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Abstract – This paper proposes the design of a multivariable robust control strategy for a variable-speed WECS 

based on a SCIG.  

Optimal speed control of the SCIG is achieved by a conventional PI controller combined with a MPPT strategy. 

DTC-SVM technique based on a simple Clarke transformation is used to control the generator-side three-level 

converter in the variable speed WECS. The flow of real and reactive power between the inverter and the grid is 

controlled via the grid real and reactive currents and the DC link voltage using multivariable H∞ control. The 

overall WECS and control scheme are developed in Matlab/Simulink and the performance of the proposed control 

strategy is evaluated via a set of simulation scenarios replicating various operating conditions of the WECS such 

as variable wind speed and asymmetric single grid faults. The power quality of the WECS system under H∞ control 

control approach is assessed and the results show a significant improvement in the total harmonic distorsion as 

compared to that achieved with a classical PI control. 

 

Keywords: Wind energy, squirrel cage induction generator, direct torque control, space vector PWM, MPPT, 

H  control, multilevel inverter . 
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1. Introduction 

Wind energy has the potential to play a significant role in achieving the world’s future energy targets. It is currently 

amongst the fastest-growing renewable energy technologies.  The total installed capacity around the world was 

estimated to 296,255 MW in 2013 which represents 3.5% of the global electricity demand [1].  

Extensive ongoing research has been done on WECS configurations combining various wind turbine technologies 

and generator types. [2]. There are many different types of generators used today in WECS [3] The most common 

types are the SCIG [4] and the DFIG [5-6]. In recent years, PMSG are gaining popularity in WECS applications 

due to their higher relaliability and efficiency [7-9].  

There are essentially two operating regions for wind turbines: In the partial load region, wind speed is not fast 

enough to produce the rated power. In this region, the main control objective is to track the maximum power 

coefficient (ܥ௉௠௔௫ ) to extract the full power from the wind. The pitch angle is usually fixed in this region and the 

generator torque is adjusted to control the rotational speed and keep the operating point close to ܥ௉௠௔௫. In the full 

load region, wind speed is above the rated value and wind power exceeds the rated power of the generator.  The 

captured power is controlled by using aerodynamic power control of the rotor by adjusting the pitch angle of the 

blades and hence reducing the power coefficient ܥ௉	of the rotor.  

Several methods have been proposed for the control of WECSs ranging from classical control methods [10] which 

are currently the most widely used methods in real applications to more advanced control strategies which have 

been the subject of active research in the past few years [11]. 

WECS are complex mechanical structures which exhibit nonlinear dynamics and are continuously subjected to 

disturbances such as uncontrolled wind profiles, wind shear and tower shadows effects. In addition, mathematical 

models describing accurately the turbine dynamics are difficult to obtain which makes control design a challenging 

task. The aim of this contribution is to design robust control strategies to overcome the problems associated with 

system parameter uncertainties and various disturbances such as those which may occur in a typical wind energy 

conversion system connected to the grid.  

 

Robust control theory has been an active area of research in the last three decades. Robust control attempts to 

addresses both performance and stability criteria of a control system. Briefly, robustness is described as the ability 

of a controller to exhibit the desired performances for both the nominal model of the system and for any model 

contained within the set of models bounded by the specified range of models’ uncertainties.  

The application of robust control strategies to pitch angle control of a wind turbine was studied in [6]. In [12] the 

author proposed the design of a robust controller based on H∞ for a simplified model of a turbine and generator 

system. The design of a robust controller based on gain-scheduling for a tidal turbine was proposed in [13]. The 

authors in [14] presented a comparative study between a PI classical controller and an H∞ controller for the control 

of the frequency in a hybrid multi-source system including a wind turbine generator, diesel generators and  fuel 

cells with electrolyzer. The synthesis of the H∞ controller was based on the two standard approaches namely the 

LMI and loop shaping. In [15], a new hybrid robust control methodology is developed based on a fuzzy logic 

observer. The control scheme is applied to wind turbine system taking into account parameters uncertainties and 

external disturbance.  

This paper proposes a hybrid design approach to solve the standard H∞ problem based on LMI and loop shaping. 

The controller is applied to the control of the grid side currents and DC link voltage. 

 MPPT algorithms are used to maximise power extraction from wind energy by operating wind turbines at their 

optimal speed [16]. Different MPPT methods have been proposed for variable-speed WECS [17]. The method 



 

used in this work is based on the knowledge of the aerodynamic characteristics of the wind turbine. A 2D look-up 

table is used to store the wind speed values and corresponding maximum power points. 

The SCIG is driven by a variable-speed wind turbine which operates at maximum power under the MPPT strategy. 

The optimal speed output from the MPPT will represent the reference for the DTC-SVPWM of the converter [18]. 

Fruthermore, a three-level NPC inverter topology is proposed, to enhance the energy efficiency and quality of the 

overall system WECS. 

The AC side converter is controlled by a SVPWM and regulates both the DC voltage level and the active (id ) and 

reactive (iq) currents and subsequently the power flow in the utility grid. The reference used for the DC side voltage 

is larger than the forward voltage of the source and the reference value for the reactive current is set to zero to 

achieve a unity power factor. 

The proposed robust multivariable controller based on H∞ is designed and evaluated on a comprehensive model of 

the WECS and implemented using Matlab/Simulink and SimPowerSystems. A series of simulation results are 

presented to show the performance and robustness of the proposed control scheme under different operating 

conditions of the system. 

The paper is organized as follows: Section 2 provides a detailed description of the WECS models and a derivation 

of the control strategies for the MPPT and the SCIG. Section 3 presents the design steps of the DTC-SVPWM for 

the three level inverter. Section 4 presents the aerodynamic protection against high wind speeds which was 

provided by pitch control. Section 5 presents the design of the H∞ multivariable control concept for the grid-side 

currents and DC link voltage. Simulation results and conclusions are presented in Sections 6 and 7 respectively. 

The mathematical model of the DC link, grid-side currents are presented in the appendices together with the values 

of the model parameters used in the simulation. 

 

2. CONFIGURATION OF THE VARIABLE-SPEED WIND ENERGY POWER SYSTEM  

The structure of the WECS considered in this study is presented in Fig. 1. The three-bladed wind turbine and the 

SCIG are connected to the grid via a two three-level NPC-based AC/DC/AC converters [18]. 

The generator-side converter (converter 1) works as a rectifier and supplies the DC bus.  
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Fig. 1 Configuration of the SCIG-based WECS. 

