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1 Introduction

In the last few years there has been an increasing interest in conformal field theories (CFT)

in dimensions higher than two. Much of this interest is due to the effectiveness of the confor-

mal bootstrap program [1]. A CFT is characterized by the spectrum of scaling dimensions

of all its primary operators, together with the structure constant for any three given pri-

maries. The structure of the operator product expansion (OPE) then allows to write any

correlation function, given this CFT data. The conformal bootstrap program consists in

constraining the CFT data by requiring consistency of higher correlation functions, e.g.

crossing-symmetry, together with basic properties of well behaved CFT’s, such as unitarity

and the structure of the OPE.

A particularly interesting class of operators in any theory (not necessarily conformal)

are operators with high spin. It has been argued [2–4] that in gauge theories the scaling

dimension shows a logarithmic behavior

∆ℓ − ℓ = Γ(g) log ℓ+ . . . (1.1)

for large spin ℓ. We will loosely denote these operators as “single-trace” operators. The

function Γ(g) is called the cusp anomalous dimension and is of great interest, since it makes

its appearance in various contexts.

One of the questions we will address in this paper is the systematic expansion of the

scaling dimension for single-trace operators in inverse powers of the spin. It has been
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observed that higher terms in the 1/ℓ expansion, for single-trace operators, satisfy the so

called reciprocity principle. The reciprocity principle is most easily described for conformal

field theories. Suppose the twist of the operators at tree-level is two so that ∆ℓ−ℓ = 2+γℓ.

Conformal symmetry implies that the anomalous dimension is actually a function of the

conformal spin [5]

γℓ = f

(

ℓ+
1

2
γℓ

)

. (1.2)

Reciprocity is equivalent to the statement that when expanded in inverse powers of the

bare Casimir J2
b = ℓ(ℓ + 1), f(ℓ) contains only even powers of Jb. This parity preserved

property of f(ℓ) was originally proposed in [6] and extensively checked in [5], for several

examples and at high loops in perturbation theory. For our purposes it is convenient to

phrase the reciprocity principle as follows. Given the anomalous dimension we define the

Casimir

J2 = (ℓ+ γℓ/2)(ℓ+ 1 + γℓ/2) . (1.3)

Then we can consider the expansion of γℓ for large values of J . The reciprocity principle

as stated above is equivalent to the expansion taking the form

γℓ = α0(log J) +
α1(log J)

J2
+

α2(log J)

J4
+ . . . (1.4)

where odd powers of J are absent.

Another class of operators with high spin corresponds to what we will call double-trace

operators. In [7, 8] it has been shown that in any CFT, given a scalar primary field φ,

there are infinite towers of operators with dimension

2∆φ + 2n−
c

ℓτmin
+ . . . (1.5)

where τmin is the twist of the minimal twist operator appearing in the OPE of φ with itself

(besides the identity operator). Usually one can exchange the stress tensor operator. In

this case τmin = 2.

In [9] a geometrical argument based on conformal symmetry, was given for both, the

logarithmic behavior of single-trace operators (1.1) as well as the behavior (1.5) for double-

trace operators. In this paper we will be concerned with the higher order terms in the 1/ℓ

expansion. The systematic approach of [7, 8], which is based on crossing-symmetry of

correlators, is more suitable for this purpose.

In this paper we will consider correlators of identical operators which contain higher

spin operators as intermediate states. We will study how the expansion in inverse powers

of the spin is constrained by conformal symmetry, crossing symmetry, unitarity and ana-

lyticity of the full correlator. In section two we will restrict our attention to perturbative

CFT. Our main result is a proof, to arbitrary loop order, of the reciprocity principle for

the anomalous dimension of single-trace leading twist operators with higher spin. Fur-

thermore, we derive a new set of infinite relations involving the expansion of the structure

constants. We comment on application to non-conformal theories. In section three we con-

sider a non-perturbative CFT and derive analogous results for the anomalous dimension of
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double-trace operators with higher spin. These results include the next order correction to

the results of [7, 8], but in addition imply conditions for the higher order terms. We end

up with some discussion. In the appendices we apply our method to interesting cases not

covered in the body of the paper.

2 Large spin systematics for perturbative CFT

2.1 Results

We start by describing our method in the context of perturbative CFT. Consider for

definiteness the four-point function of four identical real scalar operators O of dimension

∆O in a four-dimensional CFT. Conformal invariance implies

〈O(x1)O(x2)O(x3)O(x3)〉 =
G(u, v)

x2∆O

12 x2∆O

34

(2.1)

where we have introduced the cross-ratios

u =
x212x

2
34

x213x
2
24

= zz̄, v =
x214x

2
23

x213x
2
24

= (1− z)(1− z̄) (2.2)

and z, z̄ have been introduced for later convenience. Crossing symmetry reads

v∆OG(u, v) = u∆OG(v, u) . (2.3)

The above correlator can be expanded in terms of conformal partial waves. Expanding

along the s−channel we obtain

G(u, v) = 1 +
∑

∆,ℓ

a∆,ℓG∆,ℓ(u, v) . (2.4)

In four dimensions the conformal blocks are given by

G∆,ℓ(u, v) = u
1
2
(∆−ℓ)g∆,ℓ(u, v) , (2.5)

g∆,ℓ(z, z̄) = (−1)ℓ
1

z − z̄
(k∆+ℓ(z)k∆−ℓ−2(z̄)− k∆+ℓ(z̄)k∆−ℓ−2(z)) , (2.6)

kβ(z) = zβ/2+1Fβ/2(z), Fβ/2(z) = 2F1

(

β

2
,
β

2
, β, z

)

. (2.7)

