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ABSTRACT

Time-varying phenomena are one of the most substantial sources of astrophysical information and their study has led

to many fundamental discoveries in modern astronomy. We have developed an automated tool to search and analyze

variable sources in the near infrared Ks-band, using the data from the Vista Variables in the Vı́a Láctea (VVV)

ESO Public Large Survey. This process relies on the characterization of variable sources using different variability

indices, calculated from time series generated with Point Spread Function photometry of sources under analysis. In

particular, we used two main indices: the total amplitude ∆Ks and the eta index, η, to identify variable sources.

Once variable objects are identified, periods are determined with Generalized Lomb-Scargle periodograms, and the

Information Potential Metric. Variability classes are assigned according to a compromise between comparisons with

VVV Templates and the period of the variability. The automated tool is applied on VVV tiles d001 and d002 and

led to discovery of 200 variable sources. We detected 70 irregular variable sources and 130 periodic ones. In addition

nine open cluster candidates projected in the region are analyzed, the infrared variable candidates found around these

clusters are further scrutinized by cross-matching their locations against emission star candidates from VPHAS+

survey Hα color cuts.

Keywords: — infrared: stars — stars: pre-main sequence — stars: variables: general — (Galaxy:)

open clusters and associations: general — (Galaxy:) open clusters and associations: indi-

vidual (VVV CL005, VVV CL007, VVV CL008, VVV CL009)
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1. INTRODUCTION

Time-varying phenomena are arguably one of the most powerful sources of astrophysical information. In the last

decades, the development of astronomical instrumentation and automation has enabled many time-domain surveys,

such as for example the wide-field optical imaging surveys: the Catalina Real-time Transient Survey (Drake et al. 2009);

Pan-STARRS (Kaiser et al. 2002); and GAIA (Perryman 2005). In the near future, even more ambitious programs,

such as the Large Synoptic Survey Telescope (LSST, Krabbendam & Sweeney 2010) are planned to start monitoring

the optical sky. While optical surveys are getting wider and deeper, the extension and the systematic exploration of the

variable sky toward the infrared, is also under development, in order to better cope with the problem of the interstellar

extinction. The VISTA Variables in the Vı́a Láctea survey (VVV; Minniti et al. 2010; Saito et al. 2012a) is one of

these infrared surveys and is comparable to the optical ones both in areal and time-domain coverage (e.g., Arnaboldi

et al. 2007, 2012). It has been designed to catalog ∼ 109 sources, where a great part of those are expected to be

variable stars. All these sources will be used to map the structure of the optically obscured Galactic disk and bulge

by using some main distance indicators such as the red-clump giants and pulsating variable stars (RR Lyrae stars,

classical Cepheids, anomalous Cepheids and Miras, and semi-regular variables), as well as to provide a census of Young

Stellar Objects (YSOs) across the southern Galactic plane. Some focused studies have been carried out in the southern

disc region in search of variable stars using these data, for example: Contreras Peña et al. (2017a,b), cataloging high

amplitude variable stars, with emphasis on YSOs; Borissova et al. (2016) searching for YSOs around young stellar

clusters; Dékány et al. (2015) searching Classical Cepheids in the bulge; Elorrieta et al. (2016); Gran et al. (2016);

Minniti et al. (2017) focusing on the RR Lyrae stars. However, the systematic and uniform searches of the variability

phenomena in the VVV disc area are still missing. On the other hand, the VVV multi-epoch observations produced

a huge amount of information, a dataset of challenging size. It is highly necessary to develop tools, processes and

techniques ables to perform sophisticated analysis in an automated way in order to efficiently exploit this unique

dataset. In this paper we present an automated tool designed to search, classify and analyze variable sources in the

near infrared Ks-band. Our tool is fed VVV tile images to extract time series and identify different types of variable

sources. The main goal is to understand the behavior of Ks-band variability in large regions of the sky, with the

ultimate goal of processing the 1.8 squared degrees images of the VVV observations. The identified variables will be

used to derive properties in active star forming regions, to determine distances using the periodic stars with available

period-luminosity relation, as RR Lyrae and Cepheids, and to identify parameters of different variables stars. The

information gathered from these sources will be collected in the ”VVV Variables (V4)” catalog.

The structure of the paper is as follows: In section 2 we present the photometry and calibration process on the

VVV tiles and characteristics of the extracted time series. Then in section 3 the methodology is explained, where

we focus on identifying irregular and periodic variables, mainly using different variability indices and periodograms.

Next in section 4, the preliminary classification of the selected sources is presented. This classification is based on

principal properties of the sources, as the shape of time series and light curves, and the period in the case of variable

sources. We determined general properties of selected variables sources, as characteristic features of the light curves

and locations on the color-magnitude and color-color diagrams. Also, we described the environment of variable sources

in the Young stellar clusters candidates projected on VVV tiles d001 and d002. Finally, in section 5 we present the

catalog of variable sources in these tiles. The individual characterization of the variable objects is beyond the scope of

this paper, and they will be analyzed in an up-coming work, once the follow-up spectroscopic analysis is completed.

2. THE VVV DATA

The VVV survey is an ESO Infrared Large Public survey (Minniti et al. 2010; Saito et al. 2012b) which uses the 4-

meter VISTA telescope located at Cerro Paranal Observatory, Chile. The survey was designed for mapping 562 deg2 in

the Galactic bulge and the southern disk in five near-infrared broad-band filters: Z (λeff = 0.87µm), Y (λeff = 1.02µm),

H (λeff = 1.25µm), J (λeff = 1.64µm), Ks (λeff = 2.14µm), with a time coverage spanning over five years between 2010

and 2015 in the Ks-band. The telescope has a near-infrared camera, VIRCAM (Dalton et al. 2006), consisting of an

array of 16 detectors with 2048×2048 pixels. A set of single exposures (a paw-print) are combined into a tile, covering

1.5 × 1.1 degrees in the sky. To cover the VVV area, the disk field was divided into 152 tiles and the bulge into 196

tiles (see Saito et al. 2012a for more details).

To test our method we choose the first two VVV disk tiles, namely d001 and d002, due to their low crowding and

interstellar reddening when compared to the rest of the VVV disk area. The preliminary reduced images were retrieved
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from the VISTA Science Archive1 (VSA) database (Cross et al. 2012), keeping the quality flags. In total, we analyzed

up to 55 and 41 Ks images for the tiles d001 and d002, respectively. Figure 1 represents the log of observations of the

VVV tiles.

Figure 1. Left side: The log of observations of VVV tiles d001 and d002 between 2010 and 2015, based on the log representation
of Rebull et al. (2014). Each photometric measurement is marked by a ’|’ symbol. The bars are thicker in places with high
cadence. Right side: Histogram of differences between consecutive observations ∆MJD. Is possible to see that the typical time
interval between observations is between 0.3 and 2 days.

