
Neural Networks 131 (2020) 37–49

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Sparse codingwith a somato-dendritic rule
Damien Drix a,b,c,∗, Verena V. Hafner b,c, Michael Schmuker a,c

a Biocomputation group, Department of Computer Science, University of Hertfordshire, Hatfield, United Kingdom
b Adaptive Systems laboratory, Institut für Informatik, Humboldt-Universität zu Berlin, Berlin, Germany
c Bernstein Center for Computational Neuroscience, Berlin, Germany

a r t i c l e i n f o

Article history:
Received 17 January 2020
Received in revised form 30 April 2020
Accepted 4 June 2020
Available online 26 June 2020

Keywords:
Sparse Coding
Neural Plasticity
Hebbian Learning
Dendrites
Inhibitory plasticity
Spiking Neurons

a b s t r a c t

Cortical neurons are silent most of the time: sparse activity enables low-energy computation in the
brain, and promises to do the same in neuromorphic hardware. Beyond power efficiency, sparse codes
have favourable properties for associative learning, as they can store more information than local codes
but are easier to read out than dense codes. Auto-encoders with a sparse constraint can learn sparse
codes, and so can single-layer networks that combine recurrent inhibition with unsupervised Hebbian
learning. But the latter usually require fast homeostatic plasticity, which could lead to catastrophic
forgetting in embodied agents that learn continuously. Here we set out to explore whether plasticity
at recurrent inhibitory synapses could take up that role instead, regulating both the population
sparseness and the firing rates of individual neurons. We put the idea to the test in a network that
employs compartmentalised inputs to solve the task: rate-based dendritic compartments integrate the
feedforward input, while spiking integrate-and-fire somas compete through recurrent inhibition. A
somato-dendritic learning rule allows somatic inhibition to modulate nonlinear Hebbian learning in the
dendrites. Trained on MNIST digits and natural images, the network discovers independent components
that form a sparse encoding of the input and support linear decoding. These findings confirm that
intrinsic homeostatic plasticity is not strictly required for regulating sparseness: inhibitory synaptic
plasticity can have the same effect. Our work illustrates the usefulness of compartmentalised inputs,
and makes the case for moving beyond point neuron models in artificial spiking neural networks.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Activity in the brain is sparse: a given pyramidal neuron spikes
infrequently (lifetime sparseness), and few neurons are active at
once (population sparseness). This coding scheme is efficient in
terms of energy use, and also in terms of storage capacity (Ol-
shausen & Field, 1997): the same cell can participate in multiple,
overlapping assemblies (Hebb, 1949) that are active in different
contexts.

Beyond energy and storage efficiency, the promise of sparse
codes is that they can reveal structure in natural inputs which
makes it easier to learn associative mappings: detect a stimulus,
transform a pattern of neural activity into motor commands, or
prime the activation of another cell assembly. In some sense,
every pathway that links two populations of neurons involves
a transformation of one neural code into another, and a sparse,
decorrelated code can reduce the computational cost of these
transformations by allowing linear readouts (Buzsáki, 2010; Fusi,
Miller, & Rigotti, 2016).
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The classical way to learn sparse codes involves the informa-
tion-maximisation principle of Bell and Sejnowski (1995) for
blind source separation. In independent component analysis
(Hafner, Fend, König, & Körding, 2004; Hyvarinen & Oja, 2000;
Olshausen & Field, 1997) and sparse auto-encoders (Makhzani
& Frey, 2015), the algorithm works to minimise a global cost
function that includes a sparse constraint. Here, we focus on a
family of single-layer networks that do not compute a global cost
explicitly. Instead, these networks learn sparse codes with local
learning rules thanks to the combination of two unsupervised
heuristics: projection pursuit and competitive learning.

Projection pursuit looks for receptive fields with a non-Gaus-
sian activity distribution. Diaconis and Freedman (1984) note that
these tend not to occur by chance, reflecting instead some funda-
mental structure in the input — a characteristic that reminds us
of the suspicious coincidences of Barlow (1987).

As for competitive learning, described by Rumelhart and Zipser
(1985), it aims to reduce the redundancy of the code and decor-
relate the output dimensions, so that each neuron responds
to a different feature. This usually involves a winner-take-all
system (Kohonen, 1990), or inhibitory connections between the
coding neurons (Marshall, 1990, 1992) — an organisation which
is equivalently called lateral, recurrent or mutual inhibition.
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Starting with Földiák (1990), these two heuristics have been
applied in a variety of sparse coding networks with rate-based
(Butko & Triesch, 2007; Falconbridge, Stamps, & Badcock, 2006;
Lucke, 2007) and then spiking neurons (Ferré, Mamalet, & Thorpe,
2018; King, Zylberberg, & DeWeese, 2013; Savin, Joshi, & Triesch,
2010; Zylberberg, Murphy, & DeWeese, 2011). These networks
have in common the use of Hebbian lateral inhibition to decor-
relate the output, and of nonlinear Hebbian rules to perform
projection pursuit on the feedforward input.

Nonlinear Hebbian learning, to follow the terminology of Brito
and Gerstner (2016), refers to a variant of Hebbian learning
where the change of weight is proportional to the correlation
between the input and a nonlinear function of the output (more
precisely, of the receptive field activation). The Bienenstock–
Cooper–Munro (BCM) rule (Bienenstock, Cooper, & Munro, 1982)
is an early example of such a rule, inducing depression when
the output activity is below average and potentiation when it is
above average. This steers gradient descent towards an activity
distribution with heavy tails, which typically converges onto one
of the independent components.

As noted by Brito and Gerstner (2016), the precise shape of
that nonlinear function is not critical. The trick is to keep it
aligned with the activity distribution throughout learning, so that
the potentiation region stays centred on the tail. Usually, this is
done by enforcing a constant norm for the weight vectors, or by
using a homeostatic term that moves the potentiation threshold
according to the average activity of the neuron, as in the BCM
rule. That homeostatic term has the effect to regulate the lifetime
sparseness of the neuron and is also called intrinsic plasticity (IP)
by Triesch (2005), to distinguish it from synaptic plasticity.

In most models, IP needs to be faster than the Hebbian com-
ponent of learning (Triesch, 2007; Zenke, Hennequin, & Gerst-
ner, 2013). But in vivo, IP tends to be slower, acting over a
timescale of days rather than minutes (Chistiakova, Bannon,
Chen, Bazhenov, & Volgushev, 2015; Toyoizumi, Kaneko, Stryker,
& Miller, 2014; Zenke, Gerstner, & Ganguli, 2017). Besides, fast fir-
ing rate homeostasis could be particularly disruptive for animals
and robots that learn continuously, and cannot assume that the
feature detectors they have acquired will be stimulated at regular
intervals.