 

The grid-converter, labelled Converter 2 in Fig. 1, controls both the amplitude of the DC bus voltage, and the 

active and reactive power flow by adjusting two parameters of the SVPWM, namely, the MI and the phase shift 



 

(α) between the grid current and voltage. The inputs to the control block are measurements of the DC side voltage 

and AC side currents and voltages. The d-q components of the AC side voltage and currents are synchronised with 

those of the utility grid via a PLL circuit. A PI controller is designed to adjust the pitch angle taking into account 

the time constant of the hydraulic orientation system of the blades. 

 

3. CONTROL OF THE GENERATOR-SIDE CONVERTER AND MPPT STRATEGY  

The basic concept of classical DTC is to control the stator flux and torque directly by selecting the appropriate 

inverter switching states. The main drawbacks of classical DTC are varying switching frequency with the operating 

conditions and the resulting high torque and flux ripples. The proposed control scheme shown in Fig. 2 combines 

DTC with a fixed switching frequency SVPWM technique for driving the three-level inverter. This control scheme 

retains the desirable features of classical DTC and leads to reduced ripples in the torque and flux responses. 
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Fig. 2 Torque and flux control based on DTC-SVPWM for the three-level inveter. 

 

In order to operate the system in the range of the base speed, the stator flux should be kept at its nominal value 

Øsn. For speed values above the nominal speed, the flux should be decreased in order to limit the machine terminal 

voltage. To achieve this, the following flux reference control is applied: 

Ψ௦௥௘௙ ൌ ቐ
Ψ௡														for							ห௚ห ൑ ௡	
௡

|௡|
Ψ௡						for							ห௚ห ൒ ௡

																																																																																										ሺ1ሻ 

The maximum power output from the wind turbine is: 

௧ܲ,௠௔௫ ൌ ௢௣௧ܩ ∙Ω௧,௢௣௧
ଷ 																																																																																																																				ሺ2ሻ 

Where ௧,௢௣௧ denotes the mechanical speed of the turbine. The gain of the controller is [19]: 

௢௣௧ܩ ൌ
1
2
௣,௠௔௫ܥߩ

ܴହ

௢௣௧
ଷ 																																																																																																															ሺ3ሻ 

Where  represents the density area [kg.m-2], Cp,max is the maximum power coefficient and  denotes the optimum 

tip speed ratio. 

The mechanical torque of the turbine is: 

௧ܶ,௠௔௫ ൌ
௧ܲ,௠௔௫

Ω௧,௢௣௧
ଷ 																																																																																																																									ሺ4ሻ 

Using Equation (3), the wind turbine maximum power characteristics can be plotted as shown in Fig. 3 [20]. 

 



 

 

Fig. 3 Maximum power characteristics of the wind turbine. 

 

4. CONTROL OF AERODYNAMIC PROTECTION 

The timing angle control is aimed to limit the power taken by adjusting the pitch angle  of the blades. The 

positioning mechanism is  to guide blades towards a reference angle (βref) via a hydraulic or electric system. The 

choice of this angle is usually achieved via an external loop to regulate either the speed of the turbine or the 

mechanical power generated. In our model, the latter method is used to generate the reference of the pitch angle 

(βref). The system is thus be represented as follows: 

 

Fig. 4 Control of the mechanical power Pm. 

 

Fig. 5 shows a 3D graphical representation of the power coefficient Cp, as a function of the tip speed λ and pitch 

angle β. For low and medium wind speeds, the pitch angle is kept constant (in our case ߚ ൌ 0°) to allow the turbine 

to operate at its optimum condition. For high wind speeds, the pitch angle is increased to reject part of the 

aerodynamic power and keep the rotor speed within controllable limits. Fig. 5 shows the λopt corresponding to a 

pitch angle β of the blades. This scenario has been tested under variable speed conditions because, to maintain 

	ߣ ൌ 	  .௢௣௧, it is necessary to vary the speed of the generator in response to wind speed variationsߣ

 

Fig. 5 ܥ௣	ሺߚ,  .ሻ  for typical wind turbine with pitch controlߣ



 

5. CONTROL OF THE GRID-SIDE CONVERTER 

The formulation of standard ܪஶ controller problem is depicted in Fig.6. 

 

 

 

 

 

 

Fig. 6 General ܪஶ problem. 

 

Where ݓ represents the disturbance signals, ݖ are the errors to be minimized, ݕ and ݑ denote the outputs and 

control inputs respectively. ܲሺݏሻ	represents the augmented plant transfer function matrix formed with the nominal 

plant transfer function and the weighting functions which reflect the design specification and ܭሺݏሻ is the controller 

transfer function.  

The optimisation problem of Fig. 6 can be solved either using  the algebraic riccatti equation (ARE) [21] or by the 

LMI [22, 23] method which is presented next.  

 

5.1. H∞ Design Based on LMI Technique  

Consider the linear time invariant (LTI) system described by: 

ቐ
ሻݐሶሺݔ ൌ ሻݐሺݔܣ ൅ ሻݐሺݓଵܤ ൅ ሻݐሺݑଶܤ
ሻݐሺݖ ൌ ሻݐሺݔଵܥ ൅ ሻݐሺݓଵଵܦ ൅ ሻݐሺݑଵଶܦ
ሻݐሺݕ ൌ ݔଶܥ ൅ ሻݐሺݓଶଵܦ ൅ ሻݐሺݑଶଶܦ

																																																																													ሺ5ሻ 

Where x ∈	Rn is the state, w ∈	Rnw is the perturbation on the input, ݖ	 ∈ 	ܴ௡௭ is the controlled output, ݑ	 ∈ 	ܴ௡௨ is 

control law, ݕ	 ∈ 	ܴ௡௬ is the measured output and ܣ, ,ଵܤ ,ଶܤ ,ଵܥ ,ଶܥ ,ଵଵܦ ,ଵଶܦ  ଶଵ, are constant matrices withܦ

appropriate sizes. Throughout the paper, it is assumed that: 

H1)   The system (ܣ, ,ଶܤ   .ଶ) is detectable and stabilizableܥ

H2)   ܦଶଶ ൌ 0. 