2.1. Photometry and calibrations

The Point Spread Function (PSF) photometry was obtained using the Dophot software (Schechter et al. 1993;

Alonso-Garćıa et al. 2012) in all available tile images in the field of view (FoV). We based this procedure in the

method explained in Navarro Molina et al. (2016). We assessed the reliability of the photometry, using the Dophot

parameter chi, which quantifies the PSF quality. The sources with chi > 3 were rejected, due to the large associated

uncertainty. The calibration process to the VISTA system was done using the aperture photometry catalogs produced

by the Cambridge Astronomical Survey Unit2 (CASU). We selected sources with Stellar (“-1”) or border-line stellar

(“-2”) morphological classification to perform the cross-match using STILTS (Taylor 2006), using the catalog of the

first epoch as reference with a 0.”34 tolerance (VIRCAM pixel size). The conversion factors and uncertainties were

estimated via a 2-sigma clipping linear fit to the Dophot PSF photometry vs. the CASU isolated selected sources. By

following this procedure, we have found 624,983 sources in d001 and 683,643 sources in d002 in common, in Ks-band.

The photometry in J and H band was performed using Dophot in a similar manner, i.e., using the CASU catalogs to

calibrate the PSF photometry.

2.2. Cadence of the observations

As it has been pointed out, the tiles d001 and d002 accumulate up to 55 and 41 epochs observed between 2010 and

2015, respectively. Left side of Figure 1 shows the gaps, the baseline, and the maximum size of the time-step between

epochs. The right side of Figure 1 shows the distribution of the difference of consecutive observations ∆MJD, zoomed

up to ∆MJD > 12 days. The minimum time interval between the observation is∼0.35 days, with distribution maximum

between 0.35 and 2 days. Thus, from the time cadence of the observations, we can expect to detect variability related

to timescale accretion variations, star spots, episodic accretion events, rotational modulation and variable extinction

in the YSOs (Contreras Peña et al. 2017a; Rebull et al. 2014). On the other hand, VVV produces unevenly spaced

light-curves, which provides its challenges, but still we expect to identify different types of periodic variability in a

wide range of time-scales (see for example Elorrieta et al. 2016; Gran et al. 2016; Minniti et al. 2017).

1 http://horus.roe.ac.uk/vsa
2 http://casu.ast.cam.ac.uk
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Table 1. Variability indices computed in this analysis

Set of variability indices

Index Reference

η index von Neumann (1941)

Stetson J Stetson (1996)

Stetson K Stetson (1996)

σts/µ ratio Shin et al. (2009)

Classical χ2 Rebull et al. (2014)

Total amplitude ∆Ks Contreras Peña et al. (2017a)

2.3. The Ks-band time series

The Ks-band time series of the sources were constructed by cross-correlation of all the catalogs for all available

epochs. We filtered our initial sets of time series with some ad-hoc quality and robustness criteria: 1) A minimum of

25 photometric measurements. 2) A total amplitude ∆Ks > 0.2 mag, where ∆Ks = (Kmax
s −Kmin

s ). 3) An upper limit

in flux of Ks > 11 mag (to avoid objects that may suffer from saturation in some VVV epoch). The first restriction

represents the minimum number of epochs which allows to search for reliable periods. The second is motivated by a

conservative estimation of the errors of photometry and transformation to the standard system. These initial filters

reduced the source numbers obtained from photometry by approximately 30% (for example from 669825 to 433102

for d001). Moreover, the photometric measurements are prone to be affected by systematic errors that are hard to

clarify and quantify, given atmospheric or instrumental problems. For example Alonso-Garćıa et al. (2015) reported a

problem related with highly variable PSFs in the tile images, due to different geometric distortions in the combination

process of the paw-print images. Thus, to remove outliers in the time series, we implement the modified Thompson τ

technique, which is based on the definition shown in Thompson (1985). The modified Thompson τ statistic is defined

as:

τ =
tα/2(n− 1)

√
n
√

n− 2 + t2
α/2

, (1)

where n is the number of data points, and tα/2 is the critical value of Student’s t-distribution given a confidence

parameter α. For each photometric data point Ks in a time series, the standard deviation of the time series σts and

the absolute deviation δi = |Ksi − Ks| is calculated, where Ks is the mean Ks magnitude. Individual photometric

measurements were removed from time series when δi > τσts, using a confidence level of 95% (i.e. α = 0.05). One

of the consequences of this approach is that we will remove poorly sampled transients event from our time series.

Figure 2 shows the performance of this method acting on a time series.

3. METHODOLOGY

In time series analysis, it is frequent to use different sets of statistics, commonly called “variability indices”, to

quantify changes in luminosity with time. Depending on the definition of these indices, a population of variables that

have similar behavior can be identified and one can try to separate stochastic variability from “further organized” flux

variations. Examples of these indexes are the Welch-Stetson Iws (Welch & Stetson 1993) and Stetson JStet and KStet

indexes (Stetson 1996). This quantities have been used to identify sources that exhibit large photometric variations

along the time. Defined in this manner, sources with larger Jstet values are the most probable variable sources.

Different authors in the literature define particular limit values of Jstet for this task (such as Jstet ≥ 0.55 Carpenter

et al. 2001, Jstet ≥ 0.9 Rebull et al. 2014). In the literature, it is possible to find many more different indices (or

features) tailored to identify different types of variable sources. Thus, deciding which index is useful to detect a specific

type of variability does not only depend on the definition of the index itself, but also on the properties of the available

data. Here, we briefly summarize some variability indices applicable when only one photometric band is available; and

the type of variability that they can detect.
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Figure 2. Performance of Thompson τ technique acting on a time series. Top plot: Raw light curve extracted from the
photometric process. Middle plot: Absolute deviation δ of each measurements in function of MJD. The dashed red line
indicates the rejection region (gray region) using α = 0.05. The red point that fall in this region is removed from the sample.
Lower plot: Modified time series, which will be used in the analysis.

In this work, we considered a set of six variability indices (see the references in Table 1) in order to characterize the

behavior of the variable sources along time. Mainly, we used the amplitude ∆Ks and the η index to identify irregular

variables. All these parameters are estimated directly from their Ks-band time series. All the procedures, and the

automated process that we developed were summarize in the flux diagram of Figure 3.

Figure 3. Schematic view of the automated process developed and used in this study to categorize the sources in the V4

catalog.
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Figure 4. Representation of the two selection criteria aiming at identifying irregular variables. The dark points are all stars
in the final photometric catalog, and the green filled circles highlight the selected sources by each method. Left panel: Total
amplitude ∆Ks selection. The red solid line represent the non-parametric fit, while the dashed blue line displays for the 4σ
threshold. Right panels: η index selection. The red lines in the bins of 0.5 mag represent the 3.5σ threshold of the Gaussian fit.

3.1. Identifying irregular variable sources

Eruptive Pre-main Sequence (PMS) stars are traditionally classified as FU Orionis Types (FUors, Herbig 1966) and

EX Lupi (EXors, Herbig 1989) types. Their variations occasionally have high amplitudes (up to 2-6 magnitudes in

optical bands) in a short time scales. Different physical processes have been proposed to explain the variations of these
objects: accretion or variable extinction induced by their circumstellar disks, among others. These high amplitude

variables are potential tracers of new generation of stars, so we expect to detect them within and close to the star

forming regions (SFR) of the Galaxy.

