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ABSTRACT In this paper, an evidence based decision fusion cooperative spectrum sensing (CSS) schemes 

has been considered for overcoming the hidden terminal problem, improving reliability, and increasing SU 

agility. Under practical conditions, the combination of conflicting evidences with  the classical Dempster 

Shafer theory (DS theory) rule may produce counter-intuitive results when combining the secondary users 

(SUs) sensing data evidence leading to poor CSS performance. In order to overcome and minimise the effect 

of conflicting data, and to enhance performance of the CSS system, a novel efficient evidence-based decision 

fusion scheme CSS is proposed. The approach is based on the credibility of evidence from the SUs sensing 

decision, which represents the similarity or the relation among the different SUs sensing data evidence, and 

a dissociability degree measure which indicates the quality or clarity of the SUs sensing data evidence. 

Furthermore, a weighted averaging factor determined by the credibility and dissociability of the SU sensing 

data evidence is proposed. Simulation results presented show that under practical conditions the proposed 

scheme enhances the performance of the CSS system when compared to traditional fusion rules that do not 

take into account the difference in local sensing reliability between the SUs. 

INDEX TERMS Cognitive radio, cooperative spectrum sensing, data fusion, Dempter-Shafter theory, 

credibility, ambiguity measure.

I. INTRODUCTION 

 

n wireless channels, the hidden terminal problem which 

can lead to very low signal-to-noise ratio (SNR) at the 

secondary users (SUs) is one of the biggest challenges of 

implementing spectrum sensing. In a case, whereby a single 

SU sensing is shadowed, in severe multipath fading and 

shadowing effects, the SU may not reliably detect the 

primary user (PU) signal and access the channel when there 

is a primary signal present causing interference to the 

licensed PU [1, 2]. To overcome the hidden terminal problem 

and increase the spectrum sensing reliability, CSS has been 

studied in [2-12]. In general, CSS can be classified as either 

being centralised or distributed. Centralised CSS operates in 

two categories as follows: a) the observations are pre-

processed by the SUs to produce their measurement or test 

statistics. From the reported measurement, the fusion center 

FC makes the final judgment [8, 13-20]; b) the FC processes 

the total received samples forwarded from each SU to make 

the final decision [9-11, 19, 21, 22]. Category b) requires a 

large portion of overhead as SUs report their collected 

samples. Therefore, the gain from cooperation may be 

exhausted by the overhead of communication. Thus, 

category a) attracts wider interest, hence, this work focuses 

on the fusion rule in category a) centralised CSS where the 

FC makes a final sensing decision based on the Basic 

Probability Assignment (BPA) of the sensing data received 

from each involved SU. The detection probability and false 

alarm probability are determined by the fusion rule. 

 

In [4], an optimal data fusion rule, originally mentioned in 

[23], was applied by combining with a counting rule. Though 

it gave a good detection performance when the channel state 

changes, it required a long time period to converge which 

under practical condition can lead to poor performance. In 

[5] an optimal half voting rule was proposed, but only gave 

a good performance under impractical condition i.e. when 

identical threshold for all SUs are considered. In [3] a 

method was proposed for combining all SUs spectrum 

decisions and their self-assessed credibility of each decision 

by means of Dempster Shafer theory (DS theory) of 

evidence, which is suitable for fast-changing radio frequency 

(RF) environments, due to its ability to assign uncertainty to 

propositions. However, under practical conditions, illogical 

results may be obtained by the DS theory combination rule 

when the conflicts between SUs sensing data are high [24-

26], leading to low performance. In [6] a method was 
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proposed to try to overcome this problem by assigning a 

relative relationship between SUs to adjust the credibility of 

the decision. It directly sets the weight for each user by 

assuming certain knowledge of each SUs average SNR, 

which is not easily obtained, especially in low a SNR regime.  

 

Unfortunately, the combination of conflicting evidences with 

the classical DS theory rule may produce counter-intuitive 

results when combining the SUs sensing data evidence 

leading to poor CSS performance. Hence, in order to 

minimise the effect of conflicting data along the trend of 

research in [25-29], a novel efficient evidence-based 

decision fusion scheme CSS is proposed in this paper. This 

approach is based on the credibility of evidence from the SUs 

which represents the similarity or the relation among 

different SUs sensing data evidence, and a dissociability 

degree measure which indicates the quality or clarity of the 

SUs sensing data evidence. Furthermore, a weighted 

averaging factor determined by the credibility and 

dissociability of the SU sensing data evidence is proposed.  

 

In most of the previous work on CSS that considers weighted 

contribution from each user, the focus was on the following: 

(i) how to obtain the optimal weight for each user based on 

some performance criteria, by assuming knowledge of the 

local probabilities of false alarm and detection of each local 

detector which may not be known in practice, [30, 31] (ii) 

directly setting the weight for each user by assuming certain 

knowledge of each user's SNR, which is not easy obtainable, 

especially in low SNR a regime [6, 11, 32, 33]. Contrary to 

previous works, this work does not assume any knowledge 

of the performance of each SU detector, but rather uses the 

local decisions made by the SUs to estimate the BPA for each 

SU. The BPAs are obtained without the knowledge of each 

SUs SNR, which makes the proposed evidence-based 

scheme more practical and efficient. 

