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ABSTRACT

Time-varying phenomena are one of the most substantial sources of astrophysical information and their study has led
to many fundamental discoveries in modern astronomy. We have developed an automated tool to search and analyze
variable sources in the near infrared Ks-band, using the data from the Vista Variables in the Via Léictea (VVV)
ESO Public Large Survey. This process relies on the characterization of variable sources using different variability
indices, calculated from time series generated with Point Spread Function photometry of sources under analysis. In
particular, we used two main indices: the total amplitude AKg and the eta index, 7, to identify variable sources.
Once variable objects are identified, periods are determined with Generalized Lomb-Scargle periodograms, and the
Information Potential Metric. Variability classes are assigned according to a compromise between comparisons with
VVV Templates and the period of the variability. The automated tool is applied on VVV tiles d001 and d002 and
led to discovery of 200 variable sources. We detected 70 irregular variable sources and 130 periodic ones. In addition
nine open cluster candidates projected in the region are analyzed, the infrared variable candidates found around these
clusters are further scrutinized by cross-matching their locations against emission star candidates from VPHAS+
survey H, color cuts.

Keywords: — infrared: stars — stars: pre-main sequence — stars: variables: general — (Galaxy:)
open clusters and associations: general — (Galaxy:) open clusters and associations: indi-
vidual (VVV CL005, VVV CL007, VVV CL008, VVV CL009)
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1. INTRODUCTION

Time-varying phenomena are arguably one of the most powerful sources of astrophysical information. In the last
decades, the development of astronomical instrumentation and automation has enabled many time-domain surveys,
such as for example the wide-field optical imaging surveys: the Catalina Real-time Transient Survey (Drake et al. 2009);
Pan-STARRS (Kaiser et al. 2002); and GAIA (Perryman 2005). In the near future, even more ambitious programs,
such as the Large Synoptic Survey Telescope (LSST, Krabbendam & Sweeney 2010) are planned to start monitoring
the optical sky. While optical surveys are getting wider and deeper, the extension and the systematic exploration of the
variable sky toward the infrared, is also under development, in order to better cope with the problem of the interstellar
extinction. The VISTA Variables in the Via Lactea survey (VVV; Minniti et al. 2010; Saito et al. 2012a) is one of
these infrared surveys and is comparable to the optical ones both in areal and time-domain coverage (e.g., Arnaboldi
et al. 2007, 2012). It has been designed to catalog ~ 10° sources, where a great part of those are expected to be
variable stars. All these sources will be used to map the structure of the optically obscured Galactic disk and bulge
by using some main distance indicators such as the red-clump giants and pulsating variable stars (RR Lyrae stars,
classical Cepheids, anomalous Cepheids and Miras, and semi-regular variables), as well as to provide a census of Young
Stellar Objects (YSOs) across the southern Galactic plane. Some focused studies have been carried out in the southern
disc region in search of variable stars using these data, for example: Contreras Pefia et al. (2017a,b), cataloging high
amplitude variable stars, with emphasis on YSOs; Borissova et al. (2016) searching for YSOs around young stellar
clusters; Dékany et al. (2015) searching Classical Cepheids in the bulge; Elorrieta et al. (2016); Gran et al. (2016);
Minniti et al. (2017) focusing on the RR Lyrae stars. However, the systematic and uniform searches of the variability
phenomena in the VVV disc area are still missing. On the other hand, the VVV multi-epoch observations produced
a huge amount of information, a dataset of challenging size. It is highly necessary to develop tools, processes and
techniques ables to perform sophisticated analysis in an automated way in order to efficiently exploit this unique
dataset. In this paper we present an automated tool designed to search, classify and analyze variable sources in the
near infrared Kg-band. Our tool is fed VVV tile images to extract time series and identify different types of variable
sources. The main goal is to understand the behavior of Ks-band variability in large regions of the sky, with the
ultimate goal of processing the 1.8 squared degrees images of the VVV observations. The identified variables will be
used to derive properties in active star forming regions, to determine distances using the periodic stars with available
period-luminosity relation, as RR Lyrae and Cepheids, and to identify parameters of different variables stars. The
information gathered from these sources will be collected in the ”VVV Variables (V4)” catalog.

The structure of the paper is as follows: In section 2 we present the photometry and calibration process on the
VVV tiles and characteristics of the extracted time series. Then in section 3 the methodology is explained, where
we focus on identifying irregular and periodic variables, mainly using different variability indices and periodograms.
Next in section 4, the preliminary classification of the selected sources is presented. This classification is based on
principal properties of the sources, as the shape of time series and light curves, and the period in the case of variable
sources. We determined general properties of selected variables sources, as characteristic features of the light curves
and locations on the color-magnitude and color-color diagrams. Also, we described the environment of variable sources
in the Young stellar clusters candidates projected on VVV tiles d001 and d002. Finally, in section 5 we present the
catalog of variable sources in these tiles. The individual characterization of the variable objects is beyond the scope of
this paper, and they will be analyzed in an up-coming work, once the follow-up spectroscopic analysis is completed.

2. THE VVV DATA

The VVV survey is an ESO Infrared Large Public survey (Minniti et al. 2010; Saito et al. 2012b) which uses the 4-
meter VISTA telescope located at Cerro Paranal Observatory, Chile. The survey was designed for mapping 562 deg? in
the Galactic bulge and the southern disk in five near-infrared broad-band filters: Z (Aeg = 0.87um), Y (Aeg = 1.02um),
H (Mg = 1.25pm), J (e = 1.64pm), Ky (Aegr = 2.14pm), with a time coverage spanning over five years between 2010
and 2015 in the Ks-band. The telescope has a near-infrared camera, VIRCAM (Dalton et al. 2006), consisting of an
array of 16 detectors with 2048 x 2048 pixels. A set of single exposures (a paw-print) are combined into a tile, covering
1.5 x 1.1 degrees in the sky. To cover the VVV area, the disk field was divided into 152 tiles and the bulge into 196
tiles (see Saito et al. 2012a for more details).

To test our method we choose the first two VVV disk tiles, namely d001 and d002, due to their low crowding and
interstellar reddening when compared to the rest of the VVV disk area. The preliminary reduced images were retrieved
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from the VISTA Science Archive! (VSA) database (Cross et al. 2012), keeping the quality flags. In total, we analyzed
up to 55 and 41 Ky images for the tiles d001 and d002, respectively. Figure 1 represents the log of observations of the
VVV tiles.

Year
2010 20M 2012 2013 2014 2015

BN 4001

d001 - . 002

Frequency
BN A®mE oM B DD

Il

o0 2z 4 1 g 10 1z

55500 56000 56500 57000 AM.JD [days]
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Figure 1. Left side: The log of observations of VVV tiles d001 and d002 between 2010 and 2015, based on the log representation
of Rebull et al. (2014). Each photometric measurement is marked by a ’|” symbol. The bars are thicker in places with high
cadence. Right side: Histogram of differences between consecutive observations AMJD. Is possible to see that the typical time
interval between observations is between 0.3 and 2 days.