As an example, in Contreras Peña et al. (2017a), the total amplitude ∆Ks was used as a discriminant to identify

variable sources with ∆Ks > 1 magnitude. This method was very useful to help identify likely YSOs amongst irregular

and periodic variables stars projected against SFRs. The “Amplitude index” also performs satisfactorily in identifying

sources with a large amplitude ∆Ks, like some Eclipsing Binary systems and likely pulsating asymptotic giant branch

(AGB) stars as Miras and semi-regulars sources, which has periods longer than P ≥ 100 days, and frequently are

grouped under the name “long period variables” (LPV).

Following the same idea, we made a non-parametric fit on our photometric catalogs of d001 and d002. In order to

quantify the behavior of ∆Ks as a function of mean magnitude Ks, we measured the dispersion in bins, and selected

those above 4σ. This allowed us to define dynamical thresholds, taking into account that the estimated σ depends on

the stellar population projected on the different tiles (for example a tile containing a projected star forming region will

have a different threshold assigned, than a tile with Population II stars). The left side of Figure 4 shows the amplitude

∆Ks selection for the sources found in tile d001.
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To complement the previously described criterion, we performed an additional selection using the η index (von

Neumann 1941; Shin et al. 2009; Sokolovsky et al. 2017). This statistic is defined as the squared addition of successive

differences between adjacent observations in a time series:

η =
1

(N− 1)σ2
ts

N−1∑
i=1

(mi+1 −mi)
2, (2)

where mi are magnitude measurements, N the available number of epochs. The properties of the η index are well

known for a stationary Gaussian distribution, but not for astronomical time series, because usually, they have an

unequal sampling. For time series with uncorrelated photometric measurements (i.e. time series with an uncorrelated

normally distributed measurements), the η index would have a value ∼ 2, and extreme values for series with long time

variability trends. Given the aforementioned properties and the volume of the data, we expect that index η has a

Gaussian distribution centered in η ≈ 2. We separated Ks into 0.5 magnitudes bins and considered 3.5σ confidence

intervals on every bin to identify variable sources. The right two panels of Figure 4 show the η selection, and the fit

of Gaussian functions in each histogram generated by separating the distribution in bins of 0.5 mag.

Each irregular variable should satisfy both ∆Ks, η criteria in order to be included in the paper as an irregular

variable. All selected candidates have visual confirmation on the corresponding images, the candidates with close (less

than 0.4 arcsec) companions are removed.

3.2. Identifying periodic variables stars

One of the main goals of the VVV Survey is to obtain a complete census of pulsating stars, such as RR Lyrae,

Cepheids, Semi-Regular and Mira variables across the Milky Way. These sources provide useful information in their

quality as standard candles (using the developed Period-Luminosity relations in the near-IR), to determine the structure

of our Galaxy. These stars are also useful to map the extinction affecting the projected areas. Another potential set

of targets to be identified are the Eclipsing Binary (EBs) systems, which are known to provide the most robust/model

free estimates of the fundamental stellar parameters.

In this study, we have implemented two methods to identify periodic sources within VVV data:

• The Generalized Lomb-Scargle Periodogram (GLS, Zechmeister & Kürster 2009): A least-squares spectral

analysis method based on the classical Lomb-Scargle Periodogram (Lomb 1976; Scargle 1982). In particular, we

used its implementation in the astroML3 python library (Vanderplas et al. 2012)

• The Informatic Potential Metric Qm (IP metric, Huijse et al. 2011): A discriminant designed to identify the

fundamental period of a time series using information theory. Within this framework, different set of time series

{xn} are assumed to be realizations of a continuous random variable X. The Informatic Potential is defined as

follows:

IPX({xn}) =
1

N2

1√
2πσ

N∑
i=1

N∑
j=1

exp

(
−‖xi − xj‖2

2σ2

)
. (3)

We used a grid of trial periods Pt to fold the time series into phase space. The folded light curves are then

segmented in H bins and IP is computed for every bin (h). The IP metric Qm is computed as the squared

differences between the information potential of each bin and the global IP:

Qm(Pt) =
1

H

H∑
h=1

[IPX({xn})− IPX({xn}n∈h)]
2
. (4)

To estimate the reliability of the periods found with both approaches, we calculated the statistical significance for the

spectral power peaks in GLS and IP metric. Only objects with peak-significance greater that 99.9%, were considered

for further analysis and characterization. We note that this formal peak-significance assumes the uncertainties are

described by uncorrelated Gaussian noise.

3 http://www.astroml.org/
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3.3. Classification of periodic stars

To determine the variability type of the identified periodic stars, we consider the shape of the light curve, and the

period P determined by the methods previously described. A common tool to quantify the shape of a light curve

is using templates, where the light curves of periodic sources are compared with templates to assign a well define

variability class, using one or a set of statistics to relying this classification. These templates could be collected

from public archives, literature and other databases, in order to create “training sets” that points to an automated

classification. In this context, a significant (and still increasing) number of infrared light curves templates have been

assembled in the VVV Templates Project (Angeloni et al. 2014), where the main goal is to develop and test machine-

learning algorithms for the automatic classification of VVV light curves. Nevertheless, we need to consider that in the

NIR, RR Lyrae stars are a special case, given that the amplitudes of light curves decreases from optical to infrared

wavelengths, this leads to being more difficult to differentiate between RR Lyraes in fundamental-mode (RRab) and

first-overtone (RRc) subtypes using only Templates. In this context, we used two criterion to classify these periodic

sources:

3.3.1. Using the VVV template project

We expect low accuracies in the period estimation due to the relatively small number of epochs, as we pointed out

in section 2.2. With this in mind, we have used templates of those variables that we expected to find in this galactic

longitude, such as Classic Cepheids and Eclipsing variables. The δ Scuti stars were not considered in this analysis given

that just two light curve templates are available in Ks-band. Nevertheless, their periods are less than 0.2 days, and

may have similar characteristics to EBs (Dong et al. 2017). Several δ Scuti sources were identified around open clusters

in Ks-band (Palma et al. 2016), so we need more information for a well characterization of this type of variables.

We used templates of Classic Cepheid (103 templates in Ks, with 0.97 < P < 133.90) and Eclipsing Binaries (76

templates in Ks, with 0.305 < P < 16.092) to compare with light curves of our objects when its period P is contained in

the indicated period range of the templates. To quantify these comparisons, we performed a Fourier fit of N harmonics

into the phase space for each template and variable, given its period P and average magnitude 〈m〉 (see Figure 5). The

amplitude Ak and the phase φk for each k harmonic were determined. The Fourier series f(t) at time t is given by:

f(t) = 〈m〉+

N∑
k=1

Ak sin

(
2πkt

P
+ φk

)
. (5)

Each “synthesized” template was then normalized subtracting the integral of the obtained Fourier series. The

harmonic number N used to fit the model to periodic sources is N = 4. The periodic stars are classified using the

template that had the best goodness of the fit, using the reduced χ2
red statistics as the criterion. If a source has

χ2
red > 1, will remain as not classified.

3.3.2. Classifying RR Lyrae stars

RR Lyrae stars can be sub-classified by their locations in the Bailey diagram (Bailey 1902), given that RRc sources

have shorter periods than RRab type. Figure 5 of Gavrilchenko et al. (2014) shows that RRab and RRc categories

are located in different places of Bailey diagram. They also discuss the arbitrary limit P = 0.4 days to discriminate

between these categories. Using this, we define the RRc region (0.2 < P < 0.4 days) and the RRab region (0.4 < P < 1

days), and they are shown in Figure 8.

