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ABSTRACT

The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120-168 MHz survey of the northern
sky with diverse and ambitious science goals. Many of the scientific objectives of LoTSS rely upon, or are enhanced by,
the association or separation of the sometimes incorrectly catalogued radio components into distinct radio sources and
the identification and characterisation of the optical counterparts to these sources. We present the source associations
and optical and/or IR identifications for sources in the first data release, which are made using a combination of
statistical techniques and visual association and identification. We document in detail the colour- and magnitude-
dependent likelihood ratio method used for statistical identification as well as the Zooniverse project, called LOFAR
Galaxy Zoo, used for visual classification. We describe the process used to select which of these two different methods is
most appropriate for each LoTSS source. The final LoTSS-DR1-IDs value-added catalogue presented contains 318,520
radio sources, of which 231,716 (73%) have optical and/or IR identifications in Pan-STARRS and WISE. The value-
added catalogue is available on-line at https://lofar-surveys.org/, as part of this data release.
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1. Introduction

The true power of modern large radio surveys, which will
reveal many millions of radio sources, lies in cross-matching
them with surveys at different wavelengths, i.e. in identify-
ing the multiwavelength counterparts of radio sources. This
enables detailed statistical studies of the populations of ex-
tragalactic radio sources and their host galaxy properties.
Over the last few decades, the cross-matching of large area
radio surveys, in particular the National Radio Astronomy
Observatory (NRAO) Very Large Array (VLA) Sky Survey
(NVSS; Condon et al. 1998) and the Faint Images of the
Radio Sky at Twenty centimetres (FIRST) survey (Becker
et al. 1995), with large-scale optical spectroscopic surveys,
such as the Sloan Digital Sky Survey (SDSS; York et al.
2000; Stoughton et al. 2002) and the 6 degree Field Galaxy
Survey (6dFGS; Jones et al. 2004), have hugely improved
our understanding of extragalactic radio sources. Match-
ing these surveys has provided samples of many thousands
of sources (e.g. Best et al. 2005b; Mauch & Sadler 2007),
which have allowed for detailed statistical studies of the

? LoTSS
?? E-mail: w.williams5@herts.ac.uk

radio source populations (e.g. Best et al. 2005a; Best &
Heckman 2012; Janssen et al. 2012).

In the coming years, a number of wide area surveys
will be carried out using the next generation of radio tele-
scopes and telescope upgrades. These include the LOw Fre-
quency ARray (LOFAR; van Haarlem et al. 2013) Two-
metre Sky Survey (LoTSS; Shimwell et al. 2017), the VLA
Sky Survey (VLASS1), the Evolutionary Map of the Uni-
verse survey (EMU; Norris et al. 2011) using the Aus-
tralian SKA Pathfinder (ASKAP; Johnston et al. 2007),
and the WODAN survey (Röttgering et al. 2011) using
the APERture Tile In Focus (APERTIF; Verheijen et al.
2008) upgrade on the Westerbork Synthesis Radio Tele-
scope (WSRT). New large-area optical surveys are also
in progress or planned. These include surveys with the
Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS; Kaiser et al. 2002, 2010), the Large Synop-
tic Survey Telescope (LSST; Ivezić et al. 2008) and Euclid
(Amendola et al. 2016). Deep X-ray surveys with eROSITA
are also planned (Merloni et al. 2012). When combined,
these next generation radio and multiwavelength surveys

1 https://science.nrao.edu/science/surveys/vlass
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will provide samples orders of magnitude larger than cur-
rently available, reaching to substantially higher redshifts,
which will revolutionise our understanding of radio source
populations through far more detailed statistical studies.

Cross-matching surveys at different wavelengths is a
well-established procedure in astronomy, albeit with some
unresolved challenges. For many radio sources, including
star-forming galaxies and some radio-loud active galac-
tic nuclei (AGN), the radio emission is relatively com-
pact and is coincident with the optical emission, allowing
cross-matching through simple procedures, such as nearest
neighbour (NN) matching or more complex automated sta-
tistical methods. However, problems of matching between
the radio and optical are compounded by the complex na-
ture of other radio sources, in particular spatially extended
radio-loud AGN: these scientifically interesting complex-
structured sources are very challenging to cross-match.

A sensitive, high-resolution 120-168 MHz survey of the
northern sky, LoTSS, is already well under way. Using the
High Band Antenna (HBA) system of LOFAR, the survey
aims to reach a sensitivity of less than 0.1 mJy beam−1

at an angular resolution of ∼ 6′′ across the whole north-
ern hemisphere. The first data release (LoTSS-DR1), de-
scribed in the accompanying paper (Shimwell et al. 2019,
hereafter DR1-I), covers 424 square degrees and includes
over 300,000 radio sources. While surveys like NVSS lack
angular resolution and surveys like FIRST have problems
with resolving out large-scale emission, LoTSS is unique
in retaining both high resolution and sensitivity to large-
scale structures, which aids the process of cross-matching.
Many of the scientific objectives of LoTSS rely upon, or are
enhanced by, the identification and characterisation of the
multiwavelength counterparts to the detected radio sources.
In this paper we have made our first attempt at enriching
our radio catalogues by identifying their optical/IR2 coun-
terparts, thereby enabling their photometric and spectro-
scopic redshifts to be determined. Accurate source redshifts
allow physical properties such as luminosities and sizes to
be determined, which in turn enables studies of the intrinsic
properties of radio sources and their host galaxies3. Photo-
metric redshift and rest-frame colour estimates for all the
matched optical/IR sources are presented in the accompa-
nying paper (Duncan et al. 2019, hereafter DR1-III). Fur-
thermore, future spectroscopic surveys such as WEAVE-
LOFAR (Smith et al. 2016), using the William Herschel
Telescope Enhanced Area Velocity Explorer (WEAVE; Dal-
ton et al. 2012, 2014) multi-object and integral field spec-
trograph, will provide precise redshift estimates and robust
source classification for large fractions of the LoTSS source
population.

This paper is structured as follows. In Section 2 we give
a brief summary of the LoTSS and optical/IR data used for
the cross-matching. In Section 3 we give an overview of the
process of radio–optical cross-matching. The details of the
statistical likelihood ratio (LR) technique are given in Sec-
tion 4 and the full Zooniverse visual classification scheme is
described in Section 5. In Section 6 we present the decision
tree that is used to decide which sources are identified by
the likelihood ratio and visual classification methods. The

2 In this paper we take optical/IR to mean the inclusive or, i.e.
optical or IR or both.
3 For examples of the broad range of science see the other papers
in this special issue.

final value-added catalogue is presented in Section 7, along
with some of its basic properties. Finally, we summarise
our work and discuss some possible future developments in
Section 8.

Throughout this paper, all magnitudes are quoted in the
AB system (Oke & Gunn 1983) unless otherwise stated.

2. The radio and optical catalogues

2.1. The LOFAR sample

Details of the LoTSS first data release images and source
extraction are given in DR1-I and we summarise the rele-
vant points. The images cover 424 square degrees over4 the
Hobby-Eberly Telescope Dark Energy Experiment (HET-
DEX; Hill et al. 2008) Spring Field (right ascension 10h45m
to 15h30m and declination 45◦00′ to 57◦00′). Direction-
dependent calibration of the LOFAR data enabled imaging
at the full resolution of 6′′. Source detection was performed
on each mosaic image using the Python Blob Detector
and Source Finder (PyBDSF; Mohan & Rafferty 2015).
The background noise was estimated across the images us-
ing sliding box sizes of 30×30 synthesised beams, decreased
to just 12×12 synthesised beams near high signal-to-noise
sources (≥150) to more accurately capture the increase in
noise over smaller spatial scales in these regions. Wavelet
decomposition, with 4 wavelet scales, was used to better
characterise the complex extended emission present in the
images. We set PyBDSF to form islands with a 5σ peak
detection threshold and a 4σ island threshold. Internally
PyBDSF fitted each island with one or more Gaussians
that were grouped into discrete sources. The parameters
we used for the source extraction (namely the box sizes
for determining the background noise and the ‘group tol’
parameter, for which we used a value of 10) were opti-
mised through trial and error testing5. This allowed us to
produce the best grouping of Gaussian components, i.e. to
join up most compact double sources while not overproduc-
ing ‘blended’ sources (incorrectly grouping separate sources
as one source). Sources fitted with multiple Gaussians are
identified in the PyBDSF source catalogue by a value of
‘M’ in the ‘S Code’ column, those fitted by a single Gaus-
sian have ‘S’ in the ‘S Code’ column, and a few tens of
sources that are fitted by a single Gaussian, but lie within
the same island as another source, have ‘C’ in the ‘S Code’
column. We treat ‘C’ type sources the same as ‘M’ type
sources.

A final PyBDSF source catalogue of the HETDEX
region, containing 325,694 entries, was produced, along
with a final catalogue of all the Gaussian components of
the PyBDSF sources. In the following we refer to the
source catalogue as the PyBDSF source catalogue and the
Gaussian component catalogue as the PyBDSF Gaussian
catalogue. Catalogue parameters refer to those from the
PyBDSF source catalogue, unless explicitly specified as
the parameters from the PyBDSF Gaussian component
catalogue. DR1-I determined the positional accuracy of the
catalogued sources to be within 0.2′′.

4 LoTSS-DR1 covers a region slightly larger than the HETDEX
field, but with a few holes from four failed LOFAR pointings.
5 This was done by visually examining the output catalogues
overlaid on the LoTSS images prior to any of the visual classifi-
cation presented in this paper.
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2.2. The optical/infrared galaxy sample

Deep and wide optical and IR data are available over the
LoTSS-DR1 sky area from Pan-STARRS (in grizy bands)
and from the Wide-field Infrared Survey Explorer (WISE ;
Wright et al. 2010). The Pan-STARRS 3π survey (Cham-
bers et al. 2016) covers the entire sky north of δ > −30◦

with 5σ magnitude limits in the stacked grizy images of
23.3, 23.2, 23.1, 22.3 and 21.4 mag, respectively. The typical
point spread function (PSF) of the Pan-STARRS images
is ∼ 1 − 1.3′′. The AllWISE catalogue (Cutri et al. 2013)
includes photometry in the 3.4, 4.6, 12, and 22µm mid-
infrared bands (W1, W2, W3, and W4) for more than
747 million sources over the full sky. The W1 and W2
bands have significantly better sensitivity than the other
two WISE bands; the AllWISE catalogue completeness
varies over the sky, but nominally it is > 95% complete
for sources with W1 < 19.8, W2 < 19.0, W3 < 16.67, and
W4 < 14.32 mag. The effective PSF for the WISE images
is 6− 6.5′′ in bands W1, W2, and W3, and ∼ 12′′ in W4.

We produced a combined Pan-STARRS–AllWISE cata-
logue over the LoTSS coverage area by matching sources
in the two catalogues using the LR method, the details
of which are given in Section 4.2.1. This combined cata-
logue includes sources with detections in only PanSTARRS
or only AllWISE or both and is used for identifying the
optical/near-infrared counterparts to LoTSS sources and in
the determination of photometric redshifts and rest-frame
colours (DR1-III).

For some large optical galaxies we make use of other
earlier all-sky surveys, in particular, we use the SDSS DR-
12 catalogue (Alam et al. 2015) and the Two Micron All
Sky Survey (2MASS; Skrutskie et al. 2006) extended source
catalogue (2MASX; Jarrett et al. 2000). We refer only to
source names in these catalogues.

3. Radio-optical cross-matching

Our objectives throughout this paper are essentially to cor-
rectly ‘associate’ radio sources – that is, to decide which
sources found by the source finder belong together as com-
ponents of one physical source and which are separate
sources that have been incorrectly associated by the source
finder – and to ‘identify’ them – that is, to find the best
possible optical/IR counterpart where one exists.