In a perturbative CFT with coupling constant g, G(u, v) admits an expansion

G(u, v) = G(0)(u, v) + g G(1)(u, v) + . . . (2.8)

Among the intermediate primary operators appearing in the OPE O×O, there is a tower

of leading twist conformal primary operators with spin ℓ = 0, 2, . . ., which in perturbation

theory have dimension:

∆ℓ = ℓ+ τ0 + γℓ . (2.9)
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Analyticity of the explicit tree-level answer in u and 1− v, together with the structure of

the conformal block,1 requires τ0 to be an even number. The anomalous dimension γℓ is

a small parameter, but can be an arbitrary function of the coupling constant. Expanding

G(u, v) in powers of u it follows, from the explicit expression of the conformal blocks, that

only the leading twist operators will contribute to the leading order. More precisely

G(u, v) = 1 + uτ0/2h(log u, v) + . . . (2.10)

Considering the small u limit of the conformal blocks we obtain the following decomposition

for h(log u, v):

∑

ℓ=0,2,...

aℓu
τ0/2+γℓ/2(1− v)ℓ Fℓ+

τ0
2
+

γℓ
2
(1− v) = uτ0/2h(log u, v) , (2.11)

where the sum runs over the leading twist conformal primary operators. What can we say

about the small v behavior of h(log u, v)? The OPE structure for free CFT was extensively

studied in [10]. At any order in perturbation theory, crossing symmetry plus the structure

of the conformal partial waves expansion, imply the small v behavior of free theories, up

to multiplication by powers of log v. Hence, we expect

uτ0/2h(log u, v) ∼ uτ0/2v−τ0/2 . (2.12)

Here we are assuming leading twist operators of the schematic form ϕ∂ℓϕ, where ϕ is a real

scalar field. In appendix A we consider more general cases and show that our conclusions

remain unchanged. From (2.12) we see h(log u, v) contains a divergence as v becomes

small. The only way to obtain such a divergence is by summing an infinite number of

terms in (2.11). Furthermore, the divergence will come solely from the region ℓ ≫ 1. In

what follows the structure of higher powers of v will be important. Note that analyticity

of the tree-level result implies, at any order in perturbation theory, a structure of the form

h(log u, v) = v−τ0/2 (h0(log u, log v) + vh1(log u, log v) + . . .) , (2.13)

where only integer powers of v appear.

It is well known that the full conformal blocks are eigenfunctions of Casimir operators.

The method we will use below relies on the existence of a Casimir operator for the functions

appearing in (2.11):

fℓ+τ0+γℓ,ℓ(u, v) ≡ uτ0/2+γℓ/2(1− v)ℓ Fℓ+
τ0
2
+

γℓ
2
(1− v) . (2.14)

More precisely, defining

D = (1− v)2∂v − u(1− v)∂u + v(1− v)2∂2
v + vu2∂2

u − 2uv(1− v)∂u∂v , (2.15)

we find

Dfℓ+τ0+γℓ,ℓ(u, v) = J2
ℓ+τ0+γ,ℓfℓ+τ0+γℓ,ℓ(u, v) , (2.16)

1The conformal blocks admit an expansions involving uτ0/2 times integer powers of u and (1− v).
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where we have defined

J2
ℓ+τ0+γ,ℓ ≡

1

4
(2ℓ+ τ0 + γℓ)(2ℓ+ τ0 + γℓ − 2) . (2.17)

The operator D arises from considering the full Casimir operator in the small u limit.

Acting with D on the r.h.s. of (2.11), increases by one the degree of divergence at small

v. Consequently, on the l.h.s. of (2.11) the behavior at large ℓ is enhanced. Furthermore,

note that this operation does not spoil the property that only integer powers of v appear

in the small v expansion. As we will see, reciprocity is a direct consequence of this very

simple fact!

The method. Let us consider the problem at tree-level. At this order γℓ = 0 and

aℓ = a
(0)
ℓ . The structure of four-point functions for general CFT theories in the free-theory

limit has been studied in [10]. At tree-level the correlators can be simply computed by

Wick contractions. For small u we obtain2

∑

ℓ=0,2,...

a
(0)
ℓ uτ0/2(1− v)ℓ Fℓ+

τ0
2
(1− v) ∼ uτ0/2

(

1

vτ0/2
+ 1

)

. (2.18)

In theories with a large central charge, the r.h.s. will be usually suppressed by a power of

c, if the proper normalization is used. This factor will not play any role in our discussion,

and our treatment will be valid for any value of the central charge. We can solve for a
(0)
ℓ

and obtain

a
(0)
ℓ =

2Γ
(

ℓ+ τ0
2

)2
Γ(ℓ+ τ0 − 1)

Γ(ℓ+ 1)Γ
(

τ0
2

)2
Γ(2ℓ+ τ0 − 1)

. (2.19)

The large ℓ behavior of a
(0)
ℓ is fixed by the divergence in (2.12). One could imagine non-

generic CFT’s with a different sub-leading behavior. This will not affect our subsequent

discussion and our results will also apply to those.

Let us now consider the sum (2.11) in perturbation theory. We would like to evaluate

the divergence of the sum as v becomes small. A method to compute the leading divergence

has been introduced in [9] and systematically developed in [7, 8, 11]. First we introduce

v = ǫ, with the idea of expanding in powers of ǫ. The divergence will come from the region

of large ℓ. We make this precise by introducing:

ℓ =
x

ǫ1/2
,

∑

ℓ

→
1

2

∫ ∞

0
dx . (2.20)

Furthermore, we introduce the integral representation for the hypergeometric function

Fℓ+
τ0
2
+

γℓ
2
(1− v) =

Γ(2ℓ+ γℓ + τ0)

Γ(ℓ+ γℓ/2 + τ0/2)2

∫ 1

0

(t(1− t))ℓ−1+γℓ/2+τ0/2

(1− t(1− v))ℓ+γℓ/2+τ0/2
dt (2.21)

2For instance, one can consider external operators of the form O = Trϕp. In that case the leading-twist

contribution comes from diagrams where operators one and two are connected by p− 1 propagators.