4. APPLICATION OF THE AUTOMATED PROCESS ON D001 AND D002 VVV TILES: THE V4 CATALOG.

4.1. Irregular variable sources

We had identified 72 variable sources that fulfill both the ∆Ks and η criteria. If a source presents periodicity, it is

removed from the sample and add to the periodic sample. This was the case of two sources (d001-79, d002-103) which

present a large amplitude and period, typical signatures of dust-enshrouded AGB stars, invisible in the optical range,

due to its thick circumstellar envelope, a product of its high mass-loss rate.

Finally, we identified 70 irregular variable sources, 45 of them belonging to d001 and 25 to d002. Almost two thirds of

them (64.28%) are projected in d001 tile and follow the cold gas/dust distribution as traced by the W3 (λeff = 12µm)

band WISE image (the background of Figure 6). The highest over-density is observed at the borders of the star

forming region, where the nebulosity is overwhelming, thus suggesting active star formation. All objects in the sample

are, to the best of our knowledge, reported here for the first time. Some of these sources are shown in the Figure 7.
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Figure 5. Examples of light curves of the periodic stars of RRab, RRc, Cepheid, Binary and LPV types. Red points in the
phase diagram are outliers of the Fourier fit. In the top of each plot the identification ID and obtained period P are shown.

The sample can be separated in two groups:

• Short-term irregular sources: As discussed in 2.2, the cadence of VVV can reveal objects with large changes in
their magnitudes in short periods of time, often associated with YSOs or PMS stars. Examples of such time

series are shown in Figure 7. As noted previously, intrinsic changes in the sources can be explained by variable

accretion (see e.g. Meyer et al. 1997; Rebull et al. 2014; Cody et al. 2014) referred to as bursts if there is a

brief, well defined event and then a return to quiescence. Variable extinction is also possible. The individual

characterization of the objects is beyond the scope of this paper, and they will be analyzed in an up-coming

work, once the follow-up spectroscopic analysis is completed.

• Long-term irregular variables: This kind of sources have a slow change of their magnitudes over the time series,

reaching large amplitudes ∆Ks in longer time intervals. In general, the sources do not exhibit large amplitude

changes in short time intervals, but increasing/decreasing their luminosities monotonically, and then in certain

cases returning to their mean magnitude. Possible mechanisms here are the eruptive episodes or long-term

extinction events, followed by quiescent periods. These time series can also reveal stellar sources as supernovae,

microlensing events (Minniti et al. 2015), LPVs, aperiodic long-term variability objects, and even extragalactic

variable sources such quasars. Examples of long-term irregular time series can be seen on the right panels of

figure 7.

In order to analyze the morphological behavior of VVV Irregular variable sources, Contreras Peña et al. (2017a),

influenced by previous works such as Findeisen et al. (2013), proposed the following classifications for their sample of
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Figure 6. Covered region by d001 and d002 tiles from VVV survey, showing the spatial distribution of identified sources.
Galactic north is up, galactic east is to the left. The symbols represent different types of variable stars found in the FoV, and are
explained in Section 4. In background, W3 (λeff = 12µm) band WISE image is shown to illustrate the cold gas/dust distribution
in the FoV.

high amplitude variables (∆Ks > 1 mag): Faders, Dippers, Short Time-scale Variables (STV) and Eruptives. However,

half of our irregular variables sample has an amplitude ∆Ks < 1 mag (right side of figure 9). Similar variable sources

with low amplitude have been reported in literature (see for example Wolk et al. (2013) and Carpenter et al. (2001))

with light curves similar to those reported in this work. Therefore, given that classification for irregular variables is

defined mainly by the shape of the time series, we extended the classification proposed in Contreras Peña et al. (2017a)

for low amplitude sources (∆Ks < 1 mag), making an exception with the Eruptive classification, which describes sources

with eruptions on timescales of hours to days. Sources that present eruptive long-timescales variability (t > 1 year)

and ∆Ks < 1 mag, will be classified as ’Low Amplitude Eruptive’ (LAE). We used this classification to characterize

our sources, when applicable. In Table 2, the main characteristics of the different proposed classes are explained.

4.2. Periodic variables stars

Our automated tool detected 22 periodic variable sources by the generalised Lomb-Scargle periodogram (GLS)

analysis, both in d001 and d002 tiles, with range of periods between 4.03 < P < 1400 days. Given the cadence of

our data, and the limitations of the GLS, we can not obtain reliable periods shorter than 2 days. The IP metric, on

the other hand, shows a great performance identifying periodic sources over the entire range of periods. Several stars

have been detected by both methods, showing practically identical periods within the uncertainties. Thus, taking into
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Figure 7. Examples of Ks-band time series of irregular variables. In the top of each plot the identification ID, mean magnitude
Ks, amplitude ∆Ks and variable type are shown.

account that the IP metric is computationally expensive, we used this method to search for shorter periods creating

a grid of periods between 0.05 and 5 days. The IP metric identified 108 sources with 0.2 < P < 3.1 days.

Figure 5 shows examples of the periodic variables, while in Figure 8 we show the Period-Amplitude diagram. As

can be seen, most of the stars have short periods, typical for RR Lyrae stars.

In some cases it was not possible to distinguish between different variability types. For example LPVs and YSOs

(Figure 5), thus we put mixed classification LPV-YSO, working on additional (spectroscopic) data to clarify.

4.3. General properties of selected sources

Figure 9 shows the ∆Ks distribution of the selected sources as a function of the mean Ks magnitude. The amplitude

interval is between 0.5 < ∆Ks < 3.2 mag an average value of 〈∆Ks〉 = 1.1 mag. The histogram is influenced mainly

by the periodic sources.

Figure 10 shows the position of the variable stars in the color-magnitude and color-color diagrams. To plot the

non-variable stars we used the first epoch of J and H band tile images taken in 2010. To analyze this, we have followed

the method, described in Ojha et al. (2004). Three regions are defined: The ’F’ region, which is located between the

reddening vectors of giant and dwarf stars. The ’T’ region is between the reddening vector of giant stars and CTTs



12 Medina et al.

Table 2. Characterization of the irregular variables in the categories proposed by Contreras Peña et al. (2017a)

Class Description

Dippers Shows fading events, to then return to their normal magnitude.

Eruptives
Shows sources with outbursts with amplitude > 1 mag

and duration longer than a few days and typically at least a year.

Low Amplitude

Eruptive

Sources that present outbursts with amplitude lower than 1 mag

and duration typically longer than a year
.

LPV-YSOs
Sources with a measured period, but with short-timescale

scatter in the time series.

Short Timescale

Variables

Sources with fast and constant scatter in their time series. They also

can show brief rises in the magnitude in time scales of weeks.

Faders
Shows a continuous decrease in brightness (t >1 yrs), or a big decrease

in its brightness in a source with relatively constant luminosity.

Figure 8. Period - Amplitude diagram of periodic variables in our catalog.

locus, where the Class II YSOs objects and Herbig Ae/Be stars (Hillenbrand et al. 1992) can be identified. In the

so-called ’P’ region, located below the reddening vector of CTTS the likely proto-stellar objects are situated. Thus,

the corresponding variability types are assigned. Column 32 of Table 5 contains the information of region in color-color

diagram for each source.