 

In this paper, a CR network with one PU and multiple SUs, 

which are operated in a time-slotted mode, have been 

considered. In general, the current CSS research including 

the hard decision fusion rule [8, 9, 16, 34] and soft decision 

rule[35], assume that the received average SNRs are 

approximately the same at each of the SU. This assumption 

simplifies the calculation of the final sensing performance, 

including the probability of detection and probability of false 

alarm [51-53]. On the other hand, when considering the 

channel shadowing effect, it cannot handle the practical 

inhomogeneous situations, where the average SNR varies 

among cooperative users. Instead of treating all sensing 

terminals indiscriminatingly, the proposed scheme treats 

each SU in the CR network in a practical independent 

manner by assigning a credibility value and a dissociability 

measure to the SUs sensing data evidence. The proposed 

approach has been used to overcome and minimise the effect 

of conflicting SUs sensing data evidence in prior works [3,6] 

when using a classical DS theory combination rule. An 

example in which the proposed scheme can be implemented 

is IEEE  802.22, it  is  a  standard  for  wireless  regional  area 

network  (WRAN)  using  white  spaces  in  the  television 

(TV) frequency spectrum, the standard is intended for 

cognitive operation in the digital TV bands, among others. 

 

The main contributions of this paper can be summarised as 

follows: 

 We propose a novel efficient evidence-based 

decision fusion scheme CSS for CR networks that 

uses both the credibility of SUs sensing data 

evidence and dissociability degree measure of SUs 

sensing data evidence. 

 We derive novel analytic expressions for the 

credibility of evidence from the SUs sensing data, 

which represents the relation among different SUs 

sensing data evidence. 

 We formulate the correlation coefficients between 

the local decisions using a distance of evidence rule 

and a correlation matrix (CM), which gives an 

insight into the agreement between the sensing 

decisions evidence. We evaluate and deriving 

expressions for a dissociability degree measure of 

evidence from the SUs sensing data, which 

indicates the quality or clarity of the SUs sensing 

data evidence.  

 We present detailed simulations, which validate our 

analysis. The results demonstrates that the proposed 

scheme significantly improved performance for 

CSS when compared to traditional and start of the 

art sechemes.  

 

The rest of this paper is organised as follows: A CSS system 

model and the detection problems for local sensing at SUs 

are presented in Section II. A review of DS theory of 

evidence has been presented in Section III. In Section IV, the 

proposed evidence based CSS scheme DS combination 

algorithm is introduced. In Section V, the proposed BPA 

estimation of the SUs sensing data is presented including the 

evaluation of the credibility and dissociability degrees are 

presented, respectively. The critical analysis of the modified 

combination rule and the analysis of the final decision are 

detailed in Section VI and a summary of the proposed 

algorithm is outlined. Simulation results and analysis are 

presented through receiver operating characteristics (ROC) 

curves, and other performance related curves in Section VII. 

Finally, conclusions are drawn in Section VIII. 

 
II. SYSTEM MODEL 

A. COOPERATIVE SPECTRUM SENSING 

To investigate, design and analyse a general system model 

which will be used for the rest of this paper is described in 

this section.  
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Figure 1. General system model: cooperative spectrum sensing 

The CSS scheme considered for detecting PU’s signal is 

shown in Figure 1. Each SU performs a local sensing process 

and subsequently reports the sensing data to the FC. The 

global decision on the occupation of the PU signal is made 

at the FC. The spectrum sensing frame in Figure 2 describes 

the process. 
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Figure 2.  System model cooperative spectrum sensing frame. 

The sensing frame starts with the FC sending a sensing 

request message to the SUs. All the individual SUs enter into 

a quiet mode i.e. none utilise the channel and perform local 

spectrum sensing in the sensing phase. Each SU using a 

reporting mechanism then sends their sensing data to the FC 

in the reporting phase. Hence, the SUs send their local 

sensing information in intervals of one’s per sensing frame. 

B. SPECTRUM SENSING 

Individual SUs perform local spectrum sensing in a 

distributed manner for detecting the PU signal. Local sensing 

is in effect a binary hypotheses testing predicament. 

Comparing the different algorithms for spectrum sensing, 

energy detection has been established to be the least complex 

detection scheme that reduces overhead, and is quickly able 

to detect the PU signal, even if the PU signal is unknown 

[36]. In this paper, energy detection is considered for local 

spectrum sensing. To measure the value of a single power in 

a practical frequency band in time domain, a band pass filter 

is applied to the received primary signal at the SUs and the 

power of the signal samples is subsequently measured as 

shown in Figure 3.  
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Figure 3.  Block Diagram of an energy detection scheme. 

