Hz–1.5 mm V against C. MVC:

maximal voluntary contraction; VL: vastus lateralis; EMGrms: EMG root-mean-square.
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80% and 100% of MVC) and between vibration and
control condition. The values are presented for all the
three muscle groups studied, i.e., VL, VM and BF.

The effects of contraction levels 20% to 100% MVC

Overall, statistically significant (P< 0.05) differences
were observed between the effort levels’ mean
EMGrms values. That is, as the force level increased,
the EMGrms values also increased significantly
(Table 3). ANOVA showed significant differences

between the mean EMGrms values of the effort levels
in all the muscle groups. Significant differences also
existed between the mean EMGrms values of all the
control and vibration conditions of VL and BF muscles
(Table 3).

For theVL, based on the percentage increases inmean
EMGrms values, force levels of 20% to 60% of MVC
seemed to induce higher neuromuscular responses than
80% and 100% of MVC efforts (Table 2). At 80% to
100% of MVC, the mean EMGrms values were similar
to the control condition.

Figure 11. Normalized mean EMGrms values for VL at 20%, 40%, 60%, 80% and 100% MVC under 50 Hz–1.5 mm V against C. MVC:

maximal voluntary contraction; VL: vastus lateralis; EMGrms: EMG root-mean-square.

Figure 10. Normalized mean EMGrms values for VL at 20%, 40%, 60%, 80% and 100% MVC under 50 Hz–0.5 mm V against C. MVC:

maximal voluntary contraction; VL: vastus lateralis; EMGrms: EMG root-mean-square.

Pujari et al. 11



For increasing contraction levels, the VM did not
display any significantly higher EMG activity for vibra-
tion compared to the control.

Agonist–antagonist co-activation

Co-activation was calculated for the ratio of the
EMG of the BF divided by the VL. The results
are shown in Figures 16 to 19 for the different inter-
ventions. The EMGrms ratio of BF/VL showed
higher co-activation values with the vibration condi-
tion than the control condition except at 20% of the
MVC.

As the contraction level increased, overall co-
activation EMG amplitude decreased both under

vibration and control conditions, with the highest co-
activation amplitude being produced at 20% of MVC
and the lowest at 100% of MVC. Despite an overall
decrease in the co-activation amplitude with the
increasing contraction, effort levels of 80% and 100%
of MVC led to the most significantly (P< 0.05) higher
co-activation ratios compared to the control, irrespect-
ive of the vibration condition (Figures 16 to 19).

50Hz–0.5mm vibration condition led to the stron-
gest co-activation response with co-activation ratios
significantly (P< 0.05) higher at 40%, 80% and 100%
of MVC than the control. This suggests that the higher
the vibration stimulus is (i.e., 50Hz–0.5mm), the higher
the co-activation required to stabilize the joint rotation
during vibration. This implies 50Hz–0.5mm to be the

Figure 13. Normalized mean EMGrms values for BF at 20%, 40%, 60%, 80% and 100% MVC under 30 Hz–1.5 mm V against C. MVC:

maximal voluntary contraction; BF: biceps femoris; EMGrms: EMG root-mean-square.

Figure 12. Normalized mean EMGrms values for BF at 20%, 40%, 60, 80% and 100% MVC under 30 Hz–0.5 mm V against C. MVC:

maximal voluntary contraction; BF: biceps femoris; EMGrms: EMG root-mean-square.
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most efficacious stimulus among the variables tested for
this study.

For all the effort levels and vibration conditions,
BF/VM co-activation was higher under the vibration
condition than the control condition.

Overall effects of vibration on EMG MEF behaviour

The VL and BF show higher MEF values under all
vibration conditions compared to the control. The
results are shown in Figures 20 to 23 for the different
interventions. The VM MEF values under vibration
conditions did not differ much compared to the control
condition’s mean frequencies.

For the VL (Figures 20 to 23), the lower contraction
levels of 20% and 40% of MVC produce consistently
the most significantly higher (P< 0.05) MEF values
with vibration compared to control conditions.

For the BF, all contraction levels, i.e., 20% to 100%
of MVC produce significantly higher (P< 0.05) MEF
values under specific vibration conditions compared to
the control conditions. The BF display significantly
higher (P< 0.05) EMG MEF values under 50Hz–
0.5mm and 50Hz–1.5mm, under all contraction
levels with the exception of 40% of MVC.