4.4. The completeness and accuracy of the catalog

The catalog is limited to sources brighter than Ks = 11 mag, given the saturation of limit of VVV. We are only

sensitive to the stars fainter than this magnitude limit. In the International Variable Star Index Catalog4 (VSX)

are listed 57 variables in d001 and 46 in d002 fainter than Ks = 11 mag. From these, 30 sources in d001 and 36

in d002 are identified in the photometry catalog, but all of them have a typical ∆Ks around 0.2-0.3 mag, which is

close to our conservative amplitude limit described in 2.3. This range of amplitudes is relatively low in comparison

4 https://www.aavso.org/vsx/index. php?view=search.top
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Figure 9. Left: The ∆Ks distribution of the selected sources vs. Ks. Right: The histogram of ∆Ks distribution. In this figure,
∆Ks is truncated at 2.3 magnitudes, given that the source d001-79 has much larger amplitude than other sources (∆Ks = 3.2
mag). The symbols are the same as in the Figure 6.

Figure 10. The color-magnitude and color-color diagrams of all variable stars in d001 and d002. The solid black lines are the
intrinsic colors of dwarf and giants stars from Bessell & Brett (1988), the solid red line is the locus of un-reddened CTTs (Meyer
et al. 1997), and the dashed red lines are the reddening vectors of the early spectral type dwarfs, giants stars and un-reddend
CTTs, assuming a visual extinction AV = 15 magnitudes. The symbols are the same as in the Figure 6.

of the average amplitude 〈∆Ks〉 = 1.1 mag of the selected variable sources. (see figure 11). Taking into account that

these variables are detected in the optical wavelengths, the amplitudes are too low to be detected in Ks-band with

our searching method. Four sources from the VSX are recovered in our catalog, namely d001-20, d001-81, d002-8

and d002-60, the rest of the stars with amplitudes greater than 0.3 have least than 25 measurements. Thus, in the

magnitude interval 11 < Ks < 15.5 mag we recovered only 6% of the known optical variable stars, and more than

90% of our discoveries are new. In the context of previous Ks-band studies, Minniti et al. (2017) and Eyheramendy

et al. (private communication) reported 1 and 13 RRab stars in d001 and d002, respectively. The Minniti et al.

(2017) RRLyrae star ’d002-0143595’ has been re-discovered in our catalog as source d002-20, with practically the same

period P = 0.456794 (with a discrepancy lower than 0.01%). Twelve of 13 RR Lyrae stars from Eyheramendy et al.
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Figure 11. Histograms of the amplitudes of know variable stars from “International Variable Star Index Catalog” for d001
and d002.

Figure 12. Correlation plots using the main features in this analysis. The blue crosses are the irregular variables, and the red
stars are the periodic sources.

list are re-discovered in our catalog. The only source missed by our procedure has ∆Ks = 0.195 mag and is rejected

from our initial conditions. Thus, the completeness of the catalog 11 < Ks < 15.5 mag is very close to 90%. We are

expecting drops of the completeness for the fainter than Ks > 15.5 mag objects, but it is hard to estimate due to lack

of literature data.

Figure 12 presents the main features η (top row) and ∆Ks (bottom row) as a function of different variability indices

used in this article (see Table 1). The distribution of all detected sources in tile d001 is shown in background. The red

stars represent the periodic sources, and the blue crosses are the irregular ones. As can be seen from the figure, the

irregular variable sources are well separated from the distribution and follow different trends in the plots. The source

d001-75 is an exceptional case, having an amplitude of ∆Ks = 1.151 mag, η = 3.193, and a low number of observations

(26 epochs). Excluding d001-75, the irregular sources fulfill Jstet > 0.95, which agrees with the limit used in Rebull

et al. (2014). In the case of the periodic sources with short periods, in general they are located in the place where

the main distribution is contained given the apparently uncorrelated shape of its time series, produced by the lack of

observations.
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4.5. Variable stars around open clusters in the d001 and d002 tiles

Figure 13. The false color VVV images of star clusters projected in d001. North is up, East is to the left. The red circles
represent visual diameter of the clusters as defined in the text (see below).

Nine open cluster candidates are projected in the field of view of d001 and d002, namely VVV CL005, 007 and

009 (Borissova et al. 2011) and La Serena 001, 002, 003, 009 and 015 (Barbá et al. 2015). The coordinates of the

clusters are listed in Table 3 and the VVV color images of clusters in d001 are shown in Figure 13 for illustration.

Little is known about their properties, except for VVV CL009, which has been investigated in Chené et al. (2013) and

Hervé et al. (2016). According to these papers, the VVV CL009 is young (4-6 Myr), moderately massive stellar cluster

(total mass greater than 1000 M�), containing at least two O8-9V and an OIf/WN7 stars. The cluster distance of 5

kpc is estimated by Chené et al. (2013) using spectroscopic parallaxes. In the context of this paper, we search for

variable YSOs around these clusters, that could be cluster members. To do this, we use the shape of the light curves,

their position on the color-magnitude diagrams, the projection within the visual diameter of the clusters and proper

motion diagrams taken from Smith et al. (2018).

To estimate the projected cluster radius, we combined the existing VVV Ks-band images (55 in case of d001 and

41 for d002 tiles) using the standard IRAF procedures and then, the PSF photometry with Daophot in IRAF was

performed. The obtained magnitudes were transformed to 2MASS system using common stars. The details of these

procedures can be seen in Borissova et al. (2011, 2014). These photometric catalogs were used to construct the stellar

surface-density maps, by performing direct star counting in the Ks-band with a 5′′ bin radius, assuming spherical

symmetry. The maps are normalized by the area of the rings to determine the stellar density. The resulting spatial

distribution maps of the stellar surface density are shown in Figure 14.

As can be seen from Figure 14, the over-density of the stars is clearly visible, the density peaks are at least 3 times

higher that the surface density of surrounding fields, thus confirming the cluster/group nature of the candidates. The

cluster boundary was determined by fitting the theoretical profile presented in Elson et al. (1987). The obtained visual

radii of the clusters are listed in Table 3, where the errors correspond to uncertainties from the model fit.

The procedure employed for determining the fundamental cluster parameters such as age, reddening, and distance

is described in Borissova et al. (2011, 2014) and Chené et al. (2012, 2013). Briefly, to construct the color-magnitude

diagram we perform PSF photometry of 5 × 5 arcmin J, H, and Ks fields surrounding the selected candidate, using

the Dophot pipeline. Data for saturated stars (usually Ks ≤ 11.5 mag, depending from the crowding) were replaced by
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Figure 14. Stellar surface-density maps σ (stars/arcmin2) of the clusters.

Table 3. Basic information of the star cluster candidates in the region.

