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Abstract: Reinforcement learning studies in rodents and primates demonstrate that goal-directed and
habitual choice behaviors are mediated through different fronto-striatal systems, but the evidence is
less clear in humans. In this study, functional magnetic resonance imaging (fMRI) data were collected
whilst participants (n = 20) performed a conditional associative learning task in which blocks of novel
conditional stimuli (CS) required a deliberate choice, and blocks of familiar CS required an intuitive
choice. Using standard subtraction analysis for fMRI event-related designs, activation shifted from the
dorso-fronto-parietal network, which involves dorsolateral prefrontal cortex (DLPFC) for deliberate
choice of novel CS, to ventro-medial frontal (VMPFC) and anterior cingulate cortex for intuitive
choice of familiar CS. Supporting this finding, psycho-physiological interaction (PPI) analysis, using
the peak active areas within the PFC for novel and familiar CS as seed regions, showed functional
coupling between caudate and DLPFC when processing novel CS and VMPFC when processing
familiar CS. These findings demonstrate separable systems for deliberate and intuitive processing,
which is in keeping with rodent and primate reinforcement learning studies, although in humans
they operate in a dynamic, possibly synergistic, manner particularly at the level of the striatum.

Keywords: intuitive decision; deliberate decision; striatum; novelty; automated cognition;
reinforcement learning; fMRI

1. Introduction

A large body of functional imaging research has explored the neural mechanisms involved in
value-based decision making (for reviews see [1–4]). Despite reliable findings, it is unclear whether there
are different neural systems for deliberate, as opposed to intuitive, decision making in humans or, using
the cognitive neuroscience vernacular, for goal-based versus habitual choice [5]. In the psychological
literature, deliberate decision making occurs when making a choice between unfamiliar options
whose outcomes are unknown in a context where there is a high degree of outcome uncertainty [6,7].
Deliberation occurs when computing the contingency or causal relationship between conditional
stimulus (CS), response (R), and their associated outcome (O) [8,9]. This requires a cognitive ‘scaffold’
composed of problem-relevant algorithms [10,11], rules, and mental models [12] in order to solve the
credit assignment problem [13].

Intuitive decision making occurs once the contingencies between CS, R, and O are well-learnt, such
that probabilities of outcomes and their value become integrated dimensions of the CS and are, hence,
available at the point of stimulus perception (stimulus-elicited) [14–18]. It remains unclear whether
deliberate and intuitive decision making involve separate cognitive processes [19] or a common set
of rule-based cognitive processes, with a shift toward more efficient associative processing during
intuitive decision making [20–22].
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Neuroscience research in rodents and primates supports separate fronto-striatal routes used to
estimate the value of options in deliberate, or ‘goal-based’, as opposed to intuitive-based, or ‘habit’,
decision making (for reviews see [1,5,16,23]). These fronto-striatal systems comprise the ‘associative’
(dorsomedial striatum) and ‘sensorimotor’ (dorsolateral striatum) fronto-striatal routes for goal-based
and habitual-based valuation, respectively [1,23].

While some functional neuroimaging studies with humans used reinforcement learning tasks
to examine separate valuation systems (for a review see, [5]), the majority of such studies have used
many trials (often in the hundreds), thus confounding early goal-based learning with later habitual
or what we here refer to as ‘stimulus-elicited’ choice [24–28]. Some studies comparing early vs.
late learning, or used pre-training, have shown reduced involvement of associative striatum with
learning [29–31]. Few studies have ensured over-learning of the CS-outcome pairings [32,33], and
these have demonstrated that with overlearning there is a shift from associative to the sensorimotor
striatum for CS valuation. However, these studies involved reinforcement learning of either a variable
interval schedule [32] or learning a sequence of choices [33], both of which are particularly suited
to inducing habitual behavior [23,25,34,35]. Ashby et al. [36] argued that such a shift is limited to
these reinforcement learning paradigms alone, and they will not be found in the more commonly used
conditional associative learning (CAL) or monetary incentive learning paradigms, in which participants
learn to discriminate between two or more CS to maximize reward. One such study designed to
eliminate all learning through the use of highly overlearnt options (playing cards) reported that the
sensori-motor route was used in value processing of conditioned stimuli [37]. However, both circuits
may be operating in parallel in most decision-making situations [20,23], switching during the course of
the given task [5,38,39]. This would create a methodological problem for imaging studies in which the
analysis involves averaging across trials of different event types (e.g., goal vs. stimulus-elicited trials)
and then comparing them with subtraction analysis.

The primary aim of the current study was to evaluate whether the associative processing route is
used predominantly for deliberate choices, whereas the sensori-motor route is used predominantly
for stimulus elicited-valuation (familiar choices), using a CAL paradigm. A single set of CS were
used with consistent reward probabilities, which had been extensively trained before the imaging
session [24]. Furthermore, behavioral criteria (e.g., response time), which is no further decrease in
response times after the pre-training session, were used to validate whether participants demonstrated
either goal-based or stimulus-elicited processing [27,40]. An additional challenge ignored in previous
studies, (notably [29] and [41]) is the increase in the blood oxygenation level dependent (BOLD) signal
across most brain regions during goal-based cognition [42]. This is thought to arise either due to a
global increase in the brain’s BOLD signal during effortful cognition or in response to greater attention,
which increases BOLD signal, particularly in primary sensory cortices [43,44]. Alternatively, the
decrease in BOLD signal when processing familiar stimuli might result from a shift from coarse neural
coding during early learning to fine coding for familiar stimuli [42,45]. All such explanations would
result in a reduction in the average BOLD signal across all clusters of voxels for familiar stimuli and,
hence, represent a potential confound. Kelly and Garavan [42], therefore, recommend that traditional
contrast analysis be compared with a psycho-physiological interaction (PPI) analysis to explore the
potential reorganization of functional connectivity resulting from a change from goal-based processing
to stimulus-elicited processing.