The decision statistic is an estimation of the received signal 

power which is given at each SU by the sensing matrix: 

2

1

N

E i

i

y y


                                                                 (1) 

where yi is the i-th sample of received signal and N = 2TW, 

where T and W are correspondent to detection time and signal 

bandwidth in Hz, respectively. It was proved in [37] that the 

probability density function (PDF) of the received PUs 

signal energy at an SU Ey , is a Chi-square distribution such 

that 
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where H0 and H1 are the hypotheses of indicating a vacant 

channel and occupied channel of the PU’s signal, 

respectively, 
2

N  is the central Chi-square distribution with 

N degree of freedom, and 
2 ( )N N   is a non-central Chi-

square distribution with N degree of freedom and a non-

centrality parameter N .   is the SNR of the PU signal at 

the SUs. In the absence of knowledge of the PU signal, when 

the number of required samples N is relatively large, Ey  can 

be approximated as a Gaussian random variable under both 

hypotheses H0 and H1, with mean 1 , 0  and variance 
2

1 , 
2

0 , respectively, such that [36]: 
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                                  (3) 

where the   is a constant in a non-fading additive white 

Gaussian noise (AWGN) environment. However, in a fading 

channel scenario, the SNR   is a random variable [14, 36, 

38, 39].  

 

In order to increase detection reliability of a CR network, a 

CSS scheme is considered instead of a single SU as 

illustrated in Figure 1. The SUs conduct local spectrum 

sensing by applying an energy detector to measure the PU’s 

signal energy in each sensing frame. After the spectrum 

sensing process, each SU computes its own local detection 

and the decision along with a corresponding credibility 

denoted by crd are then transmitted to the FC, where a global 
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decision is made. The whole CSS process can be categorised 

into two stages: 

1. Local sensing at the SUs. 

2. Final decision at the FC. 

C. LOCAL SPECTRUM SENSING ALGORITHM 

The detection problem can be represented as follows [40]: 

0

1

:    ( ) ( )

:    ( ) ( ) ( ) ( )

H y t n t

H y t h t s t n t




 
                                              (4) 

for 1,..., ,t M  where t  represents the discrete time index 

and M denotes the number of observation, H0 and H1 are 

correspond to hypotheses of absence and presence of the PU 

signal, respectively, ( )y t  represents the received data at the 

i-th SU, ( )h t  represents the channel gain, ( )s t is the PU’s 

transmitted signal and ( )n t  is the additive white Gaussian 

noise. The following assumptions are made: 

 The PU, SUs and FC are considered to be in the 

same region where they share a common spectrum 

allocation. 

 The channels corresponding to the different SUs are 

independent. 

 The noise n(t) is an independent complex Gaussian 

random variable.  

 The PU’s signal s(t) is an independent random 

process. 

 The PU’s signal s(t) is independent of the noise n(t). 

 

1( )Crd H

0( )Crd H

( )Crd 

1  H

0  H

 

Decision Result

 
Figure 4.  Decision Result Construction at the i-th SU. 

Different SUs are presented with unique credibility based on 

their local sensing owing to changes in channel conditions 

between the PU and SUs. Therefore, the parameter 

“credibility” Crd  is a variable that changes with 

corresponding channel condition ih  and the distance iD  

between the PU and the i-th SU. 

( , )i i iCrd f h D                                                                      (5)   

where iCrd  represents the detection credibility from the i-th 

SU. Each SU has different possibilities for hypotheses H0 

and H1, and a total credibility for its detection. Therefore, the 

detection result can be divided into three parts as illustrated 

in Figure 4, where 0( )Crd H and 1( )Crd H  are the credibility 

for hypotheses H0, and H1 to be true based on local sensing 

at the i-th SU, respectively. 1 2{ , }H H   can be interpreted 

that either hypothesis could be true. Therefore, ( )Crd   

conveys total uncertainty of local detection at the i-th SU. 

D. FINAL DECISION AT THE FUSION CENTRE        

Having analysed the decisions and their associated 

credibility 
iCrd , at each i-th SU, the FC has the task of 

combining the received data using the DS theory of evidence 

combination which an adequate choice (see Section III). But 

the combination of conflicting evidences with the classical 

DS theory combination rule may produce counter-intuitive 

results when combining the SUs sensing data evidence. 

Hence, it is proposed that the FC employs an enhanced DS 

theory combination scheme in softly combing the two types 

of data, and making a final decision on whether the PU is 

present.  

III. A REVIEW OF DEMPSTER-SHAFER EVIDENCE 
THEORY 

DS theory is an approach to represent uncertain knowledge 

and to accomplish the uncertainty reasoning [41]. It has 

become an important method in data fusion [41]. DS theory 

of evidence has attracted much attention in a wide variety of 

fields such as intelligence, identification, automotive, fuzzy 

and wireless communication [25-28]. Due to the stochastic 

characteristics of wireless communication channels, there is 

uncertainty in local detection results at SUs. Considering that 

DS theory is used in managing uncertainty, it is a good 

choice for decision making in CR systems [3, 6, 24, 25,29, 

36, 43, 48]. In this section, a brief review of DS theory of 

evidence is carried out. A more complete introduction can be 

found in Shafer’s original work [42]. 

A. Basic Probability Assignment (BPA) 

Let 1 2{ , ,... }nA A A   be a finite set of mutually exclusive 

possible hypotheses, referred to as the frame of discernment. 