Tile ID Name Ra2000 Dec2000 ` b Radius E(J−K)

(h:m:s) (d:m:s) (deg) (deg) (arcmin) (mag)

d001 VVVCL005 11:38:59 -63:28:42 294.9481 -1.7353 0.50±0.15 1.4±0.3

La Serena 001 11:39:13 -63:29:04 294.9726 -1.7292 0.52±0.10 2.8±0.6

La Serena 002 11:39:22 -63:28:11 294.9896 -1.7188 0.52±0.17 3.1±0.4

La Serena 003 11:40:28 -63:27:58 295.1026 -1.6779 0.48±0.09 3.2±0.5

La Serena 009 11:45:04 -63:17:44 295.5571 -1.3788 0.72±0.10 2.2±0.3

d002 VVVCL007 11:53:50 -64:20:28 296.7463 -2.1629 0.33±0.08 2.2±0.2

VVVCL008 11:55:29 -63:56:24 296.7611 -1.7328 0.42±0.10 1.4±0.2

VVVCL009 11:56:03 -63:19:00 296.8331 -1.1105 0.60±0.20 1.0±0.1a

La Serena 015 11:55:23 -63:25:30 296.7131 -1.2336 0.33±0.07 1.4±0.2

a: Chené et al. (2013)

data from the 2 MASS Point Source Catalog (Skrutskie et al. 2006). Since 2MASS has a much lower angular resolution

than VVV, when replacing stars we carefully examined each cluster to avoid contamination effects of crowding, using

the Point Source Catalog Quality Flags available in 2MASS catalog.

To separate the field stars from probable cluster members we used the field-star decontamination algorithm of Bonatto

& Bica (2010). The algorithm divides the Ks, (H − Ks) and (J − Ks) quantities into a grid of cells. For each cell,

the algorithm estimated the expected number density of member stars by subtracting the respective field-star number

density. Thus, each grid setup produced a total number of member stars Nmem. Repeating the above procedure for

different setups, we obtained the average number of member stars. Each star was ranked according to the number

of times it survived after all runs (survival frequency), and only the Nmem highest ranked stars were taken as cluster

members. For the present cases we obtained survival frequencies higher than 85%. To additionally clean-up the

diagrams, we used the relative proper motion catalog recently constructed by Smith et al. (2018). In general, the

cluster members should form clearly visible overdensity with respect to field stars in the proper motion diagram. In

our case (see Figure 15) it is impossible to separate the cluster members from the field stars, because the cluster

members closely follow the motion of the Galactic disk. Nevertheless, they mark compact groups, slightly shifted

from the disk population. To calculate the radius of the group, we started from the photometrically decontaminated

candidates, calculated the mean proper motion and its error (quadratically adding to this error the mean of the
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individual proper motion errors), and drew the circle with 3σ radius (blue circle in Figure 15). Thus, the stars with

motion projected farther than 3σ from the circle are rejected.

Figure 15. The relative proper motion of the CL005, LS001 and LS002. The gray points are all stars in 5x5 arcmin area, blue
ones stand for most probable cluster members, obtained after statistical photometric decontamination procedure, red point are
emission candidates (see text), and green ones are the variable stars. The big blue circle marks the suggested area of cluster
members.

Taking into account that our candidates are classified as young clusters in the discovery papers of Borissova et al.

(2011) and Barbá et al. (2015), the photometry/astrometry alone can not give accurate distance and age determina-

tions. Usually, spectroscopic parallaxes from follow-up observations of selected members are needed. Here, only VVV

CL005 has one follow-up object observed, thus it was impossible to obtain accurate basic parameters of the clusters.

Instead, we use the PARSEC isochrones compilation for solar metallicity and ages of 5 and 400 Myr (Bressan et al.

2012; Marigo et al. 2017) to illustrate the position of the most probable cluster members and to estimate their mean

reddening (last column in Table 3).

4.5.1. Notes of individual clusters: VVV CL005

The cluster VVV CL005 is a young star cluster candidate, defined in Borissova et al. (2011) as a small group of

24 stars; it is projected close to the IC 2944 H II region and to the IC 2948 cluster (3.8 arcmin), on the part of the

cloud [SMN83] Lam Cen 1. The brightest star within the cluster radius, namely HD308829, is classified as a Be star

of B8 spectral type and is suggested to be a member of IC 2944 cluster (Cl* IC 2944 THA 51). The star is found to

be a periodic variable star with P=0.8709 days (Pojmanski 1998), but we can not follow its variability with VVV,

because the star is saturated in our images (K = 9.68 mag). The published distance to the IC 2944 H II region varies

from 1.8 kpc (McSwain & Gies 2005) to 2 kpc (Sana et al. 2011) in the literature. The color-magnitude diagram of

VVV CL005 (Figure 16) shows a poorly populated main-sequence and some reddened stars, suggesting indeed a very
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Figure 16. The KS vs. (J−KS) color-magnitude diagrams for the clusters in the field of view of d001 and d002. Black points
are all stars in 5 × 5 arcmin field around cluster centers, blue circles are the most probable cluster members, after statistical
photometric decontamination. Red circles are variable stars (see text). The Geneva isochrones of 5 Myr (400 Myr for VVV
CL008) and Z=0.020 are plotted with green lines. Red line represents the sequence of the zero-reddening stars of luminosity
classes V (Schmidt-Kaler 1982) for illustration.

young stellar group. With regards to the distance, it is impossible to estimate it from comparison with the theoretical

isochrones, because the isochrones for ages younger than 5 Myr in this mass interval in the near infrared bands are

vertical and practically identical. Then, the spectroscopic distance is calculated using the spectral classification of Obj1

(Ra=11:38:57.73 and Dec=−63:28:22.4). The object is observed with the ARCoIRIS (Astronomy Research Cornell

Infra Red Imaging Spectrograph). This is a cross-dispersed, single-object, longslit, infrared imaging spectrograph,

mounted on Blanco 4-m Telescope, CTIO. The wavelength range is from 0.80 to 2.47 µm, with spectral resolving

power about 3500. The comparison with different spectral templates taken from VOSA (Bayo et al. 2008) gives

the most probable spectral type F4-F6V, used to estimate the spectroscopic parallax. We calculated reddening and

distance modulus of E(J−Ks) = 1.4±0.3 and (M−m)0 = 10.45±0.43 mag (1.23±0.24 kpc), respectively. The distance
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is comparable with distance estimates of 1 kpc as measured from the interstellar silicon monoxide (SiO) sources (Harju

et al. 1998). Five variables (d001-25, 27, 28, 29, 30, see Table 6) are probable cluster members, taking into account their

projected position radius from the cluster center and the position in the color-magnitude and proper motion diagrams

(Figure 16, Figure 15). All of them show irregular variability, with relatively large amplitudes (0.63 < ∆Ks < 0.88

mag) and thus can be classified as YSOs.

4.5.2. La Serena 001

The star cluster candidate La Serena 001 (LS001) is projected very close to VVV CL005, on the same H II region

and contains a few very reddened stars (see Figure 16). These objects are deeply embedded in dust and gas. We

adopted the same distance as for CL005, and using 5 Myr isochrone determine E(J − K) = 2.8 ± 0.6. Note the large

uncertainty of the reddening determination, which can be result of a strong differential reddening inside the region.

One variable star (d001-32) is found in the vicinity of this group in formation. It shows an irregular time series and

∆Ks = 0.96 mag. Taking into account the time series and its position of the CMD (in the ’P’ region), most probably

it is an YSO candidate.