2.1. Photometry and calibrations

The Point Spread Function (PSF) photometry was obtained using the Dophot software (Schechter et al. 1993;
Alonso-Garefa et al. 2012) in all available tile images in the field of view (FoV). We based this procedure in the
method explained in Navarro Molina et al. (2016). We assessed the reliability of the photometry, using the Dophot
parameter chi, which quantifies the PSF quality. The sources with chi > 3 were rejected, due to the large associated
uncertainty. The calibration process to the VISTA system was done using the aperture photometry catalogs produced
by the Cambridge Astronomical Survey Unit? (CASU). We selected sources with Stellar (“-1”) or border-line stellar
(“-2”) morphological classification to perform the cross-match using STILTS (Taylor 2006), using the catalog of the
first epoch as reference with a 0.”34 tolerance (VIRCAM pixel size). The conversion factors and uncertainties were
estimated via a 2-sigma clipping linear fit to the Dophot PSF photometry vs. the CASU isolated selected sources. By
following this procedure, we have found 624,983 sources in d001 and 683,643 sources in d002 in common, in Ks-band.
The photometry in J and H band was performed using Dophot in a similar manner, i.e., using the CASU catalogs to
calibrate the PSF photometry.

2.2. Cadence of the observations

As it has been pointed out, the tiles d001 and d002 accumulate up to 55 and 41 epochs observed between 2010 and
2015, respectively. Left side of Figure 1 shows the gaps, the baseline, and the maximum size of the time-step between
epochs. The right side of Figure 1 shows the distribution of the difference of consecutive observations AMJD, zoomed
up to AMJD > 12 days. The minimum time interval between the observation is ~0.35 days, with distribution maximum
between 0.35 and 2 days. Thus, from the time cadence of the observations, we can expect to detect variability related
to timescale accretion variations, star spots, episodic accretion events, rotational modulation and variable extinction
in the YSOs (Contreras Pena et al. 2017a; Rebull et al. 2014). On the other hand, VVV produces unevenly spaced
light-curves, which provides its challenges, but still we expect to identify different types of periodic variability in a
wide range of time-scales (see for example Elorrieta et al. 2016; Gran et al. 2016; Minniti et al. 2017).

I http://horus.roe.ac.uk/vsa
2 http://casu.ast.cam.ac.uk
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Table 1. Variability indices computed in this analysis

Set of variability indices

Index Reference
1 index von Neumann (1941)
Stetson J Stetson (1996)
Stetson K Stetson (1996)
Ots/ 1 ratio Shin et al. (2009)
Classical x* Rebull et al. (2014)

Total amplitude AKy  Contreras Pena et al. (2017a)

2.3. The Kg-band time series

The Kgs-band time series of the sources were constructed by cross-correlation of all the catalogs for all available
epochs. We filtered our initial sets of time series with some ad-hoc quality and robustness criteria: 1) A minimum of
25 photometric measurements. 2) A total amplitude AKg > 0.2 mag, where AKy = (K2# — KIin) - 3) An upper limit
in flux of Ky > 11 mag (to avoid objects that may suffer from saturation in some VVV epoch). The first restriction
represents the minimum number of epochs which allows to search for reliable periods. The second is motivated by a
conservative estimation of the errors of photometry and transformation to the standard system. These initial filters
reduced the source numbers obtained from photometry by approximately 30% (for example from 669825 to 433102
for d001). Moreover, the photometric measurements are prone to be affected by systematic errors that are hard to
clarify and quantify, given atmospheric or instrumental problems. For example Alonso-Garcia et al. (2015) reported a
problem related with highly variable PSF's in the tile images, due to different geometric distortions in the combination
process of the paw-print images. Thus, to remove outliers in the time series, we implement the modified Thompson 7
technique, which is based on the definition shown in Thompson (1985). The modified Thompson 7 statistic is defined
as:

S ta/2(n_ 1) (1)

Vi /n—2+t2

where n is the number of data points, and ¢,/ is the critical value of Student’s t-distribution given a confidence
parameter «. For each photometric data point Ky in a time series, the standard deviation of the time series o5 and
the absolute deviation § = |Ks; — Ks| is calculated, where Ks is the mean Ks magnitude. Individual photometric
measurements were removed from time series when 0; > 7oy, using a confidence level of 95% (i.e. a = 0.05). One
of the consequences of this approach is that we will remove poorly sampled transients event from our time series.
Figure 2 shows the performance of this method acting on a time series.

3. METHODOLOGY

In time series analysis, it is frequent to use different sets of statistics, commonly called “variability indices”, to
quantify changes in luminosity with time. Depending on the definition of these indices, a population of variables that
have similar behavior can be identified and one can try to separate stochastic variability from “further organized” flux
variations. Examples of these indexes are the Welch-Stetson Is (Welch & Stetson 1993) and Stetson Jster and Kgget
indexes (Stetson 1996). This quantities have been used to identify sources that exhibit large photometric variations
along the time. Defined in this manner, sources with larger Jg.t values are the most probable variable sources.
Different authors in the literature define particular limit values of Jget for this task (such as Jger > 0.55 Carpenter
et al. 2001, Jget > 0.9 Rebull et al. 2014). In the literature, it is possible to find many more different indices (or
features) tailored to identify different types of variable sources. Thus, deciding which index is useful to detect a specific
type of variability does not only depend on the definition of the index itself, but also on the properties of the available
data. Here, we briefly summarize some variability indices applicable when only one photometric band is available; and
the type of variability that they can detect.



Figure 2. Performance of Thompson 7 technique acting on a time series.
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indicates the rejection region (gray region) using o = 0.05. The red point that fall in this region is removed from the sample.
Lower plot: Modified time series, which will be used in the analysis.

In this work, we considered a set of six variability indices (see the references in Table 1) in order to characterize the
behavior of the variable sources along time. Mainly, we used the amplitude AKy and the n index to identify irregular
variables. All these parameters are estimated directly from their Ki-band time series. All the procedures, and the
automated process that we developed were summarize in the flux diagram of Figure 3.

DoPhot
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Figure 3. Schematic view of the automated process developed and used in this study to categorize the sources in the V*

catalog.
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Figure 4. Representation of the two selection criteria aiming at identifying irregular variables. The dark points are all stars
in the final photometric catalog, and the green filled circles highlight the selected sources by each method. Left panel: Total
amplitude AKj selection. The red solid line represent the non-parametric fit, while the dashed blue line displays for the 4o
threshold. Right panels: 7 index selection. The red lines in the bins of 0.5 mag represent the 3.50 threshold of the Gaussian fit.

3.1. Identifying irreqular variable sources

Eruptive Pre-main Sequence (PMS) stars are traditionally classified as FU Orionis Types (FUors, Herbig 1966) and
EX Lupi (EXors, Herbig 1989) types. Their variations occasionally have high amplitudes (up to 2-6 magnitudes in
optical bands) in a short time scales. Different physical processes have been proposed to explain the variations of these
objects: accretion or variable extinction induced by their circumstellar disks, among others. These high amplitude
variables are potential tracers of new generation of stars, so we expect to detect them within and close to the star
forming regions (SFR) of the Galaxy.