Here we propose an alternative scheme that does not require
fast intrinsic plasticity. The idea is to put mutual inhibition itself
in control of the Hebbian nonlinearity: stimuli for which many
neurons compete to respond, and neurons that are often active
as well, would attract more lateral inhibition and be subject to
a higher potentiation threshold. In other words, instead of using
intrinsic plasticity to enforce lifetime sparseness, this scheme
would regulate both the population and the lifetime sparseness
through synaptic plasticity.

To do so, we need a mechanism through which the feedfor-
ward learning rule could measure the amount of competition on
an input-by-input basis and use it as a negative feedback. But
artificial neural networks usually employ point neurons, where
all inputs are added together into a single activity variable. The
consequence is that the learning rule cannot distinguish between
stronger lateral inhibition – the signal to become more selective
– and weaker feedforward activity that results from synaptic
plasticity or from fluctuations in the input.

The solution could be to integrate the feedforward and re-
current pathways in separate neural compartments, for instance
the soma and a dendrite. The dendritic compartment could then
estimate the amount of somatic inhibition by comparing its local
depolarisation with the somatic activity that it perceives via
backpropagating action potentials.

The idea has been tried before, although not on a sparse
coding task. In Körding and König (2000), lateral inhibition can

Fig. 1. Architecture of the network. Annotations indicate the feedforward
input x, leaky integrate-and-fire (LIF) somas and their firing rate z, dendritic
compartments and dendritic activity y, and feedforward and recurrent pathways
with weights w and q, respectively. The symbol • denotes an inhibitory synapse,
◦ an excitatory one.

prevent the backpropagating action potentials from reaching the
dendrites, which induces depression in dendritic synapses via
spike-timing dependent plasticity. Urbanczik and Senn (2014) use
probabilistic spiking neurons where the dendritic compartment
tries to match the somatic potential; this results in depression
when unpredicted external inputs inhibit the soma, and potenti-
ation when these unpredicted inputs are excitatory instead.

Here we set out to investigate whether a variant of these
somato-dendritic learning rules could discover sparse codes in
natural stimuli. We found that one can adjust the somatic and
dendritic transfer functions to produce a BCM-like curve where
the threshold between depression and potentiation follows an in-
stantaneous measure of somatic inhibition. This lets the network
learn sparse codes by regulating population sparseness instead of
lifetime sparseness, and does not require fast intrinsic plasticity.

2. Results

2.1. Network model

Our model is a network of N neurons, each of which consists
of a spiking, leaky integrate-and-fire (LIF) soma, and a rate-based
dendritic compartment (Fig. 1). We summarise its main features
here and refer the reader to the Methods section for the full
details.

The dendrites have distinct receptive fields w and integrate
feedforward input rates x for each stimulus, yielding a current Id:

gd =
∑
pre

xprewpre→post receptive field activation

y = max(gd, 0) dendritic activation

Id =
{

y0 + κy if y > 0
0 otherwise

dendritic current

(1)

The somas integrate both the dendritic current Id and a cur-
rent Is from recurrent inhibitory synapses to drive a varying
membrane potential u:

τm
du
dt
= Id + Is − u (2)

Somas emit spikes according to standard LIF dynamics with a
fixed threshold, fixed reset and no refractory period. These spikes
induce recurrent inhibition throughout the network via the cur-
rent Is, and are also used to compute a firing rate z that modulates
learning in both the dendritic and the somatic synapses.

The network is meant to model a small patch of neural tissue
where full connectivity is an acceptable approximation; hence we
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Fig. 2. The learning rule produces a BCM-like nonlinearity controlled by somatic inhibition. A: effective Hebbian nonlinearity z − δy as a function of the receptive
field activation gd and somatic inhibition. Injecting a constant inhibitory current Is into the soma (marked on the curves) shifts the potentiation threshold to the
right. The contributions of the terms y and z are shown in insets. Bumps in the curves are a consequence of the way we compute the firing rate z and mark the
occurrence of an extra spike. B: the result is a BCM-like nonlinearity controlled by somatic inhibition, whereas the BCM rule itself is controlled by average activity.
Note: this figure was generated with a finer timestep dt = 0.01ms to smooth the discontinuities in the curves caused by the discrete spike times..

keep the number of neurons small (N ≤ 1024). With respect
to the dimensionality d of our input stimuli, this translates to
networks that range from undercomplete (N/d ≪ 1) to slightly
overcomplete (N/d ≈ 1.3).

There are two fully-connected pathways: a recurrent inhib-
itory pathway between the somas, and a feedforward pathway
between the input and the dendrites.

The feedforward pathway targets the dendrites and contains
both excitatory and inhibitory synapses. It carries rates instead
of spikes; doing so allows us to employ a classical Hebbian
formalism in the learning rule and discrete-time dendritic com-
partments. A spike-based input and continuous-time dendrites
would be more biologically plausible, but the model would also
become substantially more complex; we reserve these for fu-
ture work. Here we use a rectified linear activation function
in the dendrites, with some modifications to account for the
overall transfer properties of biological dendrites (see Methods for
details).

The recurrent pathway mediates all-to-all inhibition via spikes
and conductance-based somatic synapses. For simplicity we do
not use separate inhibitory interneurons (although that archi-
tecture deviates from biology and Dale’s law, King et al. (2013)
found that replacing direct inhibition with interneurons did not
substantially alter the results of Zylberberg et al. (2011)). We do
not model propagation delays which are de-facto fixed at one
timestep dt . We allow self-inhibition for simplicity, as it has only
a minor effect on receptive field formation (Fig. 5). Self-inhibition
decreases the slope of the current–frequency (I–f ) curve of the
LIF neuron without changing its threshold (it acts like a relative
refractory period and can only affect future spikes). Thus it can in
theory be compensated for by parameters controlling the input
gain.

The network operates as follows. We present each input pat-
tern x to the dendrites and compute the dendritic activation y.
This results in a constant current flow Id from the dendrite to
the soma while the somas compete to respond for 100 timesteps
(dt = 0.5 ms), producing spikes that induce time-varying in-
hibitory currents Is. Then we compute firing rates z using both
the number of spikes and the spike latencies. Finally, we apply the
feedforward and recurrent learning rules. We repeat these steps
for the next input pattern, etc.

2.2. Feedforward learning rules

The weight w of each feedforward, dendritic synapse is up-
dated according to a nonlinear Hebbian rule:

w← w + µ [x (z − δy)− yw] (3)

where x is the input rate, y is the dendritic activation, z is the
somatic firing rate, µ is the learning rate and δ sets the potentia-
tion/depression ratio. The rule can change the sign of the weights,
switching between excitatory and inhibitory synapses.