The PyBDSF catalogue is not a perfect representation
of radio sources. In addition to the unambiguous complete
sources, this catalogue contains a mixture of (i) blended
sources, where distinct nearby sources have been incor-
rectly associated as one source; (ii) separate components
of distinct sources, where a single source has been cata-
logued in multiple entries because there is no contiguous
emission between its components (for example in the case
of separate lobes of radio galaxies) so that the true as-
sociation is not recovered by the source finder; and (iii)
spurious emission or artefacts. We aim to produce a cata-
logue of real, correctly associated radio sources and to pro-
vide their Pan-STARRS/WISE counterparts, where possi-
ble. We handle the counterpart identification and possible
association or separation of incorrectly catalogued compo-
nents in two ways; we use a separate decision process to
determine which of the two methods to use based on the
properties of the radio sources.

The first method determines the presence or absence of
a counterpart statistically. For this we use the LR, i.e. the
ratio of the probability of a particular source being the true
counterpart to that of it being a random interloper. This
method is described in detail in Section 4, and the spe-
cific application to this data set is described in Section 4.2.
Initially we determine the LR counterparts for all sources
in the PyBDSF catalogue with sizes smaller than 30′′ as
well as for all the PyBDSF Gaussian components smaller
than 30′′. These can be incorrectly combined into sources
by PyBDSF and individually have superior LR matches
by themselves; for sources and Gaussian components larger
than 30′′ we do not attempt to find LR matches as the size
of these sources or components make the LR identification
unreliable.

For larger and more complex sources, statistical match-
ing is not reliable so we employ a second method for identi-
fication and association or separation of components. This
method involves human visual classification and is built
on a Zooniverse framework. The project, called LOFAR
Galaxy Zoo (LGZ), is described in detail in Section 5. Since
it is prohibitive in terms of time, as well as unnecessary, to
do this for all sources in the PyBDSF catalogue, we pres-
elect for LGZ processing samples of sources that are likely
to be complex.

The sources in the PyBDSF catalogue are selected ei-
ther for LGZ processing or for acceptance of the LR match
based on their catalogued characteristics by means of a de-
cision tree described Section 6. The main PyBDSF cata-
logue parameters we use for the decisions are the source
size (defined as the major axis), the source flux density,
the number of fitted Gaussian components, the distance to
the NN, and the distance to the fourth closest neighbour. In
the decision tree we further make use of the LRs determined
for all sources in the catalogue smaller than 30′′, as well as
the LRs for all the Gaussian components smaller than 30′′.
The thresholds used to determine whether a given source
or Gaussian component has an acceptable LR match are
discussed in Section 4.

4. Likelihood ratio identifications

In this Section we describe the statistical LR method
and how it is used to identify the majority of sources in
the LoTSS-DR1 catalogue. The general description of the
method is given in Section 4.1 and the specific application
to the LoTSS-DR1 data set in Section 4.2. As discussed in
Section 2, deep and wide area data for host galaxy identi-
fications are available over the LoTSS-DR1 sky area from
Pan-STARRS and AllWISE. We use a magnitude-only LR
method to cross-match the Pan-STARRS and AllWISE cat-
alogues over the LoTSS-DR1 sky coverage and produce a
combined Pan-STARRS and AllWISE catalogue, which in-
cludes sources with detections in only PanSTARRS or only
AllWISE or both (See Section 4.2.1 for details), and thus
includes colour information for each source. The LoTSS-
DR1 sources are cross-matched with this combined Pan-
STARRS–WISE catalogue using a colour- and magnitude-
dependent LR method (See Section 4.2.2 for details).
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4.1. The likelihood ratio method

The LR technique (e.g. Richter 1975, de Ruiter et al. 1977
and Sutherland & Saunders 1992) is a maximum likelihood
method used to statistically investigate whether an object
observed at one wavelength is the correct counterpart of an
object observed at a different wavelength. It is particularly
useful when the basis catalogue has a poorer angular reso-
lution or lower source density than the catalogue in which
the counterpart is being sought, thus giving rise to multiple
potential matches from which the most likely counterpart
needs to be identified. This is often the case when seeking
optical or IR identifications to radio sources, as in this pa-
per. In the description below we specifically use ‘radio’ to
refer to the basis catalogue and ‘optical’ to refer to the cat-
alogue being matched to. However, these terms can be more
generally replaced by any basis catalogue and matched cat-
alogue – for example, we also use the LR technique to find
Pan-STARRS counterparts to AllWISE sources.

The LR of an object is defined as the ratio of the prob-
ability of the object being the true counterpart to that of
it being a random interloper. This can be generally written
as

LR =
q(x1, x2, . . . )f(r)

n(x1, x2, . . . )
. (1)

Here, q(x1, x2, . . . ) represents the a priori probability that
the radio source has a counterpart with parameters (which
might be any magnitudes, colours, redshift, type, or any
other galaxy property to be included in the analysis) with
values x1, x2, etc. The parameter n(x1, x2, . . . ) is the sky
surface density of objects with properties x1, x2, etc. f(r) is
the probability distribution function for the offset r between
the position of the radio source and its potential counter-
part, taking into account the uncertainties in the positions
of each.

Likelihood ratios are commonly calculated using a single
galaxy magnitude (m) as the only parameter, in which case

LR =
q(m)f(r)

n(m)
. (2)

We use this simple approach for cross-matching the
PanSTARRS and WISE catalogues. The methods for de-
termination of f(r), n(m), and q(m) are discussed below.

Nisbet (2018) showed, using an analysis of LOFAR
sources in the ELAIS-N1 field, that including galaxy colour
(in their case, g− i and i−K colours) as well as magnitude
greatly increased the robustness of the LR analysis for radio
source host galaxies. The inclusion of the i−K colour was
particularly useful, as radio source hosts are well known to
be frequently red in optical to near-IR colours: galaxies of
given i-band magnitude were found to be around an order
of magnitude more likely to host a radio source if they had
a colour i − K > 4 than those with i − K < 3. In the
LR analysis for the LoTSS sources we therefore consider
magnitude and colour (c), and use

LR =
q(m, c)f(r)

n(m, c)
. (3)

Specifically, we use the Pan-STARRS i-band data and
the WISE W1 (3.4µm) data, as these offer the highest

detection fractions for the radio sources and also provide
an optical–to–IR colour baseline similar to the i−K colour
used by Nisbet (2018).

4.1.1. Determination of f(r)

The parameter f(r) represents the probability distribution
of offset r between the catalogued positions of the radio
source and its potential counterpart. The uncertainty in
this offset is calculated by combining the uncertainty on
the radio position, the uncertainty on the optical/IR posi-
tion, and the uncertainty on the relative astrometry of the
two surveys. It is important to take into account that radio
positional errors are frequently asymmetric due to an ellip-
tical beam shape, or an extended radio source. Therefore
we need to evaluate radio-optical offsets relative to the ma-
jor and minor axis direction of each source (as opposed to
working in the RA and Dec directions, which are in general
not aligned with the PSF), as well as along the direction
between the radio source and possible counterpart. The pa-
rameter f(r) is then given by

f(r) =
1

2πσmajσmin
exp

( −r2

2σ2
dir

)
, (4)

where σmaj and σmin are the combined positional uncertain-
ties along the radio source major and minor axis directions,
and σdir is the combined positional uncertainty projected
along the direction from the radio source to the possible
counterpart under investigation. We now discuss each com-
ponent of the positional error budget in turn.

For each LoTSS source, PyBDSF returns the error on
the full width at half maximum (FWHM) of the major and
minor axes for the fitted Gaussian (δFWHM,maj, δFWHM,min)
as well as the position angle. As shown by Condon (1997),
the uncertainty on the radio position along the major
(minor) axis direction (σmaj(min),rad) is formally given by

σmaj(min),rad = δFWHM,maj(min)/(8 ln 2)1/2. However, this
does not take into account the presence of correlated noise
in the radio images; empirical results from the NVSS (Con-
don et al. 1998) and WENSS (Rengelink et al. 1997) sur-
veys indicate that the formal positional errors on the ra-
dio sources are typically a factor of 1.3–1.5 larger. Here,
a factor

√
2 is adopted, and so the positional uncertain-

ties along the major and minor axes are σmaj(min),rad =

δFWHM,maj(min)/(4 ln 2)1/2. Then, using the angle between
the major axis direction and that of the vector joining
the LoTSS source to its potential counterpart, these two
uncertainties are projected to derive the radio positional
uncertainty in the direction of the potential counterpart
(σdir,rad).

The positional uncertainties for the optical/IR galaxy
are catalogued in the RA and Dec directions; these are
therefore re-projected into the radio source major axis,
minor axis, and source-to-counterpart directions (σmaj,opt,
σmin,opt and σdir,opt), although in practice these uncer-
tainties are often symmetric. For the astrometric uncer-
tainty between the radio and counterpart surveys, a value of
σast = 0.6′′ is adopted. This is larger than the typical astro-
metric uncertainty determined by DR1-I but, as discussed
in Nisbet (2018), it is important to take a conservative ap-
proach as the astrometric errors are generally not Gaussian.

Article number, page 4 of 23



Williams et al.: LoTSS-DR1 optical identifications

For most sources, the astrometric uncertainty makes a neg-
ligible contribution to the overall uncertainty, but adoption
of too small a value can lead to a failure to select gen-
uine counterparts for some bright compact radio sources
for which signal-to-noise dependent positional uncertainties
can be unrealistically small. The value of σast = 0.6′′ was
chosen empirically by visually examining borderline cases
of bright compact radio sources.

These three contributions are combined in quadrature to
derive the overall positional uncertainty required in Equa-
tion 4, i.e.

σ2
maj = σ2

maj,rad + σ2
maj,opt + σ2

ast (5)

and similarly for σmin and σdir. Thus, f(r) can be calculated
for each potential counterpart.

4.1.2. Determination of n(m) and n(m, c)

The parameter n(m) represents the number of objects per
unit area of sky at a given magnitude, and is easily cal-
culated using a well-defined, representative large region
of sky, which is not significantly affected by bright stars
or other limitations that cause incompleteness in the sur-
vey. A Gaussian kernel density estimator (KDE) of width
0.5 mag was used to determine n(m); particularly for the
smaller number statistics of q(m) at bluer colours (see Sec-
tion 4.2.2), a KDE provides smoother and more robust re-
sults than binning.

In colour space, to determine n(m, c), the sample is di-
vided into colour bins and n(m) is determined separately
for galaxies within each colour bin. Adoption of a two-
dimensional KDE in both colour and magnitude was con-
sidered, but would have required highly adaptive scaling
lengths to account for both the broad colour tails and the
rapid changes in q(m)/n(m) at intermediate colours.

4.1.3. Determination of q(m)

The parameter q(m) represents the a priori probability that
the radio source has a counterpart of magnitude m. Ideally
this would be predetermined using an independent data set.
However, in general this is not possible and the data set
itself must be used; great care must be taken to avoid biases
due to galaxy clustering.

Methods to estimate q(m) have been developed by
Ciliegi et al. (2003), Fleuren et al. (2012), and McAlpine
et al. (2012), amongst others. By defining a fixed search ra-
dius rmax (typically chosen to be comparable to the angular
resolution of the basis survey), the magnitude distribution
of all optical/IR sources within rmax of all the radio sources
can be determined (usually referred to as total(m)). This
can be statistically corrected for background galaxy counts
to determine the magnitude distribution of just the galaxy
counts associated with the radio sources (real(m)) using

real(m) = total(m)− n(m)Nradioπr
2
max, (6)

where Nradio is the number of radio sources in the catalogue
(and hence the second term accounts for the total sky area
out to rmax around all Nradio sources). Determined in this
way, real(m) contains the true radio source host galaxies,
but may also include additional galaxies within rmax around

the radio sources that are not themselves the host, but are
associated with it (e.g. because radio-loud AGN often lie in
overdense group or cluster environments, e.g. Prestage &
Peacock 1988, Hill & Lilly 1991 and Best 2004). This issue
will be returned to shortly.