As an example, in Contreras Pena et al. (2017a), the total amplitude AKg was used as a discriminant to identify
variable sources with AKg > 1 magnitude. This method was very useful to help identify likely YSOs amongst irregular
and periodic variables stars projected against SFRs. The “Amplitude index” also performs satisfactorily in identifying
sources with a large amplitude AKj, like some Eclipsing Binary systems and likely pulsating asymptotic giant branch
(AGB) stars as Miras and semi-regulars sources, which has periods longer than P > 100 days, and frequently are
grouped under the name “long period variables” (LPV).

Following the same idea, we made a non-parametric fit on our photometric catalogs of d001 and d002. In order to
quantify the behavior of AK; as a function of mean magnitude K, we measured the dispersion in bins, and selected
those above 40. This allowed us to define dynamical thresholds, taking into account that the estimated o depends on
the stellar population projected on the different tiles (for example a tile containing a projected star forming region will
have a different threshold assigned, than a tile with Population II stars). The left side of Figure 4 shows the amplitude
AKj selection for the sources found in tile d001.
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To complement the previously described criterion, we performed an additional selection using the 7 index (von
Neumann 1941; Shin et al. 2009; Sokolovsky et al. 2017). This statistic is defined as the squared addition of successive
differences between adjacent observations in a time series:

1 N—1 ,
n= N—1)o2 ;(mxﬂ —m)”, 2)
where m; are magnitude measurements, N the available number of epochs. The properties of the 1 index are well
known for a stationary Gaussian distribution, but not for astronomical time series, because usually, they have an
unequal sampling. For time series with uncorrelated photometric measurements (i.e. time series with an uncorrelated
normally distributed measurements), the 7 index would have a value ~ 2, and extreme values for series with long time
variability trends. Given the aforementioned properties and the volume of the data, we expect that index n has a
Gaussian distribution centered in n ~ 2. We separated K, into 0.5 magnitudes bins and considered 3.5¢ confidence
intervals on every bin to identify variable sources. The right two panels of Figure 4 show the 1 selection, and the fit
of Gaussian functions in each histogram generated by separating the distribution in bins of 0.5 mag.
Each irregular variable should satisfy both AKg,n criteria in order to be included in the paper as an irregular
variable. All selected candidates have visual confirmation on the corresponding images, the candidates with close (less
than 0.4 arcsec) companions are removed.

3.2. Identifying periodic variables stars

One of the main goals of the VVV Survey is to obtain a complete census of pulsating stars, such as RR Lyrae,
Cepheids, Semi-Regular and Mira variables across the Milky Way. These sources provide useful information in their
quality as standard candles (using the developed Period-Luminosity relations in the near-IR), to determine the structure
of our Galaxy. These stars are also useful to map the extinction affecting the projected areas. Another potential set
of targets to be identified are the Eclipsing Binary (EBs) systems, which are known to provide the most robust/model
free estimates of the fundamental stellar parameters.

In this study, we have implemented two methods to identify periodic sources within VVV data:

e The Generalized Lomb-Scargle Periodogram (GLS, Zechmeister & Kirster 2009): A least-squares spectral
analysis method based on the classical Lomb-Scargle Periodogram (Lomb 1976; Scargle 1982). In particular, we
used its implementation in the astroML® python library (Vanderplas et al. 2012)

e The Informatic Potential Metric Q,, (IP metric, Huijse et al. 2011): A discriminant designed to identify the
fundamental period of a time series using information theory. Within this framework, different set of time series
{xn} are assumed to be realizations of a continuous random variable X. The Informatic Potential is defined as
follows:

IPx({xn}) =

i — XJ &
e > e (il ®)
N i=1 j=1
We used a grid of trial periods Py to fold the time series into phase space. The folded light curves are then
segmented in H bins and IP is computed for every bin (h). The IP metric Q,, is computed as the squared
differences between the information potential of each bin and the global IP:

H

QuPy) = 55 S Px(fxa}) — IPx(fxabnen) @

h=1

To estimate the reliability of the periods found with both approaches, we calculated the statistical significance for the
spectral power peaks in GLS and IP metric. Only objects with peak-significance greater that 99.9%, were considered
for further analysis and characterization. We note that this formal peak-significance assumes the uncertainties are
described by uncorrelated Gaussian noise.

3 http://www.astroml.org/



8 MEDINA ET AL.

3.3. Classification of periodic stars

To determine the variability type of the identified periodic stars, we consider the shape of the light curve, and the
period P determined by the methods previously described. A common tool to quantify the shape of a light curve
is using templates, where the light curves of periodic sources are compared with templates to assign a well define
variability class, using one or a set of statistics to relying this classification. These templates could be collected
from public archives, literature and other databases, in order to create “training sets” that points to an automated
classification. In this context, a significant (and still increasing) number of infrared light curves templates have been
assembled in the VVV Templates Project (Angeloni et al. 2014), where the main goal is to develop and test machine-
learning algorithms for the automatic classification of VVV light curves. Nevertheless, we need to consider that in the
NIR, RR Lyrae stars are a special case, given that the amplitudes of light curves decreases from optical to infrared
wavelengths, this leads to being more difficult to differentiate between RR Lyraes in fundamental-mode (RRab) and
first-overtone (RRc) subtypes using only Templates. In this context, we used two criterion to classify these periodic
sources:

3.3.1. Using the VVV template project

We expect low accuracies in the period estimation due to the relatively small number of epochs, as we pointed out
in section 2.2. With this in mind, we have used templates of those variables that we expected to find in this galactic
longitude, such as Classic Cepheids and Eclipsing variables. The § Scuti stars were not considered in this analysis given
that just two light curve templates are available in K¢-band. Nevertheless, their periods are less than 0.2 days, and
may have similar characteristics to EBs (Dong et al. 2017). Several § Scuti sources were identified around open clusters
in K¢-band (Palma et al. 2016), so we need more information for a well characterization of this type of variables.

We used templates of Classic Cepheid (103 templates in K, with 0.97 < P < 133.90) and Eclipsing Binaries (76
templates in K, with 0.305 < P < 16.092) to compare with light curves of our objects when its period P is contained in
the indicated period range of the templates. To quantify these comparisons, we performed a Fourier fit of N harmonics
into the phase space for each template and variable, given its period P and average magnitude (m) (see Figure 5). The
amplitude Ay and the phase ¢y for each k harmonic were determined. The Fourier series f(t) at time t is given by:

N 27kt
f(t) = (m Aysin [ — . 5
© =)+ 3 Awsin (2 ) 6

Each “synthesized” template was then normalized subtracting the integral of the obtained Fourier series. The
harmonic number N used to fit the model to periodic sources is N = 4. The periodic stars are classified using the
template that had the best goodness of the fit, using the reduced x2, statistics as the criterion. If a source has
X%y > 1, will remain as not classified.