The core of the learning rule is the term z − δy (Fig. 2).
Within that term, y is non-linear with respect to the receptive
field activation gd (due to the dendritic rectification), and z is
itself nonlinear with respect to y (due to the somatic response
threshold, which increases with somatic inhibition). Thus z − δy
is zero for sub-threshold inputs (gd ≤ 0 and z = y = 0), negative
for super-threshold inputs but weak somatic responses (gd > 0
and y > 0, but z < δy), and positive for strong somatic responses
(gd > 0, y > 0, and z > δy).

This mirrors the term y (y−⟨y2⟩) in the BCM rule, which is also
non-linear with respect to the receptive field activation, inducing
long-term depression (LTD) for weak responses and long-term
potentiation (LTP) for strong responses. But where the BCM rule
defines weak and strong responses in relation to the average
activity ⟨y2⟩ (lifetime sparseness), here we define them in terms
of winning or losing the competition to respond (population
sparseness).

If the dendrite is active (y is large) but the soma is inhibited (z
is comparatively small), the rule induces LTD: the neuron tried to
respond and lost to more active neurons. If the dendrite is active
and the soma responds strongly (z > δy), the rule induces LTP:
the neuron is one of the winners. If the dendrite is not active (y =
0), the soma is not active either (z = 0) and there is no synaptic
change: the neuron did not participate in the competition for that
particular input.

The decay term −yw sets a steady-state value for the weights
and scales the maximum dendritic activity y as a function of the
receptive field size. It is gated by dendritic activity: there is no
decay when y = 0. This ensures that the weights do not fade
when the dendrite is inactive.
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Fig. 3. The network learns independent components from the MNIST datasets. A, B: the network learns pen-stroke shapes from the MNIST dataset. A: sample input
stimuli. Black corresponds to zero and white to one. B: receptive fields (weights) of a network with 256 neurons after training on 120,000 digits (28 × 28 pixels)
with random distortions. Middle grey corresponds to zero, lighter pixels to excitatory weights, and darker pixels to inhibitory weights. C, D: the network learns the
outlines and parts of the various items of clothing in the Fashion-MNIST dataset; for instance the neuron in the top-right corner of D responds to short sleeves. All
other details are the same as for A and B.

Finally, we apply a separate regularisation rule after the Heb-
bian changes, taking care not to change the sign of the weight:

w←

{
max (0, w − µλy) if w > 0
min (0, w + µλy) if w < 0

(4)

where λ determines the amount of regularisation. This does not
fundamentally change the operation of the learning rule, but sim-
plifies the receptive fields by suppressing the weights of weakly
correlated input dimensions.

In summary, the feedforward learning rule compares the den-
dritic and somatic activities to estimate whether the neuron was
silent, losing or winning. It then updates the weights so that
inputs correlated with losing become inhibitory, inputs corre-
lated with winning become excitatory, and inputs correlated with
being silent are removed from the neuron’s receptive field.

2.3. Recurrent learning rule

The somatic synapses that mediate lateral inhibition are plas-
tic as well. The weight q of each recurrent, somatic synapse
between a pre- and a post-synaptic neuron follows a standard
Hebbian rule with pre-synaptic gating:

q← q+ ν(zprezpost − β zpreq) (5)

where a constant ν sets the learning rate and another constant
β controls the scale of the weights (see Methods for parameter
values). Gating by zpre ensures that the inhibition from a winning
neuron to a losing neuron decays, but the reciprocal connection
does not. The asymmetry prevents a single neuron from taking
over all the input features (Marshall, 1995). In practice, we use a
much faster learning rate for the recurrent inhibition compared
to the feedforward synapses (ν ≫ µ); otherwise receptive fields
are unstable and oscillate between selective and non-selective
features.

Inhibitory plasticity, as opposed to fixed inhibition, has two
roles in our model. First, it ensures that neurons compete with
each other only to the degree that their responses are correlated
(Marshall, 1995). Thus if two neurons respond to features that are
only weakly correlated, they can occasionally be strongly active

at the same time without influencing each other. And second, it
stabilises the feedforward learning rule just like the homeostatic
threshold does in the BCM rule: it ensures that as neurons fire
more they also attract more inhibition, which prevents the dis-
tribution of gd from escaping the LTD region of the feedforward
learning rule (Fig. 2). If the recurrent inhibitory weights were
fixed, all dendrites would learn the same non-selective receptive
field (Fig. 5).

2.4. Receptive fields

Our first experiment is to look at the receptive fields of the
neurons after training on various types of inputs. The expecta-
tion, for a sparse coding network, is that these receptive fields
should correspond to selective features (rather than whole input
patterns) and that the neurons should be silent most of the time.

Trained on the MNIST dataset of handwritten digits (LeCun &
Cortes, 1998), the network learns receptive fields that respond to
fragments of digits or pen strokes, as shown in Fig. 3. These re-
ceptive fields resemble the ones learned by sparse auto-encoders
(Makhzani & Frey, 2015), despite the fact that we use a different
algorithm — a coincidence which can be explained if these pen-
stroke shapes are indeed the independent components of MNIST
digits. We also test a variant of MNIST called Fashion-MNIST
(Xiao, Rasul, & Vollgraf, 2017), which uses the same format but
consists of small images of items of clothing like shoes and shirts.
Training the network on that dataset extracts the outlines of the
input stimuli and also separates some of their constituent parts.

We then train the network on two photographic datasets. The
first one is the dataset used by Olshausen and Field (1997), which
consists of landscapes and close-ups of natural outdoors scenes.
The second one, which we refer to as the Monuments dataset,
is a selection of black-and-white archive photographs from the
Cornell University Digital Collections (Cornell University Library,
2008) that show monuments and cities of France. Sparse coding
networks have often been applied to natural images (Butko &
Triesch, 2007; Olshausen & Field, 1997; Savin et al., 2010; Zyl-
berberg et al., 2011), from which they learn Gabor-like filters that
resemble the receptive fields of simple cells in the visual cortex
(van Hateren & van der Schaaf, 1998). Images are typically not
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Fig. 4. The model learns oriented edge filters from pre-whitened natural images. A, B: Monuments dataset. A: sample input patches. Middle grey corresponds to
zero. B: receptive fields after training on 500,000 patches (16 × 16 pixels) (see Methods). In addition to the localised edge filters, the network develops a pair of
non-selective ON and OFF receptive fields (uniform dark and bright patches). These encode the mean of the input, which we do not subtract. Similarly, a dozen cells
learn broad oriented gradients. C, D: Olshausen & Field dataset. Receptive fields tend to be shorter and more localised than with the Monuments dataset. All other
details are the same as for A and B.