The controller ܭሺݏሻ	stabilizes the system and satisfies: 

‖࣠ሺܲ, ሻ‖ஶܭ ൏  ሺ6ሻ																																																																																																																						ߛ

In H∞ framework, LMI technique uses  the following lemma (Bounded Real Lemma): 

Lemma 1: Consider the system ܩሺݏሻ of equation (5). The following two conditions are equivalent: 

(i) ‖ܩሺݏሻ‖ஶ ൏  .is stable	ܣ and	ߛ

(ii) There exists a matrix ܺ,	symmetric and positive definite, that is solution of the following LMI: 

൦

௙ܣ
்ܳ ൅ ௙ܣܳ ௙ܤܳ ௙ܥ

்

௙ܤ
்ܳ െܫߛ௡௨ ௙ܦ

்

௙ܥ
் ௙ܦ

் െܫߛ௡௘

൪ ൏ 0																																																																																				ሺ7ሻ 

This result is known as the Kalman- Yacubovich -Popov lemma [24]. It easy to see that the set of solutions given 

by (7) form a convex set which can be solved using some optimization techniques [25-26]. The Bouded Real 

Lemma can be used to calculate the ܪஶ	norm of a linear system via the resolution of the following generalized 

eigenvalues problem: Find matrices ܳ ൌ ்ܳ and ܴ ൌ ்ܴwhich minimise ߛଶ. 

The regulator problem can be instantly solved using LMI toolbox instruction of Matlab [14]. 

The closed-loop system matrices are given by: 

   Augmented      
    plant  ܲሺݏሻ 

H∞ controller 
 ሻݏሺܭ

	ݓ ݖ

	ݑ ݕ
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                                              (8) 

The feasibility of the standard ܪஶ	problem is tested by the following theorem: 

Theorem 1: The ܪஶ	problem has a solution if there exist symmetric matrices ܺ	and ܻ	that verify the following 

three LMI conditions: 
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Where NX and NY are the kernel of matrices ሾܥଶ ଶܤଶଵሿ and ሾܦ
் ଵଶܦ

் ሿ	respectively. 

The controller is determined according to the following steps:  

1.  Determine matrices ܺ and ܻ	using Theorem 1.  

2.  Let ݎ be the rank of the ሺܫ௡ െ ܻܺሻ matrix. Matrices M and N ∈ ܴ௡ൈ௥ (i.e. M and N are full rank) are 

determined using singular value decomposition (SVD) as: 

்ܰܯ ൌ ௡ܫ െ ܻܺ																																																																																																																																ሺ12ሻ 

The Lyapunov matrix is then determined as: 

ܳ ൌ ቂ ܻ ܰ
்ܰ െܯାܺܰ

ቃ																																																																																																																								ሺ13ሻ 

Where M + denotes the pseudo-inverse of  ሺܯାܯ ൌ  .(௥ܫ

Once the Lyapunov matrix is obtained, inequality (7) is then an LMI which provides the ܣ௖, ,௖ܤ ,௖ܥ  ௖, solutionܦ

matrices for the controller ܭሺݏሻ. 

 

5.2. Augmented Plant Model  

The augmented state space model ܲሺݏሻ of an LTI system is based on the weighting functions ݓଵሺݏሻ,  ሻ, andݏଶሺݓ

 ஶ problem solutionܪ which correspond to the error, control and output signals respectively. The sub-optimal	ሻݏଷሺݓ

is directly applicable to the mixte sensitivity problem and therefore to the loop shaping. Hence, only a minimal 

realization of the augmented system ܲሺݏሻ needs to be calculated.  

The weighting functions ݓ௜	are obtained using the criterion of mixed sensitivity given by: 

ะ
ଵܵݓ
ܵܭଶݓ
ଷܶݓ

ะ

ஶ

൏ 1																																																																																																																																			ሺ14ሻ 

The sensitivity function ܵ and the additional sensitivity function ܶ are used in the synthesis of the controller and 

are given by: 

൜
ܵ ൌ ሺܫ ൅ ሻିଵܭܩ

ܶ ൌ ܫሺܭܩ ൅ ሻିଵܭܩ
																																																																																																																								ሺ15ሻ 

The augmented plant model ܲ	is built from the nominal model ܩ, which is derived in Appendix C and weighting 

matrices ݓ௜	as follows: 
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Fig. 7 depicts a block diagram of the equivalent ܪஶ problem based on the criterion	ะ
ଵܵݓ
ܵܭଶݓ
ଷܶݓ

ะ

ஶ

൏ 1. 

 

Fig. 7 Mixed sensitivity problem. 

 

The error ݁, control ݑ and output signals are weighted by filters ݓଵሺݏሻ,  ሻ respectively which areݏଷሺݓ and	ሻݏଶሺݓ

calculated for the various disturbances on the input, ܾሺݐሻ, output, ݀ሺݐሻ	 and measurement noise ߟሺݐሻ respectively 

as shown in Fig. 8. Here, the measurement noise ߟሺݐሻ is assumed to be zero. 

 

Fig. 8 Typical feedback control system with disturbances acting on the input, output and measurement. 

 

Where: ܭሺݏሻ is the controller transfer function, ܩሺݏሻ is transfer function system to be controlled, 

ܾሺݐሻ, ݀ሺݐሻ	and	ߟሺݐሻ  are the disturbances acting on the system. 

In our case, for instance an asymmetrical fault created at the grid side is considered as a perturabtion to the input 

of the system (i.e. ܾሺݐሻ) and changes in wind speed are considered as a disturbance acting on the output of the 

system (i.e. ݀ሺݐሻሻ. The measurement noise ߟሺݐሻ is not considered in this study. 

The output transfer function is: 

ܼሺݏሻ ൌ ൥
ଵݖ
ଶݖ
ଷݖ
൩ ൌ ൥

ଵܵݓ
ܵܭଶݓ
ଷܶݓ

൩ݓሺݏሻ																																																																																																										ሺ17ሻ 

One recognises a perturbation problem where the effects of ݓ on the filtered outputs ሺݖଵ, ,ଶݖ  ଷሻ must be reducedݖ

below a ratio of one. 

There are no general formulas for the formulation of weighting functions that will work in all cases. In our case, 

usual performance specifications require the sensitivity function to be small at low frequency and to be able to 

stabilize ห|ܵ|ห
ஶ
ൌ 1 ൌ   .at high frequency as shown in Fig. 9 [27, 28] ܤ݀	0

The reference tracking performance of the controller is related to the magnitude plot of the sensitivity function 

ܵሺ݆߱ሻ which has a slope of +40 dB/dec at low frequencies. Hence the closed loop system is able to track the 



 

reference signals in the form of steps with zero steady-state errors. The magnitude |ܵሺ݆߱ሻ| cuts the 0 dB axis at 

߱ ൌ 10ଷ	rad/sec. Therefore, the 5% settling time will be in the order of 
ଷ

ଵ଴଴଴
ൌ 3	msec. 

The input disturbance rejection characteristic of the control system can be examined by looking at the magnitude 

plot of the transfer function that links the disturbance ܾሺݐሻ to the tracking error trajectory of ܵܩ. 

As a result, the closed-loop system is able to reject step-like disturbances. By examining the curve, the frequency 

range over which the magnitude is the largerest provides an indication on how much the output is affected by the 

disturbance and the time of rejection of the disturbance. 