We hypothesized that the ubiquitous increase in global BOLD signal during all deliberate cognition
should be included as a functional imaging signature for goal-based decision making and supplement
the behavioral criteria described by Seger and Spiering [40]. Thus, deliberate, but not intuitive,
valuation should be associated with high levels of activation in the dorso-fronto-parietal system,
together with increased activation of the sensory cortex [46–49].
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2. Materials and Methods

2.1. Participants

Twenty right-handed healthy volunteers (12 male, 7 female; mean age 25, range: 24–32) were
recruited, but only 19 participants (12 male, 6 female) were included in the analysis. One participant
was excluded from the analysis due to insufficient behavioral performance; for instance, this participant
showed no learning effect and informed the experimenter that she was making random choices in
all conditions. All of the participants were: i) pre-assessed to exclude those with a prior history
of neurological and psychiatric illness, ii) provided with written and verbal instructions about the
experiment before the functional magnetic resonance imaging (fMRI) session, and iii) debriefed after
the experimental session and paid £20 for participating. All subjects gave their informed consent for
inclusion before they participated. The study was conducted in accordance with the Declaration of
Helsinki, and the protocol was approved by the Ethics Committee of Bedfordshire NHS Research
Ethics Committee (Decision Number: 06/Q0202/21).

2.2. Experimental Design

This experiment comprised two parts: the pre-training session (for familiarization with the stimuli)
was designed to ensure learning of a set of stimulus pairs (k = 12) and was conducted outside of
the scanner, while the main experimental session involved the collection of fMRI data and included
presentation of both the familiar stimulus pairs used in the pre-training session as well as a set of
previously unseen novel stimulus pairs (k = 12). E-prime software (www.psychologysoftware.com)
was used to control the presentation of stimuli and collect the response data for both the pre-training
and main experimental sessions.

2.2.1. Pre-Training

Figure 1 presents a diagram showing the structure of a single trial, with the training task involving
240 such trials. Each trial began with a fixation cross of 500 ms presented in the middle of an LCD screen,
followed by the presentation of one pair of stimuli for approximately 3 s. During those 3 s, participants
were asked to respond by choosing one of two response keys to indicate their preferred stimuli. After
making their choice, feedback was immediately presented on the screen for about 3 s. For each correct
prediction, the rewarding feedback was a large image of a £1 coin, and for non-rewarded feedback the
word ‘neutral’ was displayed on the screen. Subjects were informed that the amount of money they would
receive at the end of the study would be contingent on the money accumulated after completion of both
the pre-training session and main experiment, and that this amount will be multiplied by a probability.
However, in order to avoid disadvantaging any participant, 20 pounds was awarded to all participants on
completion of the main experiment. Twelve stimulus pairs were used in the pre-training session with each
stimulus pair composed of Chinese or Agathadaimon font. The pairs of stimuli were counterbalanced
across participants so that each was trained with only one type of font.

Stimulus pairs differed in their uncertainty of reward outcome. For high-outcome uncertainty
pairs, the probability of reward was 0.6 for one CS (i.e., one of the two options) and with corresponding
probability of not being rewarded of 0.4. For mid-outcome uncertainty pairs, the probability of reward
for one CS was 0.8, and for the other CS, 0.2. Finally, the last stimulus category was deterministic
rather than probabilistic; the outcome was certain if the participant chose the correct CS, resulting
in a reward every time, whereas the other CS would always result in non-reward. Each stimulus
pair was presented equally often over the 240 trials (i.e., 20 exposures for each pair). Subjects were
fully instructed about trial structure and the objective of maximizing the reward but not the nature of
the stimulus-reward (S–R) contingencies. All responses were made on an MRI-compatible Lumina
response box, which comprised four key pads, but only the two at the right end were used, so that
the subject could position their index and middle fingers over the keys and, thus, minimize hand
movements. Choice of the CS on the left side, as opposed to right, of the screen was indicated by

www.psychologysoftware.com
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pressing the index (left-most) finger, as opposed to the middle (rightmost) finger of their right hand,
respectively, and vice versa, thereby ensuring a high degree of S–R compatibility [50].
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Figure 1. Probabilistic learning task used during pre-training and scanning sessions. Subjects were
presented with two abstract visual stimuli (either familiar or novel pair). Subjects selected one of the
stimuli, and their choice was followed by a probabilistic feedback on the screen displaying either a
pound picture or written “neutral”.

2.2.2. Main Experiment

The main experiment was conducted with the participant in the scanner. A total of 240 trials
were presented using the same format for each trial that had been used previously in the pre-training
session (Figure 1) apart from the introduction of a jitter delay between trials. Therefore, during the
main experiment, participants were presented with 120 novel and 120 familiar stimulus trials. There
were four separate sessions, comprising 60 trials in each (240 trials/4 session), separated by a 2 min rest
interval. Each session was split into further two blocks with one block comprising novel stimulus pairs
only (3 pairs randomly presented 10 times each, making 30 trials) and the other, familiar stimulus pairs
only (a block comprised 30 trials made up of 3 pairs, randomly presented 10 times) (see Figure 1). The
familiar stimulus pairs were those used in the pre-training session (outside the scanner). Each novel
CS pair was composed of the character set not used previously in the pre-training session; therefore,
both the character set and the stimulus pairs themselves were novel. However, each pair was either
a low/moderate/certain probability of outcome pair corresponding to the 3 probabilistic categories.
After each block of 30 novel trials, the set of 3 stimulus pairs was replaced by another set of 3 pairs to
ensure novelty across all 4 sessions. The blocking of novel and familiar stimulus pairs was intended
to maximize the effect of “framing” [51], that is, to ensure that participants adopted a ‘goal-directed’
or ‘stimulus-elicited’ mental set for processing novel and familiar stimulus pairs, respectively. This
also prevented activity-related contextual novelty of temporal unexpectancy (i.e., unsure which type
of stimulus pair would come next). This type of novelty (contextual) has often been noted in tasks
resembling the oddball paradigm [52]. At the end of each trial in the main experiment, there was a
random inter-trial interval of 2–8 s (random jitter) in order to separate the rewarding outcome and
stimulus presentation in the next trial.