Table 1
The network learns features that improve linear decoding. Mean and standard
deviation of the test error on MNIST (10 runs with different random seed). For
comparison we include data (†) for a MLP (28 × 28–300–100–10) from LeCun,
Bottou, Bengio, and Haffner (1998); other results are our own work.
Input Classifier Error (%)

Raw pixels SVM (linear) 8.2
Raw pixels kNN (k = 4) 3.2
Raw pixels MLP (3 layers) 2.5 ± 0.1 †
Sparse (N = 256) SVM (linear) 3.3 ± 0.2
Sparse (N = 512) SVM (linear) 2.3 ± 0.1
Sparse (N = 768) SVM (linear) 2.1 ± 0.1
Sparse (N = 1024) SVM (linear) 1.9 ± 0.1

Table 2
Sparse features also improve linear decoding on the Fashion-MNIST dataset,
although less than with the standard MNIST.
Input Classifier Error (%)

Raw pixels SVM (linear) 16.0
Raw pixels kNN (k = 4) 14.2
Sparse (N = 256) SVM (linear) 18.2 ± 0.4
Sparse (N = 512) SVM (linear) 15.5 ± 0.2
Sparse (N = 768) SVM (linear) 14.5 ± 0.3
Sparse (N = 1024) SVM (linear) 14.3 ± 0.2

presented to the network in their raw form, but first processed
either by a difference-of-Gaussians filter that models the transfor-
mations happening in the retina, or by a whitening transform that
equalises the variance across spatial frequencies (Blais, Intrator,
Shouval, & Cooper, 1998). Both types of pre-processing have the
effect to suppress low spatial frequencies and highlight edges. For
this experiment we adopt the whitening transform of Olshausen
and Field (1997).

After training on small patches drawn at random from dif-
ferent image locations, the model learns oriented edge filters,
in line with other sparse coding algorithms (Fig. 4). Compared
to the outdoor scenes used by Olshausen and Field (1997), the
Monuments dataset yields more elongated receptive fields; this
is probably due to the more frequent occurrence of straight edges
in scenes that contain man-made objects.

Fig. 5. Inhibitory plasticity, but not self-inhibition, is required for the learning
rule to function. Receptive fields from three networks with N = 64 neurons after
learning from the same initial random state, but with different configurations
of recurrent inhibition. In the variant with fixed inhibition, some neurons stop
responding early in the learning process and still have a random receptive
field; all active neurons have the same receptive field which corresponds to
the average digit.

2.5. Linear decoding

The next series of experiments aims to check whether the net-
work’s output is indeed a good encoding of the input. This does
not necessarily follow from an analysis of the receptive fields;
for instance, a network could succeed in extracting individual
independent components, but still fail to encode the mixture of
components present in any given input. More specifically, we
would like to check whether the sparse encoding produced by
the network can be linearly decoded, enabling cheap multiple
readouts of cell assemblies as envisioned by Fusi et al. (2016).

We first test whether sparse codes make it easier to classify
MNIST digits (Table 1). Trained on the raw pixels, a linear Support
Vector Machine (SVM) classifier performs poorly on MNIST, with
an error rate of 8.2%. But the same linear classifier reaches a
much better performance if we train it on the output of the
sparse coding network instead of the raw pixels. With N =
512 neurons, that combination outperforms the non-parametric
k-Nearest Neighbours method (kNN). It also compares with a
Multi-Layer Perceptron (MLP) with three layers — in that particu-
lar case, the unsupervised sparse coding layer effectively replaces
two hidden layers trained using backpropagation. With N =
1024 neurons, the accuracy reaches a value of 0.981 that is
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Fig. 6. Input images can be linearly decoded from the sparse output. Reconstructions from networks of 64 to 256 neurons show increasing fidelity to the original
image.

higher than most non-convolutional methods with the exception
of polynomial SVM (LeCun et al., 1998; Xiao et al., 2017).

We obtain broadly similar results with the Fashion-MNIST
variant (Table 2): sparse coding improves linear decoding. How-
ever, this dataset is more challenging than the standard MNIST
digits for non-convolutional algorithms, and the improvement
is consequently smaller. Ensemble learning methods as well as
polynomial SVM yield a better performance (Xiao et al., 2017).

After that classification task, we turn to linear regression and
attempt to reconstruct natural images from the output of the
network. While Zylberberg et al. (2011) inverted the transfor-
mation manually by reusing the network’s encoding weights for
decoding, here we train a linear model to predict the input patch
given the sparse output of the network. We did not attempt
to quantify the reconstruction error: pixel-wise measures such
as the peak signal-to-noise ratio are neither very informative of
how much structure is preserved, nor easy to interpret when
comparing different scenes, and better metrics based on struc-
tural similarity are non-trivial to compute (Thung & Raveendran,
2009). Qualitatively, we find that even a small network with
64 neurons preserves the general features of the scene (Fig. 6),
despite reducing the dimensionality of the data by a factor of 4.

2.6. Sparseness

The activity of the network is sparse at the end of the train-
ing period, both in terms of lifetime and population sparseness
(Fig. 7). Plastic recurrent inhibition rapidly enforces sparse spik-
ing and maintains it at the level of a Poisson process with the
same rate, or slightly higher (Fig. 8).

Lehky, Sejnowski, and Desimone (2005) make the point that
lifetime and population sparseness in sensory neurons are inter-
related: if the responses of the neurons are uncorrelated, then
their population and lifetime sparseness must be equal, a prop-
erty they call ergodicity. We find that this is indeed true of our
network: for all the datasets we tested, both types of sparseness
tend towards the same steady-state value as the number of
neurons N grows sufficiently large.

However, sparseness induced by mutual inhibition is not by
itself sufficient for an efficient sparse encoding of the input. With
random receptive fields, decoding error increases with sparser
activity.

2.7. Stability and response to perturbations

In most machine learning experiments, the input data is ran-
domised so that its distribution is mostly homogeneous over
time. This is not the case for embodied agents that learn continu-
ously: an animal samples from small regions of the input space as
it moves from one place or activity to the next. Thus an important

Fig. 7. Lifetime and population activity is sparse after training on the MNIST
dataset. A: the net dendritic input (receptive field activation) has a heavy-tailed
distribution (excess kurtosis: 2.82, skewness: 0.9). The two conditions (spikes/no
spikes) are stacked, not overlaid. B: neurons are silent most of the time, as
shown by the distribution of the number of spikes per neuron per stimulus.
C: only a few spikes are emitted for each stimulus. The alternating columns in
the background are 50.0 ms wide and correspond to successive MNIST patterns
during a one-second period at the end of the training run.

challenge in artificial neural networks is to learn online on non-
homogeneous data. Sparse coding networks with a homeostatic
term make an explicit assumption that the average firing rate
of each neuron is constant, and the violation of that assumption
could be a factor in catastrophic forgetting. The next experiment
aims to explore whether the absence of a homeostatic term in our
model makes it more robust to perturbations.

In Fig. 9, we first train the network on the full MNIST dataset
with Gaussian noise (σ = 0.2) added to the digits and clipped
to [0, 1]. After 150000 stimuli, we remove the MNIST input and
continue training on the background noise. We restore the input
and train again on the full MNIST dataset for 150000 stimuli.
Finally, we perform one last training round on a subset of MNIST
that contains only the zeros, with all other digits removed.