On the other hand, the magnitudes plots of the transfer functions ܵܭ and ܶ	indicate that they have low pass 

characteristic, which would attenuate the effect of noise on the control signal (ܵܭ connects the noise ߟሺݐሻ to the 

control ݑሺݐሻ) and on the output of system (ܶ connects the noise ߟሺݐሻ the output ݕሺݐሻ). In addition, the peak of the 

magnitude plot of ܶ provides an estimate of the overshoot of the closed-loop step response. 

 

 

Fig. 9 Bode diagram of the sensitivity function. 

 

For multi-input multi-output (MIMO) problems, the weighting functions ݓଵሺݏሻ,  ሻ can be selectedݏଷሺݓ ሻ, andݏଶሺݓ

as diagonal matrices [29].  

ଵݓ ൌ ଶݓ					ଷܫௌݓ ൌ ଷݓ			ଶܫߤ ൌ  ሺ18ሻ																																																																																														ଷܫ்ݓ

Where ݓௌ represents the filter associated to the sensitivity function ܵ, μ is a positive real number chosen as a 

constant (in our case ߤ ൌ   are	௠ܫ is a filter corresponding to the complementary sensitivity function ܶ and		்ݓ ,(1

ሺ݉ ൈ݉ሻ	identity matrices. 

The passband ߱஻	of the filter ݓௌሺݏሻ is obtained from Bode diagram of the sensitivity function at െ	3	dB. For the 

system considered in this study, the value of the passband is ߱஻ ൌ 100	rad/sec (see Fig. 8).  

In order to improve the accuracy of the control system, the sensitivity function gain S0 of ܵ	is chosen small at low 

frequency. 

Furthermore, the ݓௌሺݏሻ filter was chosen so that the Bode diagram of   ߛ௢௣௧/ݓௌሺ݆߱ሻ cuts the 0 dB axis at 100 

rad/sec (passband) and has a sufficiently small gain at low frequency.  

Finally, the ݓௌሺݏሻ filter is calculated based on the sensitivity function ܵ values at low frequency (ܵ଴) and high 

frequency ܵஶ (ܵஶ ൌ 0	dB) and the passband ߱஻ଵ	by: 



 

ௌݓ
ିଵ ൌ

ݏ ൅ ܵ଴߱஻
௦

ௌಮ
൅ ߱஻

ൌ
ݏ ൅ 0.078
ݏ ൅ 100
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Fig. 10 shows the Bode diagram of the singular values of  



opt

Sw j
 when ߛ௢௣௧ ൎ 1.42 (corresponding to the 

passband ωB). 

 

Fig. 10 Bode diagram of the singular value of ߛ௢௣௧/ݓௌሺ݆߱ሻ. 

 

The filter transfer function ்ݓሺݏሻ can be calculated using an additional sensitivity function ܶ. For the same 

passband ߱஻, a low frequency amplitude of 0	dB at  ଴ܶ ൌ 1 and a high-frequency amplitude of െ100	dB set at 

ஶܶ ൌ 10ିହ, the filter transfer function ்ݓሺݏሻ is determined by: 

்ݓ
ିଵ ൌ ஶܶݏ ൅ ߱஻

ݏ ൅
ఠಳ

బ்

ൌ
10ିହݏ ൅ 100
ݏ ൅ 100
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Fig. 11 shows the Bode diagram of the singular value of

 
 



opt

Tw j
: 

 

Fig. 11 Bode diagram of the singular value of ߛ௢௣௧/்ݓሺ݆߱ሻ. 

 



 

The order of the augmented system ܲሺݏሻ is the sum of the degrees of ܩሺݏሻ and different weight functions: 

݀݁݃ሺܲሻ ൌ ݀݁݃ሺܩሻ ൅ ݀݁݃ሺݓଵሻ ൅ ݀݁݃ሺݓଶሻ ൅ ݀݁݃ሺݓଷሻ	                                                   (21) 

The controller	ܭሺݏሻ in state-space is written as: 

൜
௖ሶݔ ሺݐሻ ൌ ሻݐ௖ሺݔ௖ܣ ൅ ሻݐሺݕ௖ܤ
ሻݐሺݑ ൌ ሻݐ௖ሺݔ௖ܥ ൅ ሻݐሺݕ௖ܦ

																																																																																																													ሺ22ሻ 

,௖ܣ ௖ andݔ ,௖ܤ  ஶ controller whichܪ ௖ denote the state vector and the state, input and output matrices of theܦ	et	௖,ܥ

are given by: 

-1580.85 -19.91 -0.0315 0 -0.0033 0.00103 0 0.00027

-48.70 -2543.22 -0.0033 0 0.0315 0 -0.0014 -0.0023
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B Dc c                                                                  (23) 

-5 -51470.07 -2.6 -0.004 0 -0.00043 0.00013 -1.14 10 3.47 10

-6.32 1345.25 -0.00043 2.2 0.004 0 -0.00018 -0.0003

    
 

Cc  

In the case where the controller ܭሺݏሻ is strictly proper (i.e. ܦ௖ ൌ 0) and its order is equal to that of the augmented 

system ܲሺݏሻ, this type of controller is termed central compensator and has the following structure: 

The controller transfer function matrix is:  

ሻݏሺܭ ൌ
ሻݐሺݑ
ሻݐሺݕ
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ሻݏሺܭ ൌ ൤
݇ଵሺݏሻ 0
0 ݇ଶሺݏሻ

൨																																																																																																																			ሺ25ሻ   
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5.3. Determination of the Rotating Reference Frame  

The Park transformation used for the grid side quantities is based on the reference frame related to the 

rotating field of the grid, the d-axis is aligned with the source voltage vector. Thus the q-axis voltage is zero 

௤ݒ) ൌ 0). In this case, the active power on the grid side is given by: 

ܲ ൌ
3
2
 	ሺ26ሻ																																																																																																																																									ௗ݅ௗݒ



 

If the power losses are neglected, then ܲ is equal to the reference power ெܲ௉௉் obtained via the MPPT strategy 

based on the characteristic of the wind turbine given in Fig. 12 which has been implemented in a form of look-up 

table. 

 

Fig. 12 Power curve of a typical wind turbine. 

 

In the first interval, with wind speeds between 3 and 12 m/sec, the variable speed operation is used to maximize 

generator power generator depending on the wind speed available. In this region, the blade pitch angle is kept at 

its optimal value ߚ ൌ 0°. For wind speeds over 12 m/sec and less than 25 m/sec, the blade pitch system is used to 

maintain the power of the generator at its nominal value. Finally, for wind speeds greater than 25m/sec, the pitch 

angle should be maintained at its maximum value ߚ ൌ  .௠௔௫ in order to protect the wind turbineߚ

Indeed, given the wind forces to which the blades may be subjected, it is important to limit the rate of change of 

the pitch angle. Appropriate values are about 10 °/s during normal operation and 20 °/s in the case of emergency 

[30]. 