2.3. Functional Magnetic Resonance Imaging

2.3.1. Image Acquisition

Functional imaging was conducted using 3-Tesla Siemens Magnetom MRI scanner to acquire
gradient echo T2* weighted echo-planar (EPI) images with BOLD (blood oxygenation level dependent)
signal contrast (3 × 3 × 3 mm voxel size). Imaging parameters were optimized to minimize signal
dropout in medial ventral prefrontal and anterior ventral striatum: we used a tilted acquisition
sequence at 30◦ to the AC–PC line [53]. Each volume comprised 36 axial slices of 3 mm thickness and
3 mm in-plane resolution with a TR time (repetition time) of 3 s. The flip angle was 90 degrees. T1
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weighted structural images (1 × 1 × 1 mm voxel size) were also acquired for each participant. Head
movement was minimized by padding the participants’ heads.

2.3.2. Image Analysis

Image analysis was performed using statistical parametric mapping SPM8 software (Wellcome
Department of Imaging Neuroscience, Institute of Neurology, London, United Kingdom). For all
participants, the images were realigned according to the first volume, in order to correct for motion in
the scanner, and their functional EPI images were co-registered to anatomical images and normalized
to a standard Montreal Neurological Institute (MNI) template. Spatial smoothing was applied using
a Gaussian kernel with a full width at half-maximum (FWHM) of 8 mm for each participant’s data.
Statistical analyses were performed on each participant’s data using the general linear model in
SPM8. The fMRI time series data were modeled by a series of events, convolved with a canonical
haemodynamic response function (HRF). The general linear model (GLM) included one regressor for
each stimulus type (novel vs. familiar) and each level of probability of reward for a correct choice (i.e.,
0.6, 0.8, 1.0) and included six motion regressors. The second level of the analysis involved voxel-wise
comparisons across subjects analysis of variance (ANOVA), which were computed from the single
subjects’ contrast images, treating each subject as a random effect. Coordinates of significant local
maxima are reported in a standard stereotaxic reference space (MNI, Montreal Neurological Institute),
and group functional overlays are displayed on a single subjects’ anatomical scans.

We also conducted hypothesis-driven statistical analyses, namely PPI analyses, to evaluate
whether there was a shift from the associative (goal-based) to sensori-motor (stimulus-elicited) circuits
in striatum for novel and familiar CS, respectively. PPI assesses how the activity within one brain
region or network of regions is coupled with a predefined region of interest (seed region). The rationale
for using PPI analysis in the current study was to detect whether there was a coupling between the
different striatal nuclei and other regions, particularly ‘seed regions’ in the prefrontal cortex, that
differentiated goal-based processing from stimulus-elicited processing, derived from the subtraction
analyses. Finally, we reported both family wise error (FEW) corrected and uncorrected results. For the
uncorrected results, a minimum cluster size of 10 voxels was used, unless otherwise mentioned [54].

3. Results

3.1. Behavioral Results

In order to compare the response times (RTs) for novel vs. familiar trials, we first performed
a 3 (probability 0.6, 0.8, 1) × 5 (Session 1, 2, 3, 4, Familiar) repeated measures ANOVA. Results
revealed that the main effect of session was statistically significant (F (4, 72) = 35.98, p < 0.001, partial
η2 = 0.67). Pairwise comparisons showed that response times of participants decreased over the
sessions (F (1, 18) = 35.98, p < 0.001 (session 1 to session 2); F (1, 18) = 11.66, p = 0.003 (session 2 to
session 3); and F (1, 18) = 5.06, p = 0.037 (session 3 to session 4)). Comparisons also revealed that there
was no significant difference between session 4 (pre-training) and familiar condition (MRI session)
(p > 0.05) after adjustment for multiple comparisons. This indicates that no further learning-related
changes occurred in response times, which applies to both the familiar pairs during the fMRI session in
the main experiment and session 4 (last pre-training session), which was outside the scanner (Figure 2).
For similar learning criteria that indicate automaticity, please see [24]. Furthermore, the main effect of
probability was also statistically significant (F (2, 36) = 50.18, p < 0.001, partial η2 = 0.74). Pairwise
comparisons revealed that the response time decreased significantly when the probability increased
(F (1, 18) = 69.35, p < 0.001 (from 0.6 to 0.8); F (1, 18) = 41.75, p < 0.001 (from 0.8 to 1); Bonferroni
corrected). Finally, the interaction effect of probability and session did not reach significance level (F (8,
144) = 0.37, p > 0.05) (see Figure 2).
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Figure 2. Response times for the pre-training (Session 1, 2, 3, and 4) and main experiment showed for
all outcome probabilities. Error bars indicate standard deviations.

Secondly, a 2 (novel vs. familiar) × 3 (probability) repeated measures ANOVA was conducted
in order to compare RTs during the imaging session. Familiar trials showed shorter response times
compared to novel trials (F (1, 18) = 35.15, p < 0.001, partial η2 = 0.66). The main effect of probability was
also statistically significant (F (2, 36) = 23.73, p < 0.001, partial η2 = 0.57). Pairwise comparisons revealed
that participants responded slower in 0.6 probability than 0.8 (F (1, 18) = 39.25, p < 0.001). Also, they
responded slower in 0.8 than 1 (F (1, 18) = 16.02, p < 0.001) after adjustments for multiple comparisons,
Bonferroni corrected. Finally, the interaction effect was statistically significant (F (2, 36) = 12.82,
p < 0.001, partial η2 = 0.42) between probability and stimulus familiarity.