3.3.2. Classifying RR Lyrae stars

RR Lyrae stars can be sub-classified by their locations in the Bailey diagram (Bailey 1902), given that RRc sources
have shorter periods than RRab type. Figure 5 of Gavrilchenko et al. (2014) shows that RRab and RRc categories
are located in different places of Bailey diagram. They also discuss the arbitrary limit P = 0.4 days to discriminate
between these categories. Using this, we define the RRc region (0.2 < P < 0.4 days) and the RRab region (0.4 < P < 1
days), and they are shown in Figure 8.

4. APPLICATION OF THE AUTOMATED PROCESS ON D001 AND D002 VVV TILES: THE V4 CATALOG.
4.1. Irregular variable sources

We had identified 72 variable sources that fulfill both the AKg and 7 criteria. If a source presents periodicity, it is
removed from the sample and add to the periodic sample. This was the case of two sources (d001-79, d002-103) which
present a large amplitude and period, typical signatures of dust-enshrouded AGB stars, invisible in the optical range,
due to its thick circumstellar envelope, a product of its high mass-loss rate.

Finally, we identified 70 irregular variable sources, 45 of them belonging to d001 and 25 to d002. Almost two thirds of
them (64.28%) are projected in d001 tile and follow the cold gas/dust distribution as traced by the W3 (Aeg = 12p4m)
band WISE image (the background of Figure 6). The highest over-density is observed at the borders of the star
forming region, where the nebulosity is overwhelming, thus suggesting active star formation. All objects in the sample
are, to the best of our knowledge, reported here for the first time. Some of these sources are shown in the Figure 7.
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Figure 5. Examples of light curves of the periodic stars of RRab, RRc, Cepheid, Binary and LPV types. Red points in the
phase diagram are outliers of the Fourier fit. In the top of each plot the identification ID and obtained period P are shown.

The sample can be separated in two groups:

e Short-term irregular sources: As discussed in 2.2, the cadence of VVV can reveal objects with large changes in
their magnitudes in short periods of time, often associated with YSOs or PMS stars. Examples of such time
series are shown in Figure 7. As noted previously, intrinsic changes in the sources can be explained by variable
accretion (see e.g. Meyer et al. 1997; Rebull et al. 2014; Cody et al. 2014) referred to as bursts if there is a
brief, well defined event and then a return to quiescence. Variable extinction is also possible. The individual
characterization of the objects is beyond the scope of this paper, and they will be analyzed in an up-coming
work, once the follow-up spectroscopic analysis is completed.

e Long-term irregular variables: This kind of sources have a slow change of their magnitudes over the time series,
reaching large amplitudes AKjy in longer time intervals. In general, the sources do not exhibit large amplitude
changes in short time intervals, but increasing/decreasing their luminosities monotonically, and then in certain
cases returning to their mean magnitude. Possible mechanisms here are the eruptive episodes or long-term
extinction events, followed by quiescent periods. These time series can also reveal stellar sources as supernovae,
microlensing events (Minniti et al. 2015), LPVs, aperiodic long-term variability objects, and even extragalactic
variable sources such quasars. Examples of long-term irregular time series can be seen on the right panels of
figure 7.

In order to analyze the morphological behavior of VVV Irregular variable sources, Contreras Pernia et al. (2017a),
influenced by previous works such as Findeisen et al. (2013), proposed the following classifications for their sample of
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Figure 6. Covered region by d001 and d002 tiles from VVV survey, showing the spatial distribution of identified sources.
Galactic north is up, galactic east is to the left. The symbols represent different types of variable stars found in the FoV, and are
explained in Section 4. In background, W3 (Aeg = 12pum) band WISE image is shown to illustrate the cold gas/dust distribution
in the FoV.

high amplitude variables (AKs > 1 mag): Faders, Dippers, Short Time-scale Variables (STV) and Eruptives. However,
half of our irregular variables sample has an amplitude AKg < 1 mag (right side of figure 9). Similar variable sources
with low amplitude have been reported in literature (see for example Wolk et al. (2013) and Carpenter et al. (2001))
with light curves similar to those reported in this work. Therefore, given that classification for irregular variables is
defined mainly by the shape of the time series, we extended the classification proposed in Contreras Pena et al. (2017a)
for low amplitude sources (AK; < 1 mag), making an exception with the Eruptive classification, which describes sources
with eruptions on timescales of hours to days. Sources that present eruptive long-timescales variability (¢ > 1 year)
and AKs < 1 mag, will be classified as 'Low Amplitude Eruptive’ (LAE). We used this classification to characterize
our sources, when applicable. In Table 2, the main characteristics of the different proposed classes are explained.

4.2. Periodic variables stars

Our automated tool detected 22 periodic variable sources by the generalised Lomb-Scargle periodogram (GLS)
analysis, both in d001 and d002 tiles, with range of periods between 4.03 < P < 1400 days. Given the cadence of
our data, and the limitations of the GLS, we can not obtain reliable periods shorter than 2 days. The IP metric, on
the other hand, shows a great performance identifying periodic sources over the entire range of periods. Several stars
have been detected by both methods, showing practically identical periods within the uncertainties. Thus, taking into
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Figure 7. Examples of Ks-band time series of irregular variables. In the top of each plot the identification ID, mean magnitude
Ks, amplitude AKg and variable type are shown.

account that the IP metric is computationally expensive, we used this method to search for shorter periods creating
a grid of periods between 0.05 and 5 days. The IP metric identified 108 sources with 0.2 < P < 3.1 days.

Figure 5 shows examples of the periodic variables, while in Figure 8 we show the Period-Amplitude diagram. As
can be seen, most of the stars have short periods, typical for RR Lyrae stars.

In some cases it was not possible to distinguish between different variability types. For example LPVs and YSOs
(Figure 5), thus we put mixed classification LPV-YSO, working on additional (spectroscopic) data to clarify.

4.3. General properties of selected sources

Figure 9 shows the AKj distribution of the selected sources as a function of the mean Ky magnitude. The amplitude
interval is between 0.5 < AKg < 3.2 mag an average value of (AK;) = 1.1 mag. The histogram is influenced mainly
by the periodic sources.

Figure 10 shows the position of the variable stars in the color-magnitude and color-color diagrams. To plot the
non-variable stars we used the first epoch of J and H band tile images taken in 2010. To analyze this, we have followed
the method, described in Ojha et al. (2004). Three regions are defined: The F’ region, which is located between the
reddening vectors of giant and dwarf stars. The T’ region is between the reddening vector of giant stars and CTTs
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Table 2. Characterization of the irregular variables in the categories proposed by Contreras Pena et al. (2017a)

Class Description
Dippers Shows fading events, to then return to their normal magnitude.
. Shows sources with outbursts with amplitude > 1 mag
Eruptives
and duration longer than a few days and typically at least a year.
Low Amplitude Sources that present outbursts with amplitude lower than 1 mag
Eruptive and duration typically longer than a year
Sources with a measured period, but with short-timescale
LPV-YSOs P
scatter in the time series.
Short Timescale Sources with fast and constant scatter in their time series. They also
Variables can show brief rises in the magnitude in time scales of weeks.
Fad Shows a continuous decrease in brightness (t >1 yrs), or a big decrease
aders
in its brightness in a source with relatively constant luminosity.
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Figure 8. Period - Amplitude diagram of periodic variables in our catalog.

locus, where the Class IT YSOs objects and Herbig Ae/Be stars (Hillenbrand et al. 1992) can be identified. In the
so-called 'P’ region, located below the reddening vector of CTTS the likely proto-stellar objects are situated. Thus,
the corresponding variability types are assigned. Column 32 of Table 5 contains the information of region in color-color
diagram for each source.