The d-axis voltage ݒௗ is given by (if the q-axis voltage is zero): 

ௗݒ ൌ ඨ
2
3 ௦ܸ																																																																																																																																									ሺ27ሻ	 

Substituting equation (26) into (27), the d-axis current reference is calculated as: 

݅ௗ௥௘௙ ൌ ඨ
2
3

௥ܲ௘௙

௦ܸ
																																																																																																																																ሺ28ሻ 

The H∞ controller output signals are the inverter conversion ratio (ܦ) and the phase δ i.e. ݑ ൌ ሾߜ௱	ܦ௱ሿ். 

 .ௗ௖ሻݒand the DC voltage ሺ	଴ሻݒ) is defined as the ratio between the fundamental of the output voltage	ܦ

The grid-side inverter voltage amplitude is obtained by: 

|௢ݒ| ൌ ටݒ௢ௗ
ଶ ൅ ௢௤ଶݒ ൌ  	ሺ29ሻ																																																																																																										ௗ௖ݒܦ

Using the two control laws and equation (29), the grid-side inverter voltages after Park transformation are 

given by: 

൜
௢ௗݒ ൌ |௢ݒ| cos ߜ ൌ ௗ௖ݒܦ cos ߜ
௢௤ݒ ൌ |௢ݒ| sin ߜ ൌ ௗ௖ݒܦ sin ߜ

																																																																																																					ሺ30ሻ 

The inverse Park transformation is applied to equations (30) to find the three-phase voltages ݒ௢௔௕௖. Then, using 

the transformation of Concordia: 

ቂ
௢ఈݒ
௢ఉቃݒ ൌ ටଶ

ଷ
൤
1 െ1 2⁄ െ1 2⁄

0 √3 2⁄ െ√3 2⁄
൨ ൥
௢௔ݒ
௢௕ݒ
௢௖ݒ

൩																																																																																			ሺ31ሻ  

Fig. 13 illustrates the switching control strategy of the  three-level inverter based on multivariable H∞ control. 



 

 

 

 

 

 

 

 

 

 

Fig. 13 Multivariable H∞ control of the a three-level grid-side inverter.  

6. SIMULATION RESULTS  

The simulation model is implemented in Simulink/SimPowerSystems with the parameters listed in Appendix C. 

The proposed control system is tested under different operating conditions of the WECS.Two simulation scenarios 

are performed to evaluate the dynamic behaviour of the system under variable and stochastic wind speed 

characteristics and under asymmetric dip voltage in the grid simulated as a 20% voltage decrease and lasting for 

300 ms. The single-phase fault occurs between ݐ	 ൌ ݐ and	ݏ	1 ൌ  . ݏ1.3

A simulation study to compare the proposed ܪஶbased control strategy with a classical PI controller with respect 

to power quality is also presented.  

A. Simulation of the system under variable wind speed conditions 

In Fig. 14 are shown the responses of the real and reactive powers of the grid. The references are provided 

by the MPPT block. Initially, before the turbine starts rotating, the real power shown on the plot corresponds 

to the constant power losses of the generator. 

At ݐ	 ൌ 	0.5	sec, the turbine is started with a wind speed of ݒ	 ൌ 10	m/sec, the generator is then driven by a 

mechanical torque ௧ܶ ൌ െ11	Nm and delivers an output power ௚ܲ ൌ െ1.2	kW to the grid. 

After the wind turbine begins to generate the rated torque ( ௧ܶ ൌ െ16	Nm), the generator starts to deliver a 

nominal power ௚ܲ ൌ െ2	kW to the grid. 

The responses of rotor speed, the mechanical torque produced by the turbine with the electromagnetic torque 

of the generator, the tip speed ratio λ and the power coefficient Cp are shown in Fig. 15. The generator is 

driven at a speed ௥ܰ ൌ 1335	rpm when the electromagnetic torque is equal to	െ11	Nm	and at 1600	rpm, 

when the torque is െ16	Nm. The power coefficient Cp is zero before the turbine starts and reaches its 

maximum value of 0.41 after starting the turbine. Similarly, the tip speed reaches a maximum value of λ = 

8.1.  

Fig. 16 shows the form of the DC link voltage ݒௗ௖,	 the active ሺ݅ௗሻ	and reactive ሺ݅ௗሻ	currents and phase “a” 

current waveforms, for the generator and grid respectively. Note that the DC link voltage ݒௗ௖	follows its 

reference value set to 800V. 



 

 

Fig. 14 Real and reactive powers of the generator and grid and. 

 

Fig. 15 Responses of the generator rotor speed, electromagnetic and  

mechanical torque, tip speed ratio λ and power coefficient Cp.  

 

Fig. 16 Responses of the DC link voltage, grid currents ݅ௗ  and	݅௤,   

phase “a” current of the generator ሺ݅௚௔ሻ and the grid (݅௔ሻ. 

 



 

Fig.17 shows the grid-side inverter voltages (ݒ଴ௗ, ݒ଴௤ሻ and the H∞ controller outputs ሺߜ ,ܦሻ. The inverter 

conversion ratio ܦ controls the DC voltage and the active part of the current ݅ ௗ and the phase angle ߜ	controls 

the flow of the reactive current ݅௤. The phase angle δ should reach a low steady-state value to ensure that 

the reactive power flow between the grid and the converter is zero (i.e. power factor is zero).  

 

 

Fig. 17 Responses of the grid-side inverter voltages and control inputs. 

The tracking performance of the proposed control scheme has correspondingly been tested under more realistic 

conditions with stochastic and fluctuating wind speed characteristics. In the simulation results of Fig. 18 thoughout 

Fig. 22, two situations have been considered: 

Case 1: During the interval 2 ൑ 	ݐ ൑ ݒ) there is an acceleration of wind speed ,ݏ	6 ൒  and this corresponds (ݏ/݉	12

to the zone of aerodynamic protection or pitch control. From Fig. 18, it can be seen that the power is kept at -2 kW 

(rated power of the generator). The speed and torque of the generator are maintained to their rated values in order 

to protect the wind turbine against overspeed of the wind as shown in Fig. 19. The power coefficient Cp, the rate 

after λ, the pitch angle β are varied to reject Fig. 22 excess of power. 