Although the VMMEF values were closer to the con-
trolMEF, the VMdid display higherMEFunder certain
vibration conditions (30Hz–1.5mm and 50Hz–0.5mm)

Figure 15. Normalized mean EMGrms values for BF at 20%, 40, 60%, 80% and 100% MVC under 50 Hz–1.5 mm V against C. MVC:

maximal voluntary contraction; BF: biceps femoris; EMGrms: EMG root-mean-square.

Figure 14. Normalized mean EMGrms values for BF at 20%, 40%, 60%, 80% and 100% MVC under 50 Hz–0.5 mm V against C. MVC:

maximal voluntary contraction; BF: biceps femoris; EMGrms: EMG root-mean-square.
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Table 2. Percentage increase or variation in mean EMGrms values in comparison with respective controls.

Vibration treatment condition

(frequency ¼ 30/50 Hz,

amplitude¼ 0.5/1.5 mm,

force level¼ 20%/40%/60%/80%/100% of MVC)

Vibration treatment effect in a muscle group

(% increase over respective control condition)

VL VM BF

30Hz–0.5 mm_20 66.85* 25.72 89.22*

30Hz–0.5 mm_40 28.81 �5.17 48.98*

30Hz–0.5 mm_60 26.43* 10.67 64.33*

30Hz–0.5 mm_80 �0.14 �10.69 37.99*

30Hz–0.5 mm_100 5.96 0.50 30.81*

30Hz–1.5 mm_20 98.43* 23.56 85.45*

30Hz–1.5 mm_40 10.11 �13.70 24.87*

30Hz–1.5 mm_60 31.92* 23.09 84.15*

30Hz–1.5 mm_80 2.01 �4.377 64.55*

30Hz–1.5 mm_100 14.75 11.010 65.12*

50Hz–0.5 mm_20 165.44* 15.24 206.50*

50Hz–0.5 mm_40 68.97* �9.44 151.68*

50Hz–0.5 mm_60 40.07* 6.62 105.56*

50Hz–0.5 mm_80 14.82 �8.65 101.05*

50Hz–0.5 mm_100 9.86 �1.56 28.86

50Hz–1.5 mm_20 68.51 34.35 120.04*

50Hz–1.5 mm_40 34.83 �9.02 64.74*

50Hz–1.5 mm_60 26.36 9.68 65.70*

50Hz–1.5 mm_80 9.18 �2.73 65.64*

50Hz–1.5 mm_100 5.83 �1.13 63.54*

Values in asterisk represent statistically significant increase compared to C with P value� 0.05. MVC: maximal voluntary contraction; VL: vastus

lateralis; VM: vastus medialis; BF: biceps femoris.

Table 3. Two-way ANOVA results comparing EMGrms means between effort levels and between control and

vibration.

Intervention and

muscle group

Effect of treatment – effort levels

(significant difference between

effort levels, P value)

Effect of treatment – V or C condition

(significant difference between V and C

condition, P value)

30 Hz–0.5 mm – VL Yes, P� 0.001 Yes, P¼ 0.029

30 Hz–1.5 mm – VL Yes, P� 0.001 Yes, P¼ 0.035

50 Hz–0.5 mm – VL Yes, P¼ 0.003 Yes, P¼ 0.010

50 Hz–1.5 mm – VL Yes, P� 0.001 Yes, P¼ 0.003

30 Hz–0.5 mm – VM Yes, P� 0.001 No, P¼ 0.966

30 Hz–1.5 mm – VM Yes, P� 0.001 No, P¼ 0.376

50 Hz–0.5 mm – VM Yes, P� 0.001 No, P¼ 0.542

50 Hz–1.5 mm – VM Yes, P� 0.001 No, P¼ 0.712

30 Hz–0.5 mm – BF Yes, P� 0.001 Yes, P� 0.001

30 Hz–1.5 mm – BF Yes, P¼ 0.024 Yes, P¼ 0.009

50 Hz–0.5 mm – BF Yes, P¼ 0.314 Yes, P¼ 0.003

50 Hz–1.5 mm – BF Yes, P¼ 0.005 Yes, P� 0.001

MVC: maximal voluntary contraction; VL: vastus lateralis; VM: vastus medialis; BF: biceps femoris.
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compared to the control. However, under certain condi-
tions, its values were lower than the values of the control
(30Hz–0.5mm and 50Hz–1.5mm).

For both the VL and BF, the difference between the
vibration and control condition MEF is larger at lower
contraction levels and this difference reduces with
increase in the contraction level.