4.4. The completeness and accuracy of the catalog

The catalog is limited to sources brighter than Ky = 11 mag, given the saturation of limit of VVV. We are only
sensitive to the stars fainter than this magnitude limit. In the International Variable Star Index Catalog® (VSX)
are listed 57 variables in d001 and 46 in d002 fainter than Ks = 11 mag. From these, 30 sources in d001 and 36
in d002 are identified in the photometry catalog, but all of them have a typical AKg around 0.2-0.3 mag, which is
close to our conservative amplitude limit described in 2.3. This range of amplitudes is relatively low in comparison

4 https://www.aavso.org/vsx/index. php?view=search.top
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Figure 9. Left: The AK; distribution of the selected sources vs. Ks. Right: The histogram of AKj distribution. In this figure,
AKg is truncated at 2.3 magnitudes, given that the source d001-79 has much larger amplitude than other sources (AKs = 3.2
mag). The symbols are the same as in the Figure 6.
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Figure 10. The color-magnitude and color-color diagrams of all variable stars in d001 and d002. The solid black lines are the
intrinsic colors of dwarf and giants stars from Bessell & Brett (1988), the solid red line is the locus of un-reddened CTTs (Meyer
et al. 1997), and the dashed red lines are the reddening vectors of the early spectral type dwarfs, giants stars and un-reddend
CTTs, assuming a visual extinction Ay = 15 magnitudes. The symbols are the same as in the Figure 6.

of the average amplitude (AKg) = 1.1 mag of the selected variable sources. (see figure 11). Taking into account that
these variables are detected in the optical wavelengths, the amplitudes are too low to be detected in Ks-band with
our searching method. Four sources from the VSX are recovered in our catalog, namely d001-20, d001-81, d002-8
and d002-60, the rest of the stars with amplitudes greater than 0.3 have least than 25 measurements. Thus, in the
magnitude interval 11 < K; < 15.5 mag we recovered only 6% of the known optical variable stars, and more than
90% of our discoveries are new. In the context of previous Ks-band studies, Minniti et al. (2017) and Eyheramendy
et al. (private communication) reported 1 and 13 RRab stars in d001 and d002, respectively. The Minniti et al.
(2017) RRLyrae star ’7d002-0143595’ has been re-discovered in our catalog as source d002-20, with practically the same
period P = 0.456794 (with a discrepancy lower than 0.01%). Twelve of 13 RR Lyrae stars from Eyheramendy et al.
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Figure 11. Histograms of the amplitudes of know variable stars from “International Variable Star Index Catalog” for d001
and d002.
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Figure 12. Correlation plots using the main features in this analysis. The blue crosses are the irregular variables, and the red
stars are the periodic sources.

list are re-discovered in our catalog. The only source missed by our procedure has AK; = 0.195 mag and is rejected
from our initial conditions. Thus, the completeness of the catalog 11 < Ky < 15.5 mag is very close to 90%. We are
expecting drops of the completeness for the fainter than Ky > 15.5 mag objects, but it is hard to estimate due to lack
of literature data.

Figure 12 presents the main features n (top row) and AKy (bottom row) as a function of different variability indices
used in this article (see Table 1). The distribution of all detected sources in tile d001 is shown in background. The red
stars represent the periodic sources, and the blue crosses are the irregular ones. As can be seen from the figure, the
irregular variable sources are well separated from the distribution and follow different trends in the plots. The source
d001-75 is an exceptional case, having an amplitude of AK; = 1.151 mag, n = 3.193, and a low number of observations
(26 epochs). Excluding d001-75, the irregular sources fulfill Jeet > 0.95, which agrees with the limit used in Rebull
et al. (2014). In the case of the periodic sources with short periods, in general they are located in the place where
the main distribution is contained given the apparently uncorrelated shape of its time series, produced by the lack of
observations.
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4.5. Variable stars around open clusters in the d001 and d002 tiles

Figure 13. The false color VVV images of star clusters projected in d001. North is up, East is to the left. The red circles
represent visual diameter of the clusters as defined in the text (see below).

Nine open cluster candidates are projected in the field of view of d001 and d002, namely VVV CL005, 007 and
009 (Borissova et al. 2011) and La Serena 001, 002, 003, 009 and 015 (Barbd et al. 2015). The coordinates of the
clusters are listed in Table 3 and the VVV color images of clusters in d001 are shown in Figure 13 for illustration.
Little is known about their properties, except for VVV CL009, which has been investigated in Chené et al. (2013) and
Hervé et al. (2016). According to these papers, the VVV CL009 is young (4-6 Myr), moderately massive stellar cluster
(total mass greater than 1000 M), containing at least two O8-9V and an OIf/WNT7 stars. The cluster distance of 5
kpc is estimated by Chené et al. (2013) using spectroscopic parallaxes. In the context of this paper, we search for
variable YSOs around these clusters, that could be cluster members. To do this, we use the shape of the light curves,
their position on the color-magnitude diagrams, the projection within the visual diameter of the clusters and proper
motion diagrams taken from Smith et al. (2018).

To estimate the projected cluster radius, we combined the existing VVV Kg-band images (55 in case of d001 and
41 for d002 tiles) using the standard IRAF procedures and then, the PSF photometry with Daophot in IRAF was
performed. The obtained magnitudes were transformed to 2MASS system using common stars. The details of these
procedures can be seen in Borissova et al. (2011, 2014). These photometric catalogs were used to construct the stellar
surface-density maps, by performing direct star counting in the Ki-band with a 5” bin radius, assuming spherical
symmetry. The maps are normalized by the area of the rings to determine the stellar density. The resulting spatial
distribution maps of the stellar surface density are shown in Figure 14.

As can be seen from Figure 14, the over-density of the stars is clearly visible, the density peaks are at least 3 times
higher that the surface density of surrounding fields, thus confirming the cluster/group nature of the candidates. The
cluster boundary was determined by fitting the theoretical profile presented in Elson et al. (1987). The obtained visual
radii of the clusters are listed in Table 3, where the errors correspond to uncertainties from the model fit.

The procedure employed for determining the fundamental cluster parameters such as age, reddening, and distance
is described in Borissova et al. (2011, 2014) and Chené et al. (2012, 2013). Briefly, to construct the color-magnitude
diagram we perform PSF photometry of 5 x 5 arcmin J, H, and K fields surrounding the selected candidate, using
the Dophot pipeline. Data for saturated stars (usually Ky < 11.5 mag, depending from the crowding) were replaced by
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Figure 14. Stellar surface-density maps o (stars/arcmin?) of the clusters.