Additionally, for the main experiment during the fMRI session, in order to examine the differences
in behavioral learning performance for different stimulus pairs, we calculated the percentage of choice
for each probability condition (0.6, 0.8, 1) and for each stimulus category (novel and familiar) (Figure 3).
For example, if the participants learn to choose the winning option for the (0.6) pair, they will allocate
at least 60% their responses to that option [55], sometimes referred to as the matching strategy, which
is an indication that learning has reached asymptotic levels [56]. In order to measure the learning
performance between the novel and familiar stimulus sets during the fMRI session, we compared the
number of percent choice responses for each stimulus pair for both novel and familiar conditions (see
Figure 3). This comparison used a 2 (novel, familiar) × 3 (probability 0.6, 0.8, 1) repeated measures
ANOVA conducted on the percentage of choice data (high-probability option). Results revealed that in
the familiar condition, participants chose the high-probability winning option more than in the novel
condition (F (1, 18) = 22.73, p < 0.001, partial η2 = 0.57). Furthermore, the main effect of probability
was also statistically significant (F (2, 35) = 19.27, p < 0.001, partial η2 = 0.53). Pairwise comparisons
revealed that accuracy increased with probability (F (1, 18) = 4.68, p = 0.045 (between 0.6 and 0.8);
F (1, 18) = 14.63, p < 0.001 (between 0.8 and 1)) after adjustments for multiple comparisons. Finally,
the interaction effect did not reach significance level (F (2, 34) = 2.26, p > 0.05). Overall, these results
provide additional support for the notion that, in addition to the response time data, the behavioral
data for the percent choice show significant differences for novel and familiar stimulus pairs.

3.2. Imaging Results

The full network of regions activated across both novel and familiar stimulus types was investigated
using a standard analysis of variance (ANOVA) implemented in SPM8. There were two main effects,
namely CS type with two levels (novel CS and familiar CS) and probability of reward with three levels
(0.6, 0.8, 1), together with their interaction. The overall mean for all trials (i.e., conjunction analysis for
all CS vs. baseline) manifested a widespread network of regions. Of particular note is the high levels of
activation throughout the striatum (including both ventral and dorsal regions), medial frontal regions
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and orbito-frontal cortex (OFC), cingulate cortex, hippocampus, lateral parietal cortices, precuneus,
and cerebellum (p < 0.05, FWE corrected). For a full list of activated regions, please refer to Table 1.Brain Sci. 2019, 9, x FOR PEER REVIEW 7 of 20 
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Table 1. ANOVA for the conjunction analysis: all conditional stimuli (CS) (novel and familiar) vs.
baseline 1.

Cluster Size
(Voxels)

Montreal Neurological
Institute (MNI) x, y, z {mm} F-Value (Peak) Side Regions of Activation

Frontal Cortex

355 −6, 23, −14 26.79 L Medial Orbito Frontal
168 −27, 32, 52 22.93 L Middle/Superior Frontal Gyri
62 −33, −1, 58 22.95 L Middle Frontal Gyrus
29 27, 50, −8 20.00 R Middle/Superior Frontal Gyri

Temporal/Temporoparietal Cortex

404 −51, −73, 25 49.50 L Temporal Gyrus
−60, −58, 22 39.66 L Angular Gyrus

174 57, −64, 28 41.10 R Angular Gyrus
−3, 29, −2 14.32 L Anterior Cingulate

143 −54, 5, −20 26.73 L Middle Temporal Gyrus
−45, 20, −29 18.64 L Superior Frontal Gyrus

146 −63, −37, 1 25.92 L Middle Temporal Gyrus
77 54, −1, −17 22.79 R Middle Temporal Gyrus

Parietal Cortex

15859 24, −67, 40 121.39 R Precuneus
248 −6, −52, 34 24.76 L Precuneus
68 60, −13, 25 33.07 R Postcentral gyrus
65 45, −25, 64 28.72 R Postcentral gyrus
46 −12, 62, 19 18.06 L Precuneus
11 −12, −40, 67 14.63 L Postcentral gyrus

Other

150 0, −28, 28 51.93 Cingulate Gyrus
24 −30, −85, −29 23.56 L Cerebellum
20 27, −88, −29 16.39 R Cerebellum

1 All peak voxels significant at p < 0.05, FWE corrected.

Furthermore, the highly significant main effect of CS type in the ANOVA resulted from the novel
CS, producing a significantly greater activation across numerous brain regions. This fits with the
expectation, described in the introduction, of a greater BOLD signal for novel stimuli, or goal-directed
processing [42]. The significant main effect of stimulus probability was a result of bilateral clusters that
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included inferior frontal gyrus, and putamen. In the right hemisphere, activation extended into the
right caudate. The clusters and coordinates for peak voxel for the main effect of reward probability
and the interaction (probability × stimulus type) are reported in Table 2.

Table 2. ANOVA for the conjunction analysis: main effect of uncertainty and uncertainty × novelty
interaction 1.

Cluster Size (Voxels) MNI x, y, z {mm} F−Value (Peak) Side Regions of Activation

Main Effect of Uncertainty

158 3, 26, 46 14.22 R Superior Medial Gyrus (BA8)
62 33, 23, −5 17.76 R Inferior Frontal Gyrus
87 −30, 23, 4 17.72 L Inferior Frontal Gyrus

Striatum
95 −30, −7, −2 14.27 L Putamen
47 27, −1, −2 10.77 R Putamen
10 12,20,1 8.88 R Caudate

Temporal/Temporoparietal

139 −54, −58, 22 11.2 L Middle Temporal Gyrus
−45, −73, 28 9.52 L Angular Gyrus

30 −45, −55, −8 13.24 L Inferior Temporal Gyrus
16 −51, 35, 28 10.75 L Middle Temporal Gyrus
14 −15, −34, 43 10.46 R Middle Temporal Gyrus