Discussion

Effects of vibration frequency, vibration amplitude
and contraction levels

These results (i.e., EMGrms, co-activation and EMG
MEF) confirm that in comparison with isometric

contraction alone, isometric contraction with superim-
posed vibration stimulation induces higher neuromus-
cular activity in the lower limb muscles. Further, the
results also imply strongly and confirm that frequency
or amplitude alone does not decide the level of induced
neuromuscular activity, and instead the combination of
frequency and amplitude along with the level of muscle
contraction/tension should be used to identify the ‘opti-
mal’ response to vibratory stimulation.

Both the 30 and 50Hz frequencies were found to
elicit significantly higher neuromuscular activity com-
pared to the control in the VL and BF muscles.
However, among the vibration variables tested, based
on the percentage increases in mean EMGrms activities
of the VL and BF muscles, increases in the co-

Figure 16. Normalized mean EMGrms co-activation values for BF over VL at 20%, 40%, 60%, 80% and 100% MVC under 30 Hz–

0.5 mm V against C. MVC: maximal voluntary contraction; BF: biceps femoris; EMGrms: EMG root-mean-square.

Figure 17. Normalized mean EMGrms co-activation values for BF over VL at 20%, 40%, 60%, 80% and 100% MVC under

30 Hz–1.5 mm V against C. MVC: maximal voluntary contraction; BF: biceps femoris; EMGrms: EMG root-mean-square.
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activation (BF/VL and BF/VM) ratios and increases in
the MEF values, the 50Hz–0.5mm frequency-ampli-
tude combination was found to be the most effective
in generating the highest neuromuscular activity in leg
extensors muscles, which is similar to previous work on
vibrating platforms.39 This is of particular importance
considering that, although previous studies have sug-
gested both 30Hz and 50Hz as suitable stimuli, 50Hz
frequency has been shown to be more effective stimulus
in lower limbs compared to 30Hz.40 Also, with regards
to the muscle tuning theory discussed earlier, in lower
limbs, the highest levels of muscle activity have been
observed to coincide with the highest vibration

damping which occurred at the resonant frequencies
(10–50 Hz) of the lower limb tissues.41

Further, it has also been suggested that the higher
frequencies and amplitudes of vibration would be more
effective in inducing higher neuromuscular stimula-
tion.42 However, the results of this study do not indi-
cate that simply delivering a combination of higher
frequency and amplitude necessarily induces higher
neuromuscular response. The combination of the high-
est frequency and amplitude stimulation tested during
this study (i.e., 50Hz–1.5mm) did not lead to the high-
est neuromuscular activity compared to other
combinations.

Figure 19. Normalized mean EMGrms co-activation values for BF over VL at 20%, 40%, 60%, 80% and 100% MVC under

50 Hz–1.5 mm V against C. MVC: maximal voluntary contraction; BF: biceps femoris; EMGrms: EMG root-mean-square.

Figure 18. Normalized mean EMGrms co-activation values for BF over VL at 20%, 40%, 60%, 80% and 100% MVC under

50 Hz–0.5 mm V against C. MVC: maximal voluntary contraction; BF: biceps femoris; EMGrms: EMG root-mean-square.
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A limited number of studies on indirect (WBV,
ULV) vibration have compared different combinations
of frequency-amplitude stimulation simultaneously for
their effectiveness in generating higher neuromuscular
activity or muscle strength.42,43 To the best of the
authors’ knowledge, no study has investigated the
effect of graded isometric contractions superimposed
on vibration in the lower limbs. However, in direct
vibration studies, strong evidence specifying the fac-
tors that influence neuromuscular response does
exist. Increase in muscle length has been linked to
increase in TVR.20 Also, vibration frequency, ampli-
tude and muscle pre-stretch have been specified to

influence the TVR.21 Higher amplitude vibration has
led to higher TVR response in animals44,45; potentially
due to increased number of muscle-spindle endings
being activated leading to increased number of
motor neurons being employed.46 Importantly, previ-
ous work has suggested that the higher amplitudes
may only be effective in sub-maximal contractions.47

However, from the results of this study, no clear
trends indicating higher amplitudes (i.e., 1.5mm com-
pared to 0.5mm) leading to higher neuromuscular
responses only under sub-maximal contractions (i.e.,
20% to 40% of MVC compared to 80% to 100% of
MVC) were found. Sub-maximal contractions did,

Figure 20. EMG mean frequency values for VL at 20%, 40%, 60%, 80% and 100% MVC under 30 Hz–0.5 mm V against C. VL: vastus

lateralis; MEF: mean frequency; MVC: maximal voluntary contraction; EMG: electromyographic.