The power set 2
 is the set of all subsets of   including 

itself and the null set   [26]. DS theory assigns a mass 

(degree of belief) to each subset in the power set 2 . While 

traditional probability theory employs a measure of 

probability to assign to each atomic hypothesis iA  in the 

frame of discernment, the mass in DS theory is assigned not 

only to each atomic hypothesis, but also to combinations of 

hypotheses. Hence, each subset in the power set is assigned 

a mass. The function m , that assigns a mass in the range of 

[0,  1]  to each subset A, is called Basic Probability 

Assignment (BPA). This function satisfies the following 

conditions [26]: 

( ) 0,m                                                                      (6) 

and   

( ) 1.
A

m A
 

                                                               (7) 
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The value of a mass (roughly equivalent to probability) is the 

belief that supports hypothesis A, but does not support any 

subsets of A. Associated with m  are a belief or credibility 

function bel and a plausibility function pl and are defined to 

characterise the uncertainty and the support of certain 

hypotheses. These two measures, derived from the mass 

values, are respectively defined as a map from a set of 

hypotheses to an interval [0, 1] for all A  as follows 

[29]: 

|

( ) ( )
B B A

bel A m B


                                                            (8) 

and the plausibility functions as: 

|

( ) ( )

        1 ( )

B B A

pl A m B

bel A





 


,                                           (9) 

bel(A) can be understood to be a global measure of the 

believe that hypothesis A is true, while pl(A) can be 

summarised as the amount of belief that could potentially be 

placed in A, if further information becomes available [27]. 

The pignistic transformation maps a belief function m to the 

pignistic probability function. The pignistic transformation 

of a belief function m on 1 2{ , ,... }nA A A   is given by [24]: 

( )
( ) ,    

1 ( )B

A B m B
BetP A A

B m


  

 
                     (10) 

where A  is the cardinality of set A . In a particular case 

where ( ) 0m    and A , i.e., A  is a singleton of  , 

                               

1

( )
( ) , ,..., ,    n

A B

m B
BetP A A A A B

B

                       (11) 

B. DS THEORY COMBINATION RULE 

The mass function from different information sources, jm  

where ( 1,..., )j d  are combined with DS rule of 

combination, also called an orthogonal sum. The result is a 

new mass function [26]: 

1 2( ) ( ... )( )k d km A m m m A                                              (12) 

where symbol ⊕ means the direct sum. ( )km A incorporates 

the joint information provided by the sources, given by [26]: 

1 2 ... 1

1
( ) ( ( ))

1
d k

k j j

A A A A j d

m A m A
K   

 
  

  
                                 (13)     

where                             

1 2 ... 1

( ( ))
d

j j

A A A j d

K m A
   

 
  

 
                                           (14)                                                  

K represents a measure of conflict between the different 

sources or contracting mass assignments, and it is introduced 

as a normalisation factor. In a practical system of evidence 

combination, the different evidence to be combined are not 

always concordant, there may be conflicts among them. This 

stems from the fact that in DS theory rule of combination, 

the conflicting mass assignments are discarded which may 

lead to counterintuitive behaviors among SUs conflicting 

mass assignments [26]. 

IV. COOPERATIVE SPECTRUM SENSING BASED ON 
EVIDENCE THEORY 

 

The DS combination rule is commutative and associative, and 

can be extended to combining multiple evidences in CSS 

sequentially [26]. After receiving all the sensing decisions 

with corresponding credibility 
iCrd  from the i-th SUs, 

according to DS theory of evidence combination, the FC 

makes a final decision on the observed band. This process can 

be categorised into steps, illustrated by the evidence-based 

decision fusion scheme for CSS block diagram in Figure 5. 

 

 

 
Figure 5.  Evidence-based Decision Fusion Scheme for CSS. 
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A. BPA ESTIMATION IN CSS 

In order to apply the DS theory of evidence to make a final 

decision, the frame of discernment denoted by   is defined 

as 
1 0{ , , }H H  , where   denotes either hypotheses is true. 

After each sensing period, each SU will estimate its self-

assessed decision credibility, which is equivalent to the BPA 

assignment for the two hypotheses H0 and H1, respectively. 

The DS combination rule is commutative and associative 

hence, an appropriate BPA function is a cumulative 

distribution function (CDF) instead of a PDF given by [26, 

28]: 

 
 

2

0

0 0   2  2
00

1
: | exp

22
i

Ei

i

i E
y y

ii

y
H m y H dy









 
  
 
 

 (15) 

          

 
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2

1

1 1   2  2
11

1
: | exp

22

Ei

i

y
i

i E
y

ii

y
H m y H dy





 
  
 
 

   (16) 

 

where (.)m  is equivalent to (.)Crd , which is described in 

Section II.C,  0ii Em y H  and  1ii Em y H  are the BPAs of 

hypothesis H0 and H1 of the i-th SU, respectively. Using 

these functions, the BPA of hypotheses H0 and H1 are unique 

for each test statistics value 
iEy and vary in such a way that 

the larger 
iEy  is the larger  1ii Em y H  and the smaller 

 0ii Em y H are and vice versa [28]. The credibility from 

individual SUs and uncertainty are subject to the following 

constraint [3]: 

1 0( ) ( ) ( ) 1i i im H m H m                                               (17) 

B. BPA CREDIBILITY DEGREE 

Instead of combining all the SUs self-assessed BPA which 

assumes they are all equal, the BPA of each SU should be 

assigned a credibility to highlight the reliability of the 

different SUs sensing data, for improving sensing accuracy. 