– 5 –



J
H
E
P
1
1
(
2
0
1
5
)
1
0
1

and perform the change of coordinates t → 1− tǫ1/2. This integral representation suggests

we rescale the perturbative OPE coefficients as

aℓ =
2Γ

(

ℓ+ τ0
2 + γℓ

2

)2
Γ(ℓ+ τ0 +

γℓ
2 − 1)

Γ(ℓ+ 1 + γℓ
2 )Γ

(

τ0
2

)2
Γ(2ℓ+ τ0 + γℓ − 1)

âℓ . (2.22)

Of course, at tree level âℓ = 1. We will see these rescaled structure constants have definite

reciprocity properties. In order to proceed, we perform a further change of variables and

introduce the rescaled Casimir

j2

ǫ
=

( x

ǫ1/2
+ γℓ/2

)( x

ǫ1/2
+ 1 + γℓ/2

)

(2.23)

and then interpret the anomalous dimension and rescaled structure constants as a functions

of j. As we will see below, this change of variables simplifies things drastically. Expanding

the integrand in powers of ǫ we find the integral over t is convergent and can be performed

order by order, leading to

h(log u, v)|v=ǫ = ǫ−τ0/2

(

4

Γ
(

τ0
2

)2

∫ ∞

0
â(j)uγ(j)/2jτ0−1K0(2j)dj− (2.24)

−ǫ1/2
2

Γ
(

τ0
2

)2

∫ ∞

0
â(j)uγ(j)/2jτ0−1K0(2j)γ

′(j)dj + . . .

)

.

Our claim is that this expansion reproduces not only the leading divergence in the small

v expansion, but actually all divergent terms! This is somewhat expected, since divergent

terms (even subleading) do come from the tail in the sum over spins, but our claim is that

the simple measure (2.20) does not receive corrections. Before proceeding, let us mention

that this is valid regardless of the lowest bound j0 in the integration region in (2.24),

provided j0 is of order ǫ1/2. This is consistent with the fact that divergences come only

from the tail in the sum over ℓ and we could have starting summing from any finite ℓ.

In perturbation theory (but to an arbitrary loop order!) we expect γ(j) and â(j) to

have the following large j expansion:

γ(j) = p0(log j
2/ǫ) +

p1(log j
2/ǫ)

j
ǫ1/2 +

p2(log j
2/ǫ)

j2
ǫ+ · · · (2.25)

â(j) = q0(log j
2/ǫ) +

q1(log j
2/ǫ)

j
ǫ1/2 +

q2(log j
2/ǫ)

j2
ǫ+ · · ·

where we have stressed the fact that the functions pi, qi can depend logarithmically on j,

but do not contain powers. Plugging these expansions into (2.24) we obtain an integral

expression for the small v expansion of h(log u, v). Our claim implies that such expressions

can be trusted provided the overall powers of ǫ are negative. On the other hand, remember

that analyticity forbids non-integer powers of v, hence we obtain integral constraints on

the functions pi, qi. For instance, absence of the leading half-integer power implies

ǫ−
τ0
2
+ 1

2

∫ ∞

0
jτ0−2u

1
2
p0
(

2q1 − q0p
′
0 + q0p1 log u

)

K0(2j)dj = 0 (2.26)
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where for simplicity we have suppressed the argument in p0, p1 and q0, q1. This integral

converges for τ0 > 1. Furthermore, the integrand has the following property:3

∫ ∞

0
jτ0−2P (log j2/ǫ)K0(2j)dj = 0 → P (log j2/ǫ) = 0 (2.27)

where P (log j2/ǫ) is a polynomial of any degree. Hence, assuming the leading twist oper-

ators are non-degenerate, to any loop order in perturbation theory (and since q0 6= 0), we

obtain the following constraints

p1 = 0, q1 =
1

2
q0p

′
0 , (2.28)

provided − τ0
2 + 1

2 is negative. Considering higher powers − τ0
2 + 1

2 + n we get additional

constraints, involving higher and higher orders in the expansions (2.25). For any given

twist τ0, the powers − τ0
2 + 1

2 + n will become non-negative at some point, and the integral

expression cannot be trusted any more. However, we can resort to the following trick:

we can act on both sides of (2.11) with the Casimir operator (2.15). This will multiply

the integrand by an overall factor j2

ǫ and will allow us to explore one more order in the

large j expansion! Here it is important that acting with D on h(log u, v) will not spoil the

analyticity properties. In this way, we can obtain constraints to arbitrarily high order in

the large j expansion. For instance, to the next half-integer power we obtain
∫ ∞

0
jτ0−4u

1
2
p0
(

16p2q0 + 16q3 − (q0 + 8q2)p
′
0 − 8q0p

′
2 + 8q0p3 log u

)

K0(2j)dj = 0. (2.29)

At this order there is a priori complicated expression proportional to K1(2j), which vanish

upon using the previous order constraints! As before, this implies

p3 = 0, q3 = −p2q0 +
1

16
(q0 + 8q2)p

′
0 +

1

2
q0p

′
2 −

1

2
q0p3 , (2.30)

and so on. Written in terms of the Casimir J , our findings can be summarized as follows:

• The expansion of γ(J) for large J contains only even powers of 1/J .