The parameter q(m) is then derived from real(m) as

q(m) =
real(m)∑
mi

real(mi)
Q0, (7)

where Q0 represents the fraction of sources that have a
counterpart down to the magnitude limit of the survey (i.e.
Q0 = Nmatched/Nradio). Fleuren et al. (2012) outlined a
method to derive Q0 in a manner unbiased by galaxy clus-
tering by comparing the number of the fields around the
radio sources which are blank (i.e. without any possible
counterparts) out to a chosen search radius6 rs, (referred
to as Nblank(rs)) to the number of blanks around an equiv-
alent number of randomly chosen positions (Nblank,ran(rs)),

F (rs)Q0 = 1− Nblank(rs)

Nblank,ran(rs)
, (8)

where F (rs) is the fraction of the true identifications that
are expected to be found within radius rs. Formally F (rs)
should be derived by integrating f(r) for each source, across
all position angles, out to rs, but in practice it is accurate
enough to take an average value of σ, in which case F (rs) =
1− exp(−r2

s/2σ
2).

Derived in this way, Q0 is unbiased by the effects of
galaxy clustering; this is because the calculation relies on
counting blank fields, so is unaffected by whether a de-
tected radio source host galaxy also has associated com-
panion galaxies within the search radius. However, as noted
above, the magnitude distribution q(m) may still be mildly
affected by the companion objects.

4.1.4. Determination of q(m, c)

This same method cannot easily be adopted across different
colour bins. Although real(m, c) can be easily determined
in each colour bin using Eqn. 6, the Fleuren et al. method
of Eqn. 8 is not able to correct for clustering biases in the
determination of Q0(c) (the fraction of sources with a coun-
terpart of colour c, such that Q0(c) = Nmatched(c)/Nradio

and
∑

cQ0(c) = Q0). This can be seen by considering the
case of a radio source host in one colour bin which has a
physically associated galaxy (i.e. a companion galaxy within
the same group or cluster) within the search radius, but
which falls in a different colour bin. In this case, as well
as (correctly) not being a blank field in the colour bin of
the true host galaxy, that radio source would also not be
a blank field when examining the colour bin corresponding
to the companion galaxy. Since the companion galaxy is
not a random interloper, the search around random posi-
tions (Nblank,ran(rs)) would not correct for this. Hence, this
radio source would contribute towards Q0(c) in the colour

6 In theory the resultant Q0 should be insensitive to the radius
chosen. In practice, Q0 is usually evaluated for a range of radii
around the angular resolution of the basis catalogue, and an
average value taken.
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bins of both the true host galaxy and the companion, lead-
ing to an overestimate of Q0 by as much as tens of percent
for larger values of rs.

Instead, therefore, we adopt the process developed by
Nisbet (2018), which is to derive q(m, c) through an itera-
tive approach. Our specific adaptation of this is outlined in
more detail in Section 4.2.2, but in summary the iterative
approach works as follows:

1. First, a rough starting estimate is made for the set of
host galaxies to the radio sources. In principle, this
starting estimate could be as simple as a NN cross-
match out to some fixed radius. In practice, in order
to speed up the convergence of the iterative procedure,
we produce this starting estimate by using magnitude-
only LR analyses in the Pan-STARRS i-band and WISE
W1 bands (see Section 4.2.2 for the specific details of
how we do this).

2. This first-pass list of host galaxies is then split by colour
to provide a direct estimate of each of the Q0(c) – the
fraction of radio sources which have counterparts within
each colour bin. Dividing by magnitude as well then
gives a first estimate of q(m, c) – the fraction of radio
sources with a counterpart of magnitude m and colour
c.

3. Using this q(m, c) estimate, LRs are derived for all
galaxies around the radio sources (out to some radius
– in our case 15′′) using both magnitude and colour pa-
rameters.

4. Using these LR values, a revised estimate for the list
of host galaxies is produced by selecting the highest LR
match to each radio source, provided that it exceeds the
LR threshold (see Section 4.1.5).

5. This revised set of matches is used to provide improved
estimates of Q0(c) and q(m, c), and steps 3 to 5 are
iterated to convergence.

4.1.5. Likelihood ratio thresholds

Once all three probability distributions (f(r), n(m) and
q(m), or n(m, c) and q(m, c)) are determined, Equation 2
or 3 (as appropriate) can be used to determine the LR of
each candidate host galaxy. The remaining issue is then to
decide which identifications to adopt. An advantage of the
LR technique is that, in ambiguous cases, multiple possible
host galaxy identifications can be retained, with a proba-
bility of association assigned to each. However, for this first
LoTSS data release, we retain only the most likely match
(i.e. the object with the highest LR), if its LR is above our
defined threshold level.

For a given LR threshold Lthr, the completeness
(C(Lthr): the fraction of real identifications which are ac-
cepted) and the reliability (R(Lthr): the fraction of accepted
identifications which are correct)7 of the resultant sample
can be determined as (e.g. de Ruiter et al. 1977 and Best
et al. 2003)

C(Lthr) = 1− 1

Q0Nradio

∑
LRi<Lthr

Q0 LRi

Q0 LRi + (1−Q0)
, (9)

7 We note that defining the reliability in this sense – referring
to the whole catalogue – is distinct from the reliability as used in
the LR formalism by for example Sutherland & Saunders (1992).

R(Lthr) = 1− 1

Q0Nradio

∑
LRi≥Lthr

1−Q0

Q0 LRi + (1−Q0)
, (10)

where the summation for the completeness calculation is
over the highest LR counterparts to all sources for which
the best match has a LR below the threshold, and the sum-
mation for the reliability is for the best matches above the
threshold. The choice of Lthr then depends on the relative
importance of completeness and reliability for the sample
under investigation, but a typical value might be where
these two functions cross, or where their average is max-
imised. We note that the point where completeness and
reliability cross is also the value of Lthr which delivers a
fraction Q0 of identifications. This is the threshold adopted
for the current analysis.

4.2. Practical application to the LoTSS data set

4.2.1. Combining Pan-STARRS and WISE data

Before combining with the radio data, the Pan-STARRS
i-band and WISE W1-band data sets were first combined,
using a magnitude-only LR analysis. The WISE W1 was
used as the basis data set and the best Pan-STARRS match
(if any) to each WISE source was sought. The matching
was done in this direction, since both the angular resolu-
tion and source density of the Pan-STARRS data are much
higher, and so matching in the opposite direction would
lead to multiple Pan-STARRS galaxies selecting the same
WISE source. The use of WISE data helps the subsequent
LR matching to LoTSS sources given that radio sources
are frequently associated with galaxies with redder colours
and hence brighter near-infrared magnitudes. Although we
do not explicitly filter out optical galaxies with no WISE
emission, our colour-based LR method is effective at reject-
ing these when they are unrelated.

Prior to matching, for the small fraction (< 5%) of
Pan-STARRS sources without a measured i-band magni-
tude, the i-band magnitude was estimated from the mea-
surements in the other Pan-STARRS bands (grzy) and the
mean colours of the all galaxies; this was done by extract-
ing the magnitude in each band in which the source was
detected, adjusting this by the mean colour of all galax-
ies between that band and the i-band, and then averaging
these values.

Then, using the techniques described above for
magnitude-only LRs (Section 4.1) and using the AllWISE
catalogue as the basis catalogue, an LR threshold of Lthr =
6.4 and a value of Q0 = 0.62 were derived (i.e. 62% of
WISE W1 sources have a counterpart in the Pan-STARRS
i-band data). LRs were then derived for all PanSTARRS
sources within 15′′ of each AllWISE position, and for each
AllWISE source the highest LR above the threshold (if any)
was taken as the PanSTARRS counterpart. The counter-
parts accepted (those with LR > 6.4) are broadly similar
to those that would be selected by adopting a simple NN
radial cross-matching out to ≈ 2′′, but with a weak magni-
tude dependence on the allowable radial offset.

A combined Pan-STARRS–WISE catalogue was con-
structed by including all accepted cross-matches, but also
retaining all WISE sources without a Pan-STARRS match,
and supplementing the catalogue with all of the Pan-
STARRS catalogue sources that had not been matched
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to a WISE source. For all catalogue entries, the magni-
tudes were converted into AB magnitudes and corrected for
Galactic reddening using the data of Schlegel et al. (1998).
The overall catalogue contains around 26.5 million entries,
of which just over 30% had detections in both bands, nearly
20% were detected only in WISE, and 50% were detected
by Pan-STARRS only. Some issues will undoubtedly re-
main with the combined catalogue, for example in cases
where two nearby Pan-STARRS sources are blended in the
lower resolution WISE data into a single catalogue entry;
however, these are sufficiently rare that they are not ex-
pected to have a significant effect on subsequent LoTSS
cross-matching. We note that no attempt was made to sep-
arate stars from galaxies in the combined catalogue: LoTSS
sources may match to stellar objects (either genuine – such
as Pulsars – or misclassified objects such as quasars) and the
adopted colour-dependent procedure already works suffi-
ciently well at down-weighting the LRs of stellar candidates
that attempting to exclude these would introduce more er-
rors or biases than potential benefit.

4.2.2. Combining LoTSS and Pan-STARRS–WISE data

We use the full colour- and magnitude-dependent LR
method described in Section 4.1 to cross-match the LoTSS-
DR1 sources with the combined Pan-STARRS–WISE cat-
alogue. Specifically, in the LR analysis we consider the i-
band magnitude (m) and the i − W1 colour (c). For the
80% of sources with detections in Pan-STARRS, we use
the Pan-STARRS positions, while for the remainder we use
the WISE positions.

From within the overall LoTSS-DR1 sample, the sub-
set of radio sources for which LR analysis is appropriate
was selected. These are ideally the sources for which the
PyBDSF radio source position provides a well-defined lo-
cation for where the radio source host galaxy is expected
to be, and not those PyBDSF sources that are parts of
a larger source or are very significantly extended and thus
have poorly defined positions. Initially, for this sample we
included all LoTSS sources smaller than 30′′. This initial
sample was used to calibrate the q(m, c) values and calcu-
late the LRs as described in this section, noting that these
values and LRs are slightly biased by the inclusion of some
sources for which LR analysis is not appropriate. The full
decision tree, using the LRs as described in Section 6, was
then used to reselect the sample of LoTSS sources for which
LR analysis is appropriate. We also excluded any PyBDSF
source already associated in LGZ. This cleaner sample was
later used to recalibrate the q(m, c) values, recalculate the
LRs, and hence derive the cross-matched counterparts.

As a starting point for the iterative procedure to de-
rive q(m, c) described above (Section 4.1.4), an initial pass
of determining optical/IR counterparts is required. This
was achieved by cross-matching the radio sources selected
for LR analysis against the i-band and W1-band cata-
logues separately, in each case using a LR analysis con-
sidering magnitude only. Specifically, for this magnitude-
only matching, first the Fleuren et al. (2012) technique was
used to derive values of Q0,i = 0.512 and Q0,W1 = 0.700
(i.e. 51% and 70% identification rates for LoTSS sources in
the i and W1 bands, respectively) and the corresponding
q(m) distributions. Then, the LRs were then derived for
all sources in each of the i-band and W1-band catalogues
located within 15′′ of each radio position. Sources were ac-

cepted as matches if their LRs were above the thresholds
of Lthr = 4.85 in the i-band or Lthr = 0.70 in the W1-band
(corresponding to a fraction of Q0 accepted matches in each
band; see Section 4.1.5). If more than one potential counter-
part was above those thresholds then the counterpart with
the highest LR in either of the two bands was accepted and
the other discarded. Creating the starting sample in this
manner, rather than a simple cross-match or a LR analy-
sis in one band alone, produced a more accurate starting
estimate for q(m, c) and led to faster convergence of the
iterative procedure.