Subsequently, an additional stage at the FC to calculate the 

credibility of each BPA is proposed. 

 

Generally, if all the self-assessed BPA evidence is assigned 

credibility, that piece of evidence should be more important 

and has more effect on the final fusion decision. On the 

contrary, if the self-assessed BPA evidence is highly 

conflicting with other bodies of evidence, this BPA should 

be less important and has little effect on the final fusion 

decision. To establish the credibility value of each self-

assessed BPA, the correlation coefficients between the self-

assessed BPAs are used. Using a distance of evidence rule as 

defined in [43], the distance of evidence between each BPA 

is given by: 

0 1

0 1 0 1

( ( ), ( ))

1
       ( ( ) ( )) ( ( ) ( ))

2

BPA i i

T

i i i i

d m H m H

m H m H m H m H



 D
                 (18) 

where 0( )im H  and 1( )im H  are the BPAs of the i-th SU and 

the Jaccard matrix D  is a 2 2
 
  matrix to measure the 

conflict of the focal elements in 0( )im H  and 
1( )im H , whose 

elements are [43]: 

( , ) , ,
A B

A B A B
A B


 


D .                                           (19) 

The introduction of the matrix has the advantage of taking 

the similarity between the BPAs into consideration. To 

describe the similarity between the BPAs, the correlation 

coefficient is defined as [44]: 

 
0 1

0 1

0 1

( ), ( )
[ ( ), ( )]

( ) ( )

i i

i i

i i

m H m H
c m H m H

m H m H



 ,                  (20) 

where 0( )im H  and 1( )im H  have the same definition as in 

(18). Considering the similarity among the subsets of  , 

matrix D  is used to modify the BPA from the i-th SU:  

  
0 0

1 1

( ) ( )

( ) ( )

i i

i i

m H m H

m H m H

 


 

D

D
.                                                   (21) 

Therefore, using Equation (20) and Equation (21) the 

correlation coefficient can be redefined as: 

0 1

0 1

0 1

( ), ( )
[ ( ), ( )]

( ) ( )

i i

i i

i i

m H m H
c m H m H

m H m H

 


 
.                        (22) 

0 1[ ( ), ( )]i ic m H m H  satisfies the following requirement [44]: 

 0 10 [ ( ), ( )] 1i ic m H m H     

 0 1 1 0[ ( ), ( )] [ ( ), ( )]i i i ic m H m H c m H m H  

 0 1 0 1[ ( ), ( )] 1 ( ) ( )i i i ic m H m H m H m H     

 0 1[ ( ), ( )] 0 ( ) ( ) ,i i i jc m H m H A B       

where  and i jA B are focal elements of 0( )im H  and 1( )im H , 

respectively. 

 

Let the number of BPAs be n. Subsequently, after all the 

degrees of similarity between the BPAs have been obtained, 

a correlation matrix (CM), which gives an insight into the 

agreement between the BPAs evidence is given by:  

 

1 0 1 1 1 0 2 1 1 0 1

2 0 1 1 2 0 2 1 2 0 1

0 1 1 0 2 1 0 1

[ ( ), ( )] [ ( ), ( )] [ ( ), ( )]

[ ( ), ( )] [ ( ), ( )] [ ( ), ( )]

[ ( ), ( )] [ ( ), ( )] [ ( ), ( )]

n

n

n n n n

c m H m H c m H m H c m H m H

c m H m H c m H m H c m H m H

c m H m H c m H m H c m H m H

 
 
 
 
 
 

CM     

(23) 
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where the diagonal element 0 1[ ( ),  ( )] 1i ic m H m H  . The 

credibility degree of the BPA of 
0( )im H  and 

1( )im H  is 

given by: 

0 1

1

1
[ ( ), ( )]

1

n

i i i

i

Crd c m H m H
n 



 .                                  (24) 

The credibility vector consisting of the credibility of all the 

BPAs from the SUs is defined by: 

1, 2, ,[ ..., ]nCrd Crd Crd CRD ,                                         (25)

therefore, the following formulation can be obtained: 

1

1
( )

1
n n n

n
  


CRD CM E I                                            (26) 

where n nE and 1nI are n-dimensional identity matrix and n-

dimensional unit column vector, respectively. 

C. BPA DISSOCIABILITY DEGREE 

The sensing decisions evidence dissociability denoted by DE 

is a function from a BPA m to [0,1] , it expresses the degree 

of the BPA focusing to the singletons of the focal elements. 

When the classification results are described in terms of 

BPAs, the BPAs dissociability can be constructed by the 

determined principle in multiclass classification. Generally, 

when the BPA from each SU to each class is nearly equal, 

the classification ability is poor. The greater the differences 

that exist among the BPA, the more reasonable decisions that 

can be made. Therefore, the dissociability cannot reach 1 

unless the BPA is a categorical BPA, satisfying: 

1      ,
( )

0    otherwise.

if A A
m A

 
 


                                                (27) 

where A
 is one of the singletons in discriminate frame, thus 

A ,  is the discriminate frame. If the belief function 

focuses on all the singletons on A  equally, the dissociability 

is 0. Therefore, the dissociability degree DE can be defined 

as [45, 46]: 

1
( ) 1 ( ) ln( ( ))

ln( )
m m

A A

DE m BetP A BetP A
M 

                  (28) 

where 
( )

( )
1 ( )

m

B A

A A m B
BetP A

B m




 
  is the pignistic 

probability, and M  is the cardinality of  .  