4.5.3. La Serena 002

The star cluster candidate La Serena 002 (LS002) is projected close to LS001 in the North-East direction. Several

embedded and very red sources are visible, indicating stars in formation. The color-magnitude diagram is poorly

populated, thus as in the case of LS 001 we determined the mean reddening of E(J − K) = 3.1 ± 0.4 adopting the

same distance modulus as above. One periodic variable star (d001-38) is found, with ∆Ks = 0.453 mag and period

P = 42.706 days, which we classified as a Cepheid. Additionally, this source is far from the main locus of most probable

cluster members in the color-magnitude and proper motion diagrams, thus we conclude that is a projected field star.

Two more irregular variables (d001-35, d001-36, see Table 6) with amplitudes between 0.84 < ∆Ks < 0.91 mag are

most probably cluster members and YSO candidates.

4.5.4. La Serena 003 and La Serena 009

The star cluster candidates La Serena 003 and 009 are groups of stars in formation, deeply embedded in dust and

gas. No stars with variation in the magnitude above our sensitivity limit of ∆Ks > 0.2 mag are found in the vicinities

of clusters. One YSO candidate IRAS 11426-6301 in the field of LS 009 is reported by Kwok et al. (1997). Later on,

Mottram et al. (2011) and Lumsden et al. (2013) resolved the source to YSO (G295.5570-01.3787A) and H II region

(G295.5570-01.3787B, separated by 5 arcsec) on the base of far-infrared MSX measurements. They determined the

radial velocity of 37.2 km/s and kinematic distance to both sources of 10.4 kpc. The bolometric luminosities of the

YSO is calculated as 5980 L�, while the H II region has 63570 L�, the log Mass of the whole clump is estimated to be

3.106 M� according to the same authors. Navarete et al. (2015) reported an extended H II emission associated with

the region. Our Ks-band light-curve (Figure 17) shows low amplitude variability of 0.27 mag during the 2010-2015

time interval, with Ks = 11.365 mag. Note, however that the 2MASS magnitude (taken from “The 2MASS Extended

sources catalog” (Skrutskie et al. 2006)) is K = 8.94 magnitude, thus the star most probably shows a long-term

variability.

IRAS 11426-6301 was observed on May 2017 with ARCoIRIS spectrograph, with 480 sec. integration time, at 1.28

average airmass. We reduced the spectrum using the Spextool IDL package (version 4.1, Cushing et al. (2004)), which

is a data reduction algorithm specifically designed for the data format and characteristics of ARCoIRIS by Dr. Katelyn

Allers. Telluric correction and flux calibration of the post-extraction spectra are achieved through the xtellcorr IDL

package (Vacca et al. 2003). Figure 17 shows the spectrum, normalized at 2.293 microns. As can be seen from the

figure, the continuum level is flat to slightly rising. The overall spectra energy distribution is peaking at around 2.5

microns. The H I and He I lines are clearly visible in absorption, some Ti lines and Na I doublet (2.21 microns) in

absorption also can be identified. The Ca I triplet (2.26 microns) and 12CO bands (2.29 microns) are missing. While

the H I and He I reprecent in general early type stars, the Ti and Na features are typical of low mass YSOs. The

absence of CO band means a absence of circumstellar disk. A possible explanation for this contradiction could be

related to the photodisociation of CO molecule. This phenomenon (where one even detects CI but no CO, or a much

lower abundance than expected) has been observed around young A-type stars in deep searches for molecular gas in

debris disks (Higuchi et al. 2017). Thus, the spectrum shows mixed features arising from both high and low mass

young stars. Taking into account the kinematic distance of 10 kpc this object could be an unresolved compact cluster

or group of young stars.
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Figure 17. The VVV time series and the ARCoIRIS spectrum of IRAS 11426-6301 YSO candidate.

4.5.5. VVV CL007

One variable (d002-35) is detected with our algorithm very close to the center of VVV CL007 cluster. Taking into

account its high amplitude ∆Ks = 1.76 mag, its position on the CMD (in the ’P’ region) and its classification as

Eruptive variable (Contreras Peña et al. 2017a) most probably is it a YSO.

4.5.6. VVV CL008, VVV CL009 and La Serena 015

No variable stars are detected around VVV CL008, CL009 and La Serena 015. In Chené et al. (2013) we classify

the Obj 4 (Ra=11:56:03.03 and Dec=−63:19:00.72) of VVV CL009 as a Be star.

In summary, only a few variable YSOs around the clusters are detected in the near infrared.

4.6. Stars with Hα photometric emission

The clusters in the tile d001 are very young, still in formation and are surrounded by dust and gas, thus we can use

the photometric catalogs from VPHAS+ survey (Drew et al. 2014) in order to search for additional YSOs and Hα

emission candidates. The VPHAS+ catalog contains magnitudes in five filters: u (λeff = 354nm), g (λeff = 475nm),
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Figure 18. The (r−Hα, r− i, ) color-color diagrams. Blue circles show the selected emission stars, the red and blue solid lines
are the synthetic unreddened main sequence and giant sequences, while the dashed ones corresponds to the corrected for the
reddening sequences (Drew et al. 2014). Red circles in the top plots are infrared variable YSOs found in this work.

r (λeff = 622nm), i (λeff = 763nm) and Hα (λeff = 659nm). Following Kalari et al. (2015), we construct the

(r − i, r − Hα) color-color diagrams using DR2 of VPHAS+ catalog. The main-sequence stars do not show any Hα

emission with respect to the r-band photospheric continuum. We use the VST/OmegaCAM synthetic colors for main-

sequence and giant stars in the (r − Hα, r − i) plane (Drew et al. 2014) and selected the stars with more than 5σ

deviation from these synthetic sequences, corrected for the corresponding reddening (dashed lines in Figure 18). The

73 selected sources are shown in Figure 18 and summarized in Table 4.

The cross-identification of these sources with the Ks variability catalogs shows that the peak of amplitudes is around

0.3 mag (Figure 19). As we stated in section 2.3, we set our detection limit of spread of the magnitude measurements

with time to be greater than 0.2 mag. For sources below this threshold, we treat these objects as constant at our

sensitivity level. Thus, only a few of the infrared variable YSOs (d001-25, d001-32) are emission line object candidates.
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Table 4. VPHAS+ r, (r − i) and (r −Hα) magnitudes and colors of the YSO candidates. The full version is available online.

ID RA2000 DEC2000 r r − i r −Hα

(deg) (deg) (mag) (mag) (mag)

CL005 C1 174.71433 -63.48757 17.98±0.02 1.08 ±0.011 1.04 ±0.01

CL005 C2 174.71582 -63.46827 19.39±0.04 0.97 ±0.025 1.08 ±0.03

CL005 C3 174.71664 -63.48768 20.29±0.10 1.53 ±0.054 0.95 ±0.09

CL005 C4 174.71783 -63.48682 18.37±0.02 1.05 ±0.011 0.99 ±0.02

CL005 C5 174.71942 -63.4668 19.67±0.05 1.37 ±0.032 0.99 ±0.04

Figure 19. The distribution of amplitudes in the Ks-band of the emission line candidates.

5. SUMMARY

We have developed an automated process for identification, classification and analysis of variable sources using the

VVV Ks-band time series, which are extracted directly from the 1.5 × 1.2 degrees image tiles. This process was

created to automatically analyze the VVV tiles, given the huge amount of available data. The sources that present

variability in the NIR are cataloged, in order to understand the physical process behind its variability, its spatial

distribution, evolutionary state and relation with its environment. The gathered information from these sources will

be collected in ”VVV Variables (V4)” catalog, which will be publicaly avaliable in VISTA Science Archive (VSA,

http://vsa.roe.ac.uk/index.html) database and constantly updated adding newly processed VVV tiles.