The sources in the combined Pan-STARRS–WISE cat-
alogue were then divided into 16 colour bins. Two colour
bins corresponded to those objects detected only in the i-
band and only in the W1-band. A further 14 colour cate-
gories were defined in i −W1 colour for those objects de-
tected in both bands. These colour categories are detailed
in Table 1. For each colour category, n(m, c) was deter-
mined from the overall Pan-STARRS-WISE sample. The
first-pass LR matches derived above were divided by colour
and magnitude to provide the starting estimates of q(m, c)
and Q0(c).

These values were then used as the input to a LR anal-
ysis using both magnitude and colour, as per Equation 3.
Specifically, for this analysis, the i-band magnitude was
used to determine the LRs within each colour bin, except
for the ‘WISE -only’ sources for which the W1 magnitude
was used. As before, the (now colour-based) LRs were calcu-
lated for all sources in the combined Pan-STARRS–WISE
catalogue within 15′′ of each radio source position.

From the resultant LRs of the most likely match to each
radio source, the LR threshold corresponding to accepting
a fraction Q0 =

∑
cQ0(c) of identifications was adopted.

The sources with LR > Lthr then provided a modified
set of matches, which was used to re-derive q(m, c). The
LRs of all of the Pan-STARRS–WISE sources were then
re-evaluated using the new q(m, c), which may lead to a
change in the best-matching source or to a source moving
above or below the LR threshold, and the process was it-
erated until an additional cycle provided no change in the
adopted matches. This required five iterations, although the
number of changes beyond the second iteration was largely
negligible. We note that in order to avoid any risk of system-
atic bias against the rarest colour categories, a minimum
value of 0.001 was set for each Q0(c); the iterative proce-
dure could potentially cause Q0(c) to trend progressively
towards zero. The final determined values of Q0(c) are pro-
vided in Table 1; summing these indicates that the total
LR identification rate for LoTSS sources is 73.7%. The de-
rived q(m)/n(m) functions in each colour bin are displayed
in Fig. 1.

Final LRs were calculated using the iterated q(m, c). A
plot of the completeness and reliability of the final sample,
as a function of LR threshold, is shown in Fig. 2. A thresh-
old value of Lthr = 0.639 that corresponds to the point
where the completeness and reliability cross was adopted
(see Section 4.1.5). Both the completeness and the reliabil-
ity are ≈ 99%.

Table 1 shows the number of accepted matches to LoTSS
sources as a function of colour bin. It also shows the frac-
tion of all galaxies within that colour bin that have a LoTSS
counterpart, down to the flux density limit of LoTSS. This
is also shown graphically in Fig. 3, and offers further moti-
vation for the use of the colour-based LR analysis, since the
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Fig. 1. Plots of q(m, c)/n(m, c) for each colour bin of the LR
analysis. Lines are colour-coded by galaxy colour bin (running
naturally from blue to red); the width of the line is proportional
to the number of LoTSS matches at that magnitude, i.e. thicker
regions represent the most important regions for q(m, c)/n(m, c)
to be determined. The figure clearly demonstrates that the KDE
approach for calculating q(m, c) and n(m, c) is able to produce
broadly smooth versions of these functions with sufficient magni-
tude resolution. At fainter magnitudes, the ratio q(m, c)/n(m, c)
can be seen to rise monotonically and strongly towards redder
colour bins, i.e. redder galaxies have a higher probability to host
a radio source, as expected, except at the very brightest magni-
tudes where nearby star-forming (blue) galaxies contribute sig-
nificantly.

probability of the reddest galaxies to host a radio source is
an order of magnitude higher than those of the bluest galax-
ies.

Now that this has been determined for each colour bin,
it can be applied to any further sample with properties sim-
ilar to LoTSS. In particular, it can be used for LR analysis
of new survey areas covered by LoTSS without need for
new iterative calculation. We have also used this calibrated
q(m, c) to derive LRs for counterparts around the positions
of the individual Gaussian components of multi-component
PyBDSF sources, i.e. for each Gaussian component in the
PyBDSF Gaussian catalogue, using the PyBDSF Gaus-
sian catalogue as the basis catalogue (see also Section 6.6).

5. Visual identification and association with LGZ

Some sources are too large or complex to be reliably iden-
tified through the statistical LR technique described in the
previous section. Moreover, the LR method cannot identify
and correct cases where the source finder has not correctly
grouped components of a single physical source together or
where it has incorrectly grouped (blended) multiple physi-
cal sources together. Such association or deblending needs
to be done separately; we do this and the optical/IR iden-
tification of large and complex sources through visual in-
spection. Based on the properties of the radio sources, we
selected a subsample of sources to be handled this way;
the details of the decision process are given in Section 6.
In total, we selected around 13,000 PyBDSF sources that
plausibly require visual inspection for optical/IR identifica-
tion or source association.

Table 1. Colour bins adopted for LR analysis. The columns
provide the details of the colour bin (magnitudes are in AB
magnitudes), the fraction of the combined Pan-STARRS-WISE
catalogue within that colour bin (fPS−WISE), the iterated value
of Q0(c), the final total number of LoTSS source matches to host
galaxies of that colour (NLoTSS) and the fraction of optical/IR
sources in the combined Pan-STARRS-WISE catalogue of that
colour that are a match to a LoTSS source down to the flux
density limit of LoTSS (fradio). We note that NLoTSS include LR
matches to sources included in LGZ associations as explained in
Section 5.3, which amount to an average of 2% of the matches
in each bin.

Colour bin fPS−WISE Q0(c) NLoTSS fradio

i−W1 ≤ 0 0.034 0.0010 299 0.001
0 < i−W1 ≤ 0.5 0.024 0.0056 1675 0.006

0.5 < i−W1 ≤ 1.0 0.036 0.0251 6878 0.019
1.0 < i−W1 ≤ 1.25 0.026 0.0359 9459 0.037
1.25 < i−W1 ≤ 1.5 0.030 0.0514 14655 0.045
1.5 < i−W1 ≤ 1.75 0.032 0.0574 16977 0.048
1.75 < i−W1 ≤ 2.0 0.031 0.0553 16885 0.047
2.0 < i−W1 ≤ 2.25 0.028 0.0500 15867 0.047
2.25 < i−W1 ≤ 2.5 0.023 0.0479 14690 0.055
2.5 < i−W1 ≤ 2.75 0.017 0.0422 12813 0.063
2.75 < i−W1 ≤ 3.0 0.012 0.0362 10959 0.076
3.0 < i−W1 ≤ 3.5 0.013 0.0482 14336 0.097
3.5 < i−W1 ≤ 4.0 0.004 0.0183 5429 0.120

i−W1 > 4.0 0.002 0.0059 1846 0.100
i-band only 0.500 0.0409 11841 0.002

W1-band only 0.188 0.2146 65658 0.030
Total 1.000 0.737 220267
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Fig. 2. Completeness and reliability of the host galaxy iden-
tifications as a function of the LR threshold. A threshold value
of Lthr = 0.639 was adopted, corresponding to the point where
the completeness and reliability cross.

In pilot projects we carried out this sort of process using
manual tools that involved visual inspection of data stored
on a local server by one or a few individuals (Williams et al.
2016; Hardcastle et al. 2016); but this is impractical for the
HETDEX field and still more so for the larger sky areas that
will be provided by the full LoTSS survey. Instead we used
the Zooniverse8 framework and in particular the panoptes
project builder9 to create an association and identification

8 www.zooniverse.org
9 https://github.com/zooniverse/Panoptes
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Fig. 3. Fraction of all galaxies within a particular colour bin
that have a LoTSS counterpart down to the flux density limit of
LoTSS. The colour of the symbols corresponds with the colour
used in Fig. 1. The position along the x-axis is given by the
average colour of all the sources in each bin. Poisson error is
negligible and the error is dominated by misclassification and
incompleteness. The size of the marker is proportional to the
number of LoTSS sources matched. This plot demonstrates the
additional power of using colour in the LR analysis owing to the
much higher probability for red (i−W1 > 3) galaxies to host a
radio source than for blue (i−W1 < 2) galaxies to do so.

tool which we call LGZ and which is described in this sec-
tion. At this stage of the LoTSS survey, access to LGZ
through the web interface was limited to members of the
LOFAR Surveys Key Science Project (KSP) and some of
their close associates. Therefore although we use the stan-
dard Zooniverse terminology and describe the participants
in the project as ‘volunteers’ in what follows, it should be
borne in mind that this is not citizen science and our volun-
teers all have some background in professional astronomy.
The LGZ project should not be confused with the very sim-
ilar Radio Galaxy Zoo project (Banfield et al. 2015), from
which it draws some inspiration and which is a true cit-
izen science project. Radio Galaxy Zoo itself is modelled
on the original ‘Galaxy Zoo’ (Lintott et al. 2008) project,
which very successfully used citizen scientists to classify the
morphologies of millions of galaxies in SDSS.

5.1. The LGZ interface

As in our pilot projects, we made the design decision
to carry out in parallel the two processes of ‘association’
(where the volunteer decides whether several sources in the
PyBDSF catalogue should be treated as a single source)
and ‘identification’ (where the volunteer selects zero, one
or more optical host galaxies for the possibly associated
radio source). In many cases the position of a plausible op-
tical host is very helpful in deciding on the correct source
association, or vice versa. We therefore needed to present
the volunteer with images to classify that showed the radio
data and at least one optical image. After some experimen-
tation, we chose to use both the Pan-STARRS r-band image
and WISE band 1, together with radio contours from both
the LoTSS images and the FIRST survey. The FIRST con-
tours are used alongside LoTSS because flat-spectrum cores

(which will appear strong in both LoTSS and FIRST), if
present, are useful in pinpointing a host galaxy, though of
course the majority of our sources have no FIRST coun-
terpart. Pan-STARRS r-band is used for its good angular
resolution; the ID fraction is only slightly lower than that
of the i-band and the bluer wavelength provides a longer
colour baseline. We useWISE band 1 because it is the most
sensitive optical/IR band available to us for the typical el-
liptical hosts of radio-loud AGN (see Section 4), although
its resolution is much lower than that of Pan-STARRS; at
6.1′′ WISE band 1 is very comparable to the resolution of
the LoTSS images themselves.

In order to present the images to volunteers in the
panoptes framework we have to render them as static
images for each PyBDSF source. After trials we settled
on three images: one showing LoTSS and FIRST contours
overlaid on a colour scale of the Pan-STARRS r-band im-
age; one with only the r-band image, but with catalogued
Pan-STARRS and WISE sources marked with (distinct)
crosses; and one with the same contours as the first image,
but overlaid on a colour scale of the WISE band-1 images.
All images show ellipses which mark the location and size of
the PyBDSF sources. The panoptes framework allows the
volunteer to flip between these images at any time, either
manually or with automatic cycling, so it is relatively easy
to search for, for example the WISE counterpart of a Pan-
STARRS source that might be a counterpart to a LoTSS
target. Images were made using the APLpy Python pack-
age (Robitaille & Bressert 2012); the colour and contour
levels were determined based on the local image proper-
ties (e.g. local rms noise) and the peak flux density of the
LoTSS source. Specifically, contours were drawn at a lowest
level of twice the local rms noise level or 1/500 of the peak
flux density of the component of interest, whichever was
the higher, and increased by a factor of 2 from that lowest
level. The size of the region to be displayed was based on
both the size of the PyBDSF source of interest and on the
locations of potential association candidates, using an iter-
ative NN algorithm with some constraints to prevent the
field of view of the image becoming too large or excluding
the original source. Two example image sets are shown in
Fig. 4.

The volunteer can access all three of these images while
responding to the following three sets of instructions:

1. Select additional source components that go with the
LoTSS source marked with the cross. If none, do not
select anything.

2. Select all the plausible optical/IR identifications. If
there is no plausible candidate host galaxy, do not select
anything.

3. Answer the questions: Is this an artefact? Is more than
one source blended in the current ellipse? Is the image
too zoomed in to see all the components? Is one of the
images missing? Is the optical host galaxy broken into
many optical components?