We find that the receptive fields retain their selectivity de-
spite fading during the period when the network receives only
background noise, and recover with minimal changes when the
original input is restored (Fig. 10): thanks to the lack of fast IP,
input deprivation does not induce catastrophic forgetting. As long
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Fig. 8. Plastic recurrent inhibition enforces sparse spiking, but feedforward
plasticity is required for efficient sparse coding. Treves & Rolls (TR) sparseness
(top, see Methods for details) and test error with a linear SVM (bottom) while
training a network of N = 256 neurons on MNIST. Here we stage the learning
in three phases: first with no plasticity (fixed initial weights); then activating
the recurrent inhibition learning rule (soma only); and finally with both the
recurrent and feedforward learning rules (soma and dendrite). The Poisson
control shows the lifetime sparseness of a Poisson process with the same rate as
the soma. The curves for the lifetime and population sparseness (soma) overlap
almost perfectly in this figure. We increased the initial weights w, and decreased
q, so that the initial state is less sparse. See Annex for a similar figure with
natural images as the input.

as the distribution of the independent components remains the
same, there is also no drift with continued learning (compare A
and C in Fig. 10). In contrast, we observed a constant shifting of
the receptive fields when replicating other models such as the
one by Zylberberg et al. (2011).

However, the receptive fields do change rapidly when we
switch from the full MNIST to zeros only: they adapt to match
the new distribution of the independent components and forget
the features that were specific to other digits (such as straight
lines). Thus the lack of IP protects against forgetting during input
deprivation but does not block continual adaptation to the input,
as long as the new stimuli overlap with existing receptive fields.

A small number of neurons (typically one or two) respond
strongly to the noise during the period of input deprivation
(bright receptive fields in Fig. 10; dark lines in Figs. 9 and 11).
Average firing rates for the other cells are low; again, this can be
explained by the absence of a homeostatic term that would drive
every neuron towards a target firing rate. Since the background
noise does not contain any structure, these few active cells are
sufficient to encode it and inhibit other neurons, protecting their
receptive fields.

The transient increase in activity when the input is restored
does not exceed three times the baseline: spikes remain sparse
throughout, and come back to normal after 10 s (Fig. 11). Since
the neurons have fixed somatic and dendritic thresholds, that
increase must come from the decay of lateral inhibition or from
a shift in the excitatory/inhibitory balance of the feedforward
weights. In contrast, in a network with IP, homeostatic adjust-
ment of the thresholds to the background noise would cause a
temporary saturation of the transfer function and loss of sparse-
ness when the input is restored.

3. Discussion

3.1. Sparse coding does not require fast IP

Our findings confirm that intrinsic plasticity (IP) is not strictly
required to learn sparse codes. Plastic lateral inhibition, in addi-
tion to its role in decorrelating the population responses, can also
regulate sparseness through its effect on the nonlinear Hebbian
learning rule.

The idea of enforcing population sparseness is not new — in
networks where learning uses global information, one can devise
a cost function with a sparseness constraint based on population
activity, and minimise it to learn a suitable set of receptive fields.

But this global cost information is not typically available in
neural networks that use only local information for learning, in
line with biology. Thus previous models (Földiák, 1990; Savin
et al., 2010; Zylberberg et al., 2011) have made use of IP to enforce
lifetime sparseness, as this information is readily available in each
neuron. We show that this is not the only way: information about
population sparseness can be conveyed to local rules through mu-
tual inhibition, extracted thanks to input compartmentalisation,
and used to learn independent components in the same way as
lifetime sparseness.

When it comes to explaining how cortical neurons might learn
sparse codes, this helps to resolve a conflict of timescales. The
mechanism enforcing sparseness must be faster than Hebbian
learning to avoid unstability, and consequently IP is fast in models
that rely on it for sparse coding. But this conflicts with what
we know about IP in biological neurons: homeostatic firing rate
adaptation is normally quite slow, on the order of hours or days
(Chistiakova et al., 2015; Toyoizumi et al., 2014; Zenke et al.,
2017).

Enforcing sparseness via lateral inhibition instead is a bet-
ter match for the data: fast adaptation of these connections is
plausible through a combination of short-term facilitation and
long-term potentiation of inhibitory synapses, which can occur
over a timescale of seconds to minutes. Freed from the task to
stabilise Hebbian learning, IP could have other computational
roles on slower timescales, for instance helping to recruit pre-
viously silent neurons and dendrites or adapting to ongoing slow
processes like structural plasticity and developmental changes.

3.2. Compartmentalised inputs let local rules estimate population
sparseness

Our learning rule has access to information about population
sparseness thanks to the separation of the feedforward and re-
current pathways. If these were integrated together into a single
activity variable, there would be no way to distinguish weaker in-
puts from stronger competition. Compartmentalised integration,
with feedforward activity integrated in the dendrite and lateral
inhibition integrated in the soma, disambiguates the reasons why
a neuron does not fire and allows each neuron to compute a local
estimate of the amount of competition with its neighbours.

Point neurons have been cost-effective approximations wher-
ever simulation of thousands of neurons in real time is the aim,
and moving away from that paradigm requires good reasons. Our
model gives another example of the types of learning that become
possible in neurons with compartmentalised inputs and may jus-
tify the expense. In contrast to multi-compartmental models with
detailed branching and morphology, neurons with a few input
compartments are not much more expensive to simulate than
point neurons, requiring only a handful of extra state variables.
This makes them suitable for large-scale simulations and hard-
ware implementations — the SpiNNaker and Loihi neuromorphic
chips, for instance, already support compartmentalised inputs
(Davies et al., 2018; Hopkins, Pineda-García, Bogdan, & Furber,
2018).
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Fig. 9. Weights converge smoothly to a steady state after perturbations in the input. Top: sample training stimuli for each of the four training periods. Bottom:
density plot of the trajectories of the 112896 feedforward weights w during training (N = 144). The colour mapping is logarithmic to account for the high density
of zero weights. The letters A, B, C and D mark the times when snapshots of the receptive fields were taken (Fig. 10).

Fig. 10. Snapshots of the receptive fields at the times marked in Fig. 9. A: receptive fields at the end of the initial training period. B: receptive fields fade during
input deprivation, but do not drift. C: they recover with minimal changes after the original input is restored. D: reorganisation occurs after further training with
zeros only.

3.3. Sparse coding via population sparseness is robust to input de-
privation

Without fast IP, the network can be made more robust to tem-
porary input deprivation. If the input is replaced by background
noise, lateral inhibition will adjust in seconds, just as fast IP would
rapidly adjust the firing threshold. But the important information
is in the receptive fields of the dendrites, and in our model these
do not adapt rapidly when the neurons are exposed to noise.