Parietal

226 −3, −55, 31 12.37 L Precuneus
−6, −43, 31 11.43 L Posterior Cingulate Cortex

13 −45, −67, 43 9.37 L Angular Gyrus
20 54, −58, 28 9.11 R Angular Gyrus
16 −39, −52, 52 9.34 L Inferior Parietal Lobule

Uncertainty × Novelty Interaction

Frontal Cortex

25 12, 20, 52 9.84 R Superior/Medial (BA8)
23 −18, 23, 28 12.13 L Superior Frontal Gyrus
16 42, 14, 46 10.6 R Middle Frontal Gyrus (BA8)

Parietal and Posterior Cingulate Cortex
48 −39, −40, 31 19.18 L Inferior Parietal Lobule (BA40)
16 39, −46, 37 9.19 R Inferior Parietal Lobule (BA40)
43 −15, −55, 34 11.67 L Precuneus

−18, −52, 25 9.7 L Cingulate Gyrus
22 12, −76, 46 9.46 R Precuneus

119 21, −46, 28 12.96 R Cingulate Gyrus
117 9, 38, 34 16.79 R Middle Cingulate Cortex

21, −64, 40 9.31 R Right Precuneus

Occipital Cortex

124 −27, −91, 19 11.01 L Middle Occipital Gyrus
78 −45, −85, −2 12.4 L Middle/Inferior Occipital Gyri
25 21, −82, 10 10.28 R Calcarine Gyrus (BA 17)
41 33, −67, 1 9.85 R Middle Occipital Gyrus

1 All peak voxels were significant at p < 0.001, uncorrected (k = 10 voxels). K = a minimum cluster size.

Post hoc analyses of the main effect of outcome probability showed that activation in the right
caudate was associated with decreased expectation of reward outcome (i.e., decrease with outcome
probability), whereas activation in the left and right putamen was associated with increased expectation
of reward outcome (see Figure 4). The right and left inferior frontal gyrus also showed a decrease in
activation with increasing certainty of reward.
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Figure 4. Areas in the bilateral putamen, bilateral inferior frontal gyrus, right caudate, precuneus, and
anterior cingulate cortex showing uncertainty-related activity for CS regardless of whether the stimulus
is novel or familiar (p < 0.001, a minimum cluster size (k) = 10 voxels).

Post hoc analysis of the probability × stimulus type interaction revealed a large cluster in the right
anterior cingulate, including brodmann area (BA) 32, extending into medial frontal cortex (p < 0.001,
uncorrected) (Figure 5). This interaction effect was due to significant activations above baseline for all
conditions except for the certain condition (probability = 1:0) for the familiar stimuli.
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Figure 5. (A) Interaction contrast overlaid on medial frontal gyrus showing significant interaction
between uncertainty and novelty (p < 0.001, a minimum cluster size (k) = 10 voxels). (B) Percent signal
change for the peak voxel in the anterior cingulate gyrus.

3.3. Subtraction Analyses—Novel vs. Familiar Stimuli

Dissociating the neural systems for (i) goal-based and (ii) stimulus-elicited decision making was
achieved by comparing the contrasts of novel CS > familiar CS and familiar CS > novel CS. Firstly, we
wanted to examine whether the functional imaging criteria validated whether goal-based processing
predominated for choices with the set of novel CS, rather than familiar CS (Tables 3 and 4 and Figure 6
present the data for both contrasts). With regard to the novel CS > familiar CS contrast analysis,
greater dorsal fronto-parietal network involvement was observed for this contrast; greater activity was
found along the intraparietal sulcus, extending into inferior and superior parietal lobes, and there was
greater activation in dorsal frontal areas, particularly along the middle frontal gyrus, to include DLPFC
(middle frontal gyrus BA46) in both left and right hemispheres (Table 3). These regions define the
dorso-parietal network [46,57]. This contrast also revealed more widespread and increased activation
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for novel CS in superior, medial, and inferior occipital gyri (Table 3). Both results meet the fMRI criteria
outlined in the introduction for distinguishing goal-based and stimulus-elicited decision making.
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Figure 6. Regions demonstrating greater activation for the (A) novel CS > familiar CS contrast across all
eighteen participants (p < 0.001 uncorrected, minimum cluster size 10 voxels). For the two top images,
activation is overlaid on the lateral surfaces of the cortex separately for each hemisphere (the image
on the right side of the figure depicts the right hemisphere whereas the image on the left side of the
figure depicts the left hemisphere). The bottom two images show activation in the medial surface of the
cortex. (B) Shows the regions demonstrating greater activation for the familiar CS > novel CS contrast
across all participants (p < 0.001, uncorrected, minimum cluster size 10 voxels). For the two images, the
top activation is overlaid on the lateral surfaces of the cortex separately for each hemisphere, for both
figure (A,B), the color bar represents the t-value where yellow regions correspond to higher t-values
and a larger effect size. The bar graphs on the sides of each figure depict percent signal change for the
novel and familiar CS that were shown for the peak voxels.

Our main research question was whether the associative and sensori-motor fronto-striatal circuits
mediated goal-directed and stimulus-elicited choices. In particular, we assumed there should be a
dissociation in both frontal and striatal regions. Under this assumption, goal-based decision making
would show increased activation in the fronto-parietal system, involving DLPFC, but, in addition, we
would expect to see greater involvement of the head and possibly the body of the caudate (ventromedial
striatum) for novel CS and a greater involvement of the putamen with familiar CS.
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Table 3. Subtraction analysis: Novel CS > Familiar CS 1.