Answers to these must be provided in order. For tasks
(1) and (2) the user clicks on the image and the location
of their click is stored. For task (3) the user checks one or
more boxes if the answer to the corresponding question is
‘yes’. The purpose of task (3) is to ensure that common
problems with the classification are flagged by the user.
Once all questions are answered, the user can move to the
next PyBDSF source.
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Fig. 4. Example set of images from LGZ for two different sources (top and bottom). From left to right: LoTSS (yellow contours),
FIRST (green contours), and Pan-STARRS (colour); Pan-STARRS (colour) and Pan-STARRS and WISE catalogued sources (x’s
and crosses, respectively); LoTSS, FIRST, and WISE band 1 (colour). The gridding interval in the vertical (N-S) direction is 1
arcmin. In the top example the PyBDSF object of interest (indicated with the red cross) is a lobe of a radio galaxy. The volunteer
should associate it with the core and northern lobe, but not with the smaller source on the northern edge of the image, which
appears unrelated. No Pan-STARRS counterpart to the radio source is apparent, but there is a clear WISE band 1 detection and
a marginal FIRST detection (green contours) co-located with the central LoTSS component, suggesting that this is very probably
the host galaxy. In the bottom example there is no other PyBDSF source to associate with the one of interest and there are clear
Pan-STARRS and WISE detections coincident with the FIRST core.

The Zooniverse interface presents all images to all vol-
unteers until a given image has been seen a predetermined
number of times, after which it is ‘retired’ and will no longer
be presented to volunteers. Originally, we set the retirement
limit to ten – that is, each image must be classified by ten
volunteers before it is retired – but after some experimenta-
tion we found that we were able to reduce the limit to five in
the course of the classification process while still recovering
good classifications. A feature of the fact that we present
PyBDSF sources to the volunteers is that a complex phys-
ical source containing a large number of PyBDSF source
components will be seen more times than a simple one. For
example, the top source shown in Fig. 4 will have been seen
at least ten times because both the northern and southern
lobe of the radio galaxy meet the selection criterion for vi-
sual inspection. We note that the PyBDSF source marking
the core of the radio galaxy in this example would not have
been included in the LGZ sample because of its compact
nature but is included in the output LGZ association. The
bottom source in Fig. 4 will only be seen five times.

The LGZ project was carried out in two phases, the
first (LGZ v1) was the inspection of about 7,000 bright, ex-

tended sources in the early part of the decision tree (branch
A), and the second (LGZ v2) involved around 9,000 later
decision tree endpoints. In LGZ v2 associations from the
decision tree and from LGZ v1 were highlighted with dif-
ferent colours of ellipses and some improvements were made
to the code to determine field of view, but otherwise there
were no significant differences between the two parts of the
project. One point to note is that LGZ v1 was started with
an earlier round of processing of the LoTSS images and
as a result there were some differences between the input
PyBDSF catalogue for LGZ v1 and the final catalogue by
the time LGZ was complete. These differences were resolved
by cross-matching of the two catalogues in post-processing
and have little effect on the final results.

5.2. LGZ output

As with all panoptes results, LGZ outputs are provided
in a JSON file which gives details of the location (in pixel
terms) of each mouse-click on an image and of the answers
to the questions asked under task (3) above. These raw
results were converted to selections of PyBDSF sources
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and optical sources using the underlying catalogues. For
the source association, task (1), clicks were matched to
PyBDSF sources by identifying all sources enclosing the
click position, and then in the case of multiple (overlapping)
sources at the click position, selecting the source whose cen-
tre is closest to the click position. For the optical/IR iden-
tifications, task (2), click positions were matched to cata-
logued galaxies by selecting the nearest galaxy in the com-
bined PanSTARRS-WISE catalogue to the click position,
provided the separation distance was less than 1.5′′. The
latter criterion was applied to exclude a minority of spu-
rious/accidental clicks; this threshold was optimised using
visual inspection. We then looked for consensus in both the
association and identification.

For each input LGZ source, we considered all sets of
PyBDSF sources associated together by at least one viewer
(where a ‘set’ contains one or more PyBDSF sources), as-
signing the association set quality (LGZ Assoc Qual) to be
the fraction of all views of this source region for which the
listed association was chosen as the associated set. Those
associated sets with LGZ Assoc Qual > 2/3 were then con-
sidered as candidate sources for the final catalogue. Because
some sets may be subsets of others, there may be more than
one set for a given source that meets this threshold; for each
input source we selected for the final catalogue the largest
set that included that source and met the quality thresh-
old. In a small number of cases, resulting from non-optimal
image sizes not flagged as problematic via the LGZ process,
peripheral source components (e.g. small/faint components
that were not in the LGZ input sample) ended up in multi-
ple sets. Such overlaps, which were trivially detected in the
final catalogue by checking for PyBDSF sources that lay
in more than one set, were resolved by visual inspection.

Once the associated sources were finalised, the LGZ op-
tical IDs were determined in a similar way: all optical/IR
identifications made by at least one viewer were assigned an
ID quality (LGZ ID Qual) corresponding to the fraction of
source views in which this ID was selected as the correct
one. If there was a single ID selected in more than two-thirds
of source views, this was retained for the final catalogue.
For both the final association of PyBDSF sources and op-
tical IDs, the quality flags (corresponding to the fraction of
views for which the catalogued outcome was selected) were
retained in the final catalogue, allowing for more stringent
cuts to be made in later analysis.

Sources that emerge from LGZ with flags set to indi-
cate that there were a significant number of positive an-
swers in task (3) are dealt with in special ways. Where a
majority (more than 50%) of volunteers agree in classify-
ing a source as an artefact, that source is removed entirely
from the final catalogue. Several hundred dynamic-range
artefacts around bright sources (see Section 6.1) were re-
moved in this way. If a significant fraction of volunteers
(more than 40%) classed a source as ‘too zoomed in’ – i.e.
the field of view presented to them was in their opinion
not large enough to carry out the association or identifi-
cation correctly – then that source was re-inspected by a
single expert using a Python-based interactive tool that
generates similar images but with the ability to pan and
zoom, using the volunteers’ association as a starting point,
and new sources (and potentially a revised optical ID, to
be processed in the same way as other LGZ optical IDs)
were added to the association if necessary. Sources flagged
as blends by more than 40% of viewers were examined in

the deblending workflow (see Section 5.4). Sources where
the host galaxy was flagged as broken up in the optical cat-
alogue by more than 50% of viewers were simply associated
with the nearest bright optical galaxy from the 2MASX
catalogue, as these were confirmed to be exclusively asso-
ciated with optical sources so bright that the PanSTARRS
or WISE cataloguing algorithms had failed. In this case we
record the name of the 2MASX match, but take the po-
sition from the nearest match for that 2MASX source in
the merged Pan-STARRS/AllWISE catalogue. The flag to
indicate that an image was missing was hardly used; we
inspected visually all four sources where more than 50%
of viewers selected this option and verified that they were
treated appropriately by the default processing.

5.3. Associated sources

In the following, associated sources refer to those where sep-
arate PyBDSF sources have been associated and combined
into single new physical sources either based on the LGZ
output or matches with large optical galaxies (see Section
6.2). The individual PyBDSF sources that make up (i.e.
are components of) associated sources were removed from
the final LoTSS-DR1 value-added catalogue and replaced
with the associated sources, such that the final catalogue
should, to the best of our ability, contain only true physical
radio sources. We note that LGZ associations can include
PyBDSF sources from other outcomes of the decision tree
described in Section 6, in which case the LGZ association
takes precedence.

For all associated sources, we generated the LoTSS
source properties and populated the relevant table columns
(total flux density, size, radio position, and radio source
name) by combining the properties of their constituent
PyBDSF sources (or PyBDSF Gaussian components in
the case of blends – see next section). Some of these combi-
nations are obvious but it is worth commenting on a few of
them. The position of the source was taken to be the flux-
weighted mean of the positions of each component. For the
total flux density, we simply summed the total flux densi-
ties of each component. Previous work has shown that this
normally gives a reasonably accurate flux density measure-
ment compared to hand-drawn integration regions, as long
as PyBDSF has captured all the flux density; this is likely
to go wrong in for example very large diffuse regions where
PyBDSF fails to distinguish source from background. For
each of these properties we propogated the errors of the
component parameters as appropriate. The peak flux den-
sity of the associated source was taken to be the maximum
value of the peak flux densities of the component sources,
along with its corresponding error. The rms was taken to
be the mean value of the rms for the component sources.
The S Code was updated based on the number of Gaussian
components in the new source; ‘S’ for a single Gaussian
component and ‘M’ for multiple.

To determine source sizes we used the convex hull
around the set of elliptical Gaussians: the convex hull is the
smallest convex shape that contains all of the ellipses. To
construct the convex hull we represented each component
(PyBDSF source or PyBDSF Gaussian as approprate) as
an ellipse, where the deconvolved FWHM major and minor
axes are taken to be, respectively, the semi-major and semi-
minor axes of the ellipse. The convex hull was constructed
around all of the component ellipses using the shapely
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Python package. Then we took the size of the source
(‘LGZ Size’) to be the length of the largest diameter of the
convex hull around the set of elliptical Gaussians; that is, for
all points on the convex hull considered pairwise, we found
the maximum vector separation, and took its magnitude.
The source position angle (‘LGZ PA’) was taken to be the
position angle on the sky of that largest diameter vector.
For the source width (‘LGZ Width’) we adopted twice the
maximum perpendicular distance of points on the convex
hull to the largest diameter vector. These definitions have
the feature that, if applied to a single ellipse, they return
the major and minor axis of the Gaussian and its position
angle. Source sizes determined from the maximum distance
between components, as in Hardcastle et al. (2016), can be
significant underestimates where the components are ex-
tended: the present approach is likely to overestimate the
true size in general but gives results in better agreement
with measurements by hand. We do not provide error esti-
mates for the shape parameters in the final catalogue.

5.4. Deblending workflow

Blended sources, either from LGZ or from the ‘M’ source
decision tree (see Section 6.6), were examined in a specific
deblending workflow involving a Python-based interactive
visual inspection by a single expert. Each PyBDSF source
was first split into its Gaussian components as originally fit-
ted by PyBDSF. These Gaussians were then re-associated
as appropriate into new radio sources and identified with
zero or more optical counterparts, which were handled in
exactly the same way as optical counterparts found by LGZ.
Around 1,500 sources were dealt with in this way.

In the final LoTSS-DR1 value-added catalogue,
PyBDSF sources that were identified as blends and pro-
cessed in the deblending workflow were removed and re-
placed by sources made by combining their component
Gaussians; they therefore have properties (flux densities,
sizes, etc.) appropriate for associated sources. The prop-
erties of the Gaussian components are combined into sin-
gle sources in the same way that the component PyBDSF
sources are combined for associated sources as described in
5.3, except that we use the parameters (total flux density,
position, etc.) from the PyBDSF Gaussian catalogue. No-
tably, for the positions and sizes, this is not exactly the same
process by which PyBDSF combines the fitted Gaussians
into sources, which is based on image moment analysis, but
produces comparatively similar results.

6. Decision tree

In this section we describe how we select which radio sources
to process using the statistical LR and visual LGZ meth-
ods. We also discuss any sources that need to be handled
differently. In order to reduce the number of sources that
were passed to some form of visual inspection, all 325,694
sources in the PyBDSF catalogue were evaluated through
a decision tree to select subsamples of sources that required
(i) direct visual association and identification via LGZ; (ii)
visual sorting into one of several categories, including selec-
tion for LGZ; (iii) rejection as artefact; or (iv) identifica-
tion through LR analysis. We describe the main decisions
taken, with approximate numbers/fractions of sources at
each stage. A graphic representation is shown in Fig. 5,
and key parameters are defined in Table 2 and described in

detail in this section. A separate process is followed within
the decision tree for PyBDSF sources fitted with multiple
Gaussians. This process is illustrated in Fig. 6, and key pa-
rameters are defined in Table 3 and described in detail in
Section 6.6. These figures and tables are best read as a high-
level summary in conjunction with the detailed descriptions
in the text.

