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Abstract:  

A two-stage sintering process was successfully used to sinter FeAl to densification levels of 

just above 95% at a temperature of 1300 ºC. In the first stage, mixed iron and aluminium 

powders were synthesised at 750°C via Self-Propagating High-temperature Synthesis (SHS) 

to form brittle and porous Fe2Al5. Then the pellets were crushed and milled to various sizes 

and mixed with iron powders in the nominal composition of FeAl40 and pressurelessly 

sintered at a higher temperature to obtain a higher densification by taking advantage of the 

less violent exothermic reaction of Fe2Al5 and Fe. The intermediate and end products in SHS 

and sintering were characterised by SEM/EDX and XRD. The porosity level of the final 

FeAl40 product was controlled by the heating rate and powder size, which was also strongly 

influenced by the temperature, holding time and the ratio of the two powders.  
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1. Introduction 

Of the iron aluminides, FeAl has a B2 structure and exists over a wide range of Al 

concentrations (36–50 at%) at room temperature. Iron aluminides based on FeAl exhibit 

better oxidation resistance than Fe3Al alloys and have lower densities compared to steels and 

commercial iron-based alloys, offering better strength-to-weight ratio [1]. These properties 

allow them to be considered for use as high-temperature structural materials, gas filters, 

heating elements, and fasteners etc..  

Iron aluminides have been prepared by a variety of methods that include melting-casting, roll 

compaction, spark plasma sintering [2], mechanical alloying and pressureless sintering [3]. 

Consolidation of powder compacts for FeAl production has been achieved by using argon 

atmosphere hot isostatic pressing (HIP), hot pressing (HP) or hot extrusion in order to 

overcome the relatively poor sintering characteristics of elemental Fe–Al mixtures [4]. 
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Reactive sintering methods, combustion synthesis and self-propagating high-temperature 

synthesis (SHS) based on the usage of elemental powders, have been extensively studied for 

various intermetallic systems like Ni–Al and Ni–Ti [5; 6]. These processes offer some 

advantages, including the use of less expensive and more readily available elemental powders, 

lower processing (sintering) temperatures, lower energy consumption and shorter processing 

times. Most of all, these processes can lead to stress-free products. However, pronounced 

porosity or extensive swelling during the heating stage is a major restriction to the 

development of these processes. Fast synthesis of FeAl via pressureless Spark Plasma 

Sintering at 900 °C for 3 min was reported to achieve porous compacts with open porosity of 

41% for filter applications by making use of the rapid chemical reaction between iron and 

aluminium [2]. Charlot et.al. [7; 8] tried a low-temperature mechanically activated self-

propagating synthesis process to synthesise nanocrystalline FeAl with a density close to 80%. 

In order to reduce the porosity, some researchers introduced pressure during the combustion 

or sintering stage which made the process complex and increased the cost; as a result the 

commercial uptake of such routes has been limited [4]. The swelling behaviour during 

reactive sintering of FeAl from the elemental powders was explained by an imbalance in 

solubility and a large diffusivity difference between the constituent elements, while some 

authors attribute this behaviour to the excess heat released during the formation of Fe2Al5 [9]. 

Godlewska et. al. [10] prepared dense Fe40at%Al by pressureless sintering at 1200°C 

followed by hot-forging at 1100°C of intermetallic powders that had been obtained by SHS. 

In another pressureless sintering process involving SHS from elemental powders, a final FeAl 

density of 95 % was achieved by keeping the heating rate below 1 °C/min which minimised 

the volume expansion during the formation of the intermediate phase Fe2Al5 [11].  

A two-step process was reported as an alternative fabrication method of dense FeAl 

intermetallics [12]. Pre-sintering of compacted Fe and Al powders of a 60:40 ratio was 

conducted at 620°C/670°C under a static and a cyclic loading with a different frequency 

which consolidated and refined the grain of the intermetallic matrix to 10 µm. The second 

step involved pressureless sintering at a temperature of 1250°C. Kang et .al.[13] used Fe2Al5 

powder as a transient material to circumvent the poor sintering of FeAl specimen to fabricate 

a Fe3Al product with a density up to 96%. However, this process included cycles of cold 

rolling and annealing processes.  