Table 3. Basic information of the star cluster candidates in the region.

Tile ID Name Razpo0  Decaooo L b Radius  E(J—-K)
(hrm:s)  (d:m:s) (deg) (deg) (arcmin) (mag)

doo1 VVVCL005 11:38:59 -63:28:42 294.9481 -1.7353 0.50£0.15 1.4+0.3
La Serena 001 11:39:13 -63:29:04 294.9726 -1.7292 0.52+0.10 2.840.6
La Serena 002 11:39:22 -63:28:11 294.9896 -1.7188 0.52+0.17 3.14+0.4
La Serena 003 11:40:28 -63:27:58 295.1026 -1.6779 0.484+0.09 3.240.5
La Serena 009 11:45:04 -63:17:44 295.5571 -1.3788 0.72£0.10 2.240.3
d002 VVVCLO007 11:53:50 -64:20:28 296.7463 -2.1629 0.33£0.08 2.2+0.2
VVVCLO008 11:55:29 -63:56:24 296.7611 -1.7328 0.42+0.10 1.4+0.2
VVVCL009 11:56:03 -63:19:00 296.8331 -1.1105 0.60£0.20 1.0£0.1°
La Serena 015 11:55:23 -63:25:30 296.7131 -1.2336 0.33+0.07 1.440.2

a: Chené et al. (2013)

data from the 2 MASS Point Source Catalog (Skrutskie et al. 2006). Since 2MASS has a much lower angular resolution
than VVV, when replacing stars we carefully examined each cluster to avoid contamination effects of crowding, using
the Point Source Catalog Quality Flags available in 2MASS catalog.

To separate the field stars from probable cluster members we used the field-star decontamination algorithm of Bonatto
& Bica (2010). The algorithm divides the K, (H — Ks) and (J — K;) quantities into a grid of cells. For each cell,
the algorithm estimated the expected number density of member stars by subtracting the respective field-star number
density. Thus, each grid setup produced a total number of member stars Np,o. Repeating the above procedure for
different setups, we obtained the average number of member stars. Each star was ranked according to the number
of times it survived after all runs (survival frequency), and only the Ny,em highest ranked stars were taken as cluster
members. For the present cases we obtained survival frequencies higher than 85%. To additionally clean-up the
diagrams, we used the relative proper motion catalog recently constructed by Smith et al. (2018). In general, the
cluster members should form clearly visible overdensity with respect to field stars in the proper motion diagram. In
our case (see Figure 15) it is impossible to separate the cluster members from the field stars, because the cluster
members closely follow the motion of the Galactic disk. Nevertheless, they mark compact groups, slightly shifted
from the disk population. To calculate the radius of the group, we started from the photometrically decontaminated
candidates, calculated the mean proper motion and its error (quadratically adding to this error the mean of the
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individual proper motion errors), and drew the circle with 3¢ radius (blue circle in Figure 15). Thus, the stars with
motion projected farther than 3o from the circle are rejected.
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Figure 15. The relative proper motion of the CL005, LS001 and L.S002. The gray points are all stars in 5x5 arcmin area, blue
ones stand for most probable cluster members, obtained after statistical photometric decontamination procedure, red point are
emission candidates (see text), and green ones are the variable stars. The big blue circle marks the suggested area of cluster
members.

Taking into account that our candidates are classified as young clusters in the discovery papers of Borissova et al.
(2011) and Barb4 et al. (2015), the photometry/astrometry alone can not give accurate distance and age determina-
tions. Usually, spectroscopic parallaxes from follow-up observations of selected members are needed. Here, only VVV
CLO005 has one follow-up object observed, thus it was impossible to obtain accurate basic parameters of the clusters.
Instead, we use the PARSEC isochrones compilation for solar metallicity and ages of 5 and 400 Myr (Bressan et al.
2012; Marigo et al. 2017) to illustrate the position of the most probable cluster members and to estimate their mean
reddening (last column in Table 3).

4.5.1. Notes of indiwidual clusters: VVV CL00S5

The cluster VVV CLO005 is a young star cluster candidate, defined in Borissova et al. (2011) as a small group of
24 stars; it is projected close to the IC 2944 HII region and to the IC 2948 cluster (3.8 arcmin), on the part of the
cloud [SMN83] Lam Cen 1. The brightest star within the cluster radius, namely HD308829, is classified as a Be star
of B8 spectral type and is suggested to be a member of 1C2944 cluster (Cl1* IC 2944 THA 51). The star is found to
be a periodic variable star with P=0.8709 days (Pojmanski 1998), but we can not follow its variability with VVV,
because the star is saturated in our images (K = 9.68 mag). The published distance to the IC 2944 H1II region varies
from 1.8 kpc (McSwain & Gies 2005) to 2 kpe (Sana et al. 2011) in the literature. The color-magnitude diagram of
VVV CL005 (Figure 16) shows a poorly populated main-sequence and some reddened stars, suggesting indeed a very



18 MEDINA ET AL.

+ W CIL0OS | LS 001

[ LS 009

| 1RA 1 146l

Figure 16. The Kg vs. (J — Kg) color-magnitude diagrams for the clusters in the field of view of d001 and d002. Black points
are all stars in 5 x 5 arcmin field around cluster centers, blue circles are the most probable cluster members, after statistical
photometric decontamination. Red circles are variable stars (see text). The Geneva isochrones of 5 Myr (400 Myr for VVV

CLO008) and Z=0.020 are plotted with green lines. Red line represents the sequence of the zero-reddening stars of luminosity
classes V (Schmidt-Kaler 1982) for illustration.

young stellar group. With regards to the distance, it is impossible to estimate it from comparison with the theoretical
isochrones, because the isochrones for ages younger than 5 Myr in this mass interval in the near infrared bands are
vertical and practically identical. Then, the spectroscopic distance is calculated using the spectral classification of Objl
(Ra=11:38:57.73 and Dec=—63:28:22.4). The object is observed with the ARCoIRIS (Astronomy Research Cornell
Infra Red Imaging Spectrograph). This is a cross-dispersed, single-object, longslit, infrared imaging spectrograph,
mounted on Blanco 4-m Telescope, CTIO. The wavelength range is from 0.80 to 2.47 pm, with spectral resolving
power about 3500. The comparison with different spectral templates taken from VOSA (Bayo et al. 2008) gives
the most probable spectral type F4-F6V, used to estimate the spectroscopic parallax. We calculated reddening and
distance modulus of E(J—K) = 1.4+0.3 and (M—m)o = 10.45+£0.43 mag (1.23+0.24 kpc), respectively. The distance
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is comparable with distance estimates of 1 kpc as measured from the interstellar silicon monoxide (SiO) sources (Harju
et al. 1998). Five variables (d001-25, 27, 28, 29, 30, see Table 6) are probable cluster members, taking into account their
projected position radius from the cluster center and the position in the color-magnitude and proper motion diagrams
(Figure 16, Figure 15). All of them show irregular variability, with relatively large amplitudes (0.63 < AKg < 0.88
mag) and thus can be classified as YSOs.