Some stages of the decision tree required ‘visual sort-
ing’ (pre-filtering) prior to including sources in the LGZ
sample, i.e. to avoid overpopulating the LGZ sample with
unnecessary sources we filtered them beforehand. For this
visual sorting, images similar to those used for LGZ (Pan-
STARRS r-band images with radio contours from both the
LoTSS images and the FIRST survey) were produced and
rapidly inspected to categorise the sources relevant to that
stage of the decision tree. This was done by a small num-
ber of experienced people, using a simple Python interface
to view and categorise the images where each source was
viewed by one person only10. The aim of these steps was
only to quickly pre-filter the list such that the LGZ sam-
ple remained manageable and included only the necessary
sources; i.e. the LGZ sample was not polluted by vast num-
bers of sources which were either clear artefacts or clearly
suitable for automated statistical anaylsis. The aim was not
to also make the LGZ classification as this would slow down
the process and because visual classifications in LGZ are
made by consensus by several people.

6.1. Artefacts

Owing to the dynamic range limitations in the imaging
(see section 3.4 in DR1-I), the PyBDSF catalogue con-
tains a not insignificant number of spurious sources or arte-
facts. These are generally found near the brightest compact
sources in the images. Typically these consist of either sev-
eral small artefacts detected in the vicinity of the bright
source, or large artefacts in the vicinity of the bright source
picked up at the higher order wavelet scales of the source
detection. Since these are not real sources, they need to be
flagged as such and removed from the final catalogue.

An initial selection of candidate artefacts was made by
considering all compact bright sources (brighter than 5 mJy
and smaller than 15′′) and selecting their neighbours within
10′′ that are 1.5 times larger. This selects large sources
in close proximity to compact, bright sources. Since such
structures can in fact be real, for example faint lobes near
a bright radio core, these candidate artefacts were visually
confirmed. Out of 884 (83%) of such candidate sources 733
were confirmed as artefacts. We note that, as a preliminary
step, this was not a complete artefact selection; for example
it did not select clusters of artefacts around bright sources.
Further work can be done to improve the identification of
artefacts at this early stage in the decision tree, although
future improvements in LOFAR imaging will also reduce
the number of artefacts. Artefacts were also identified in all
further stages of visual sorting within the decision tree de-
scribed here. Finally, the LGZ output included an artefact
classification (see Section 5.2).

Images from pointings on the outer edges of the DR1
coverage have hard edges and a small number of sources
can be cut off. Sources may still be detected by PyBDSF

10 In practice source lists were split between several people, each
of whom could categorise tens of sources per minute.
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Fig. 5. High level summary of the decision tree used to process all entries in the PyBDSF catalogue. Following this workflow
a decision is made for each source whether to: (i) make the optical/IR identification, or lack thereof, through the LR method
(blue and red outcomes respectively); (ii) process the source in LGZ (green outcomes); (iii) reject the source as an artefact (grey
outcomes); or (iv) process further in a separate workflow (yellow outcomes: see Fig. 6). The key parameters are defined in Table 2
and full details of the decisions are given in Section 6, with reference to the branch labels A–M. The numbers reflect the number
of PyBDSF sources in each final bin and the percentage is relative to the total number of sources in the PyBDSF catalogue.
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Table 2. Definition of the parameters used in the main decision tree in Fig. 5. See Section 6 for details.

Parameter definition
Large optical galaxy 2MASX size (rext) ≥ 60′′

Large PyBDSF major axis > 15′′

Bright total flux density > 10 mJy
Isolated distance to nearest PyBDSF neighbour (NN) > 45′′

S single Gaussian component within an island
LR LR > 0.639
Clustered distance to fourth nearest PyBDSF neighbour < 45′′

NN LR LRNN > 0.639
Flux ratio S/SNN < 10
Separation criterion S + SNN ≤ 50(dNN/100′′)2 mJy

at the edges of an image, but such sources are likely to be
incomplete or have erroneous flux densities and shapes. We
have therefore flagged and removed∼ 200 sources where the
fitted PyBDSF shape overlapped the edge of the mosaic,
or where the source overlapped another edge source.

A total of 2543 sources (∼ 1%) were flagged in the
PyBDSF catalogue (and an artefact flag column was added
to the catalogue presented in DR1-I) through the artefact
selection and various visual sorting and LGZ stages. These
sources were dropped from further analysis and are not in-
cluded in the final catalogues presented here.

6.2. Large optical galaxies

The radio emission associated with nearby galaxies that
are extended on arcminute scales in the optical is clearly
resolved in the LoTSS maps and can be incorrectly de-
composed into as many as several tens of sources in the
PyBDSF catalogue. To deal with these sources we selected
all sources in the 2MASX catalogue larger than 60′′ and
for each, searched for all the PyBDSF sources that are
located (within their errors) within the ellipse defined by
the 2MASX source parameters (using the semi-major axis,
‘r ext’, the Ks-band axis ratio, ‘k ba’, and Ks-band posi-
tion angle, ‘k pa’). The PyBDSF sources were then auto-
matically associated as a single physical source and identi-
fied with the 2MASX source. We record the 2MASX source
name as the the ID name of the LoTSS source, but take the
co-ordinates and optical/IR photometry from the nearest
match in the combined Pan-STARRS–AllWISE catalogue,
with the caveat that the PanSTARRS and AllWISE pho-
tometry is likely to be wrong for these large sources. This
reduced the demands on visual inspection at the LGZ stage
and avoided the possibility of human volunteers missing out
components of the radio emission from the galaxy in their
classification.

6.3. Large radio sources

Since the size of a source is a first indication whether it is re-
solved and possibly complex, we first considered the sources
that are large (> 15′′, branch A in Fig. 5). This constitutes
around 6% of the sample. All large, bright sources (brighter
than 10 mJy) were selected for visual processing in LGZ11.

11 For the first phase of LGZ processing (see Section 5), all large,
bright sources in the PyBDSF catalogue were selected and so
the LGZ v1 sample included some of the artefacts and compo-
nents of large optical galaxies discussed in Sections 6.1 and 6.2

Containing around 7000 sources, this constitutes around 2%
of the PyBDSF catalogue.

Instead of also directly processing the remaining ∼ 13k
large, faint sources (fainter than 10 mJy – branch B) in
LGZ, these sources were first visually sorted as (i) an
artefact; (ii) complex structure to be processed in LGZ;
(iii) complex structure, where the emission is clearly on
very large scales, to be processed directly in the LGZ ‘too
zoomed in’ post-processing step (see Section 5.2); (iv) hav-
ing no possible match; (v) having an acceptable LR match,
i.e. LR ID; or (vi) associated with an optically bright/large
galaxy. It should be noted that within this category of large,
faint radio sources, those larger than 30′′ are too large to
have a LR estimate and so we included option (vi) to al-
low an identification with the nearest large/bright optical
galaxy based on the Pan-STARRS images. The ∼ 1000 such
sources with a visually confirmed large optical galaxy match
were then matched directly to the nearest 2MASX source,
or in the 35 cases where there was no 2MASX source, to the
nearest bright SDSS source. In all cases the nearest 2MASX
or SDSS match was confirmed to be the correct match.
Again the ID positions for these sources are taken from the
nearest matches in the merged Pan-STARRS/AllWISE cat-
alogue. An additional ∼ 4000 sources were included in the
LGZ sample after this visual sorting on branch B.

6.4. Compact radio sources

Sources < 15′′ in size make up around 94% of the PyBDSF
catalogue (branch C). While many of these are individual
sources best processed using the LR method, a subset are
components of complex sources. Visual inspection of the en-
tire catalogue was impossible given the available effort, so
we applied a series of tests to select those small sources most
likely to be components of complex sources. We initially
considered whether the sources smaller than 15′′ have any
nearby neighbours. Sources where the distance to the NN
is greater than 45′′ were considered to be isolated (branch
D; ≈ 200k sources). A separation of 45′′ corresponds to
a linear distance of 230–330 kpc at redshifts of 0.35–0.7,
where the bulk of the AGN population of this sample is
located (see DR1-III)12. Before directly accepting the LR
results for these sources, we removed those that were fit-
ted by PyBDSF using multiple Gaussian components or

12 In the LOFAR samples of Hardcastle et al. (2016) and
Williams et al. (2016), in which the association and identification
was done entirely visually, 66% of the sources (i.e. including sep-
arate components of AGN) are smaller than 45′′. However this
does not mean that we miss larger sources as these are picked
up in other parts of the decision tree.
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those that lay in islands with other sources (i.e. with cata-
logued ‘S Code’ values of ‘M’ or ‘C’); in these cases (≈ 10k
sources) a further decision tree was followed, taking into
account the LR matches to the individual Gaussian com-
ponents of the source (see Section 6.6). For the remain-
ing small, isolated, single Gaussian-component sources (i.e.
with catalogued ‘S Code’ values of ‘S’), we accepted the LR
results (branch E): either the source has an acceptable LR
match (LR ID) or it has no acceptable LR match (no ID).

Small sources that are not isolated (i.e. have at least
one other source within 45′′ – branch F) have a higher
chance of being a component of a complex source. For these
sources we considered whether they are clustered to some
extent, based on the distance to the fourth neighbouring
source: for approximately 1100 sources this distance is less
than 45′′ (branch G). Empirically, based on visually ex-
amining subsamples of sources, we found that taking the
fourth NN maximised the number of genuinely clustered
sources while minimising the number of unrelated sources.
As these may be part of a larger structure or simply chance
groups of unassociated sources that can be matched by the
LR method, we visually sorted such clustered sources either
as (i) complex (to be sent to LGZ), (ii) not complex (ap-
propriate for further analysis in the decision tree), or (iii)
as an artefact. About a quarter of the clustered (branch G)
sources were selected for LGZ, while about another quarter
were flagged as artefacts. The remainder were considered
not clustered based on the visual sorting and assessed via
branch H.

For the remaining small, non-isolated, but not clustered
sources (branch H), those that have multiple Gaussian com-
ponents were again treated in a separate workflow (see sec-
tion 6.6). We then considered whether the source and/or its
NN have a LR match above the threshold (branch I). In the
case where the source has an LR match, we accepted the
LR identification. In the case where the source of interest
has no LR match, but its NN does, we accepted that the
source has no match (branch J). However, in the case where
neither the source nor its NN has an acceptable LR match
(branch K), it is increasingly likely that the two sources
are part of a complex structure where the optical ID is not
coincident with either radio component. For such pairs, we
further considered the flux ratio of the source to its NN.
Sources with extreme flux density ratios are less likely to
be associated. We made a somewhat conservative cut at a
flux density ratio of 10 (see e.g. Prandoni et al. 2000), and
for sources with ratios larger than 10 we accepted that there
is no LR match. We then applied a flux-dependent separa-
tion criterion for the sources with similar fluxes (branch L),
following Huynh et al. (2005), of S+SNN ≤ K(dNN/100′′)2,
where S and SNN are the total flux density of the source of
interest and its NN, respectively, and dNN is their separa-
tion in arcsec. The constant K (= 10 mJy in Huynh et al.
2005) was adjusted to take into account the different work-
ing frequency (150 MHz instead of 1.4 GHz). We adopted
K = 50 mJy, under the assumption of steep spectrum ra-
dio sources (α = −0.7). For sources that did not meet this
criterion we accepted that there is no LR match, while for
those ∼ 3500 that did (branch M) we did a final stage of
visual sorting to (i) select as a possible group for LGZ asso-
ciation and identification, (ii) accept that there is no match,
or (iii) classify as artefact. These sources were split roughly
equally between the first two options and a further ∼ 200
sources were flagged as artefacts.