• The expansion of â(J)
(

1−
√
1+4J2

4J γ′(J)
)

for large J contains only even powers of 1/J .

The first result is equivalent to the reciprocity principle for leading twist anomalous di-

mensions! The second result is a new set of infinite conditions on structure constants. It

can be written in terms of ℓ as:

â(ℓ)

2 + γ′(ℓ)
has only even power when expanded in 1/J . (2.31)

Our results rely only on mild assumptions, and in particular are valid to any loop in

perturbation theory.

3Had we not made the change of variables (2.23), the structure of the integrand would be much more

complicated, including also K1(2x), and we couldn’t have drawn the same conclusions so easily. One could

have done an integration by parts, which takes K1(2x) → K0(2x) and produces derivatives of the other

functions, but the computation would have been much more cumbersome.
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Comments on the super-symmetric case. The results above rely on the assumption

that leading twist operators with higher spins are non-degenerate. In general, this does

not hold for super-symmetric conformal field theories (SCFT), since the scalar operators

of the form ϕ∂µ1 · · · ∂µℓ
ϕ will mix with operators of the schematic form ψ̄γ(µ1

∂µ2 · · · ∂µℓ)ψ

and Fν(µ1
∂µ2 · · · ∂µℓ−1

Fµℓ)ν . There are two ways to overcame this obstacle and apply our

methods:

1. A SCFT will have a global R−symmetry group. It is sometimes possible to project

the correlator over a specific representation of the R−symmetry group such that only

leading twist operators composed by scalars propagate as intermediate operators. In

this case one can apply our method straightforwardly.

2. For SCFT one can organize the conformal partial wave expansion in terms of super-

conformal blocks. In this case the sum runs over super-conformal primaries, which

usually include only leading twist operators composed by scalars. In this case our

method can again be applied, but the details will depend of the specific form of the

super-conformal blocks.

In what follows we discuss how these options work for the case of N = 4 SCFT.

2.2 Example: N = 4 SYM

A four-dimensional theory with abundance of perturbative results is N = 4 SYM. This

theory has a SU(4) R-symmetry group. Under this R−symmetry group scalars ϕi transform

in the 6 representation, fermions in the 4 and 4̄ and gauge bosons are singlets. The energy-

momentum tensor lies in a half-BPS multiplet, whose superconformal primary is a scalar

operator O of protected dimension ∆O = 2 and which transforms in the 20′ representation

of the R-symmetry group. When expanded in the s−channel, the correlator of four identical

such operators will decompose into the various representations contained in 20′×20′. The

twist-two operators will contribute to the following representations:

Trϕ∂µ1 · · · ∂µℓ
ϕ → 1+ 15+ 20′ , (2.32)

Tr ψ̄γ(µ1
∂µ2 · · · ∂µℓ)ψ → 1+ 15 , (2.33)

TrFν(µ1
∂µ2 · · · ∂µℓ−1

Fµℓ)ν → 1 . (2.34)

If we project in the 20′, only non-degenerate twist-two operators of the form Trϕ(i∂ℓϕj)

contribute. Their anomalous dimension, as well as their OPE coefficients, have been com-

puted to three-loops in [12]. From these results we can compute the rescaled OPE coeffi-

cients. To two loops these take the form

γ(ℓ) = λγ1(ℓ) + λ2γ2(ℓ) + . . .

â(ℓ) = 1 + λ â1(ℓ) + λ2 â2(ℓ) + . . . (2.35)
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where we define the coupling constant λ = g2N
4π2 and

γ1(ℓ) = 2S1(ℓ) ,

γ2(ℓ) = −2S−3(ℓ)− 2S−2(ℓ)S1(ℓ)− 2S1(ℓ)S2(ℓ)− S3(ℓ) + 2S−2,1(ℓ) ,

â1(ℓ) = −S2(ℓ) ,

â2(ℓ) =
5

2
S−4(ℓ) + S2

−2(ℓ) + 2S−3(ℓ)S1(ℓ) + ζ2S
2
1(ℓ) + S−2(ℓ)S2(ℓ) + S2

2(ℓ)

+ 2S1(ℓ)S3(ℓ) +
5

2
S4(ℓ)− 2S−3,1(ℓ)− S−2,2(ℓ)− 2S1,3(ℓ) + 3ζ3S1(ℓ) ,

where the harmonic sums are defined by

Sa(ℓ) =
ℓ

∑

m=1

1

ma
, Sa,b,c,...(ℓ) =

ℓ
∑

m=1

1

ma
Sb,c,...(m) ,

S−a(ℓ) =
ℓ

∑

m=1

(−1)m

ma
, S−a,b,c,...(ℓ) =

ℓ
∑

m=1

(−1)m

ma
Sb,c,...(m) .

The three-loop results are quite cumbersome and not very illuminating. We have explicitly

checked that these results (including three-loop) are consistent with the relations of previous

section, up to eight order in 1/J .

Alternatively, we could organize our expansions in terms of super-conformal blocks. In

this case the sum will run over super-conformal primaries. Among the twist two operators,

only singlets made out of scalars, of the form Trϕi∂ℓϕi are super-conformal primaries. The

corresponding super-conformal blocks have been worked out in [13]. It turns out they are

simply given by the usual conformal blocks upon replacing ∆ → ∆+ 4. Our method will

go through, after shifting the Casimir operator correspondingly:

1

4
(2ℓ+ γℓ)(2ℓ+ 2 + γℓ) →

1

4
(2ℓ+ 4 + γℓ)(2ℓ+ 6 + γℓ) . (2.36)

On the other hand, as a consequence of superconformal symmetry, the anomalous dimen-

sions of the singlet operators is given by the anomalous dimension of the operators in the

20′, upon a shift ℓ → ℓ+2. For instance, the one-loop anomalous dimension of the Konishi

operator Trϕiϕi is proportional to S1(2). This shift in ℓ exactly accounts for the shift

in (2.36)! and our results apply.