4.5.2. La Serena 001

The star cluster candidate La Serena 001 (LS001) is projected very close to VVV CL005, on the same HII region
and contains a few very reddened stars (see Figure 16). These objects are deeply embedded in dust and gas. We
adopted the same distance as for CL005, and using 5 Myr isochrone determine E(J — K) = 2.8 £ 0.6. Note the large
uncertainty of the reddening determination, which can be result of a strong differential reddening inside the region.
One variable star (d001-32) is found in the vicinity of this group in formation. It shows an irregular time series and
AK; = 0.96 mag. Taking into account the time series and its position of the CMD (in the 'P’ region), most probably
it is an YSO candidate.

4.5.3. La Serena 002

The star cluster candidate La Serena 002 (LS002) is projected close to LS001 in the North-East direction. Several
embedded and very red sources are visible, indicating stars in formation. The color-magnitude diagram is poorly
populated, thus as in the case of LS001 we determined the mean reddening of E(J — K) = 3.1 £ 0.4 adopting the
same distance modulus as above. One periodic variable star (d001-38) is found, with AKy = 0.453 mag and period
P = 42.706 days, which we classified as a Cepheid. Additionally, this source is far from the main locus of most probable
cluster members in the color-magnitude and proper motion diagrams, thus we conclude that is a projected field star.
Two more irregular variables (d001-35, d001-36, see Table 6) with amplitudes between 0.84 < AK; < 0.91 mag are
most probably cluster members and YSO candidates.

4.5.4. La Serena 003 and La Serena 009

The star cluster candidates La Serena 003 and 009 are groups of stars in formation, deeply embedded in dust and
gas. No stars with variation in the magnitude above our sensitivity limit of AKg > 0.2 mag are found in the vicinities
of clusters. One YSO candidate IRAS 11426-6301 in the field of LS 009 is reported by Kwok et al. (1997). Later on,
Mottram et al. (2011) and Lumsden et al. (2013) resolved the source to YSO (G295.5570-01.3787A) and HII region
(G295.5570-01.3787B, separated by 5 arcsec) on the base of far-infrared MSX measurements. They determined the
radial velocity of 37.2 km/s and kinematic distance to both sources of 10.4 kpc. The bolometric luminosities of the
YSO is calculated as 5980 L), while the HII region has 63570 L), the log Mass of the whole clump is estimated to be
3.106 My, according to the same authors. Navarete et al. (2015) reported an extended HII emission associated with
the region. Our Ks-band light-curve (Figure 17) shows low amplitude variability of 0.27 mag during the 2010-2015
time interval, with Ky = 11.365 mag. Note, however that the 2MASS magnitude (taken from “The 2MASS Extended
sources catalog” (Skrutskie et al. 2006)) is K = 8.94 magnitude, thus the star most probably shows a long-term
variability.

TRAS 11426-6301 was observed on May 2017 with ARCoIRIS spectrograph, with 480 sec. integration time, at 1.28
average airmass. We reduced the spectrum using the Spextool IDL package (version 4.1, Cushing et al. (2004)), which
is a data reduction algorithm specifically designed for the data format and characteristics of ARCoIRIS by Dr. Katelyn
Allers. Telluric correction and flux calibration of the post-extraction spectra are achieved through the xtellcorr IDL
package (Vacca et al. 2003). Figure 17 shows the spectrum, normalized at 2.293 microns. As can be seen from the
figure, the continuum level is flat to slightly rising. The overall spectra energy distribution is peaking at around 2.5
microns. The HI and Hel lines are clearly visible in absorption, some Ti lines and Nal doublet (2.21 microns) in
absorption also can be identified. The CaT triplet (2.26 microns) and 2CO bands (2.29 microns) are missing. While
the HI and Hel reprecent in general early type stars, the Ti and Na features are typical of low mass YSOs. The
absence of CO band means a absence of circumstellar disk. A possible explanation for this contradiction could be
related to the photodisociation of CO molecule. This phenomenon (where one even detects CI but no CO, or a much
lower abundance than expected) has been observed around young A-type stars in deep searches for molecular gas in
debris disks (Higuchi et al. 2017). Thus, the spectrum shows mixed features arising from both high and low mass
young stars. Taking into account the kinematic distance of 10 kpc this object could be an unresolved compact cluster
or group of young stars.
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Figure 17. The VVV time series and the ARCoIRIS spectrum of TRAS 11426-6301 YSO candidate.

4.5.5. VVV CL007

One variable (d002-35) is detected with our algorithm very close to the center of VVV CL007 cluster. Taking into
account its high amplitude AK; = 1.76 mag, its position on the CMD (in the P’ region) and its classification as
Eruptive variable (Contreras Pena et al. 2017a) most probably is it a YSO.

4.5.6. VVV CL008, VVV CL009 and La Serena 015

No variable stars are detected around VVV CL008, CL009 and La Serena 015. In Chené et al. (2013) we classify
the Obj 4 (Ra=11:56:03.03 and Dec=—63:19:00.72) of VVV CL009 as a Be star.
In summary, only a few variable YSOs around the clusters are detected in the near infrared.

4.6. Stars with Ha photometric emission

The clusters in the tile d001 are very young, still in formation and are surrounded by dust and gas, thus we can use
the photometric catalogs from VPHAS+ survey (Drew et al. 2014) in order to search for additional YSOs and Ha
emission candidates. The VPHAS+ catalog contains magnitudes in five filters: u (Aeg = 354nm), g (Aeg = 475nm),
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Figure 18. The (r — Ha,r —1i,) color-color diagrams. Blue circles show the selected emission stars, the red and blue solid lines
are the synthetic unreddened main sequence and giant sequences, while the dashed ones corresponds to the corrected for the
reddening sequences (Drew et al. 2014). Red circles in the top plots are infrared variable YSOs found in this work.

r (Aeg = 622nm), i (Aeg = 763nm) and H, (Aeg = 659nm). Following Kalari et al. (2015), we construct the
(r — 4,7 — Ha) color-color diagrams using DR2 of VPHAS+ catalog. The main-sequence stars do not show any Ha
emission with respect to the r-band photospheric continuum. We use the VST /OmegaCAM synthetic colors for main-
sequence and giant stars in the (r — Ha,r — i) plane (Drew et al. 2014) and selected the stars with more than 5o
deviation from these synthetic sequences, corrected for the corresponding reddening (dashed lines in Figure 18). The
73 selected sources are shown in Figure 18 and summarized in Table 4.

The cross-identification of these sources with the Ky variability catalogs shows that the peak of amplitudes is around
0.3 mag (Figure 19). As we stated in section 2.3, we set our detection limit of spread of the magnitude measurements
with time to be greater than 0.2 mag. For sources below this threshold, we treat these objects as constant at our
sensitivity level. Thus, only a few of the infrared variable YSOs (d001-25, d001-32) are emission line object candidates.
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Table 4. VPHAS+ r, (r —4) and (r — Hy) magnitudes and colors of the YSO candidates. The full version is available online.