6.5. Radio source pairs

The final steps (branches J–M) of the decision tree consider
only the NN to a given source and not all possible neigh-
bours. To ensure that we did not miss any double sources
where another unassociated source lies nearer to one of the
sources than the separation between the pair, we selected
all the pairs of sources that meet the above flux ratio and
flux-dependent separation criteria and that also consist of
two sources with multiple Gaussian components. To try to
capture more large radio galaxies, we considered all such
pairs with separations of up to 60′′, not already included
in the LGZ sample13. These ∼ 3200 sources were visually
sorted and ∼ 1500 (46%) more potentially genuine double
sources were included in the LGZ sample. Sources not in-
cluded in LGZ keep their classification from the decision
tree. This step is not shown on the decision tree because it
includes sources from several different outcomes.

6.6. Sources with multiple Gaussian components – ‘M’
sources

Within the decision tree the largest sources are all visually
inspected, either directly in LGZ or through visual sort-
ing; however, sources that are small (< 15′′) may still be
resolved and may have been fitted by multiple Gaussian
components by PyBDSF. Such sources are identified in the
PyBDSF catalogue with a value of ‘M’ in the ‘S Code’ col-
umn, and we refer to these in what follows as ‘M’ sources. In
this category, we include also the 102 sources with ‘S Code’
values of ‘C’, i.e. sources fitted with a single Gaussian com-
ponent, but which lie in the same island as other source(s).
There are about 18k compact ‘M’ sources, 10k of which are
isolated. Such sources may be unambiguous single sources
with substructure (e.g. the two lobes of a radio galaxy)
or may be two or more nearby distinct sources that have
been grouped as a single source by PyBDSF, i.e. blended
sources. An additional complication is that calibration er-
rors and dynamic range limitations lead to shape distor-
tions, resulting in multiple Gaussian components being fit-
ted by PyBDSF to a single source. Moreover, true ex-
tended radio sources are not necessarily Gaussian in shape
or even composed of the sum of Gaussian shapes. This is
a choice of representation imposed by our source detection
algorithm. These factors, and intrinsic asymmetries in the
sources (e.g. head-tail sources), mean that even in the case
of single sources, the flux-weighted source positions pro-
vided by PyBDSF may not coincide with the optical host
galaxy positions, making the LR values unreliable. Nev-
ertheless, combining the information in the LR matches to
both the overall source and to the individual Gaussian com-
ponents provides a means to diagnose specific cases and ei-
ther allow an LR result to be obtained for a source or to
identify cases for further visual inspection and deblending.

These compact ‘M’ sources may be isolated or not, but
were treated in a separate ‘M source’ workflow, in which
we also considered any LR matches to the individual Gaus-
sian components of each source. A schematic overview of
this decision tree is given in Fig. 6, and key parameters are
defined in Table 3 and described in detail in the follow-

13 Although many giant radio galaxies will be picked up in LGZ,
the final value-added catalogue may be incomplete for some truly
giant radio galaxies, in particular those made up of two widely
separated compact lobes.
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ing subsections. The only difference between isolated and
non-isolated ‘M’ sources is that non-isolated sources were
subjected to additional visual sorting before inclusion in the
LGZ sample; for clarity this is not shown explicitly in Fig. 6,
but each decision that ends in ‘LGZ’ for the non-isolated
sources can be taken to mean ‘visually confirmed for LGZ’
otherwise the alternate decision was followed, while for the
isolated sources they were directly added to the LGZ sam-
ple. The final decisions were to accept the source LR match,
accept one of the Gaussian LR matches, include the source
in the LGZ sample (where one of the possible outcomes
is blended; see Section 5), or pass the source directly to a
separate deblending workflow (see Section 5.4).

6.6.1. Sources with a LR identification

We first considered whether the source has a LR match
above the threshold (branch i in Fig. 6), then whether at
least one of the Gaussian components has an LR match
above the threshold, and subsequently tried to resolve any
ambiguities in the optical matches to the source and Gaus-
sian components. If none of the Gaussian components have
a good LR match (branch ii), then the source match was
accepted provided the LR exceeded a higher threshold; a
threshold ten times normal (LR > 10Lthr = 6.39) was used
because ‘M’ sources often have larger uncertainties on their
source positions, which can lead to lower LR misidentifi-
cations, especially for sources lying in over-dense environ-
ments. Otherwise the source was included in the LGZ sam-
ple for closer inspection. A high threshold source LR match
with no good Gaussian LR matches generally occurs when a
slightly resolved double radio source is composed of two (or
more) Gaussian components which are correctly grouped
by PyBDSF as a source whose position corresponds to the
optical ID.

When only one Gaussian component has an LR identi-
fication (branch iii), the majority of the time it is the same
optical/IR source as the source match and the identification
is unambiguous. In the remaining few cases, where the sin-
gle Gaussian component LR match is different to the source
match, we evaluated whether one is significantly better than
the other. The source match was accepted only if the source
LR exceeds a higher threshold and exceeds ten times that of
the Gaussian component: LRsource > 10 & LRgauss < 10 &
LRsource > 10LRgauss. Likewise, the Gaussian component
LR match was preferred to that of the overall source un-
der the reverse conditions: LRgauss > 10 & LRsource < 10
& LRgauss > 10LRsource. These ranges were chosen empir-
ically based on visual inspection of images of subsamples
of sources. The remaining in-between cases, where neither
the source nor the Gaussian component LR match can be
deemed to be reliably better by statistical methods only,
were evaluated in LGZ.

The situation is more complex if more than one Gaus-
sian component has an acceptable LR match. In roughly
three-quarters of the cases in which two Gaussian com-
ponents have LR matches (branch iv), both Gaussian
components match the same optical source as the radio
source LR match, so the identification could be unam-
biguously accepted. Another quarter fall into the category
where one Gaussian component match is the same as the
source match. Some of these were deemed to have a very
good source match (LRsource > 100 & LRgauss(same) >
5LRgauss(different)) and so the source match was accepted.

The rest were processed in the deblending workflow. For
a small number of sources, the two Gaussian component
matches and source match are all different. These sources
were processed in LGZ.

Finally, only a small number of sources have three or
more Gaussian components with LR matches (branch v),
and in this case about three quarters all unambiguously
match the same optical source as the source LR match,
which was then accepted, while the remainder were pro-
cessed via the deblending workflow.

6.6.2. Sources without a LR identification

The second major branch of this decision tree considers
the case where there is no good LR match to the over-
all source (branch vi). If these are isolated sources, then
they may simply have no counterpart above the sensitiv-
ity limits of the Pan-STARRS/WISE data. But equally
these may be asymmetric sources where the flux-weighted
source position does not accurately coincide with the op-
tical counterpart location or these sources may have clear
substructure where one of the Gaussian components may
coincide with the optical counterpart. Alternatively, these
may be blended sources. To assess these possibilities, we
again considered whether, and how many, Gaussian com-
ponents have acceptable LR matches. In the case where
no Gaussian components have LR matches (branch vii), it
is very likely that the source of interest has no optical/IR
identification. However, we also consider cases where the
source may be complex or a component of a larger struc-
ture. Thus, sources whose Gaussian components are widely
separated (maximum separation larger than 15′′) or sources
that have an extended (> 10′′) neighbouring radio source
within 100′′ were included in the LGZ sample. This is the
only step where the decision differs significantly for the iso-
lated and non-isolated ‘M’ sources, where, by definition, a
much higher fraction of non-isolated sources would be in-
cluded in the LGZ sample. A visual sorting step was done on
the non-isolated sources selected for LGZ, to avoid adding
too many trivial sources with no optical/IR identification
(again for clarity this is not shown explicitly in Fig. 6).

If only one Gaussian component has an acceptable LR
match (branch viii) it was taken as the source match, pro-
vided it was deemed a good match (LRgauss > 10LRthresh

and the Gaussian size is < 10′′); these limits were again de-
termined by visual inspection of subsamples of sources, in
that a lower LR threshold or larger size threshold produced
too many wrong matches while everything satisfying these
criteria appeared to be genuine. Otherwise, the source was
included in the LGZ sample.

Where there were two Gaussian components with ac-
ceptable LR matches (branch ix), if these matched to the
same optical galaxy the source was handled in LGZ; this is
because the lack of a good source LR match on this branch,
combined with the two acceptable Gaussian LR matches,
while likely to be the correct match, suggests some com-
plex structure may be present. Otherwise if there were two
separate optical galaxies, there is a strong possibility that
the components were mistakenly grouped as a single source
by PyBDSF and so the PyBDSF source was examined
in the deblending workflow. Finally, the few sources with
three or more Gaussian components with good LR matches
were processed in LGZ (branch x).
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Fig. 6. High level summary of the decision tree used to process all compact ‘M’ sources (i.e. PyBDSF sources fitted with multiple
Gaussians) in the PyBDSF catalogue. Following this workflow a decision is made for each source whether to: (i) make the optical/IR
identification, or lack thereof, through the LR method (blue and red outcomes respectively) for either the PyBDSF source or one
of the Gaussian components; (ii) process the source in LGZ (green outcomes); or (iii) process further in a separate deblending
workflow (orange outcomes, see Section 5.4). The key parameters are defined in Table 3 and full details of the decisions are given
in Section 6.6, with reference to the branch labels i–x. The numbers reflect the number of PyBDSF sources in each final bin and
the percentage is relative to the total number of compact ‘M’ sources in the PyBDSF catalogue.
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Table 3. Definition of the parameters used in the decision tree for ‘M’ sources (i.e. PyBDSF sources fitted with multiple Gaussians)
in Fig. 6. See Section 6.6 for details.

Parameter definition
Source LR LRsource > 0.639
Any Gaussian LR at least one Gaussian component has LRgauss > 0.639
High source LR LRsource > 6.39
N Gaussian LR N Gaussian components have LRgauss > 0.639
Same as source the ID(s) for the Gaussian component(s) are identical to the ID for the source
Source LR much better LRsource > 10 & LRgauss < 10 & LRsource > 10LRgauss

Gaussian LR better LRgauss > 10 & LRsource < 10 & LRgauss > 10LRsource

Same LR much better LRsource > 100 & LRgauss(same) > 5LRgauss(different)

Widely separated Gaussians maximum separation between Gaussian components of the PyBDSF source larger than 15′′

Large neighbour large (> 10′′) neighbour within 100′′

High LR for small Gaussians LRgauss > 6.39 & the Gaussian size is < 10′′

7. Final catalogue

A final catalogue of LoTSS radio sources cross-matched
to Pan-STARRS/WISE was produced by combining the
identifications (and associations) from all the identification
methods, including the LR method, LGZ, the deblending
workflow, and the large galaxies. In the following, associ-
ated sources refer to those where separate PyBDSF sources
have been associated and combined into single new sources
either based on the LGZ output or matches with large op-
tical galaxies (see Section 6.2). The individual PyBDSF
sources that make up associated sources were removed from
the catalogue and replaced with the associated sources. All
artefacts, identified at various stages of the decision tree and
LGZ, were removed from the catalogue (and also flagged as
such in the catalogue of DR1-I). Sources that were identi-
fied as blends and processed in the deblending workflow
were also removed and replaced by sources made up of
one or more Gaussian components (see Section 5.4); they
therefore have properties appropriate for associated sources
in the catalogue. For all associated sources, we generated
the LoTSS source properties and populated the appropri-
ate final catalalogue columns (e.g. total flux density, size,
radio position, and radio source name) by combining the
PyBDSF properties of their constituent components (or
Gaussian components in the case of blends) as described in
Section 5.3.

The LoTSS-DR1 value-added catalogue lists the radio
properties, identification methods, and optical properties
where available. The columns in the catalogue describing
the LoTSS properties are as follows (for more details see
DR1-I):

– The IAU source identification (‘Source Name’) based on
the position of each source.

– LoTSS position and errors (‘RA’, ‘E RA’, ‘DEC’, and
‘E DEC’). In the case of associated sources, this is the
flux-weighted mean of the component values.

– LoTSS peak and total flux densities and associ-
ated errors (‘Peak flux’, ‘E Peak flux’, ‘Total flux’, and
‘E Total flux’). In the case of associated sources this is
the maximum of the peak flux densities and sum of the
total flux densities of the components.