A similar study can be performed for the four-point correlator with external operators

of larger dimensions. In particular, we can consider the case when the leading twist interme-

diate operators have twist three, e. g. two external operators with dimension ∆1 = ∆2 = 2

and two with dimension ∆3 = ∆4 = 3. The anomalous dimensions for this class of opera-

tors and their parity preserving properties were extensively studied in [14–16]. In the case

of twist-three operators the Casimir eigenvalue (2.17) takes the form4

J2
twist-3 =

(

ℓ+
3

2
+

γℓ
2

)(

ℓ+
1

2
+

γℓ
2

)

(2.37)

4Notice that it differs by a constant compared to the one used in [14], however, it does not change the

structure of the expansion.
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and our results easily apply. We have checked that indeed the anomalous dimension of

twist-three operators available in the literature can be expanded using only even powers of

1/Jtwist-3.

2.3 Comments on D 6= 4 and applications to non-conformal theories

Note that our derivation uses very little about the explicit form of conformal blocks.

Namely, only their leading behavior as u → 0. For identical external operators, it was

shown in [17] that the conformal blocks satisfy

G∆,ℓ(u, v) ∼ u
1
2
(∆−ℓ)(1− v)ℓ 2F1

(

1

2
(∆ + ℓ),

1

2
(∆ + ℓ),∆+ ℓ; 1− v

)

, as u → 0 , (2.38)

independently of the number of space-time dimensions. Hence, we expect our method to

be applicable to CFT’s in general dimensions. This opens up the possibility of applying

our methods to a non-conformal theory, as follows.

As discussed in detail in [5] conformal symmetry implies the anomalous dimension of

twist two operators with higher spin is a function of the conformal spin

γℓ = f

(

ℓ+
1

2
γℓ

)

. (2.39)

In this paper we have proven to all loops in perturbation theory that γℓ admits an expansion

in large J2 = (ℓ + γℓ/2)(ℓ + 1 + γℓ/2), involving only even powers of J . This proves

reciprocity, which is equivalent to the parity preserving property of f(ℓ) stated in the

introduction.

As explained in [5], if we were considering instead a gauge theory with non-vanishing

beta-function, then the relation (2.39) will get modified, due to the breaking of conformal

invariance. This breaking is scheme dependent. However, if we use dimensional regular-

ization scheme (DREG) with d = 4− 2ǫ, the beta function of the coupling is simply

βǫ(g) = −2ǫ+ β(g) , (2.40)

where β(g) is the beta function of the four dimensional theory. But then we note that

βǫ(g) vanishes at ǫcr = β(g)/2 and hence the gauge theory is conformal in dcr = 4 − 2ǫcr
dimensions. Now we can apply our results after shifting the dimensions of the fundamental

fields by −ǫcr. Hence we expect the anomalous dimension, in the four dimensional non-

conformal theory, to have an expansions in terms of the corrected Casimir

J2
β = (ℓ+ γℓ/2− β/2) (ℓ+ 1 + γℓ/2− β/2) , (2.41)

which involves only even powers of Jβ . For instance, it can be explicitly checked that this

is the case for the two-loop quark transversity distribution in QCD [18–20], as well as for

the analogues in N = 0, 1, 2 SYM theories, whose expressions can be found in [21].
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3 Non-perturbative CFT

3.1 Results

One of the beautiful features of the conformal bootstrap program is that it also applies to

CFT which do not possess a Lagrangian description. In this section we will see that the

methods can be equally applied to CFT in the non-perturbative regime.

As in the previous section, we consider the four-point function of four identical real

scalar operators O of dimension ∆O. Let us start by recalling the analysis of [7, 8]. Let

τmin be the twist of the minimal twist operator appearing in the OPE of O with itself.

Hence, for small values of u we should have

G(u, v) = 1+aτmin,ℓ0u
τmin

2 (v−1)ℓ0 2F1(ℓ0+τmin/2, ℓ0+τmin/2, 2ℓ0+τmin, 1−v)+ . . . (3.1)

Crossing symmetry (2.3) then implies a term of the form

G(u, v) =
u∆O

v∆O

(

1+ aτmin,ℓ0v
τmin

2 (u−1)ℓ0 2F1

(

ℓ0+
1

2
τmin, ℓ0+

1

2
τmin, 2ℓ0+τmin, 1−u

)

+. . .

)

=
u∆O

v∆O

(

1 + aτmin,ℓ0v
τmin

2 (α log u+ β + . . .) + . . .
)

, (3.2)

where α, β are known expressions, but their form will be not important for us. We have

suppressed higher powers in u and v. As noted in [7, 8], this implies the existence of a

tower of operators of twist

∆ℓ − ℓ = 2∆O + γℓ, γℓ = −
c

ℓτmin
+ . . . (3.3)

In order to apply our arguments, we note that given τmin, crossing symmetry together with

the structure of conformal blocks, imply that the powers of v that multiply vτmin/2 in (3.2)

are always integer. Hence, let us consider the contribution from that tower to the four

point function, in the small u limit. We obtain

∑

ℓ=0,2,...

aℓu
∆O+γℓ/2(1−v)ℓF∆O+ℓ+γℓ/2(1−v) =

u∆O

v∆O

(

1+aτmin,ℓ0v
τmin

2 (α log u+β+. . .)+ . . .
)

(3.4)