In the present study, a two-stage pressureless sintering method was investigated to produce 

FeAl40 intermetallic; in the first stage, mixed iron and aluminium powders were compacted 
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and ignited at a temperature of 750ºC to form Fe2Al5 which was porous giving a swelling 

effect. Then the pellets were crushed and ball-milled and mixed with iron powder in the 

nominal composition of FeAl40 to sinter at a higher temperature. The second stage was a 

pressureless reactive liquid-phase sintering process utilising the low melting point of the 

Fe2Al5 phase. The effect of temperature, heating rate, powder size and holding time on the 

porosity and densification of the sample were investigated to achieve a densified sintered 

product.  

2. Experimental detail 

During Stage I, the aluminium metal powders (-325 mesh, <44m, 99.5%, oxygen <0.02%, 

Alfa Aesar) were mixed thoroughly with iron powders (<10m, 99.5% and <1m, 99.5%, 

0.05% carbon and 0.27% oxygen , Alfa Aesar) and pressed at 70 N for 60 seconds to a pellet 

of diameter of 8 mm. The nominal weighed composition aimed to form Fe2Al5. The pellet 

was placed in a tube furnace in the presence of running argon and heated at a heating rate of 

40°C/minute to 750ºC for 5 minutes. The self-propagating high-temperature synthesis (SHS) 

was initiated by global ignition upon which the reactant powders were spontaneously 

converted to form a brittle and porous Fe2Al5 product. 

In Stage II, the pellets were crushed by a cleaned hammer and milled in a ceramic mortar to 

different sizes, and the powders were then screened and mixed with the aforementioned iron 

powders in the nominal composition of FeAl40 (Fe–40 at.%Al). The mixed milled powders 

were then weighed (0.5g) and cold pressed at 70 N for 60 seconds into cylindrical samples 

with a diameter of 8 mm by adding a few drops of isopropanol. After drying for 24 hours, the 

pellets were then placed in the tube furnace in running argon to undergo sintering at various 

temperatures for different durations as shown in Table 1. 

 

Table 1: FeAl40 sintering details in stage II. 

Treatment parameters Variation 

Heating rate (ºC/minute) 1, 5, 20, 40 

Temperature (ºC) 600, 900, 1200, 1300, 1450 

Duration (hour) 1, 2, 3, 4, 10 

Powder size (Fe/Fe2Al5 ) <10μm/<100μm, <10μm/<50μm,  <1μm/<10μm, 

<1μm/<1μm 

Composition (Fe/Fe2Al5 ) Stoichiometric, 2%/5% excess Fe2Al5, 2% excess Fe 

 

The porosity of the products was determined by examining the cross-section of sintered 

samples using optical microscopy with Struers Scentis software. Vickers Micro-hardness was 
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measured using a Leitz Wetzlar Micro-hardness Tester with a load of 50 g for 15 seconds. A 

JEOL 6300 scanning electron microscope (SEM) was used to examine the average powder 

size of the green compacts, the surface morphology and microstructure of the sintered 

samples. Elemental composition was analysed using the Energy dispersive X-ray 

spectroscopy (EDX) technique during SEM examination. The phase constituents were 

analysed by a X’pert Philips X-Ray Diffractometer using Cu-Kα radiation (λ=0.154056nm). 

The diffraction angle (2θ) was between 20.01º-100º and the scanning step was 0.02º for 

counting times of 1 second at each step. The experimental data were collected by a computer 

and analysed by PCAPD software for Automated powder diffraction.  

3. Results 

3.1 Stage I: The formation of Fe2Al5  

A pellet of mixed iron and aluminium powders in a molar ratio of 2:5 after pressing and 

drying is shown in Figure 1. The green compact was very dense due to the soft deformed 

aluminium powders accommodating the relatively hard iron powders. The bright iron 

powders were evenly distributed within the aluminium powders which were deformed due to 

high pressure.  