Cluster Size (Voxel) MNI x, y, z {mm} T-Value (Peak) Side Regions of Activation

Frontal Cortex

75 42, 32, 19 4.65 R Middle Frontal Gyrus (BA46)
14 −42, 29, 19 3.75 L Middle Frontal Gyrus (BA46)
70 45, 8, 37 4.61 R Precentral Gyrus
67 −42, −1, 37 4.27 L Precentral Gyrus
28 24, −1, 49 4.21 R Premotor Area (BA6)

Temporal Cortex

312 48. −58, −11 5.75 R Inferior Temporal & Fusiform
Gyri

−45, −58, −11 4.79 L Inferior Temporal Gyrus
48, 0.79, 0.5 3.44 R Inferior Occipital Gyrus

Parieto0ccipitalCortex

557 33, −49, 52 4.65 R Inferior Parietal Lobule
−24, −73, 46 5.48 L Superior Parietal Lobule
27, −70, 43 5.93 R Sup/Mid/Inf Occipital Gyri
39, −79, 16 4.61 R Middle Occipital Gyrus
27, −70, 43 5.93 R Sup/Mid/Inf Occipital Gyri

Insular Cortex

29 −27, 23, −2 4.8 L Insula

Occipital Cortex

809 45, −79, −8 5.7 L Inferior Occipital Gyrus
1 All peak voxels were significant at p < 0.001, uncorrected (k = 10 voxels). K = minimum cluster size.

Table 4. Subtraction analysis: Familiar CS > Novel CS 1.

Cluster Size (Voxel) MNI x, y, z {mm} T-Value (Peak) Side Regions of Activation

Frontal

13 −12, 56, 4 3.56 L Medial Frontal Gyrus (BA10)
12 12, 47, −5 3.54 R Medial Frontal Gyrus (BA 10/BA32)

Temporal

28 −45, −79, 34 4.03 L Middle Temporal Gyrus
−51, −76, 28 3.86 L Middle Temporal Gyrus

Parietal and Cingulate

12 −15, −52, 37 3.99 L Precuneus
19 66, −43, 31 3.52 R Supramarginal Gyrus
19 18, 2, 28 4.14 R Cingulate Gyrus
23 9, −19, 43 3.77 R Middle Cingulate Cortex
30 12, 91, 34 3.7 R Superior Occipital Gyrus

9, −91, 19 3.51 R Cuneus (BA7)
14 −9, −76,31 3.4 L Cuneus (BA7)

Occipital Cortex

30 12, 91, 34 3.7 R Superior Occipital Gyrus
13 15, 43, −5 3.66 R Lingual Gyrus

Other

44 3, 20, 16 4.25 R Corpus Callosum
9, 11, 22 3.44 L Corpus Collosum

1 All peak voxels were significant at p < 0.001, uncorrected (k = 10 voxels). K = minimum cluster size.
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A dissociation in the prefrontal cortex was observed (see Figure 6). Greater activation in bilateral
middle frontal gyrus (BA 46) was found in the novel CS > familiar CS contrast, and greater activation was
found in bilateral VMPFC (BA 10) for the familiar CS > novel CS contrast, presumably due to VMPFC
being able to code predicted outcome values, which, in this study, equate to expected values for each CS
(Table 4). However, it should be noted that this finding largely is due to bilateral deactivation in this region
for novel CS (see bar chart for left and right medial frontal gyri in the lower panel of Figure 6). Outcome
probability was bilaterally coded in the left VMPFC for familiar CS but not novel CS (see Figure 6). Neither
the novel CS > familiar CS contrast, nor familiar CS > novel CS contrast, revealed any differential striatal
activation in the left or right head nor in the body and tail of the caudate or putamen.

3.4. Psycho-Physiological Interaction Analysis

The psychophysiological interaction analysis (PPI) permits examination of those brain regions
showing enhanced coupling with a predefined region of interest (seed region) given the psychological
condition (i.e., novel CS > familiar CS or familiar CS > novel CS) [58]. Thus, we selected the seed
regions in the prefrontal cortex identified in the novel CS > familiar CS contrast, (bilateral middle
frontal gyrus left MNI −42, 29, 19; right MNI 42, 32, 19), and the familiar CS > novel CS contrast, (right
medial frontal gyrus MNI 12, 47, −5), and we evaluated the activity of brain regions modulated by
activity in these two frontal regions (Figure 7).
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Figure 7. Regions demonstrating significant connectivity for the (A) familiar CS > novel CS and (B)
novel CS > familiar CS contrasts.

In order to perform a PPI analysis at the single subject level, the BOLD signal was extracted
from seed regions for each participant. These were defined as 4 mm spherical region of interest (ROI)
around each participant’s peak voxel (individual contrast thresholds for determining seed regions, see
below). Physiological activity of seed regions was extracted as the first principal component of the
time series of all active voxels within a 4 mm radius sphere, centered on the most significant voxel
within the ROI. Significance of the voxels was based on the contrast specified for each participant
(p < 0.005, uncorrected). Subjects were excluded from the analysis when there were no significant
voxels in this statistical threshold. Based on this exclusion criterion for both PPI analyses, 14 out
of 19 participants were included. The PPI term was created for each participant by multiplying the
deconvolved and mean-corrected BOLD signal with the psychological vector. After convolution with
the HRF, mean correction, and orthogonalization, the three regressors (PPI term, physiological vector,
and psychological vector) were entered into the statistical analysis to determine condition-dependent
changes of functional connectivity over and above any main effect of task or any main effect of activity
in the corresponding brain areas. In the PPI contrasts, the PPI term was computed against an implicit
baseline. Random-effects analyses were performed on single-subject PPI contrast images (p < 0.001,
uncorrected) and carried to group analysis.
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The PPI analysis with prefrontal seed regions derived from the novel CS > familiar CS contrast,
namely BA46, revealed co-variations with bilateral dorsomedial (caudate) striatal activity and right
ventral striatum (putamen) as well as with the amygdala, insula, and several small clusters in the
lateral prefrontal cortex and cingulate gyrus (see Figure 7, Table 5).

Table 5. PPI analysis for Novel CS > Familiar CS 1.