The divergence in u∆O

v∆O
fixes the behavior of aℓ at large ℓ. We can simply take aℓ to be

equal to a
(0)
ℓ in (2.19), upon replacing τ0 → 2∆O. In order to study the consequences

of (3.4) having only integer powers of v times vτmin/2−∆O we can proceed as in the previous

section. As before, we can define the rescaled OPE coefficients, exactly as in (2.22) upon

replacing τ0 → 2∆O. As before, our results are better expressed in terms of the Casimir,

which now takes the form

J2 = (ℓ+∆O + γℓ/2)(ℓ+∆O + γℓ/2− 1) . (3.5)

The leading behavior at large J is fixed by the divergence v
τmin

2
−∆O to be

γℓ =
c1

Jτmin
+ . . . (3.6)

âℓ = 1 +
d1

Jτmin
+ . . . (3.7)
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where the coefficients c1, d1 can be fixed in terms of α, β in (3.2). What can we say about

higher orders? The analysis depends on the precise value of τmin, for instance, the value

of 2τmin versus τmin + 2. Let us focus in the case τmin = 2, which is the most common

example. In this case we expect an expansion of the form

γℓ =
c1
J2

+
c2
J3

+
c3
J4

+
c4
J5

+ . . . (3.8)

âℓ = 1 +
d1
J2

+
d2
J3

+
d3
J4

+
d4
J5

+ . . . (3.9)

Plugging these expansions into (3.4), approximating the sums as we did in the previous

section, and requiring half-integer divergent powers of v to vanish, we find the constraints

take exactly the same form as for the perturbative case:

• The expansion of γ(J) for large J contains only even powers of 1/J .

• The expansion of â(J)
(

1−
√
1+4J2

4J γ′(J)
)

for large J contains only even powers of 1/J .

Note that these results allow for logarithmic dependence on log J for the expansion co-

efficients. These results can be trusted provided we don’t get extra contributions from

operators with twist close to τmin. The constraints for other values of τmin take very much

the same form. In many examples, as the ones seen below, γ is proportional to an addi-

tional small parameter in which we are expanding only to first order. In this case we can

expand in terms of the zeroth order Casimir J0:

J2
0 = (ℓ+∆O)(ℓ+∆O − 1) . (3.10)

Note the crucial difference between the perturbative expansion (2.25) and the non-

perturbative one (3.8). These two expansions are not in contradiction, since they corre-

spond to a priori different operators. For instance, in large N gauge theories (2.25) will

correspond to single trace leading-twist operators, while (3.8) will correspond to double

trace operators, see [9]. Of course, as the coupling constant increases from zero to a finite

value, the operator of leading twist should interpolate between a single trace and a double

trace operator. To understand this interesting question is beyond the scope of the paper.

3.2 Examples

Theories with gravity duals. The most well studied conformal field theory with gravity

is N = 4 SYM in the large N limit. In [22] the four-point function of 2-2 dilaton scattering

was considered. In this case, there is a tower of double trace operators of the form O∂ℓO

where O stands for the operator dual to the dilaton and has dimension four. The dimension

of these double-trace operators was shown to be

∆ℓ − ℓ = 8−
96

N2

1

(ℓ+ 1)(ℓ+ 6)
. (3.11)

We see that the anomalous dimension behaves like 1/ℓ2 for large values of the spin. This

is consistent with the fact that the stress tensor is exchanged in the t-channel. It is easy
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to check that this result agrees with our relations. Indeed, setting ∆O = 4 in the zeroth

order Casimir (3.10) we can obtain

1

(ℓ+ 1)(ℓ+ 6)
=

1

J2
0 − 6

, (3.12)

which contains only even powers of 1/J0.

Critical O(N) models. Let us consider the four-point correlation functions of four spin

fields σi. Among the intermediate states we have higher-spin states transforming in the

singlet representation of the global O(N) symmetry, of the form σi∂
ℓσi, as well as states

transforming in the symmetric traceless representation, of the form σ(i∂
ℓσj). For the O(N)

critical model in 4 − ǫ dimensions, their anomalous dimensions have been computed to

order ǫ2 in [23], with the result

γσi∂ℓσi
= 2γσ − ǫ2

3(N + 2)

(N + 8)2
1

ℓ(ℓ+ 1)
, (3.13)

γσ(i∂
ℓσj)

= 2γσ − ǫ2
(N + 6)

(N + 8)2
1

ℓ(ℓ+ 1)
. (3.14)

The leading power of the large ℓ behavior is governed by the presence of intermediate states

of twist two (such as the stress tensor). Furthermore, to order ǫ2, the large ℓ expansion of

these results is in perfect agreement with the relations above, where ∆O = 1 + γσ ≈ 1, is

the dimension of the spin field in four dimensions. Indeed, written in terms of the zeroth

order Casimir the anomalous dimensions behave exactly as 1/J2
0 .

We can also consider the limit of large N in d dimensions [24, 25] and [26].5 At the

leading order, for the operators in the symmetric traceless representation one obtains

γσ(i∂
ℓσj)

− 2γσ ∼ γσ
1

(d+ 2ℓ− 4)(d+ 2ℓ− 2)
, (3.15)

where γσ ∼ 1
N and we have suppressed factors independent of ℓ. In this case the intermedi-

ate operator with the lowest twist is σ2, which has twist two and explains the leading power

in the large ℓ expansion. Furthermore, one can explicitly check that the large ℓ expansion

is in perfect agreement with our relation, where ∆O = 1
2(d − 2) is the dimension of the

spin field in d dimensions. Actually, when written in terms of the zeroth order Casimir

this anomalous dimension is simply proportional to 1/J2
0 .