 

 

Figure 1: As-pressed iron and aluminium powder pellet mixture (BEI). 
 

During the rapid heating at 40ºC/min to 750ºC, an exothermal reaction occurred and a 

product with Fe2Al5 as the dominant phase was formed as presented in Figure 2. The 

elemental composition of the main phase (dotted area) as collected by EDX analysis 

correlated the major product to Fe2Al5; the minor dark grey areas (Figure 2a) had a 1:2 ratio 

Fe 

Al 
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of Fe:Al which suggested the presence of FeAl2 as a secondary phase. The phase constituents 

as identified by XRD demonstrated that Fe2Al5 was the major product with a small amount of 

FeAl2 (PDF34-0570) in agreement with the EDX analysis as shown in Figure 2c. Most of the 

Fe2Al5 peaks can be correlated with the JCPDS Fe2Al5 pattern (PDF 29-0043). The pellets 

were porous, brittle and easy to crush into small particles. The crushed particles were hand-

milled and ball-milled to different sizes for use in the next stage of the process. 

 

(a)                                                      (b)                          

 

 
(c) 

 

Figure 2: Initial Fe2Al5 product after combustion synthesis at 750°C for 5 minutes (a) 

microstructure (BEI), (b) EDX analysis on the dotted area and the elemental 

composition and (c) XRD of the phase constituents. 

 

Element C O Al Si Fe 

Composition (at%) 3.8 5.2 61.7 2.1 21.2 
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3.2 Stage II: The formation and sintering of FeAl40  

Milled Fe2Al5 powders were mixed with Fe powders at such a ratio to produce a composition 

of FeAl40 and sintered under various conditions. A micrograph of the mixed green compacts 

is shown in Figure 3.  

 

 

Figure 3: BE image of the as-pressed mixtures of iron powders (<10µm) and milled 

Fe2Al5 powders (<50µm). 

 

3.2.1. Effect of sintering temperature 

Different sintering temperatures (600ºC/2h, 900ºC/2h and 1300ºC/2h) were used for the 

mixtures of powders of iron (<10μm) and Fe2Al5 (<100μm), and the phase evolution is 

presented in Figure 4. Following sintering at 600 ºC/2h, XRD peaks showing the presence of 

FeAl appeared but there were still substantial amounts of α-Fe and Fe2Al5. After sintering at 

900 ºC/2h, the intensity of the FeAl peaks increased, while that of the α-Fe peaks reduced 

significantly. After sintering at 1300ºC/2h, only FeAl peaks could be detected with minor 

traces of Fe2Al5. Examination using SEM as presented in Figure 5a, showed the presence of 

large pores in the sintered sample; the porosity level was about 15% and the structure of the 

whole pellet was quite uniform with an elemental composition of iron of 59.5 at% and 

aluminium of 40.5 at% as indicated in Figure 5b.  
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Figure 4: Evolution of phase constiutents after sintering at different temperatures. 

A lower sintering temperature generally led to a less dense structure. As shown in Table 2, 

the level of porosity of the pellet was about 15% after sintering at 1200ºC for 2 hours with a 

heating rate of 40ºC/min.  The use of a higher temperature of 1450ºC, which is above the 

melting temperature of FeAl40, led to a quite dense structure with low porosity especially in 

the centre of the pellet (6% or less), but it did not achieve full pellet densification (Table 2).  

 

 

(a)       (b)   

  

Figure 5:  FeAl sintered from a mixture of coarse powders of Fe2Al5 (<100μm) and iron 

(<10μm) at 1300ºC for 2 hours  at 40ºC/minute a) Microstructure (BEI) and  b)EDX 

identification of the spot. 
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Table 2: Summary of the porosity of sintered FeAl40 pellets.  