Figure 21. EMG mean frequency values for VL at 20%, 40%, 60%, 80% and 100% MVC under 30 Hz–1.5 mm V against C. VL: vastus

lateralis, MEF: mean frequency; MVC: maximal voluntary contraction EMG: electromyographic.
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however, lead to the higher neuromuscular responses
with both the lower (0.5mm) and higher (1.5mm)
amplitudes in the (VL) muscle. The antagonist
muscle (BF) displayed a different response to the VL
with a higher neuromuscular activity for MVCs irre-
spective of the amplitude levels. Without further evi-
dence, it is difficult to infer whether the almost
contrasting response of agonist and antagonist is a
part of a wider neuromuscular strategy to counteract
the vibration perturbation depending on the force
level superimposed.

It is also worth noting that the magnitude of acceler-
ation produced by the 50Hz–0.5mm stimulation is

equivalent to 30Hz-1.5mm stimulation. Despite having
the same acceleration magnitude, the results indicated
significant differences between the neuromuscular
responses to these vibration stimulations. Further,
neuromuscular responses to the same vibration fre-
quency (e.g., 30Hz) differed significantly with the
change in the amplitude from 0.5mm to 1.5mm.
Overall, the observed differences in neuromuscular
responses in this study can be attributed to the combin-
ations of vibration frequencies (30 Hz vs. 50Hz), amp-
litudes (0.5mm vs. 1.5mm) and contraction levels (20%
to 100% of MVC). This further affirms the role of the
vibration frequency-amplitude combination in grading

Figure 23. EMG mean frequency values for VL at 20%, 40%, 60%, 80% and 100% MVC under 30 Hz–1.5 mm V against C. VL: vastus

lateralis, MEF: mean frequency; MVC: maximal voluntary contraction; EMG: electromyographic.

Figure 22. EMG mean frequency values for VL at 20%, 40%, 60%, 80% and 100% MVC under 50 Hz–0.5 mm V against C. VL: vastus

lateralis, MEF: mean frequency; MVC: maximal voluntary contraction; EMG: electromyographic.
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the neuromuscular response as opposed to the level of
acceleration or frequency alone. Nevertheless, from pre-
vious evidence and the results of this study, it is clear that
the role and the effect of vibration amplitude in grading
neuromuscular response should not be ignored.

The VM EMGrms response under all the vibration
conditions was similar to its control conditions
response. This is likely due to the lesser engagement
of this muscle in the task used in this study. The VM
is likely to be more engaged as an agonist when the
knee angle is greater, i.e., the knee is more extended.
As the length of the muscle and pre-stretch during
vibration appear to have direct influence on the neuro-
muscular response, the 90� knee angle posture
employed in this study potentially restricted the
involvement of the VM as an agonist, limiting the
effect of vibration exercise on the VM’s neuromuscular
activity. It is important to note that in the knee exten-
sion, the VM acts as a synergist with the VL. In this
regard, a recent study suggests that quadriceps muscle
activity during leg press exercise depends upon and
strongly varies with the knee angle, foot placement
and effort level.48 The VM has been shown also to dis-
play a non-linear EMG/force relationship during iso-
metric leg press exercise.49 Further, recent investigation
which looked at the ratio of VL/VM contraction during
knee extension concluded that the neural drive may be
biased towards the VL compared to the VM and seems
to be dependent on the force level.50 The authors sug-
gested that the higher the force generation capacity of
an individual’s VL, the higher the bias of neural drive
towards VL over the VM. The study also found that
this bias increased with increase in the force level during
isometric knee extension contraction. The above rea-
sons might explain why, compared to the VL and BF,
the VM did not show an increase in neuromuscular
activity when stimulated by vibration superimposed
on varying levels of contractions.

Contrary to the previous evidence for the upper
limb,26 vibration stimulation superimposed on lower
contraction levels of 20% to 60% of MVC in this
study was found to be equally or more effective in indu-
cing higher neuromuscular activity compared to near
maximal/maximal effort levels of 80% and 100% of
MVC. In the upper limb study,26 irrespective of
muscle group (i.e., agonist or antagonist), higher force
levels of 80% and 100% of MVC were able to induce
significantly higher EMGrms amplitudes compared to
control conditions. In Mischi and Cardinale,26 the max-
imum increase in average EMGrms value was found to
be of 77.2%, whereas in the current study, the max-
imum increase in average EMGrms value was found
to be of 118% when compared to the control. Based
on the average increases in EMGrms values, vibration
superimposed on isometric contraction seems to induce

higher neuromuscular activity in the lower limbs com-
pared to that which was reported previously for the
upper limbs.26 This implies upper and lower limb mus-
cles may respond differently to counteract the vibra-
tion, possibly with different neural strategies, thus
leading to different neuromuscular responses even
when stimulated by the same vibration parameters
and level of muscle tension.