V. CSS BASED ON EVIDENCE THEORY PROPOSED 
COMBINATION RULE 

 

It has been shown that credibility of evidence represents the 

relation among different sensing decisions evidence and the 

dissociability measure indicates the quality of the sensing 

decisions evidence. If both of the two factors are taken into 

consideration together, a better performance can be 

expected. Hence, a novel combination approach based on a 

modified weighted average BPA evidence is proposed.  

The weighted factor is generated by the credibility and 

dissociability of the BPAs evidence. Both can be derived 

based on the BPAs, thus no extra priori knowledge is needed. 

The weighted factor w is determined by both credibility Crd 

and dissociability DE as follows: 

: ( , ) [0,1]w Crd DE                                                  (29) 

If the SUs BPA has a relatively high credibility degree, 

defined based on the correlation coefficient between BPAs 

and one of them has a higher dissociability than the others, it 

should be more credible. That is because such credible BPA 

evidence is relatively less uncertainty at the same time. Such 

BPAs should have a larger weight. On the contrary, suppose 

that the SUs BPA are relatively incredible and if one of them 

has lower dissociability than the others, it should be more 

incredible and should be assigned to a less value of weight. 

However, for a BPA with a higher dissociability but lower 

credibility, lower weighted factor should be assigned to it. 

This indicates that the conflict between this BPA and others 

may be high. On the other hand, zero dissociability reflects 

the probability assigned to each singleton is equal, thus its 

weighted factor is mainly determined by credibility. The 

requirements for w can be summarised as: 

i) 0, 0
( ) ( )

w w

Crd DE

 
 

 
  

ii) 0 1w    

iii) (1,1) 1w    

iv) (0, ) 0w DE   

v) ( ,0) ,0 1w Crd Crd      

where w , ( )Crd  and ( )DE denote change in w, change 

Crd and change in DE, respectively. Hence, the modified 

weights can be defined as follows: 

1
( ).

2

Crdw Crd crd DE                                             (30) 

The factor 1 2  is needed in equation to normalise w  and to 

guarantee that 0 1w  . The weighted factor iw  for each 

BPA can be normalised by: 

1

/ .
n

i i

i

w w w


                                                              (31) 

If all the BPAs evidence is available at the same time, the 

masses can be averaged and the combined masses calculated 

by combining the average values multiple times [47]. Thus,  

the BPA for the weighted averaged evidence m can be given 

by: 

1

( ) ( ),    
n

i

i

m A w m A A


                                              (32) 
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If there are n pieces of evidence, the averaged BPA must be 

combined ( 1)n  . 

VI. FINAL DECISION  

 

According to DS theory of evidence, the combination of the 

averaged BPA can be obtained by [42]: 

1 2 0... 1

0 1 2 0

( )

( ) ... ( )
1

n

n

i i

A A A H i

n

m A

m H m m m H
K

   
    



 
(33) 

              

1 2 1... 1

1 1 2 1

( )

( ) ... ( )
1

n

n

i i

A A A H i

n

m A

m H m m m H
K

   
    



 
    (34) 

where  

1 2 ... 1

( )
n

n

i i

A A A i

k m A
   

                                                    (35) 

In conclusion, the final decision computed at the FC is given 

as: 

1 1 0: ( ) ( )H m H m H                                                          (36) 

0 0 1: ( ) ( )H m H m H ,                                                        (37) 

which can be expressed in a compact form as: 

1

0

1 0( ) ( )
H

H

m H m H
 .                                                                 (38) 

The proposed evidence-based decision fusion scheme for CSS 

is summarized in Table I. 

VII. SIMULATION RESULTS AND ANALYSIS 

 

This section is used to evaluate the performance of the 

proposed evidence based CSS scheme, where simulation 

results are shown to compare the proposed approach with 

other related approaches based on the receiver operating 

characteristic (ROC) and probability of detection curves in 

relation to SNR curves. The effects of different parameters 

on the proposed algorithm were examined, such as the SUs 

with independent channels, channel availability and different 

values of the SNR. For the simulation in this paper, the PU 

network is assumed to be a DVB-T2 signal [48], the 

bandwidth of the PU signal is 8 MHz and modulation type is 

QPSK. The average occupancy rate for the PU is set to 50%,  

i.e. the probability of presence and absence of the PU signal 

is fixed to an equal probability (0.5), respectively.  

 

The simulation is based on the Monte Carlo method in 

MATLAB with 100,000 iterations. AWGN and Rayleigh 

channels are considered, there are six SUs spread in the 

network to perform local spectrum sensing. A summary of 

the simulation parameters for analysing the developed CSS 

algorithm’s performance evaluation are shown in Table II. 