Cluster Size (Voxel) MNI x, y, z {mm} T−Value (Peak) Side Regions of Activation

Striatum

30 9, 11, −2 4.5 R Caudate
18, 5, −11 4.37 R Putamen
30, 2, −14 4.06 R Putamen

13 −33, −25, −8 4.99 L Caudate Tail covering hippocampus

Frontal

293 −3, 5, 58 6.69 L Supplementary Motor Area
9, 5, 28 4.69 R Corpus Callosum
−6, 20, 34 4.63 L Cingulate Gyrus

87 45, 8, 28 5.79 R Inferior Frontal Gyrus
48 −45,8,28 4.92 L Inferior Frontal Gyrus
17 33, −1, 61 4.44 R Middle Frontal Gyrus
10 39, 44, 22 4.18 R Middle Frontal Gyrus
38 −48, −19, 37 4.48 L Precentral Gyrus
30 18, −31, 64 4.37 R Precentral Gyrus (BA 4)
38 −48, −19, 37 4.48 L Precentral Gyrus

Temporal

534 33, −16, 43 6.54 R Middle Temporal Gyrus
48, −67, 4 5.36 R BA 37

13 36, 2, −26 5.89 R Superior Temporal/R Amygdala

Insula

189 −27, 17, 22 5.62 L Insula
22 30, 20, 4 5.02 R Insula

Parietal

65 21, −61, 58 5.84 R Superior Parietal Lobule/BA 7
13 −30, −34, 43 4.22 L Parietal Lobe
67 −24, −91, 19 4.76 L Cuneus

−6, −97, 16 4.28 L BA 18 (Occipital)

Occipital/Temporal

314 −42, 52, −5 7.57 L Occipital Lobe
−42, 64, 4 5.65 L Middle Temporal Gyrus
−36, −40, 7 552 L Superior Temporal Gyrus

162 −15, −88, −11 6.8 L Occipital Lobe
−24, −88, −11 6.34 L Lingual Gyrus

60 33, −76, −11 5.69 R Occipital Lobe

Limbic

20 −12, −7, 34 4.71 L Cingulate Gyrus
20 −12, −34, 34 4.5 L Cingulate Gyrus

Other

23 −48, −58, −23 7.39 L Cerebellum Posterior Lobe
16 −21, −64, −44 4.84 L Cerebellum Posterior Lobe
14 30, −64, −47 5.05 R Cerebellum Posterior Lobe
44 −18, −61, −14 4.73 L Cerebellum
10 21, −13, −2 4.36 R Thalamus

1 All peak voxels were significant at p < 0.001, uncorrected (k = 10 voxels). K = minimum cluster size.
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The PPI analysis using the medial prefrontal cortex seed region, derived from the familiar CS >

novel CS contrast, resulted in co-activation with the dorsolateral striatum (putamen) bilaterally, with
the cingulate cortex, and additional activation occurs mainly in the medial surface of the frontal cortex
(Table 6). Finally, it is important to note the PPI results are reported uncorrected at p < 0.001 and do not
survive family-wise error correction. The coordinates for these comparisons are reported in Tables 5
and 6.

Table 6. PPI analysis for Familiar CS > Novel CS 1.

Cluster Size (Voxel) MNI x, y, z {mm} T-Value (Peak) Side Regions of Activation

Striatum

88 −36, −4, 7 8.31 L Putamen
31 30, 17, 4 6.33 R Putamen

Temporal Cortex

10 51, −58, 4 5.35 R Middle Temporal Gyrus

Parietal Cortex

23 30, −61, 43 7.03 R Precuneus
20 −33, 0.52, 46 6.69 L Parietal Lobe
24 33, −52, 55 6.44 R Inferior Parietal Lobule
38 51, −25, 52 6.06 R Postcentral Gyrus

Occipital Cortex

78 49, 48, 4 7.03 L Occipital Lobe/Inf Occ Gyrus
16 36, 48, 13 5.35 R Occipital Lobe

Limbic

31 −3, 14, 40 6.64 L Cingulate Gyrus (BA32)
6, 14, 43 5.07 R Cingulate Gyrus

1 All peak voxels were significant at p < 0.001, uncorrected (k = 10 voxels). K = minimum cluster size.

4. Discussion

The principle aim of the current study was to find out whether reward anticipation during deliberate
and intuitive decision making involved separate fronto-striatal systems, namely the ‘associative’ and
‘sensori-motor’ fronto-striatal systems, respectively. The behavioral and functional imaging criteria
for goal-based processing were met for the trials that involved novel CS but not familiar CS. During
learning, response times reduced significantly for the novel CS, and a pattern of significantly greater
BOLD activity was observed across numerous brain regions, most notably in the occipital cortex.
Furthermore, the fronto-parietal network was more active in novel trials relative to familiar trials for
novel CS only. In addition, there was a significant activation in the temporo-parietal regions. In the
literature, previous animal and human studies showed that medial temporal lobe (MTL) structures
often respond to stimulus repetition that shows reduction of neural activity with repeated stimulus
presentation [59,60]. It was suggested that this widely distributed network of temporal and parietal
regions is involved in the novelty/familiarity effects that may be responsible for learning visual
associations [61–64].

Greater activation for familiar CS relative to novel CS occurred in a small number of brain regions,
including VMPFC and posterior cingulate, in line with most other studies comparing goal-based and
automated cognitive processing [42]. No striatal areas showed a higher level of activation for familiar
relative to novel CS. However, we found increased activation in the same bilateral region of VMPFC for
familiar CS, as reported in a number of other studies [10,65–68]. A linear increase in activation in the
VMPFC was also detected with increased probability of reward (equivalent to expected value) for the
familiar CS only (see Figure 6B). This same region of VMPFC showed significant deactivation during
the novel CS trials. Tanaka et al. [69] also reported an increasing deactivation in VMPFC in proportion
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to the amount of goal-based processing during an instrumental reinforcement learning task. fMRI
studies of self-control in dieting [70] or addiction [71] have also reported deactivations in this region
when implementing a top-down strategy to inhibit prepotent responses. Furthermore, functional
connectivity between VMPFC and DLPFC has been reported in other studies [72–74]. This finding
supports the dual-route view of decision making in so far as VMPFC activations occur after the CS-O
contingency is learnt, whereas deactivation occurs when the CS value is unknown. An alternative
interpretation is that VMPFC activity reflects an increased expectation of reward, or increased decision
confidence in the familiar blocks, because subjects might be more confident of making the correct
choice [75].