Although higher neuromuscular response was
observed at lower contraction levels for the VL, similar
conclusions cannot be drawn about the BF. In fact, the
BF showed more significant activity at the higher con-
traction levels of 80% and 100% of MVC. Compared
to the control and with increase in the force level, the
VL and BF showed contrasting responses (i.e., the VL
converging with the control and the BF diverging with
the control). These contrasting responses of the VL and
BF could be a neuromuscular strategy to counteract
increasing muscle tension when superimposed on vibra-
tion. Reasons behind these seemingly contrasting dif-
ferences in the neuromuscular activity of the upper and
lower limb need to be investigated further.

Co-activation of agonist and antagonist

Co-activation of agonist and antagonist muscles at the
joint is employed for stabilizing the joint.51 Indirect
vibration stimulation (WBV and ULV) induces a per-
turbation at the joint.26,52 Therefore, when vibration
stimulation is delivered, it would be reasonable to
expect higher co-activation of the agonist–antagonist
pair in order to stabilize the joint. This was indeed
the case when co-activation of VL and BF under the
vibration condition was compared to the control. In-
fact with vibration stimulation, VL-BF showed higher
co-activation at almost all the vibration conditions and
effort levels.

Under both control and vibration conditions, co-
activation levels were higher at lower effort levels and
were lowest at the MVC. Interestingly, similar results
have been reported in a study conducted on ULV.26

The authors of this study26 argued that when the agon-
ist is involved in lower force production, the joint rota-
tion is primarily controlled by the antagonist hence
leading to higher co-activation. The results of our
study also indicate that co-activation of the antagonist
may be primarily used as a joint stabilization mechan-
ism rather than to modulate agonist force output. In
this regard, significantly higher co-activation levels
(than control) under vibration conditions, at higher
force levels may seem contradictory. However, it can
be argued that when vibration is superimposed with
graded force levels, the higher the force level, the
higher the perturbation induced at the joints.
Therefore, although overall co-activation levels dip at
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higher force levels, co-activation levels under vibration
conditions (at higher force levels of 80% to 100% of
MVC) were significantly higher than the respective con-
trol conditions.

Under direct vibration stimulation, higher co-activa-
tion levels compared to control have been reported.51

However, extrapolation of the results obtained from
direct vibration stimulations to the indirect vibration
stimulations should be approached with a caution.
Notwithstanding these differences, however, co-activa-
tion results obtained in this study corroborate earlier
findings.51 In that, vibration stimulation does induce
higher co-activation in agonist–antagonist pair.

Potential mechanisms leading to increased
neuromuscular activity

The observed increases in neuromuscular activity under
vibration conditions superimposed with graded con-
traction levels can be ascribed to a range of mechanisms
from the local (muscular) to the central (CNS) level.

On the local level, it has been reported that muscles
actually damp externally applied vibrations and that
activated muscles are capable of absorbing more vibra-
tion energy than the muscles in rigor.53,54 As a conse-
quence, it has been suggested that muscles are activated
to attenuate the vibrations.23 The higher neuromuscu-
lar activation levels observed in this study imply that
the soft tissue activations to damp the oscillation could
have contributed to the observed increases in neuro-
muscular activity.

The increase in the EMG amplitude also signifies
modulation in the motor unit recruitment and/or
motor unit discharge frequency. An increase in MEF
can signify the additional recruitment of superficially
located high threshold motor units, as these motor
units typically contribute large and sharp spikes
which influence high frequency bands of sEMG.35,55

The enhancement of the contribution to stretch reflexes
with indirect vibration stimulation has been attributed
to the possible recruitment of high threshold units and
muscle fibres.56 This suggests that vibration could
potentially modify motor unit recruitment patterns
and rate coding behaviour, possibly recruiting high
threshold motor units leading to enhancement in neuro-
muscular responses.