Case 2: For all other ݐ, the wind speed is ݒ ൑ 12 m/s and this corresponds to the zone of MPPT operation to extract 

the maximum power. Fig. 18 shows that the power varies according to the wind speed variations. The speed and 

torque of the generator, on the other hand, are varied in order to maximize the power available from the wind (Fig. 

19). As shown in Fig. 22, in this case the power coefficient ܥ௣, the rate after ߣ, the pitch angle ߚ are maintained 

constant. 

The DC voltage ݒௗ௖, the currents ݅ௗ	and	݅௤ are shown in Fig. 20 and the H∞ controller outputs ሺߜ ,ܦሻ are given in 

Fig. 21. It can be noticed that ݒௗ௖	is regulated to its reference value of 800 V but exhibiting fluctuations in the 

MPPT control zone. Similar remark applies to the currents	݅ௗ	and	݅௤  and the controller outputs ሺߜ ,ܦሻ. 



 

 

Fig. 18 Wind speed and the grid real and reactive powers. 

 

 

Fig. 19 Generator rotor speed and torque and grid current (Phase “a”). 

 

 

Fig. 20 Waveforms of the DC voltage, d- and q-axis grid currents. 

 



 

 

Fig. 21 ܪஶ controller output signals ߜ	and	ܦ. 

 

Fig. 22 Power coefficient, tip speed ratio and the orientation angle of the blades. 

 

The  designed H∞ controller is compared with a PI controller under stochastic wind speed conditions. As shown in 

Fig. 23, the turbulence component of the wind speed is simulated as a stationary random process and therefore 

does not dependent on the mean value of the wind speed. The simulation results are shown in Fig. 23 and Fig. 24. 

From these results, it can be noticed that the proposed H∞ controller over-performs the PI controller and provides 

better transient response caracteristics under these more realistic wind speed conditions. Only few ripples in the 

transient responses of the real and reactive powers (Fig. 23) and grid-side currents (Fig. 24)  in the case of H∞ 

controller. There is also an improvement in the response of the DC link voltage in the case of H∞ controller. 



 

 

Fig. 23 Response of the wind speed, the active and reactive power of the grid. 

 

Fig. 24 Response of the DC voltage, the active and reactive currents of the grid. 

 

In Fig. 25, two wind speed conditions are considered: 

	ݒ ‐ ൑ 12 m/s, the system operates in the region of maximum power (MPPT control). In this case 

 .assume optimal values 0.41, 8.1 and 0° respectively and are constant ߚ and ߣ ,௣ܥ

ݒ ‐ ൐ 12	m/s, pitch control is enabled to protect the system and maintains the power of generator at 

its rated value. 

 

Fig. 25 Power factor coefficient, tip speed ratio and orientation angle of the blade. 



 

 

B. Simulation of the system under asymmetric fault conditions 

A single-phase fault  has been simulated as a decrease of 20% of phase “a” voltage peak value. The fault 

condition has been applied to the system under PI control and the proposed H∞ controller. 

Fig. 26 shows the responses of the grid voltage (phase “a”), the DC link, real and reactive powers of the 

grid.   

The application of the fault, caused a small drop in power and there was no effect on both the DC link 

voltage and reactive power of the grid. In the case of PI controller, some oscillations can be noticed in the 

voltage and also in the real and reactive powers of the grid after the application of the single-phase fault.  

 

Fig. 26 Waveforms of phase “a” grid voltage, DC link voltage, grid real and reactive powers  

with a single-phase fault. 

 

C. FFT based power quality analysis 

Fig. 27 shows phase “a” grid current with PI and H∞ controllers respectively and the associated harmonic spectra. 

The THDs obtained with the PI and H∞ multivariable controllers are 1.51% and 0.38% respectively. The lowest 

THD is achieved with the H∞ multivariable controller. Note that in this case, the harmonics component can be 

moved  away from the fundamental frequency. This information is advantageous for the design of an appropriate 

filter to achieve high-quality currents at the output of the inverter. 

 

Fig. 27 Grid phase “a” current and its harmonic spectrum (a) PI control (b) H∞ control  

 



 

D. Simulation of the system under variable parameters condition: Comparison between H∞ controller and 

PI controller  

A comparative study is performed between H∞ controller and PI controller under variable parametres conditions 

for a wind speed ݒ ൌ 12	m/sec. The grid side resistance ௙ܴ is varied by 10% and 15%  and Fig. 28 shows the real 

and reactive power of the network for these two cases respectively. From these results, one can notice that, for the 

classical PI controller, the generator provides -2 kW active power for ௙ܴ ൌ 3.4 Ω resistance. After the resistance 

value is varied (increases of 10 and 15%), the controller is unable to track the reference and a power loss is noted 

for both cases. H∞, however, demonstrates a better control and is able to adapt to this parametre variations of the 

system as shown in Fig. 28. It may be noted the active power follows its reference -2 kW at time t = 1.8 sec despite 

changes in resistance grid side of the transformer.. 

 

Fig. 28 Real and reactive power of the network: 

(a) 10% increase in the grid resistance, (b) 15% increase in the grid resistance. 

Fig. 29 shows the simulation results of the voltage ݒௗ௖, ܦ the ratio of conversion and the phase shift ߜ to increase 

a 10% (a) and 15% (b) increase in the resistance. From these results it can be seen both H∞ and PI controllers 

achieved good control of ݒௗ௖ to its desired reference 800 V. The response is however faster in the case of H∞. 

 

Fig. 29 DC voltage and H∞ controller outputs: 

(a) 10% increase in the grid resistance. 

(b) 15% increase in the grid resistance. 



 

5. Conclusions 

This paper proposed a multivariable control scheme of a variable-speed WECS to improve the performance, 

stability and enhance the quality of the power delivered to the grid. The aim was to simulate and analyse a 

number of common problems that may affect the power grid including voltage dips, imbalance of the three-

phase system, voltage fluctuations (or flickers) and harmonics.  

The SCIG is controlled byDTC based on a three-level converter. The control signals for the generator-side 

and grid-side converters are obtained by the SVPWM method. The generator reference speed is obtained 

from a MPPT control algorithm. A multivariable H∞  is designed using the LMI approach to simultaneously 

control the DC bus voltage and grid current. The reference for the direct component of the grid current is 

derived from reference power calculated by the MPPT strategy. The q-axis component of the grid current 

was used to control the flow of reactive power. To achieve a unity power factor in the system, the reference 

of the reactive power has been set to zero. 

The paper presented a series of simulation results to show the performance and robustness of the proposed 

control approach under various operating conditions of the WECS including variable wind speed conditions 

and under asymmetric single phase fault in the grid. The simulation results with asymmetrical faults on the 

grid side demonstrate a superior dynamic performance, robustness and stability with the use of ܪஶ control 

strategy as compared to the PI controller. 