At leading order for operators in the singlet representation we have a more interesting

situation. Their anomalous dimension is

γσi∂ℓσi
=

8γσ
(d+ 2ℓ− 4)(d+ 2ℓ− 2)

(

(d+ ℓ− 2)(ℓ− 1)−
Γ(d+ 1)Γ(ℓ+ 1)

4(d− 1)Γ(d+ ℓ− 3)

)

. (3.16)

The large ℓ expansion now contains two superimposed series

γσi∂ℓσi
− 2γσ = γσ

d(2− d)

2

(

1

ℓ2
+

3−d

ℓ3
+

7 + 3/4d(d− 6)

ℓ4
+

(d− 3)(d2 − 6d+ 10)

ℓ5
+ . . .

)

+ γσ
Γ(d+ 1)

2− 2d

(

1

ℓd−2
−

1

2

(d− 3)(d− 2)

ℓd−1
+ . . .

)

. (3.17)

5We thank the authors of [26] for pointing out this reference to us.
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The first series corresponds to the presence of σ2, which has twist two. Written in terms

of the zeroth order Casimir the whole series is again proportional to 1/J2
0 . The leading

behavior of the second tower is determined by the presence of conserved currents with twist

d− 2. Written in terms of the zeroth order Casimir it takes the form:

Γ
(

1
2

(

√

1 + 4J2
0 + 5− d

))

J2
0Γ

(

1
2

(

√

1 + 4J2
0 − 3 + d

)) , (3.18)

which can be seen to have an expansion of the form 1/Jd−2
0 times even powers of 1/J0.

The anomalous dimensions of operators in the symmetric traceless representation has

been computed at order 1/N2 in [26]. The above analysis can be easily performed also in

this case which is especially interesting since it involves the full Casimir eigenvalue instead

of just its leading part J0. The large ℓ expansion of anomalous dimension contains two

series: one which corresponds to the presence of σ2 and contains only even powers of the full

Casimir eigenvalue J (3.5); the second one, which corresponds to the presence of operators

with twist d− 4 and is of the form 1/Jd−4 times even powers of 1/J .

4 Discussion

Using CFT arguments we have derived an infinite number of constraints for the large spin

expansion of the anomalous dimensions and structure constants of higher spin operators.

In terms of the Casimir J2 = (ℓ+ τ0/2 + γℓ/2)(ℓ+ τ0/2− 1 + γℓ/2), these constraints take

the form:

• The expansion of γ(J) for large J contains only even powers of 1/J .

• The expansion of â(J)
(

1−
√
1+4J2

4J γ′(J)
)

for large J contains only even powers of 1/J .

Our arguments rely only on analyticity, unitarity, crossing-symmetry and the structure of

the conformal partial wave expansion and apply to a large class of higher spin operators.

For the case of conformal gauge theories our results provide a proof of the reciprocity

principle to all orders in perturbation theory, but in addition provide a new “reciprocity”

principle for structure constants. We have also argued, following [5], that these results

should extend also to non-conformal theories.

Many comments are in order. Note that the perturbative proof did not use the full

power of crossing symmetry. In [27] the leading term in (2.24) was considered, and crossing

symmetry was used to derive the leading large spin behavior of the OPE coefficient, from

that of the anomalous dimension. It would be interesting to use the full power of crossing

symmetry to understand more about the structure of the solutions. In other words, one

can see [27] as solving the conformal bootstrap equation, in perturbation theory and at

leading order in u, v. It would be very interesting to extend these results to higher orders.

As already mentioned, we have derived a new set of constraints on OPE coefficients.

It would be interesting to test these constraints for examples in the literature, including

non-conformal theories. On a more pragmatic spirit, it would be interesting to use our
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relations to constrain the form of possible OPE structures, as functions of the spin. This

was certainly useful in the case of anomalous dimensions of leading twist operators in

N = 4 SYM and even QCD.

Finally, a limitation of our method is that it gives definite results only for non-

degenerate cases. There are very interesting examples involving degenerate twist operators,

such as in N = 1 SCFT. It would be interesting to extend our results to this case.
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A Non-scalar correlators

In the body of the text we focused in the case of correlation functions of identical opera-

tors composed by scalars. In this appendix we relax this assumption and show that our

conclusions remain unchanged. As in most of the body of the paper, we will work in four

dimensions.

The starting point for our perturbative discussion is the free theory correlator. When

studying a scalar operator we have in mind external operators of the form O = ϕ2, (with

or without trace). The correlator of four identical such operators was computed in a free-

theory in [10]. The small u expansion takes the form

G(u, v) = 1 + uhscalar0 (v) + . . . , hscalar0 (v) =
1

c

(

1

v
+ 1

)

, (A.1)

where c is related to the central charge of the theory, but will play no role in our discussion.

The leading twist operators in the OPE are twist-two operators of the form ϕ∂µ1 · · · ∂µℓ
ϕ.

From (A.1) we computed the corresponding OPE coefficients between two external opera-

tors and a twist-two operator. From these OPE coefficients we defined the rescaled OPE

coefficients, which by construction are equal to 1 at tree level:

ascalarℓ =
2Γ

(

ℓ+ 1 + γℓ
2

)2
Γ(ℓ+ 2 + γℓ

2 − 1)

Γ(ℓ+ 1 + γℓ
2 )Γ(2ℓ+ γℓ + 1)

âscalarℓ . (A.2)

Note that the prefactor is simply the tree-level OPE coefficients upon a rescaling ℓ →

ℓ + γℓ/2. From this expression we have shown how to derive the reciprocity relations for

γℓ and ascalarℓ .