In addition, it is known that direct vibration stimu-
lation induces TVR by stimulating primary and second-
ary afferents.1,44 Discharge of these afferents have been
reported to be dependent on muscle pre-stretch, and the
discharge increases with increase in muscle stretch
length.1 However, voluntary isometric contraction
also increases this discharge.1 Vibration also stimulates,
Ib afferents from Golgi Tendon Organ1,57 and Ib affer-
ents are stimulated more when muscle contracts.44

Thus, vibration has the ability to alter significantly
the sensitivity of primary, secondary afferents and Ib
afferents leading to an increase in neuromuscular
response. Muscle length and isometric contraction
seem to have direct effect on the spindle sensitivity
altering the neuromuscular response further.
Considering our observations, it could be that the
increased neuromuscular activity observed with the
superimposition of vibration may have been results of
alterations in afferent responses due to vibration.

Limitations of the study

As discussed earlier, it is still not clear whether the elec-
tromyography amplitude response found to be syn-
chronous with vibration stimulation frequency is due
to motion artefacts or is the result of stretch reflex
response.18,36 Due to this uncertainty, no artefact
removal processing (except at 50Hz) was performed
on the EMG data obtained in this study. This might
be considered a limitation. However, 50Hz line interfer-
ence was observed in all of the WBV EMG data and a
notch filter cantered at 50Hz frequency was used to
attenuate the line interference during both 30Hz and
50Hz stimuli EMG data. It is important to note that
of all the frequency amplitude stimuli combinations
tested for this study, 50Hz stimulation with (0.5mm
amplitude) induced the largest neuromuscular activity.
And overall, 50Hz stimulations induced equal or higher
neuromuscular activity compared to 30Hz stimulations.

If it is assumed that vibration stimulation leads to
motion artefacts in the sEMG data at the frequency of
vibration stimulation and harmonics thereof, the lar-
gest energy of the so-called ‘motion artefact’ is concen-
trated at the stimulus frequency.36 For the EMG data
collected for this study, the spikes at 50Hz were among
the largest (although it did not necessarily contain high
energy). Despite removing the most significant propor-
tion of the possible ‘motion artefact’ (with the largest
spike) around 50Hz, from the EMG data, the 50Hz
stimulus led to equal or higher neuromuscular activity
compared to the 30Hz in this study. Further, despite
the fact that the signal at 30Hz frequency was not
removed from the 30Hz stimulation sEMG data, the
general trends of 30Hz and 50Hz neuromuscular
responses (i.e., EMGrms, MEF) were quite alike. This
gives further confidence in the results of this study, in
that, the possibility of motion artefact skewing the
EMG data and the results is quite limited.

It is important to note that in the vibration exercise
superimposed with graded isometric contraction, trans-
mission of the vibration through the limbs would be
dependent on muscle contraction.16,58 Thus, the
degree of muscle contraction and body posture (e.g.,
knee angle) would in effect dictate the level of vibration
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transmission and this could have implications on EMG
artefacts. Thus, motion artefact/stretch reflex responses
might be different when WBV is combined with graded
isometric contractions. Hence, to analyse the motion
artefact or stretch reflex’s presence, dedicated and spe-
cific signal processing methods may need to be
devised59 and adapted according to the variables (e.g.,
force/contraction level and stimuli characteristics, etc.)
specific to the study.

Conclusions

A. Isometric contraction superimposed on vibration
stimulation leads to higher neuromuscular activity
compared to isometric contraction alone in the
lower limbs.

B. In the agonist muscles during a leg press task, vibra-
tion exercise with lower contraction levels of 20% to
60% of MVC force seem to generate higher neuro-
muscular activation compared to the higher levels
of 80% to 100% of MVC.

C. In the antagonist, higher contraction levels of 80%
to 100% seem to induce equal or more neuromus-
cular activity compared to the lower contraction
levels. Whether this apparently contrasting differ-
ence between the agonist and the antagonist
responses at higher contraction levels of 80% to
100% of MVC is a part of wider neuromuscular
response strategy is unclear.

D. Among the vibration variables tested, the 50Hz–
0.5mm stimulus generated the highest neuromuscu-
lar response compared to the control irrespective of
the muscle group and/or contraction level.

E. Both 50Hz and 30Hz frequencies led to higher
neuromuscular activity compared to the control;
however, the combination of the frequency with
the amplitude and the muscle tension together
seem to grade the final neuromuscular output
instead of frequency alone.

F. Compared to the control, vibration stimulus led to
higher agonist–antagonist co-activation in all con-
ditions and effort levels except 20% of MVC.

G. Sub-maximal and maximal levels of 80% and 100%
MVC contraction force led to the most significant
co-activation difference between the control and the
vibration.
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