Finally, a comparative study between a classical PI control and the proposed ܪஶ-based control strategy in terms 

of power quality is presented.  

Overall, the proposed control scheme demonstrtated good performance for all the simulation scenarios 

considered. A real-time implementation and validation of the proposed control approach is being considered 

using a wind turbine emulator setup. 

 

APPENDIX A: Model of the grid-side  

Fig. A.1 shows the grid-side inverter with DC source. To achieve bidirectional current flow through the converter, 

every switch is accompanied by an antiparallel diode. The switched converter in normal operation produces current 

through neuter point N, for different characteristics, depending on the operating conditions. This current flow 

creates an unbalance (charge and discharge of the DC side of capacitors) in the DC voltage to every capacitance 

capacitor ܥௗ௖. Usually with a finite value capacitors, the converter requires a special modulation algorithm that 

achieves a balanced DC side voltage [31]. 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Fig. A.1 Three-level inverter with NPC (ܥௗ௖ ൌ 500	μFሻ. 

 

This model is based on following simplifying assumptions [32-36]: 



 

 All switches are supposed ideal. 

 The three alternative source of voltages are balanced. 

 The harmonics due the opening and closing actions of the switches are negligible. 

 All voltage dips on the source side of inverter are represented by the resistor ௙ܴ .   

 The currents and voltages in the capacitors are equal.  

Using matrix representation, the three-phase abc system model of the network grid side is given by the following 

system of equations:  
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From the second hypothesis, the voltages of the three-phase source are: 
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Where: 

௦ܸ  is the efficient phase voltage of the source. 

 .is the phase angle between the fundamental voltages of the source and the inverter output voltages	ߜ

The Park transformation of equation (A.2)  is given by: 

௤,ௗ,௢ݒ ൌ ௦ܸ ൥
െ sin ߜ
cos ߜ
0

൩																																																																																																																							ሺA. 3ሻ 

The system is balanced, so the homopolar part is zero. The model becomes: 
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From equation (A.4), the model of the source-side currents is given by: 
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From the third hypothesis can be defined the pulse functions as follows: 
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Where ܵ௔, ܵ௕, ܵ௖  are the equivalent switches respectively for phase “a”: ܵ௔ଵ and	ܵ௔ଶ, phase B: ܵ௕ଵ and ܵ௕ଶ and 

phase C: ܵ௖ଵ and ܵ௖ଶ. 

The voltages supplied by the inverter, considering only the fundamental component of the voltage (i.e. in the 

absence of harmonics), are expressed in terms of the DC link voltage and the switching functions as: 

௢௔௕௖ݒ ൌ ൥
௢௔ݒ
௢௕ݒ
௢௖ݒ

൩ ൌ ൥
ܵ௔
ܵ௕
ܵ௖
൩ .ሺA																																																																																																														ௗ௖ݒ 7ሻ 



 

Since the system is balanced, the Park transformation of equation (A.7) is written as: 

௢௤ௗݒ ൌ ቂ
௢௤ݒ
௢ௗݒ

ቃ ൌ ௗ௖ݒܦ ቂ
0
1
ቃ																																																																																																														ሺA. 8ሻ 

Where ܦ	is the inverter conversion ratio between the fundamental of the output voltage and the DC voltage [37]: 

ܦ ൌ
ටݒ௢ௗ

ଶ ൅ ௢௤ଶݒ

ௗ௖ݒ
																																																																																																																														ሺA. 9ሻ 

The magnitude MI is given by: 

ܫܯ ൌ
௢,୫ୟ୶ݒ
ௗ௖ݒ

ൌ ඨ
2
3
.ሺA																																																																																																																				ܦ 10ሻ 

Substituting (A.3) and (A.8) into (A.5) gives: 

݀
ݐ݀
൤
݅௤
݅ௗ
൨ ൌ

ۏ
ێ
ێ
ێ
െۍ ௙ܴ

௙ܮ
െ߱௘

߱௘ െ ௙ܴ

ے௙ܮ
ۑ
ۑ
ۑ
ې

൤
݅௤
݅ௗ
൨ ൅

1
௙ܮ
൤

െ ௦ܸ sin ߜ
௦ܸ cos ߜ ൅ ௗ௖ݒܦ

൨																																																										ሺA. 11ሻ 

Based on the previous assumptions, the DC link current is: 

݅ௗ௖ଵ ൅ ݅ௗ௖ଶ ൌ 2݅ௗ௖ ൌ ்ܵ݅௔௕௖																																																																																																						ሺA. 12ሻ 

In the (d, q) axes: 

2݅ௗ௖ ൌ ௣݅௤ௗ௢ܯ்ܵ ൌ ሾ0ܦ 1 0ሿ ൥
݅௤
݅ௗ
݅௢
൩																																																																																				ሺA. 13ሻ 

Where ܯ௣ is the Park transformation matrix: 

௣ܯ ൌ ඨ
2
3

ۏ
ێ
ێ
ێ
ێ
ێ
ሻݐcosሺ߱௘ۍ ݏ݋ܿ ൬߱௘ݐ െ

ߨ2
3
൰ ݏ݋ܿ ൬߱௘ݐ ൅

ߨ2
3
൰

sinሺ߱௘ݐሻ ݊݅ݏ ൬߱௘ݐ െ
ߨ2
3
൰ ݊݅ݏ ൬߱௘ݐ ൅

ߨ2
3
൰

1

√2

1

√2

1

√2 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

																																															ሺA. 14ሻ 

The voltage on the capacitor is given by: 

ௗ௖ݒ݀
ݐ݀

ൌ
݅ௗ௖
ௗ௖ܥ

																																																																																																																																					ሺA. 15ሻ 

Combining equations (A.13) and (A.15) gives: 

ௗ௖ݒ݀
ݐ݀

ൌ
ܦ
ௗ௖ܥ2

݅ௗ																																																																																																																														ሺܣ. 16ሻ 

Finally, combining equation (A.16) with equations (A.11), yields the following nonlinear Park model of the source 

current and DC link voltage. 

݀
ݐ݀
൥
݅௤
݅ௗ
ௗ௖ݒ

൩ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
െۍ ௙ܴ

௙ܮ
െ߱௘ 0

߱௘ െ ௙ܴ

௙ܮ
െ
ܦ
௙ܮ

0
ܦ
ௗ௖ܥ2

0
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൥
݅௤
݅ௗ
ௗ௖ݒ

൩ ൅
1
௙ܮ
൥
െ ௦ܸ sin ߜ
௦ܸ cos ߜ
0

൩																																																				ሺA. 17ሻ 

APPENDIX B: Linearised model of the grid-side.  