Powder Treatment detail Heating rate 

(ºC/minute) 

Porosity (%) 

Fe Fe2Al5 

<10μm <100μm 

600ºC/2h 40 9 

900ºC/2h 40 10 

1300ºC/2h 40 15 

<10μm <50μm 1300ºC/1h 

40 12 

20 10 

5 5 

1 4.9 

<10μm <50μm 1300ºC/10h 5 4.9 

<1μm <10μm 

1200ºC/2h 40 15 

1300ºC/2h 40 7 

1450ºC/2h 40 6 

<1μm <1μm 

1300ºC/1h 40 14.1 

1300ºC/2h 40 14.0 

1300ºC/3h 40 13.8 

1300ºC/4h 40 13.5 

<1μm 
<10 μm, 2% 

excess 

1300ºC/1h 40 5 

<1μm 
<10 μm, 5% 

excess 

1300ºC/1h 40 10 

<1μm, 2% excess <10 μm 1300ºC/1h 40 25 

 

3.2.2. Effect of heating rate 

 

The effect of the heating rate on the amount of sintering was investigated by varying the 

heating rate from 1, 5, 20 to 40 ºC/minute as shown in Table 2. The level of porosity of the 

FeAl40 sample that was obtained from mixtures of Fe2Al5 powders (<50μm) and iron 

powders (<10μm) sintered at 1300ºC for 1 hour dropped gradually from 12% to 5% as the 

heating rate decreased (Figure 6). The compact sintered at 1300ºC for 1h at the fastest heating 

rate of 40ºC/minute had a porosity level of around 12% (Figure 7a) and the microhardness, 

HV0.05,  of the sample was 203. Sintering at a heating rate of 5ºC/min produced a quite dense 

structure with porosity of around 5% (Figure 7b) and the microhardness, HV0.05, was 344. 

This demonstrated that the sample microhardness increased as the level of sintering 

increased. The use of a heating rate of 1ºC/min led to only marginally more densification than 

the 5ºC/minute densification did.   
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Figure 6: The effect of heating rate on the porosity level of FeAl sintered from a mixture 

of Fe2Al5 powders (<50μm) and iron powders (<10μm) at 1300ºC for 1 hour. 

 

         (a)                                                                     (b) 

Figure 7: BE images of FeAl sintered from mixtures of Fe2Al5 powders (<50μm) and 

iron powders (<10μm) at 1300ºC for 1 hour with different heating rates: a) 40ºC/min d) 

5ºC/min.  

3.2.3. Effect of sintering time 

The porosity of the sintered FeAl40 samples changed only marginally as the holding time 

extended from 1 hour to 10 hours for mixtures of Fe2Al5 (<50μm) and iron powders (<10μm) 

sintered at 1300ºC as displayed in Figure 8 and Table 2. A similar trend was also observed 

for the mixture of fined Fe2Al5 (<1 μm) and iron powders (<1μm) sintered at 1300ºC as 

shown in Figure 9. 
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(a)                                                                     (b) 

Figure 8: FeAl sintered from mixtures of Fe2Al5 (<50μm) and iron powders (<10μm) at 

1300ºC with a heating rate of 5ºC/minute for (a) 1 hour (SEI) and (b) 10 hours (BEI). 

 

Figure 9: Effect of holding time on the porosity level of FeAl sintered from a mixture of 

Fe2Al5 powders (<1μm) and iron powders (<1μm) at 1300ºC with a heating rate of 

40ºC/minute  

3.3.4. Effect of powder size 

It was observed that the reduction of the Fe2Al5 powder size to below 50 μm from under 100 

μm could obviously reduce the porosity of the sintering parts from 15% to 12% when 

sintered at  1300ºC with a heating rate of 40ºC/minute as shown in Table 2. The porosity 

level of the sintered parts was further reduced to 7% when a mixture of finer iron powders of 

less than 1μm and Fe2Al5 powder size below 10μm was used (Figure 10a). When the size of 

both the powders was reduced to below 1μm, the green compacts did not bind well and 

tended to break. Following careful handling, it was possible to sinter some pellets; sintering 
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at 1300ºC from 1 to 4 hours led to porosity levels between 13.5-14.1% as shown in Figure 9 

and Figure 10b.  