We can also consider a scalar operator which is a bilinear of fermions. Given a free

fermion field ψ we can consider O = ψ̄ψ. In four dimensions this operator has dimension

3. The correlator of four identical such operators was computed in a free-theory in [10].

The small u expansion takes the form

G(u, v) = uhfermion
0 (v) + . . . , hfermion

0 (v) =
1

c

(

1

v2
−

1

v
− 1 + v

)

. (A.3)
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The leading twist operators are now twist two operators of the form ψ̄γ(µ1
∂µ2 · · · ∂µℓ)ψ.

Again, one can compute the corresponding OPE coefficients and define the rescaled ones,

which in this case take the form

afermion
ℓ =

Γ(ℓ+ 1 + γℓ/2)Γ(ℓ+ 2 + γℓ/2)

Γ(2ℓ+ γℓ)
âfermion
ℓ . (A.4)

Finally, we can also consider scalar operators of dimension four, of the form O = FµνF
µν .

The four point function in the small u limit is then [10]

G(u, v) = uhvector0 (v) + . . . , hvector0 (v) =
1

c
u

(

1

v3
−

2

v2
−

1

v
− 1 + v

)

. (A.5)

Now the intermediate leading twist operators are Fν(µ1
∂µ2 · · · ∂µℓ−1

Fµℓ)ν . The rescaled OPE

coefficients take the form

avectorℓ = (ℓ+ γℓ/2− 1)
Γ(ℓ+ 1 + γℓ/2)Γ(ℓ+ 3 + γℓ/2)

4Γ(2ℓ+ γℓ)
âvectorℓ . (A.6)

The claim is that if we would redo all our computations with (A.4) and (A.6) we would

arrive to the same conclusions. The reason for this is very simple. One can simply notice

the following relations

uhfermion
0 (v) = D uhscalar0 (v), u hvector0 (v) =

(

1

4
D2 −

1

2
D

)

uhscalar0 (v) . (A.7)

This means that the ratios of the prefactors defining the rescaled OPE coefficients differ

by even powers of the Casimir J and all our conclusions go through.

B A case with global symmetry

So far we have considered leading twist “single-trace” operators of the form ϕ∂ℓϕ, where

ϕ is a real scalar field. It is easy to see that ℓ = 0, 2, . . . for conformal primary operators.

Another interesting class of higher spin operators is of the form ϕ†∂ℓϕ, where ϕ is now

a scalar chiral field with a U(1) charge. In this section we analyze the simplest four

point function containing such operators as intermediate states, and show that our method

applies also to that case. Let us consider the following correlator in four dimensions

〈ϕ†(x1)ϕ(x2)ϕ
†(x3)ϕ(x4)〉 , (B.1)

where ϕ has dimension one. At tree level this correlator reduces to

G(0)(u, v) = 1 +
u

v
. (B.2)

The leading twist operators correspond to the operators mentioned above. When perform-

ing the partial wave decomposition now we have to sum over odd as well as even spins:

∑

ℓ=0,1,2,...

a0ℓu(v − 1)ℓFℓ+1(1− v) =
u

v
. (B.3)
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We find the simple result

a0ℓ = (−1)ℓ
(ℓ!)2

(2ℓ)!
. (B.4)

Now we want to turn on the coupling constant g. The leading twist operators will acquire

an anomalous dimension γℓ. An obstruction in applying the method of the body of the

paper is that γℓ and âℓ are usually of the form

γℓ = γAℓ + σ(ℓ)γBℓ , (B.5)

âℓ = âAℓ + σ(ℓ)âBℓ , (B.6)

where σ(ℓ) = (−1)ℓ. The presence of σ(ℓ) possesses several conceptual as well as technical

obstacles. First of all, note that in order to state the reciprocity principle we require

an analytic continuation on ℓ. While γA and γB are expected to have a precise analytic

continuation, this is not the case with σ(ℓ). In applying our method, one can check that the

presence of σ (or any odd power) will severely dump the sum over ℓ and sums containing

σ will not produce divergent terms.6 Furthermore, if we try to perform the change of

variables (2.23) we will generate an ugly σ′(ℓ), from the Jacobian.

Still, we can make progress. Let us show how this works for the simplest example of

one loop. After introducing the integral representation for the hypergeometric function, we

expand the anomalous dimension and rescaled structure constants keeping only terms to

order g. Then, we drop terms containing a σ(ℓ), since they will not contribute a divergent

term (even after applying the Casimir operator an arbitrary number of times). At one loop

we find that the piece γAℓ of the anomalous dimension contains only even powers in 1/J ,

where J2 = ℓ(ℓ + 1). For example, we could check this claim for the one-loop anomalous

dimension of the twist-two Wilson operators in pure gluodynamics built from gauge fields

of opposite helicity, see for instance [28]:

γℓ = ψ(ℓ+ 3) + ψ(ℓ− 1)− 2ψ(1)− σ(ℓ)
6

(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)
. (B.7)

We can explicitly check that indeed, the first piece admits an expansion in even powers of

1/(ℓ(ℓ+1)). At higher loops it is convenient to consider two separate sums, one for spin odd

and the other for spin even. As noted above, we would run into problems if we tried to use

the full Casimir as a variable, so the best we can do is to introduce a change of variables,

from ℓ → J2 = ℓ(ℓ + 1). The structure of integrals is now much more complicated, but

one get new constraints order by order in the 1/J expansion. Preliminary results lead us

to conjecture that f+(ℓ) + f−(ℓ) contains only even powers when expanded in 1/J , where

f±
(

ℓ+ 1
2(γ

A ± γB)
)

= γA ± γB.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

6Namely, for any polynomial growing, the sum will not contribute a divergent term.
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