Dendrites respond weakly to noise because noise, lacking
structure, tends to activate their excitatory and inhibitory recep-
tive fields equally. At the population level, a couple of neurons
will eventually develop broad excitatory receptive fields and start
responding to the noise. But because there is no structure in noise
to support a division of labour between output neurons, the first
few responders will be able to inhibit all the others. This keeps
the overall activity low and protects most receptive fields from
change: the feedforward learning rule (Eq. (3)) is gated by post-
synaptic activity and weights will not change fast if the dendrite
is weakly active and the soma is inhibited.

In contrast, in models with IP, input deprivation causes a rapid
adjustment of the spiking or plasticity thresholds to maintain the
same average firing rate. Consequently the rate of feedforward
synaptic changes stays high, and receptive fields are lost to the
background noise.

But replacing intrinsic plasticity with synaptic plasticity is
still not enough to cope with other types of changes, such as
those that an animal or robot would encounter as it switches

between tasks and environments: the network remains suscep-
tible to rapid and extensive reorganisation when novel inputs
overlap the existing receptive fields, or when the distribution
of the independent components changes. On the one hand, that
kind of adaptability is desirable as natural environments are not
static and the quick acquisition of novel stimuli can be critical for
survival. On the other hand, it should disturb existing receptive
fields as little as possible so as not to erase previous experiences
and all the associations that build upon them.

Although increasing sparseness and careful tuning of learning
rates could help, it is likely that solving that stability-plasticity
dilemma will require ad-hoc gating mechanisms. Some candi-
dates are the conditional consolidation of synaptic changes (Re-
dondo & Morris, 2011), neuromodulation and attention (Has-
selmo, 1995; Krichmar, 2008), or a mechanism based on top-
down prediction errors like the Adaptive Resonance Theory
(Grossberg, 1980).

3.4. Sparse activity does not imply sparse coding

We observe a dissociation between measures of sparseness
and measures of decoding accuracy: high sparseness is achieved
almost immediately via the potentiation of lateral inhibitory
weights, while high decoding accuracy requires adequate re-
ceptive fields learned by the feedforward plasticity rule. In fact
decoding accuracy in a network with random receptive fields
decreases with sparseness. Conversely Zylberberg and DeWeese
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Fig. 11. The network is robust to input deprivation. Top: mean number of spikes
per neuron per stimulus; the green line marks the average value before mark A.
Bottom: raster plot of the output spikes. Following input deprivation (mark A),
firing patterns return to normal within 20 s after the input is restored (mark
B), except for the neurons that responded strongly to the noise (these take
somewhat longer).

(2013) observed decreasing sparseness as a result of receptive
field formation in their sparse coding network.

Thus there is more to sparse coding than just sparse activity.
Sparseness is a constraint for learning, not by itself a guarantee of
an efficient encoding: sparse coding requires receptive fields that
match the independent components of the input, so that the same
amount of information can be transmitted with fewer spikes and
fewer active units.

Lehky et al. (2005) caution that high measures of sparseness
can be obtained trivially via non-linear, information-discarding
transforms. For instance the average lifetime sparseness could
be increased simply by raising the thresholds of the neurons,
without learning selective receptive fields; but this would also
decrease the information transmitted about the input. They argue
that statistical measures of sparseness are not a sufficient opti-
mality criterion for explaining the architecture of nervous sys-
tems, and that information transmission and other ecologically-
relevant aspects must also be considered.

Here we evaluate linear decodability, in the light of the hy-
pothesis that the computational cost of decoding is a major bio-
logical constraint together with coding density and metabolic ef-
ficiency, and that linear decoding requires fewer synapses. Other
criteria could be also be examined, such as whether output cor-
relations are still relevant for decoding (Latham, 2005), or robust-
ness to noise and to the loss of coding units.

3.5. Comparison with similar models

Our model is far from being the first to learn features similar to
the ones observed in V1 cells, but it differs from previous models
in several ways. The learning rule used by Olshausen & Field (Ol-
shausen & Field, 1997) minimises the output reconstruction error,
as do sparse auto-encoders (Makhzani & Frey, 2015), whereas our
model does not need or compute that information. This reduces
the number of steps required for learning, and as a model of
sparse coding in the brain it requires neither multiple layers nor
a biological mechanism for the backpropagation of error. Földiák
(1990), Zylberberg et al. (2011) and King et al. (2013), and models
based on the standard BCM rule rely on homeostatic threshold
adaptation, while Savin et al. (2010) also use IP to adjust the
transfer function of the neuron. Our model uses fixed thresholds
instead, both in the dendrite and the soma, relying on population
rather than lifetime sparseness as discussed before.

The term x (z − δy) at the core of the feedforward learning
rule is reminiscent of the error-correcting Delta rule (Sutton &
Barto, 1981; Widrow & Hoff, 1960), and it can be seen as a rate-
based relative of the rules used in Körding and König (2000) and
Urbanczik and Senn (2014).

But in Urbanczik & Senn, the purpose of learning is to correct
the mismatch between the somatic activity, z, and its prediction
by the dendrite, ϕ(y), so that the dendrite learns to move the
somatic membrane potential towards the equilibrium potential of
predictable somatic inputs. After learning, that dendritic predic-
tion is mostly correct, z ≈ ϕ(y) and the predicted somatic inputs
have no effect.

In contrast, the goal of our learning rule is not to achieve a
perfect prediction of the somatic inputs by the dendrite, but to
exploit the mismatch between z and y so that it creates a BCM-
like curve modulated by inhibition. Thus the steady state does not
occur at z ≈ δy. Starting from the learning rule: dw = x(z−δy)−
yw, let us treat x, w, z and y as correlated random variables. Then,
for ⟨dw⟩ = 0, we have ⟨x(z − δy)⟩ = ⟨yw⟩. Substituting w with a
constant w∞, we get the following non-trivial fixed point:

w∞ =
⟨x(z − δy)⟩
⟨y⟩

In other words, the fixed point over a certain set of inputs is
when each weight equals the mean of the loser/winner function
z − δy (Fig. 2) times the input, normalised by the mean dendritic
activity. This yields receptive fields which are inhibitory for input
dimensions associated with losing the competition (z < δy) and
excitatory for those associated with winning (z > δy). If there was
no mismatch between z and δy in the steady state, the receptive
fields would be blank (w∞ = 0).

The model by Körding and König (2000) is perhaps the closest
to our work. In their network, lateral inhibition decides whether
a neuron is losing or winning the competition by blocking the
backpropagating action potentials, switching the sign of plasticity
in the dendrite. However, it does so without blocking the spikes
that travel down the axon, whereas lateral inhibition in our model
suppresses both the internal teaching signal and the output of
the neurons. The distinction could have its relevance in multi-
layer networks; but it is likely that both architectures can perform
sparse coding with the right dendritic learning rule — something
that Körding and König (2000) did not explore, as they used
simple stimuli such as moving bars which do not contain multiple
independent components.