 

(a)                                                                 (b) 

Figure 10: BE images of the FeAl sintered at 1300ºC for 2 hour with a heating rate of 

40ºC/minute from the mixture powders of  (a) Fe <1μm and Fe2Al5 < 10μm, and (b) Fe 

<1μm and Fe2Al5 <1μm.  

 

3.2.5. Effect of composition and variation of the amounts of Fe2Al5 and iron powder 

Variation of the relative amounts of Fe2Al5 and iron powders was used in order to understand 

its effect on sintering.  The use of 2 % excess of Fe2Al5 powders in the composition resulted 

in a better result yielding a product of lower porosity <5% (Figure 11a) and a dense and 

nearly uniform single phase structure was obtained (Figure 12). However, the use of a 5% 

excess of Fe2Al5 powders resulted in a more porous structure (13.7%) along with a two-phase 

microstructure containing FeAl and Fe2Al5 (Figure 11b). The use of an excess of iron 

powders normally led to higher level of porosity (25%) and poor sintering (Figure 11c).  
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Figure 11: SE images of FeAl sintered (1300ºC/1 h) from a mixture of iron (<1μm) and 

Fe2Al5 (<10μm) powders with different composition a) 2% excess Fe2Al5 powder; b) 5% 

excess Fe2Al5 powder and c) 5% excess iron powder. 
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Figure 12: FeAl sintered (1300ºC/1 h) from a mixture of Fe2Al5 and iron powders 

(<1μm/<10μm) with 2% excess Fe2Al5 powders (FeAl, PDF45-0983). 

4. Discussion 

Developed by Merzhanov and Borovinskaya [14] in the late 1960s, the self-propagating high-

temperature synthesis (SHS) process has been extensively employed for the production of 

ceramic, ceramic matrix composites, metal matrix composites and intermetallics. The 

technique is based on the use of exothermic reactions whereby the exothermic heat that is 

released converts the reactants to products at a fast rate. In the first stage of the present 

investigation, stoichiometrically mixed iron and aluminium powders bearing an intended 

composition of Fe2Al5 were heated up to 750 ºC for 5 minutes in order to initiate the SHS 

reaction (1):  

2Fe+5Al Fe2Al5    (1) 

This led to global ignition of the reactants to spontaneously convert to Fe2Al5. As shown in 

Table 3, this reaction is exothermic with ∆H° = -30~34.3kJ mol
-1 

[3; 9]. The reaction between 

Fe and Al was more violent and faster with a lower starting temperature than that between Ni 

and Al particles which led to a temperature hike and expansion or swelling of the reactant 

pellet [5]. In previous research [3], the maximum temperature during SHS in vacuum was 

reported to be 725ºC for Fe29at%Al and 974ºC for Fe71.5at%Al. Shearsby [15] observed a 

rapid expansion of the compacted powders of about 15% at a temperature around the melting 

point of Al. This violent and rapid release of exothermic heat was the driving force for the 

formation of Fe2Al5 phase (Figure 2) as well as the cause of the expansion behaviour in many 

local contacted regions between iron and aluminium powders and resulted in the pronounced 

porosity in the products, therefore a brittle product. 

Table 3: Information of the materials used in this research  

 Crystal 

structure 

Density 

(g/cm
3
) 

Melting 

point (°C) 

Enthalpy change 

(ΔH° in kJ.mol-1) 
Al FCC 2.7 660  

αFe BCC 7.86 1538  

Fe2Al5 orthorhombic 3.96 1171 -30 to-34.3[3; 9; 

11] 

FeAl40 BCC 6.06 1370 -12 [3] 

The formation of FeAl using Fe2Al5 as an intermediate product can be described by reaction 

(2): 

 Fe2Al5+3Fe5FeAl   (2) 
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This is also an exothermic reaction with ∆H° = -6 kJ mol
-1

 of FeAl as calculated from the 

data in Table 3 (using the less negative value for Fe2Al5) and is less violent than reaction 1. 