ID RA2000 DECa2000 r r—1 r —Hg
(deg) (deg) (mag) (mag) (mag)
CLO005 C1 174.71433 -63.48757 17.9840.02 1.08 £0.011 1.04 £0.01
CL005 C2 174.71582 -63.46827 19.3940.04 0.97 +0.025 1.08 £0.03
CL005 C3 174.71664 -63.48768 20.2940.10 1.53 +0.054 0.95 £0.09
CL005 C4 174.71783 -63.48682 18.374+0.02 1.05 +£0.011 0.99 £0.02
CLO005 C5 174.71942 -63.4668 19.67+0.05 1.37 £0.032 0.99 +0.04
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Figure 19. The distribution of amplitudes in the Ks-band of the emission line candidates.

5. SUMMARY

We have developed an automated process for identification, classification and analysis of variable sources using the
VVV Ks-band time series, which are extracted directly from the 1.5 x 1.2 degrees image tiles. This process was
created to automatically analyze the VVV tiles, given the huge amount of available data. The sources that present
variability in the NIR are cataloged, in order to understand the physical process behind its variability, its spatial
distribution, evolutionary state and relation with its environment. The gathered information from these sources will
be collected in "VVV Variables (V4)” catalog, which will be publicaly avaliable in VISTA Science Archive (VSA,
http://vsa.roe.ac.uk/index.html) database and constantly updated adding newly processed VVV tiles.

This process is based on Dophot PSF photometry to create a multi-epoch Ks-band catalog of detected sources in
the FoV. We also obtained the J and H band photometry, using the data taken in 2010. All the PSF photometry
was calibrated using the aperture catalogs made by CASU. To test this method, we select d001 and d002 tile regions,
covering an area of ~ 3.6 deg?. A total of 1,308,626 point sources between 10.8 < Ky < 17.2 mag were detected.
The time series of sources with more than 25 epochs and amplitude AKg > 0.2 mag were selected and analyzed
through different methods in order to detect real variables. To avoid outliers, suspicious photometric measurements
were removed from the light-curves using the modified Thompson 7 technique.

Our automated tool identified 200 sources with prominent NIR variability. Using two main variability indices (AKj,
n), we identified 70 variable sources without periodic or semi-periodic behavior, which are bona-fide irregular variables.
On the other hand, we used periodograms (GLS, IP) to identify periodic sources, finding 130 of them. All identified



23

sources have an average Ky magnitude distributed between 11.2 < K < 16.4 mag, and a total amplitude contained
between 0.2 < AKg < 3.3 mag. About 90% of these sources are previously unknown as variable stars.

For each source with available J and H photometric measurements, its position in the (H — K, J — H) color-color
diagram was reported, dividing this diagram into three parts (the 'F’, T and 'P’ region), following the procedures
of Ojha et al. (2004), in order to extract information about the evolutionary state of those sources.

In the case of the irregular variable sources, they were classified using the framework of Contreras Pena et al. (2017a),
who use the time series morphology to classify the sources into 5 categories (Dippers, Eruptives, LPV-YSOs, STVs,
Faders). The LPV-YSO sources, together with the periodic variable sample, will be analyzed in a subsequent paper.
Sources that could not be classified unambiguously into the aforementioned categories, are marked as "unclassified”. In
total, we classified 20 STVs, 12 Eruptives, 5 Dippers, 7 Faders, 8 Low Amplitude Eruptive Variables, and 18 sources
remained unclassified. These variable stars have amplitudes AKg > 0.63 mag, n < 0.82 and Jgt > 0.95, without
counting the source d001-75, which has n = 3.193. and Jget = —1.55.

We examined some parameter distributions in the specific parameter space (Graczyk & Eyer 2010) in order to
separate the variability types. For example a x? parameter (in logarithmic scale) can separate the periodic sources
from the main distribution when log(x?) > 0.8. In the future, we will use this to optimize the process of generation
and analysis of time series and light curves in the VVV in the supervised algorithms of machine learning.

We classified 25 RRab, 42 RRc, 13 Classic Cepheids, 33 Binaries, 7 LPV, 7 LPV-YSOs and three periodic variables
remain unclassified. The periodic sources have a distribution of periods between 0.2 < P < 1430 days and an average
K, magnitude distributed between 11.3 < K, < 16.32 mag.

We also analyzed nine open cluster candidates using surface-density maps, color-based decontamination and proper-
motion decontamination algorithms to determine the radii of the clusters. We have estimated the mean reddening
E(J—Ks) by comparison with the PARSEC isochrones for solar metallicity. We were only able to determine a distance
modulus for VVV CL005 cluster, using the spectroscopic parallax. This cluster also has the larges number of irregular
variables as probable cluster members (d001-25, 27, 28, 29 and 30). The cluster LS002 has two irregular variables, while
clusters LS001 and VVV CL007 have one irregular variable, each other, as probable cluster members. All irregular
sources projected close to open clusters in the region are young stellar object candidates.

Given the low number of irregular variable sources that we found around open clusters, we used the VPHAS+ survey
to identify excess in H,-band. We have selected 73 stars with more than 5o difference from the VST/OmegaCAM
synthetic colors for main-sequence and giant stars in the (r — i, — H,,) plane (Drew et al. 2014). We noted that 64%
of this sample has low amplitude AKg < 0.4 mag, so this could be a good complementary method to find YSOs.
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Table 5. Information of content of V* Catalog

Column Units Description
1D - Identification given by the catalog.

Rasooo Degrees Right Ascension of VVV source.
Decaooo  Degrees Declination of VVV source.

GLon Degrees Galactic longitude of VV'V source.

GLat Degrees Galactic latitude of VVV source.

Ks mag Photometric mean value of K¢-band.

K mag Estimation of K, error using bootstrap technique.
Epochs - Observation number of the source in their Kg time serie.

AKg mag Photometric total amplitude of Ks-band.

J mag Photometric J-band.
Jerr mag Photometric J-band error.
H mag Photometric H-band.
Herr mag Photometric H-band error.
U mag Photometric u-band.
Uerr mag Photometric u-band error.
g mag Photometric g-band.
Jerr mag Photometric g-band error.
r mag Photometric r-band.
Terr mag Photometric r-band error.
72 mag Photometric r2-band.
72err mag Photometric r2-band error.
i mag Photometric i-band.
Terr mag Photometric ¢-band error.
H, mag Photometric H,-band.
H, err. mag Photometric H,-band error.
n - Value of the variability index 7.

Class - Classification via VVV templates light curve or shape of the time serie.
Tile ID - VVV tile where the source is located.
Period days Identified period for a VVV source.

Ak, mag Extinction measured using Nishiyama et al. (2009).

Distance Kpc Distance measured from PL relations of RRab sources.

CCD - Position in (H — Kg,J — H) color-color diagram.

Reference - Reference to catalog of a documented source.

APPENDIX

A. BASIC INFORMATION OF V# CATALOG.
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