 
TABLE I 

Proposed Evidence-Based Decision Fusion Scheme for CSS in CR 

Networks 
 

Algorithm 1: Proposed evidence-based decision fusion scheme for css 
in cr networks 

Input  
iEy  

Output 
1H , 0H  

Step 1: // using (1) compute local spectrum sensing statistic  

//(energy detector)                                                                                                                                                                                                                                                                                                                         

iEy  

Step 2: //using (16) and (17) compute the cumulative evidence 
//probability  

 1ii Em y H ,  0ii Em y H , ( )im    

Step 3: // using (18) compute the distance of evidence between 

//each BPA 

0 1( ( ), ( )BPA i id m H m H   

Step 4: // using (21) compute modification of BPA 

0( )im H , 
1( )im H  

Step 5: //using (22) compute the redefinition of correlation matrix  

0 1[ ( ), ( )]i ic m H m H  

Step 6: // using (23) and (24) compute the credibility vector 

CRD  

Step 7: // using (28) compute dissociability of each BPA 

( )DE m  

Step 8: //using (30) and (31) compute weighted factor and 
//normalised the //weighted factor 

w , w   

Step 9: //using (32) compute the average BPAs 

( )m A  

Step 10: //using (33) and (34) compute the combination of the 
//weighted averaged evidence  

0( )m H and 
1( )m H  

Step 11:   //using (38) compute final decision 

If 
1 0( ) ( )m H m H  //then test supports  

1H  

else 0 1( ) ( )m H m H //test supports  

0H  

 

TABLE II 

SIMULATION PARAMETERS FOR THE DEVELOPED EVIDENCE BASED CSS 

 
Parameter Value 

PU bandwidth 8 MHz 

Local sensing 25 µs 

Frame length 60 

FEC blocks per frame 50 

Channel condition AWGN, Rayleigh 

SNR range -20dB to -8dB 

Iterations 100,000 

Number of SUs  6 

PU average occupancy rate 0.5 (50%) 

 

Figure 6 and Figure 7 show the ROC curves, highlighting the 

performance of the proposed evidence based scheme and 
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energy detection result at each SU under AWGN and 

Rayleigh fading channels, respectively. A sensing time of 25 

µs was considered. Energy detection is adopted as the local 

detection at the SUs. There are six SUs considered in the 

system. A practical scenario has been considered, where the 

six distributed SUs endure different channel conditions. The 

received signal condition at the six SUs are respectively -10 

dB, -12 dB, -14 dB, -16 dB, -18 dB and -20 dB. It is shown 

in both Figure 6 and Figure 7 that the proposed CSS schemes 

which considers all the six SUs, outperforms any of the 

single standalone SUs. For example, when the probability of 

false alarm under a Rayleigh channel is 0.1, the probability 

of detection improves by approximately 18% considering a 

single SU with channel conditions of -10 dB.   

 

 

Figure 6.  ROC curves of the proposed scheme and the local sensing 
results (energy detection) at each SU over AGWN channel. 

 

Figure 7.  ROC curves of the proposed scheme and the local sensing 
results (energy detection) at each SU over Rayleigh fading. 

Figure 8 and Figure 9  show the ROC curves, highlighting 

the performance of the proposed evidence based scheme 

compared to the AND rule, OR rule, CV rule [23], DS theory 

fusion [3] and enhanced DS theory fusion [6] under AWGN 

and Rayleigh fading channels, respectively. Six distributed 

SUs with diffrent distance measures to the PU are 

considered. Without loss of generality, the SNRs of the 

received PU signals at the SUs are assumed to be - 10dB, -

12dB, -14dB, -16dB, -18dB and -20dB, respectively. Under 

these conditions, Figure 8 and Figure 9   show the ROC 

curves of different fusion rules, which can be split into two 

groups. The first group: AND rule, OR rule, and CV rule are 

considered as traditional hard decision CSS schemes [18, 

49]. As discussed in [2], hard decision have the fewest 

communication overhead (1-bit hard decision for CSS), but 

the sensing performance are evidently worse [18, 49]. The 

ROC curves of the AND rule, the OR rule, and the CV rule 

have performances than those of the other algorithms 

highlighted in Figure 8 and Figure 9. 

 

 

Figure 8.  ROC comparison between the proposed scheme, AND rule, 
OR rule, CV rule [23], DS theory fusion [3] and Enhanced DS theory 
fusion [6] over AGWN channel.  

 

Figure 9.  ROC comparison between the proposed scheme, AND rule, 
OR rule, CV rule [23], DS theory fusion [3] and enhanced DS theory 
fusion [6] over Rayleigh channel. 

For example, under AWGN conditions, when the probability 

of false alarm is 0.1 the probability of detection for AND 

rule, the OR rule, and the CV rule are approximately 0.3, 0.5 

and 0.6, respectively. 