From the state equation (A.15), it can be seen that the control parameter ߜ takes the form of sin and cos ߜ  In .ߜ

addition, the state matrix depends on the inverter conversion ratio ܦ which is not constant. Therefore, the system 

is non-linear. The reactive component of the current ݅௤ of the source is zero (the system is operating at unity power 



 

factor), in this case phase shift ߜ between the fundamental voltages of the source and those of the inverter output 

voltage is almost zero (ߜ ൎ 0). The model can therefore be linearized based on the following assumptions [38]: 

 The second order terms are of the perturbed variables are negliglected. 

 The value ߜ଴ operating point is zero. 

The Δ-notation is introduced to indicate perturbed values. 

Applying a small perturbation to the system gives: 

 

      

  

0 0 0 0

0 0 0 0 0

0 0 0

1

1

f
q q q q e d d q q

f f

f
d d e q q d d d d od od

f f

dc dc dc dc dc

R
i i i i i i v v

L L

R
i i i i i i v v v v

L L

v v D D v v Dv





 

   

 

    

 

  


              


            



    


    (A.18) 

Where the Park transformation of the source voltage and the inverter output voltages are given by [38]: 

   
   

  

0 0 0

0 0 0

0 0 0

sin sin

cos cos
q q s s

d d s s

od od dc dc dc

v v V V

v v V V

v v D D v v D v

  
  

 

 

  

     
    
     

                                                                (A.19) 

Using the trigonometric development of sin(δ0+δΔ) and cos(δ0+δΔ), equations (A.19) becomeS: 

         
         

  

0 0 0 0

0 0 0 0

0 0 0

sin cos sin cos sin

cos cos sin sin cos

q q s s

d d s s

od od dc dc dc

v v V V

v v V V

v v D D v v Dv

    

    
  

  

  

              
     

                           (A.20) 

Quantities with subscript 0 are equal to those of the initial conditions (ߜ଴ ൌ 0). Using the following approximations 

[39]: 

sin

cos 1

 

 




 

                                                                                                                  (A.21) 

The linearised model of the system (A.20) can be written as:  

0

0

0 0

0
q q s

d d

od od dc dc

v v V

v v

v v Dv D v

 



  

  
  
   

                                                                                   (A.22) 

Substituting equations (A.20) into (A.18), and assuming that the initial value of the current source is zero gives: 

 0

1

2

q f s
q e d

f f

fd
e q d dc dc

f f

dc
d

dc

di R V
i i

dt L L

Rdi
i i Dv D v

dt L L

dv D
i

dt C

 




  


   





   


     


 


                                                    (A.23) 

Finally, the linearised state-space model of the MIMO system can be written in matrix form as: 

dx
Ax Bu

dt
                                                                                                                 (A.24) 



 

Where: 

ݔ is the state vector ݔ ൌ ൣ݅௤௱		݅ௗ௱	ݒௗ௖௱൧
்
, and	ݑ is the input vector ݑ ൌ ሾߜ௱	ܦ௱ሿ். 

 are the state matrix and control or input matrix respectively and are given by	ܤ and ܣ

0

0

0
1

, 0

0 0

0 0
2

f
e

f
s

f
dce

f f f

dc

R

L
V

R D vA B
L L L

D

C





 
  
                  
 
  

                                                        (A.25) 

The system transfer matrix is calculated using : 

ሻݏሺܩ ൌ
ܻ
ܷ
ൌ ܫݏሺܥ െ .ሺA																																																																																																									ܤሻିଵܣ 26ሻ 

 

ሻݏሺܩ ൌ
ۏ
ێ
ێ
ێ
ێ
െۍ

௏ೞ
௅೑
൬ݏଶ ൅

ோ೑
௅೑
ݏ ൅

஽మ

ଶ௅೑஼೏೎
൰ െ

ఠ೐௩೏೎బ௦

௅೑

െ
ఠ೐௏ೞ௦

௅೑
൬ݏଶ ൅

ோ೑
௅೑
൰ݏ

௩೏೎బ
௅೑

െ
ఠ೐௏ೞ஽

ଶ௅೑஼೏೎
൬ݏ ൅

ோ೑
௅೑
൰
஽௩೏೎బ
ଶ௅೑஼೏೎ ے

ۑ
ۑ
ۑ
ۑ
ې

ଷݏ ൅ 2 ൬
ோ೑
௅೑
൰ ଶݏ ൅ ቆ

஽మ

ଶ௅೑஼೏೎
൅ ൬

ோ೑
௅೑
൰
ଶ

൅ ߱௘ଶቇ ݏ ൅
஽మோ೑
ଶ௅೑

మ஼೏೎
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APPENDIX C: Model parameters.  

TABLE E. Models parameters values. 

Grid   

 RMS voltage, Vୗ [V] 380 

 Frequency, ௦݂ [ Hz]                                                50 

Transformer   

 Leakage resistance, ௙ܴ 	ሾሿ                                    3.4 

 Leakage inductance, ܮ௙ ሾሿ                                   3.3 

Turbine   

 Air density, ρ [Kg.m-2] 1.225 

 Rated power,	 ௧ܲ,௡	[kW]                                       2.68 

 Radius, ܴ [m]                                                     1.4 

 Rated wind speed, ݒ௡	ሾm.s-1]                                  12 

 Gain of Gearbox, 2.445312 ܩ

SCIG   

 Rated power, ௡ܲ	[kW] 2 

 Rated frequency, ௚݂,௡	ሾHz]                                      50 

 Stator resistance, ܴ௦ [m]                                     4850 

 Stator leakage inductance, ܮ௟௦ [mH]                      16 

 Rotor resistance, ܴ௥	[m]                                      3805 

 Rotor leakage inductance, ௟௥ܮ [mH]                       16 



 

 Mutual inductance, ܮ௠ [mH]                                 258 

 Inertia, ܬ  [kg.m-2]                                                   0.031 

 Friction factor, ݂  [N.m.sec.rad-1]     0.00114 

 Number of pole pairs, ݌                                         2 

DTC-SVM   

 SVM switching frequency [Hz]                             2000 

 

PI controllers  ܭ௣ K୧ 

Generator    

 Speed controller 1 15.872 

 Torque controller 2 150 

 Flux controller 200 1200 

DC side    

 DC voltage controller 2 25 

Source side    

 Current controller 6 4500 

Pitch control    

 Pitch controller 5000 2 

 Maximum pitch angle [deg] 45 

 Maximum rate of change of pitch angle [deg/sec] 10 
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