The present investigation showed that although some FeAl was formed when sintering below 

900 °C, near full densification of FeAl required a temperature above the melting temperature 

of Fe2Al5 phase (1170 ºC) as shown in Figure 4. Kang et al [13] reported that the Fe2Al5 phase 

in Fe29%Al compacts disappeared after heating to above 850ºC, while Gedevanishvili and 

Deevi [3] observed that Fe40at%Al powders began to sinter at a temperature of 1120 ºC. 

Godlewska et al [10] reacted Fe and Al elemental powders in the proportion of Fe-40%atAl 

by SHS and subsequently milled the SHS product which contained various intermetallic 

phases. The milled SHS product was then pressed into compacts and underwent pressureless 

sintering at 1200°C. This second stage needed subsequent hot-pressing to yield products of 

low porosity. The use of a higher temperature of 1450°C led to higher levels of sintering with 

low porosity, but severe oxidation along grain boundaries even in an argon protected 

environment was observed. Oxidation had progressed inwards along the grain boundaries 

probably due to the fact that the sintering temperature had led to melting of the sample. In 

order to minimise the risk of oxidation, most of the sintering work in the current investigation 

was conducted below 1450°C, i.e. 1300ºC.  

The present work showed that a higher heating rate generally resulted in higher levels of 

porosity and in larger pores in the product from reaction (2) as displayed in Figure 5a, 7a and 

7b. They also show residual Fe2Al5 to be present within the pores and in particular within the 

larger pores. In comparative terms, the highest levels of densification were achieved when 

using a low heating rate of 1°C/minute. In order to understand this observation, it is important 

to consider the fact that the presence of a relatively low-melting phase like Fe2Al5 is essential 

in the reactive liquid-phase sintering process which has been developed by the current work. 

The rate of conversion to the product has been described by Budnikov and Ginstling [16] by 

the equation, 

𝑑𝐺

𝑑𝑡
= 𝐾 𝐹 𝐶1𝐶2      (3) 

where G is the amount of conversion, t is time, C1 and C2 are the concentrations of the 

reactants, K is reaction rate constant and F represents the surface contact area. The value of K 

for both solid-solid and solid-liquid reactions will be dependent on the rate of diffusion of the 

reactants through the product.  
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Assuming that the thermodynamic conditions remain the same, the value of K can be 

expected to be the same for solid-solid and solid-liquid interactions. The reaction rate will 

thus depend on the value of F which is likely to be higher for solid-liquid interactions. 

Therefore, as in the case of the present research, the rate of conversion to the product is likely 

to be faster at temperatures that promote melting of Fe2Al5. However, by heating the reactants 

above the Fe2Al5 melting point at a very fast rate of 40ºC/minute, tends to promote the 

conversion reaction to FeAl due to the fast increasing temperature. Due to the formation of 

solid FeAl, the capillary action of molten Fe2Al5 to surround the solid iron is restricted. The 

surface contact area, F, between the two reactants is therefore likely to be lower leading to a 

lower densification rate. Consequently, large irregular pores were left during the formation of 

FeAl (Figure 5a). The figure also shows the presence of small amounts of unreacted residual 

Fe2Al5 which remained trapped within the larger pores giving further evidence that for this 

sample there was less surface contact between the two reactants.  

The Fe2Al5 powder that was prepared during the first part of the two-stage process with an 

average size between 50-100μm also led to lower surface area contact resulting in lower 

levels of sintering. Reducing the size of the Fe2Al5 powders obviously reduced the size of the 

pores when sintering at a high heating rate (40ºC/min) although the sample was still relatively 

porous with a porosity about 12% as shown in Figure 7a. However, when the heating rate was 

reduced, i.e. 5ºC/min, more liquid Fe2Al5 phase was able to form and to flow by capillary 

action to surround the iron powder resulting in lower levels of porosity of 5% and to smaller 

pores (Figure 7b). As the temperature increased at a lower rate, the conversion to FeAl during 

the early stages was lower (because the temperature was lower). This was beneficial as there 

was a lower amount of FeAl in the early stages to impede the flow of the molten Fe2Al5 to 

surround the iron powder.  With time, this led to greater surface contact between the reactants 

and a greater level of porosity. At the same time, the pellet retained good cylindrical form 

with very little distortion. When the heating rate was further reduced to 1ºC/min, a porosity 

level of 4.9% was measured which was very similar to the level that was obtained at a heating 

rate of 5ºC/min. Sintering at a rate of 5ºC/min for 10 hours also resulted in a porosity level of 