Our second main prediction was that novel CS would engage the dorsomedial striatum (caudate
head and possibly body), whereas value processing of familiar CS would engage the dorsolateral
striatum (putamen). This was not observed for any of the contrast analyses, even with a liberal
threshold for statistical significance. This would suggest that, unlike the frontal cortex, there is no
manifest shift from dorsomedial to dorsolateral processing in the striatum for value-based decision
making, using conditional associative learning paradigms. Notwithstanding this finding, the PPI
analysis demonstrated functional connectivity between the VMPFC seed region and the dorsolateral
striatum (putamen) as well as separate functional connectivity between the DLPFC and dorsomedial
striatum (caudate). These results, therefore, support the view that there is some anatomical and
functional dissociation between goal-based and stimulus-elicited decision making in the striatum [76].
The findings between the PPI and contrast analyses can be perhaps best interpreted as showing that
decision making systems have a dynamic relationship during conditional associative learning type tasks.
Until recently, the view has been of these two systems working in parallel but in competition [4,38].
More recent thinking is that these two systems operate synergistically, with heuristics being used as
and when appropriate [77], for example, when the cognitive load is high [78] or at different points
throughout the series of steps in a typical decision-making process [5,39].

Such a dynamic relationship between the different striatal regions might be more apparent in
CAL tasks, whereas in variable intervals or sequence RL tasks, a less dynamic relationship may occur,
such that processing is based predominantly in one system according to the degree of learning. Ashby
et al. [36] argued that these two experimental paradigms are particularly susceptible to becoming
habitual with overlearning.

An alternative account is that any activation due to action selection is included in the conjunction
analysis and discounted in contrast analyses, since the same ‘go left’/’go right’ action selection is made
for both sets of CS when choosing the left side/right side stimulus, respectively. Thus, the transition
from caudate, for goal-directed processing, to putamen, for habitual processing, may be more apparent
when learning action outcomes rather than stimulus outcomes [79–83]. However, the processing of
stimulus values in VMPFC is well established [68,84], which would account for the significant VMPFC
activation in the familiar CS > novel CS contrast. Such an explanation presumes a predominantly
action selection or motor execution role for the caudate and putamen, when there is considerable
evidence for the caudate being involved in numerous other cognitive functions [see 74] including
working memory [85], reasoning [86], category learning [87,88], reward prediction, and stimulus
anticipation [89]. Therefore, further investigation is needed in deducing that the contrasting activation
in the striatum for conjunction and contrast analyses is best explained by valuation of actions rather
than stimuli. The results also suggest that the striatum is involved at a very early stage of learning
CS values since the right caudate coded uncertainty of rewarding outcomes for novel CS, whereas
the putamen coded for the converse, namely reward probability for novel CS. Such early learning of
outcome probabilities was not evident in any region of the PFC.

The finding of striatal coding of reward probability has been reported in many
studies [5,20,28,37,88], but not all [26]. In addition, faster learning of CS-R-O associations in caudate
than in PFC has been previously reported by others [31,89,90]. It has been suggested that the striatum
rapidly learns a small set of associations and trains the slower learning PFC [36,90]. If the striatum
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represents the outcome probabilities, or expected values for a small set of contextually relevant stimuli,
then one might expect a similar coding of expected values for novel and familiar CS alike, as observed
in the current study. The large cluster involving the right anterior cingulate cortex (ACC), extending
dorsally into adjacent cortical regions (BA 32, with some extension into inferior BA6), which also
coded for outcome probability for familiar CS, fits with the meta-analysis reported by Volz et al. [91].
This region of the anterior cingulate also approximates to the ROI 5 in the meta-analysis of Torta
and Cauda [92], who noted that this region is active in diverse experimental tasks and suggested a
role in the maintenance of ‘task set’. However, this same region has been linked to other forms of
processing, namely ‘known uncertainty’ or risk processing [93], and adjudicating between competing
options (for review a discussion see [59,94]). These alternative explanations would be equally plausible
explanations for coding outcome probability for familiar, but not novel, CS.

5. Conclusions and Limitation

Several shortcomings of the current study need further mentioning. Firstly, one of the most
important drawbacks of the current study is the limited number of participants. Although the total
number of participants in the current study and the significance levels are adequate according to
previously reported standards [54,95,96], more recent studies suggest that an increased number of
participants of up to 100 dramatically increases the replicability of the fMRI studies [97]. This is
especially important for the PPI analysis, because only 14 participants with peak activations in those
regions were included in the analysis. Secondly, although participants reported not being able to
speak Chinese, and being unfamiliar with the stimulus form, possible previous exposure to those fonts
through the media might have influenced their perceptual familiarity. Thirdly, as discussed earlier, there
are other behavioral criteria’s that might indicate automatization during decision making [20,24,34,40],
and with a different criteria it is possible to show that savings in reaction time may continue after a
thousand trials [98]. Therefore, caution is needed in interpreting the findings.

Finally, unlike standard functional connectivity analysis or effective connectivity analysis, PPI
(psychophysiological interactions) analysis shows the correlation between two brain areas based on the
task. In PPI analysis, unlike default mode functional coupling, the connectivity between DLPFC (and
other regions for novel > familiar) and MPFC (and other regions for familiar > novel) are inherently
involved in the decision-making task because the correlation is time-locked to behavioral signature.
However, for future studies, we believe that it is important to perform effective connectivity analyses
(such as dynamic causal modeling) to provide clear evidence of the causal shift of activation from
anterior to posterior regions during the automatization of decision-making behavior.
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