3.6. Biological interpretation

Our model is only loosely based on biology: at its core, it is
mainly a computational exploration of compartmentalised input
integration in the context of sparse coding, and whether bio-
logical neurons make use of similar principles remains an open
question. But it does suggest phenomenological interpretations
for a number of experimental facts.

In terms of architecture, there are multiple inhibitory path-
ways in the cortex (Kubota, Karube, Nomura, & Kawaguchi, 2016),
and some of these pathways target dendrites or somas specif-
ically as they do in our model; for instance the fast-spiking,
parvalbumin-positive basket cells mediate lateral inhibition pref-
erentially via synapses close to the soma. There are, however,
many other pathways, including recurrent inhibitory pathways
targeting dendrites, that our model does not explain.

As for synaptic plasticity, let us rearrange the terms of the
feedforward learning rule (Eq. (3)) and annotate it to match the
terminology used in neuroscience:

∆w ∝

homosynaptic
LTP
xz − δxy

homosynaptic
LTD

−

heterosynaptic
LTD
yw (6)
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where homosynaptic refers to plasticity induced in the synapse
that was stimulated (correlated pre and post activity), and het-
erosynaptic refers to plasticity induced in other synapses (inde-
pendently of whether they were active).

This highlights a number of testable hypotheses. First, it as-
sumes that homosynaptic LTP (xz) is induced by correlated pre-
and post-synaptic spikes, which is well established by a long
history of electrophysiological experiments from Hebb (1949) to
STDP theory (Bi & Poo, 2001).

Heterosynaptic LTD (−yw) is attested in some neurons (Castro-
Alamancos, Donoghue, & Connors, 1995; Lynch, Dunwiddie, &
Gribkoff, 1977) as a form of normalisation of total synaptic in-
put and may be linked to competition for metabolic resources
between synapses. While developing our model we tested a
variant (−zw) for this term which depended on z instead of y.
This yielded inferior decoding performance but similar receptive
fields, therefore we do not want to make a strong claim of the
dendritic vs. somatic dependence of heterosynaptic LTD.

Less obvious is the notion that correlated dendritic activity
should induce homosynaptic LTD (−xy): We know, on the con-
trary, that dendritic spikes can sometimes induce LTP on their
own (Remy & Spruston, 2007; Sjostrom, Rancz, Roth, & Hausser,
2008). But we also know that NMDA receptor activation can
induce LTD or act as a negative feedback on potentiation (Bear &
Malenka, 1994; Sjostrom et al., 2008), which is compatible with
our learning rule.

In terms of learning paradigms, our model makes hypothe-
ses that diverge from the classical framework of spike timing-
dependent plasticity (Bi & Poo, 2001), where low firing rates tend
to induce homosynaptic LTD and high firing rates tend to induce
homosynaptic LTP in a way that is compatible with the standard
BCM rule (Izhikevich & Desai, 2003).

In contrast, our model assumes that low post-synaptic rates
cause homosynaptic LTD of dendritic synapses only when they
are due to strong recurrent inhibition, and not to a weak feed-
forward input. Conversely, it assumes that recurrent inhibition
can switch the sign of plasticity at dendritic synapses and turn
LTP into LTD, an idea that has been suggested in computational
models (Körding & König, 2000; Wilmes, Sprekeler, & Schreiber,
2016) but requires further experimental validation.

Other aspects of biological neurons, however, are more diffi-
cult to reconcile. For instance, our model relies on lateral inhi-
bition shifting the response curve of the somas to the right —
a phenomenon known as subtractive inhibition, in contrast with
divisive inhibition which modulates the response slope without
changing its threshold. But in pyramidal neurons somatic inhibi-
tion is normally divisive rather than subtractive: it is dendritic
inhibition that has a subtractive effect (Wilson, Runyan, Wang,
& Sur, 2012). It may be that the mechanisms we distribute over
a somatic and a dendritic compartment, occur within dendrites
in biology, possibly involving compartmentalisation between the
dendritic shaft and the spines, or between different dendritic
variables like voltage and calcium.

More generally, interpreting our learning rule calls for fur-
ther electrophysiological investigations of how different path-
ways contribute to synaptic plasticity — looking not just at pairs
or triplets of pre and post spikes, but also at coincident dendritic
activity and inhibitory modulation.

3.7. Relevance for machine learning

Most of the recent advances in machine learning have relied
on supervised learning, and there have been efforts to make
supervised learning algorithms like error backpropagation work
with spiking neurons as well (Sacramento, Costa, Bengio, & Senn,
2018; Zenke & Ganguli, 2018). But there is also a notion that un-
supervised learning will play an increasing role in future learning

systems. A spiking neural network learning sparse codes with lo-
cal, unsupervised rules, and running on neuromorphic hardware,
would have several advantages over current approaches that use
dense networks of rate neurons. It could use considerably less
energy due to an efficient matching of sparse activity with sparse,
event-based communication. It could replace the first layers of
deep neural networks, which tend to learn the same sort of
features, but it could also form the basis for new hierarchical
architectures like the ones proposed by Hawkins and Ahmad
(2016). And unlike batch training algorithms it would be suitable
for online learning that adapts continuously to new data.

4. Models & methods

4.1. Somatic compartments and somatic synapses

The somatic compartments are standard LIF neurons. The
membrane potential u follows the following equation:

τm
du
dt
= Id + Is − u (7)

where Id and Is are the currents from the dendrite and somatic
synapses, respectively.

We use a fixed spiking threshold θ and after-spike reset ρ

without a refractory period:

u← ρ if u ≥ θ (8)

We compute a firing rate z that takes into account the number
of spikes and also their latency relative to the stimulus onset t0,
with the aim of producing a smooth measure that is sensitive to
small changes in activity even in the case of a single spike. First
we define a trace ζ that increases after each spike and decays
exponentially:

ζ ← ζ + 1 if u ≥ θ

τζ

dζ
dt
= −ζ

(9)

Then we normalise so that the area under the curve is the
number of spikes, and integrate over the stimulus window:

z =
∫ t0+50ms

t=t0

ζ

τζ

dt (10)

Thus a spike that occurs towards the end of the window con-
tributes less to the total than a spike that occurs early. This also
approximates the effect of input eligibility traces in more detailed
models.

Somatic inhibition comes from lumped, conductance-based
synapses where the fraction gs of active conductance and somatic
current Is evolve as follows for each neuron post:

gs ← gs + qpre→post on spike from neuron pre

τs
dgs
dt
= −gs

Is = −gsu

(11)

The initial weights q are drawn from an exponential distribu-
tion (mean = 0.01).