The second group of CSS algorithms, DS theory fusion and 

enhanced DS theory fusion scheme can be considered as soft 

decision scheme, they utilise the BPA of the sensing data to 

be sent to the FC, and hence have a higher detection 



 

 10 

performance than the first group for a chosen false alarm 

probability value. The proposed algorithm falls under the 

second group, it utilises the BPA of the local sensing 

observation and fusion decisions are made at the FC. The 

results of this second group correspond with the maximum 

ROC curves. The proposed scheme has a better performance 

than both the DS theory fusion and enhanced DS theory 

fusion scheme. For example, under AWGN conditions, when 

the probability of false alarm is 0.1 the probability of 

detection for the DS theory fusion, enhanced DS theory 

fusion and the proposed scheme are approximately 0.62, 0.72 

and 0.82, respectively. The improvement is approximately 

10%, while a similar improvement of approximately 9% 

under Rayleigh conditions can be observed.  

In general, it can be observed that spectrum sensing detection 

slightly decreases under Rayleigh channel conditions when 

compared to AWGN conditions. For example, in Figure 8 

and Figure 9, taking the proposed scheme into consideration, 

when the probability of false alarm is 0.2 the probability of 

detection under Rayleigh channels when compared to 

AWGN decrease by approximately 10%. 

 

Figure 10.  Probability of missed detection comparison between AND 
rule, OR rule, CV rule [23], DS theory fusion [3], Enhanced DS theory 
fusion [6] and the proposed evidence based CSS scheme. 

In Figure 10, the probability of missed detection of the AND 

rule, OR rule, CV rule, DS theory fusion, Enhanced DS 

theory fusion and the proposed scheme are highlighted. Six 

distributed SUs with diffrent distance measures to the PU are 

considered under AWGN conditions. In order to evaulate the 

proposed scheme in a practial situaton, it is assumed that the 

first SU channel conditions is changed from -20 dB to -8dB, 

which is representable of a CSS problem, where an SU 

experiences fading. The next five SUs have the same AWGN 

channel with SNR = - 16dB. It is shown in Figure 10, that 

under the above conditions, the probability of missed 

detection PM of the OR rule is always the smallest and vice 

versa for the AND rule which indicates unsuitable 

performance in a practical scenario. The proposed scheme 

gives a lower probability of missed theory fusion due to the 

effective BFA function, credibility adjustment, dissociability 

and weight combination algorithm among the SUs. For 

example, at SNR = -18 dB, the missed detection of the 

proposed scheme reduced by approximately 7% when 

compared to the enhanced DS theory fusion.  

VIII. CONCLUSION  

 

In this paper, a novel evidence based decision fusion scheme 

CSS for CR networks that uses both a credibility of SUs 

sensing data evidence and dissociability degree measure has 

been proposed. Furthermore, a weighted averaging factor 

determined by the credibility and dissociability of the SU 

sensing data evidence has also been proposed. The proposed 

approach has been used to overcome and minimise the effect 

of conflicting SUs sensing data evidence when using a 

classical DS theory combination rule. 

A CR network with one PU and multiple SUs, which are 

operated in a time-slotted mode, have been considered. 

Instead of treating all sensing terminals indiscriminatingly, 

the proposed scheme treats each SU in the CR network in a 

practical independent manner by assigning a credibility 

value and a dissociability measure to the SUs BPA evidence. 

Local spectrum sensing was carried out at each SU using an 

energy detector to estimate the received signal power. An 

appropriate BPA function as a form of cumulative density 

function (CDF) was used. Instead of combining all the SUs 

(self-assessed BPA which means treating all BPA’s equally), 

the BPAs of each SU are modified by a credibility evidence 

to improved sensing accuracy. Subsequently, an enhanced 

stage to the FC was proposed. 

To establish the credibility value which represents the 

relation among different sensing decisions evidence of each 

SU sensing decision, the distance of evidence between each 

BPA was derived using a distance of evidence rule. 

Afterwards, to describe the similarity between the SUs, a 

correlation coefficient was defined. A matrix was used to 

modify the BPA from each SU. Subsequently, after all the 

degrees of similarity between the BPAs had been obtained, a 

correlation matrix and credibility vectors consisting of the 

BPAs were expressed. To ascertain the quality of the BPA 

evidence a dissociability measure DE was formulated using 

a pignistic probability. Finally, weighted factor has been 

generated based on the credibility and dissociability of the 

BPAs with no extra priori knowledge needed. The 

combination of the averaged BPAs evidence was also 

obtained using the DS evidence theory combination rule. 

Simulations were performed under AWGN and Rayleigh 

fading, respectively. The results have demonstrated that 

under practical condition the proposed scheme significantly 

improved performance for CSS when compared to the AND 

rule, OR rule, which do not take into account the difference 

in local sensing reliability between SUs. Also when 

comparing against the CV rule, DS theory fusion and 

enhanced DS theory fusion there is an improved 
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performance in CSS. The missed detection probability of the 

proposed scheme decreased by approximately 7% when 

compared to the enhanced DS theory fusion. 

In this paper, two important design criteria for CSS were 

focused on, which are the sensing reliability, and SU agility. 

The simulation results showed that the proposed scheme 

yields a significant improvement in the detection probability 

as well as a considerable reduction in the missed detection 

probability without any prior knowledge of the primary 

system by utilising DS theory. However, the main drawback 

of the proposed scheme as well as other soft data fusions 

(including the CSS scheme used in [3]) are the bandwidth 

required for transmitting the sensing data.  
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