This process is based on Dophot PSF photometry to create a multi-epoch Ks-band catalog of detected sources in

the FoV. We also obtained the J and H band photometry, using the data taken in 2010. All the PSF photometry

was calibrated using the aperture catalogs made by CASU. To test this method, we select d001 and d002 tile regions,

covering an area of ∼ 3.6 deg2. A total of 1,308,626 point sources between 10.8 ≤ Ks ≤ 17.2 mag were detected.

The time series of sources with more than 25 epochs and amplitude ∆Ks > 0.2 mag were selected and analyzed

through different methods in order to detect real variables. To avoid outliers, suspicious photometric measurements

were removed from the light-curves using the modified Thompson τ technique.

Our automated tool identified 200 sources with prominent NIR variability. Using two main variability indices (∆Ks,

η), we identified 70 variable sources without periodic or semi-periodic behavior, which are bona-fide irregular variables.

On the other hand, we used periodograms (GLS, IP) to identify periodic sources, finding 130 of them. All identified
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sources have an average Ks magnitude distributed between 11.2 < Ks < 16.4 mag, and a total amplitude contained

between 0.2 < ∆Ks < 3.3 mag. About 90% of these sources are previously unknown as variable stars.

For each source with available J and H photometric measurements, its position in the (H − Ks, J − H) color-color

diagram was reported, dividing this diagram into three parts (the ’F’, ’T’ and ’P’ region), following the procedures

of Ojha et al. (2004), in order to extract information about the evolutionary state of those sources.

In the case of the irregular variable sources, they were classified using the framework of Contreras Peña et al. (2017a),

who use the time series morphology to classify the sources into 5 categories (Dippers, Eruptives, LPV-YSOs, STVs,

Faders). The LPV-YSO sources, together with the periodic variable sample, will be analyzed in a subsequent paper.

Sources that could not be classified unambiguously into the aforementioned categories, are marked as ”unclassified”. In

total, we classified 20 STVs, 12 Eruptives, 5 Dippers, 7 Faders, 8 Low Amplitude Eruptive Variables, and 18 sources

remained unclassified. These variable stars have amplitudes ∆Ks > 0.63 mag, η < 0.82 and Jstet > 0.95, without

counting the source d001-75, which has η = 3.193. and Jstet = −1.55.

We examined some parameter distributions in the specific parameter space (Graczyk & Eyer 2010) in order to

separate the variability types. For example a χ2 parameter (in logarithmic scale) can separate the periodic sources

from the main distribution when log(χ2) > 0.8. In the future, we will use this to optimize the process of generation

and analysis of time series and light curves in the VVV in the supervised algorithms of machine learning.

We classified 25 RRab, 42 RRc, 13 Classic Cepheids, 33 Binaries, 7 LPV, 7 LPV-YSOs and three periodic variables

remain unclassified. The periodic sources have a distribution of periods between 0.2 < P < 1430 days and an average

Ks magnitude distributed between 11.3 < Ks < 16.32 mag.

We also analyzed nine open cluster candidates using surface-density maps, color-based decontamination and proper-

motion decontamination algorithms to determine the radii of the clusters. We have estimated the mean reddening

E(J−Ks) by comparison with the PARSEC isochrones for solar metallicity. We were only able to determine a distance

modulus for VVV CL005 cluster, using the spectroscopic parallax. This cluster also has the larges number of irregular

variables as probable cluster members (d001-25, 27, 28, 29 and 30). The cluster LS002 has two irregular variables, while

clusters LS001 and VVV CL007 have one irregular variable, each other, as probable cluster members. All irregular

sources projected close to open clusters in the region are young stellar object candidates.

Given the low number of irregular variable sources that we found around open clusters, we used the VPHAS+ survey

to identify excess in Hα-band. We have selected 73 stars with more than 5σ difference from the VST/OmegaCAM

synthetic colors for main-sequence and giant stars in the (r− i, r−Hα) plane (Drew et al. 2014). We noted that 64%

of this sample has low amplitude ∆Ks < 0.4 mag, so this could be a good complementary method to find YSOs.
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Table 5. Information of content of V4 Catalog

Column Units Description

ID - Identification given by the catalog.

Ra2000 Degrees Right Ascension of VVV source.

Dec2000 Degrees Declination of VVV source.

GLon Degrees Galactic longitude of VVV source.

GLat Degrees Galactic latitude of VVV source.

Ks mag Photometric mean value of Ks-band.

K
err
s mag Estimation of Ks error using bootstrap technique.

Epochs - Observation number of the source in their Ks time serie.

∆Ks mag Photometric total amplitude of Ks-band.

J mag Photometric J-band.

Jerr mag Photometric J-band error.

H mag Photometric H-band.

Herr mag Photometric H-band error.

u mag Photometric u-band.

uerr mag Photometric u-band error.

g mag Photometric g-band.

gerr mag Photometric g-band error.

r mag Photometric r-band.

rerr mag Photometric r-band error.

r2 mag Photometric r2-band.

r2err mag Photometric r2-band error.

i mag Photometric i-band.

ierr mag Photometric i-band error.

Hα mag Photometric Hα-band.

Hα err. mag Photometric Hα-band error.

η - Value of the variability index η.

Class - Classification via VVV templates light curve or shape of the time serie.

Tile ID - VVV tile where the source is located.

Period days Identified period for a VVV source.

AKs mag Extinction measured using Nishiyama et al. (2009).

Distance Kpc Distance measured from PL relations of RRab sources.

CCD - Position in (H−Ks,J−H) color-color diagram.

Reference - Reference to catalog of a documented source.

APPENDIX

A. BASIC INFORMATION OF V4 CATALOG.
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Dong, H., Schödel, R., Williams, B. F., et al. 2017,

MNRAS, 471, 3617

Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2009,

ApJ, 696, 870

Drew, J. E., Gonzalez-Solares, E., Greimel, R., et al. 2014,

MNRAS, 440, 2036

Elorrieta, F., Eyheramendy, S., Jordán, A., et al. 2016,

A&A, 595, A82

Elson, R. A. W., Fall, S. M., & Freeman, K. C. 1987, ApJ,

323, 54

Findeisen, K., Hillenbrand, L., Ofek, E., et al. 2013, ApJ,

768, 93

Gavrilchenko, T., Klein, C. R., Bloom, J. S., & Richards,

J. W. 2014, MNRAS, 441, 715

Graczyk, D., & Eyer, L. 2010, AcA, 60, 109

Gran, F., Minniti, D., Saito, R. K., et al. 2016, A&A, 591,

A145

Harju, J., Lehtinen, K., Booth, R. S., & Zinchenko, I. 1998,

A&AS, 132, 211

Herbig, G. H. 1966, Vistas in Astronomy, 8, 109

Herbig, G. H. 1989, in European Southern Observatory

Conference and Workshop Proceedings, Vol. 33,

European Southern Observatory Conference and

Workshop Proceedings, ed. B. Reipurth, 233–246
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