Before each new stimulus we reset the continuous-time vari-
ables of the model, as in Zylberberg et al. (2011):

u← ρ

ζ ← 0
gs ← 0

(12)

That reset does not seem to be critical for our findings, but we
did not explore the issue further.
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4.2. Dendritic compartments

Dendrites are rate- and current-based. The net dendritic input
gd and dendritic activation y for each neuron post are as follows:

gd =
∑
pre

xprewpre→post

y = max(gd, 0)
(13)

The initial weights w are drawn from a normal distribution
(std = 0.01).

The current Id from the dendrite to the soma is a nonlinear
function of the dendritic activation:

Id =
{

y0 + κy if y > 0
0 otherwise

(14)

Here the goal is to reproduce the active properties of biological
dendrites. Above a certain input threshold, regenerative activa-
tion of the NMDA receptors causes dendritic spikes. These lead
to a sharp increase in membrane potential followed by a plateau
where stronger inputs cause no further increase in voltage (Milo-
jkovic, Radojicic, & Antic, 2005; Oikonomou, Short, Rich, & Antic,
2012). We model this with a step function and the offset y0.
However, stronger inputs do increase the duration, and reduce
the rise time of the plateau, producing more somatic spikes.
We model this with the linear term κy. In practice we adjust
y0 to cancel out the somatic rheobase, so that suprathreshold
dendritic activation elicits at least one spike in the absence of
somatic inhibition. Dendrites start responding when gd > 0. We
find that the actual threshold is not critical for our findings as
long as all dendrites respond to some inputs at the start of the
simulation. A small positive value would better reproduce the
data in Milojkovic et al. (2005) and Oikonomou et al. (2012).

The coupling between the soma and the dendrite is one-
way: somatic potentials have no effect on dendritic activity in
our model. This ignores the effect of backpropagating action
potentials on dendritic voltage, but it does match the data on
somatic inhibition, which has almost no impact on the generation
of dendritic spikes (Jadi, Polsky, Schiller, & Mel, 2012; Rhodes,
2006).

4.3. Measure of sparseness

In Fig. 8 we use the same measure of sparseness as Zylberberg
and DeWeese (2013), called TR sparseness after Treves & Rolls
and related to the coefficient of variation. It is computed as
follows:

Str (X) =
(
1−
⟨X⟩2

⟨X2⟩

)(
1−

1
n

)−1
where n is the length of X .

For lifetime sparseness, X is a vector of 1000 observations
from the same neuron over time, and we then average Str across
all neurons in the population. For population sparseness, it is a
vector of observations from all N neurons across the population at
a particular instant, and Str is averaged over 1000 stimuli. Somatic
sparseness uses the number of spikes (one could use the output
rate z, but the number of spikes is easier to compare to a Poisson
control) while dendritic sparseness uses the dendritic activity y.

In our case the Gini index gives qualitatively similar results
to TR sparseness, and could be used interchangeably. Both are
more stable over time than excess kurtosis, as noted by Hurley
and Rickard (2009).

Table 3
Model parameters used for all experiments in this paper.
Soma and somatic synapses Dendrites

θ = 1.0 y0 = 1.0
ρ = 0.0 κ = 0.5
τm = 10.0 ms δ = 0.5
τζ = 50.0 ms λ = 0.01
τs = 5.0 ms µ = 4× 10−4

ν = 1× 10−1
β = N/250

4.4. Parameters

Table 3 summarises the parameters for the neuron model. All
simulations are performed with a timestep dt = 0.5 ms and 100
steps per stimulus, except for Fig. 2 which uses a finer timestep.

4.5. Receptive fields

Throughout this paper we use the weights of the neurons as
a proxy for their actual receptive fields. Showing all the weights
of the network on the same image requires that we normalise
each receptive field separately, because neurons that respond to
narrow features have larger absolute weights than those that
respond to broad ones. Nonetheless, we make sure that zero
weights appear as the same middle grey for all neurons, allowing
quick identification of ON (brighter) and OFF (darker) areas. Thus
we normalise the receptive field Wi =

[
w1→i · · · wd→i

]
of

each neuron i as follows when generating the figures:

W ′i =
1+ aiWi

2
(15)

where ai =
(
max1≤j≤d |wj→i|

)−1 and d is the number of input
dimensions.

4.6. MNIST

We use both the standard MNIST dataset (LeCun & Cortes,
1998) and the Fashion-MNIST variant (Xiao et al., 2017), each
with 60,000 training samples and 10,000 test samples. We map
the full range of the data to the interval [0, 1]. When training
the sparse coding network, we shuffle the patterns and distort
them with random shears and translations, as done in LeCun et al.
(1998). The purpose of these distortions is to increase the number
of distinct training samples, and also to remove the correlations
introduced by the centring of the patterns. We do this by applying
the following affine transformation with the origin at the centre
of the pattern:

M =

[ 1 A1 T1
A2 1 T2
0 0 1

]
where each Ai is a random variable drawn from N (σ = 0.1), and
each Ti is a random variable drawn from N (σ = 2.0). Distorted
digits produce more localised receptive fields than the centred
patterns, which in turn improves the performance of classifiers
trained on the output of the network. When training and testing
the classifiers themselves, we freeze the weights of the sparse
coding network and we use the plain stimuli without distortions.

In Table 1 we use the following classifiers from scikit-
learn (Pedregosa et al., 2011) version 0.19.1:

SVM: LinearSVC(C=1.0, class_weight=None, dual=Fal-
se, fit_intercept=True, intercept_scaling=1,
loss= squared_hinge, max_iter=1000, multi_
class=ovr, penalty=l2, random_state=2136146589,
tol=0.0001, verbose=0)
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kNN: KNeighborsClassifier(algorithm=auto,n_jobs=1,
leaf_size=30,n_neighbors=4, metric=minkowski,
metric_params=None, p=2, weights=uniform)

4.7. Natural images

We use two datasets of photographic images: one by Ol-
shausen and Field (1997), and one compiled from public-domain
archive images of monuments from the Cornell University Digital
Collections (Cornell University Library, 2008). In both cases,
each image was converted to greyscale, resized to an area of
200,000 pixels, preprocessed using the same whitening trans-
form as Olshausen and Field (1997), and then normalised to unit
variance. No further normalisation was applied to the individual
patches used for training; in particular, the patch mean was not
subtracted from the input. Note that in contrast to MNIST the
natural image stimuli contain both positive and negative values.
We interpret these as ON and OFF channels from the retina; while
it would be more realistic to split the ON and OFF values into
separate, non-negative channels, we did not attempt this here.

For the reconstruction experiment, the input image was tiled
into overlapping patches with a width of 16 pixels and a stride
of 8 pixels. Each input patch was run through a sparse coding
network pre-trained on the Monuments dataset. The sparse out-
put was then fed as the input to a linear model trained with
ridge regression to reconstruct the original patches. Finally, the
predicted patches were placed at their original locations and
averaged to account for the stride overlap.
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