4.9%. These observations suggest that the maximum densification that can be achieved by the 

process at 1300ºC is about 95% and that there is hardly any benefit in using a heating rate 

below 5ºC/minute. The figure of 95% as the limit of densification during pressureless heating 

is in agreement with earlier work by Gedevanishvili and Deevi [3].  
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The effect of the molten Fe2Al5 during the densification process was further demonstrated by 

running some sintering experiments with 2% Fe2Al5 in excess. This led to an increase in the 

liquid phase in the pellet and in the surface contact area after melting; the effect of this was to 

achieve porosity levels of 5% even with a sintering rate of 40ºC/minute as shown in Figure 

11a. However, more Fe2Al5 (5% excess) didn’t lead to higher densification which might be 

due to the oversupplied transient liquid phase helped to form a rigid solid FeAl skeleton 

faster thus left the formation of secondary pores rich in Fe2Al5 residues as seen in Figure 11b. 

Similar phenomena was also reported on sintering FeAl3 with surplus aluminium powder by 

Savitskij [6]. On the other hand, excess iron powders normally led to poor sintering because 

there was comparatively a lower amount of the liquid phase and this resulted in less 

favourable sintering conditions as displayed in Figure 11c.  

The effect of Fe2Al5 and Fe powder size was more complex. Generally it is expected that the 

smaller the powder size, the more the material contact and thus the better the sintering. In this 

research, it was observed that when the size of Fe2Al5 powder mixed with iron powders (<10 

µm) was reduced from <100 µm to <50 µm and <10 µm, the sintering result improved. 

However, when the size of both the iron and the Fe2Al5 powders was below 1 µm, it became 

very difficult to get the green powders to bind together by pressing. Even when using 

isopropanol as a binder, once it dried up, the pellets were difficult to handle as they broke up 

easily. When sintering was attempted with such fine powders, sometimes a crack could 

develop in the sintered pellet.  

High-purity argon was used for the pressureless reactive liquid-phase sintering of FeAl, but 

mild oxidation could still be a problem particularly when using finer powders. This is 

because high-purity argon can contain a small amount of oxygen (1 ppm) that is sufficient for 

some oxidation to occur as demonstrated in the analysis shown in Figure 2.  However, 

according to the XRD result and EDX analysis, oxides were not clearly found in the 

sintering. 

5. Conclusions 

The following conclusions can be drawn from this research: 

1. A two-stage sintering process was successfully used to sinter FeAl to densification 

levels of just above 95% at a temperature of 1300 ºC. The initial stage involved the 

production of Fe2Al5 pellets obtained using SHS by heating mixed iron and aluminum 

powders up to 750ºC; the Fe2Al5 product which was porous due to the violent 
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exothermic self-propagating reaction was easy to crush into fine powder.  FeAl 

intermetallic compound was subsequently synthesised and sintered during the second 

stage by means of a reactive liquid-phase sintering process by reacting mixed powders 

of milled Fe2Al5 and iron at a higher temperature.  

2. Dense structures (porosity less than 5 %) were obtained by sintering at 1300 ºC using 

heating rates below 5ºC/min, while higher porosity was observed when using high 

heating rates (20 ºC/min and 40 ºC/min). The effectiveness of the low heating rates in 

achieving high densification was due to the ability of Fe2Al5 to melt and surround the 

iron to react. At the higher heating rates, the higher amount of the initially-formed 

FeAl product (due to the higher temperatures attained while heating) impeded the 

flow of the molten Fe2Al5 and this resulted in a lower amount of surface contact with 

the iron.  

3. Extra fine Fe2Al5 and iron powders (<1µm) increased the surface area and the activity 

of the powders with a sacrifice of the adherence among the powders, therefore 

compromised the sintering product. 
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