– LoTSS shape (‘Maj’, ‘E Maj’, ‘Min’, ‘E Min’,
‘PA’, ‘E PA’) and deconvolved shape (‘DC Maj’,
‘E DC Maj’, ‘DC Min’, ‘E DC Min’, ‘DC PA’,
‘E DC PA’). Deconvolved values are zero for unre-
solved sources. All these values are blank for associated
sources whose shapes are described in different columns
outlined below.

– Local rms noise in the LoTSS map (‘Isl rms’). In the
case of associated sources this is the mean value of the
components.

– Multiple Gaussian code (‘S Code’) is ‘M’ in the case
where the source consists of multiple Gaussian compo-
nents or associated sources, ‘S’ where it consists of a
single Gaussian, and ‘C’ in the case where the source
lies within the same island as another source. These
codes are updated for the sources that are associated
or deblended.

– Name of the LoTSS mosaic in which the source can be
found (‘Mosaic ID’).

– The ratio of the number of LoTSS pointings in which
the source is in the Clean mask to the number of point-
ings which are mosaicked at the position of the source
(‘Masked Fraction’).

The associated sources have values for the following addi-
tional columns for their LoTSS properties determined as
described in Section 5.3 (these are blank for non-associated
sources):

– Shape measurements for associated sources (‘LGZ Size’,
‘LGZ Width’, ‘LGZ PA’).

– The number of PyBDSF sources in the association
‘LGZ Assoc’.

– A quality flag for the association (‘LGZ Assoc Qual’).
For LGZ this is the fraction of all views of this source
region for which the listed association was chosen as the
best associated set. Only sets with LGZ Assoc Qual>
2/3, and, of those, only the largest set for each LGZ
input source are included in the final catalogue, with a
small number of overlapping association sets resolved
visually (see Section 5.2). This flag is set to 1 for
the sources automatically associated based on a bright
galaxy match or in the deblending workflow.

Information pertaining to the optical/IR identification is
given by the following:

– A flag indicating the origin of the optical/IR identifi-
cation or non-identification (‘ID flag’). The description
of these flags can be found in Table 4. For ID flag=0,
no attempt is made at an identification, while for the
other values, the ID flag indicates only which method
was used to attempt an identification and not whether
an ID is made. For example, a source with ID flag =
1 may have an optical/IR identification above the LR
threshold or it may have no acceptable LR identifica-
tion.
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– Name (‘ID name’) and position (‘ID ra’ and ‘ID dec’) of
the optical/IR identification, when present (sources with
no identification can be recognised because they have no
ID name, ID ra and ID dec values). The recorded val-
ues are the Pan-STARRS object name and position or
the AllWISE source name and position in the case of
no Pan-STARRS detection. A small number (1078) of
sources with a match to a bright galaxy (either through
the decision tree or LGZ ‘host broken up’) have an
ID name from 2MASX or SDSS, while the position is
taken from the nearest match for that 2MASX or SDSS
source in the merged Pan-STARRS/AllWISE catalogue,
with the caveat that the PanSTARRS and AllWISE
photometry is likely to be wrong for these large sources.

– The LR for sources where the identification is made
through this maximum likelihood method (‘ML LR’).

– A quality flag for LGZ identifications (‘LGZ ID Qual’).
This is set to the fraction of all LGZ views of this source
region for which the catalogued ID was selected. Only
IDs with LGZ ID Qual> 2/3, and only the highest qual-
ity ID for each source, were included in the catalogue.

– For deblended sources, the name of the PyBDSF multi-
ple Gaussian component source from which each source
was deblended (‘Deblended from’). This is blank for all
other sources.

For the sources that have optical/IR identifications, we in-
clude the Pan-STARRS and AllWISE photometry:

– The name of the source in the AllWISE catalogue, ‘All-
WISE’.

– The Pan-STARRs object ID, ‘objID’.
– Pan-STARRS forced aperture fluxes, magni-

tudes, and errors in the Pan-STARRS grizy
bands (‘<band>FApFlux’, ‘<band>FApFluxErr’,
‘<band>FApMag’, and ‘<band>FApMagErr’).

– Pan-STARRS Kron fluxes and errors in the Pan-
STARRS grizy bands (‘<band>FKronFlux’ and
‘<band>FKronFluxErr’).

– AllWISE profile fitted fluxes, magnitudes, and er-
rors in the WISE W1, W2, W3, and W4 bands
(‘<band>Flux’, ‘<band>FluxErr’, ‘<band>Mag’, and
‘<band>MagErr’). Sources with zero ‘Flux’ values in
a particular band were not detected in that band, and
they have a 1σ upper limit given in the ‘FluxErr’ col-
umn.

Additional columns pertaining to the photometric redshifts
and rest-frame colours are described by DR1-III.

We also retain a component catalogue of the sources in
the PyBDSF catalogue associated as components in the
final LoTSS-DR1 value-added catalogue. Each entry in the
component catalogue has an identifier ‘Component Name’
based on the component position in the PyBDSF catalogue
and a ‘Source Name’, which corresponds to that in the
value-added catalogue. The component catalogue includes
a column, ‘Ng’, that gives the number of Gaussian compo-
nents in each source. It also includes the additional Clean
mask columns, ‘Number Masked’, and ‘Number Pointings’,
giving the number of LoTSS pointings in which the source
is in the Clean mask and the number of pointings which
are mosaicked at the position of the source (see DR1-I).
Each deblended source also appears as a component in
the components catalogue; for these sources, we include
the column, ‘Deblended from’, which gives the name of the

PyBDSF multiple Gaussian component source from which
each source was deblended.

The catalogues presented in this paper are now pub-
licly available14. The final catalogue contains 318,520 radio
sources, of which 231,716 (73%) have optical/IR identifica-
tions. Table 5 shows the total number of sources, as well as
the number and fraction of sources with an identification,
for the different identification methods. The majority of
the identifications come from the LR method with an over-
all identification rate of 74%. The overall identification rate
for the LGZ method is 60%. Sources identified on the basis
of a bright optical galaxy have 100% identifications by con-
struction. The deblending route has a high identification
rate as sources are generally only selected for deblending
when there are clear optical/IR identifications for several
of the components.

The number of sources and identification fractions for
the LR and LGZ methods are shown as a function of flux
density in Fig. 7. The identification fraction here is the ratio
of the number of sources with identifications to the num-
ber of sources in that category, and therefore shows the
variation in identification rate as a function of flux den-
sity for each method. Errors on the numbers and fractions,
within each flux density bin, were estimated using Monte
Carlo simulations drawn from Poissonian distributions; for
large numbers this converges to the Gaussian distribution.
The LGZ identification fraction drops from 75% for sources
with flux densities above 100 mJy down to below 25% at
the lowest flux densities. The decrease in LGZ identifica-
tion at low flux densities can be explained by the fact that
by construction the sources selected for LGZ processing are
resolved and those at lower flux densities are more likely to
be AGN at high redshifts whose host galaxies fall below the
optical/IR flux limits of Pan-STARRS/AllWISE.

Fig. 8 shows the relative contribution by the two main
identification methods to the overall identification fraction
for all sources as a function of 150-MHz flux density, i.e. the
ratio of the number of sources with identifications within
each category to the total number of sources. This shows
the contribution of each identification method to the total
identification rate as a function of flux density, highlighting
the fact that the majority of the optical/IR identifications
for radio sources above a few tens of mJy come from LGZ,
while those for fainter sources come from the LR method.
Interestingly, the overall identification fraction drops with
decreasing flux density down to ≈ 5 mJy, but then rises
again at lower flux densities. These properties can be easily
understood by considering the different radio source popu-
lations at different flux densities. At the brightest flux den-
sities, the radio source counts are dominated by powerful
radio-loud AGN, which often have extended complex ra-
dio structures requiring LGZ analysis. As the flux density
decreases, the average redshift of these radio-loud AGN in-
creases, leading to more of the optical counterparts falling
below the magnitude limit of the Pan-STARRS and WISE
catalogues and a decreasing overall ID fraction. At flux den-
sities below a few mJy, however, the dominant contribution
to the overall radio population switches: star-forming galax-
ies begin to dominate the radio source counts (e.g. Wilman
et al. 2008; Padovani 2016; Williams et al. 2016). These are

14 The LoTSS-DR1 images and catalogues, including the value-
added catalogue presented here, can be found at https://
lofar-surveys.org.
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Table 4. Descriptions of the ID flag keyword in the final catalogues used to indicate the origin of the possible association and
optical/IR identification, or lack thereof.

ID flag description
0 no identification is possible – in cases of extended diffuse emission
1 the identification (or lack thereof) is made through the LR method
2 the identification, and possible association, is made based on a match to a bright optical/IR galaxy
22 the identification is made based on a match to a bright optical/IR galaxy after classification, and

possible association, in LGZ as ‘host broken up’
31 the possible association and identification (or lack thereof) is made through LGZ
32 the possible association and identification (or lack thereof) is made after further processing when

classified as ‘too zoomed in’ in LGZ (on branch B of the decision tree)
41 the source and identification (or lack thereof) comes from the deblending workflow based on the

‘M’ source decision tree
42 the source and identification (or lack thereof) comes from the deblending workflow after classification

in LGZ as ‘blend’

Table 5. Total number of sources and the number with identi-
fications for each method of identification.

Number Number ID
with ID fraction

All Sources 318,520 231,716 0.73
LR 299,730 221,269 0.74
LGZ 11,989 7,144 0.60
Deblending 2,435 2,338 0.96
Bright galaxy 965 965 1.00
No ID possible 3,401 0 0.00

mostly at lower redshift, with consequently brighter coun-
terparts, and are largely single radio components matching
the counterpart position; this leads to an increasing propor-
tion of the overall population for which IDs are found with
most of these IDs coming from LRs.

8. Summary and future prospects

In this paper we have presented a catalogue of optical/IR
identifications for radio sources in the first LoTSS data
release presented by Shimwell et al. (2019, DR1-I). We
have used a statistical colour- and magnitude-dependent LR
method for the cross-matching of the majority of sources,
complemented by LOFAR Galaxy Zoo (LGZ), a Zooniverse-
based visual association and identification project, for
sources with complex structure. The LGZ method, while
time consuming, is well suited both for characterising large
radio sources as well as identifying their optical/IR coun-
terparts. The LR method cannot be used for such sources,
but is an efficient way to identify the likely hosts of the ma-
jority of the LoTSS radio sources. We have therefore made
use of a decision tree, based on the radio source properties
and LRs, to select complex sources for visual classification
with LGZ. This approach, of reserving the complex sources
for visual classification while using statistical methods for
the majority of sources, may be useful for future wide-area
radio surveys.

The final radio source catalogue contains 318,520 en-
tries, of which 231,716 (73%) have optical/IR identifi-
cations from Pan-STARRS and/or WISE (or in a few
cases, 2MASX or SDSS). Most of the identifications at the
brighter radio flux densities come from LGZ, while those
at lower flux densities come from LR. In both cases, the
identification rates depend on the quality and depth of the

Fig. 7. Total number of sources (solid lines) and number of
sources with identifications (dotted lines) as a function of 150-
MHz flux density, in bins of 0.23 dex, for all sources (blue) and
via the two major methods: LGZ (green) and LR (orange). The
respective fractions of identifications (i.e. the ratio of the number
of sources with identifications in each category to the number of
sources in each category) as a function of flux density are shown
in the bottom panel. Filled regions show the errors that are
estimated using Monte Carlo simulations drawn from Poissonian
distributions.

multiwavelength data and the underlying radio source pop-
ulation.

At just over 400 square degrees, LoTSS-DR1 covers only
about 2% of the total sky area expected to be covered
by LoTSS. Additionally, the LOFAR surveys will include
deeper tiers covering smaller areas. Fortunately, the source
population at fainter flux densities mostly comprises star-
forming galaxies or faint unresolved AGN, which are well
suited for cross-matching using the LR method (although
a small number require deblending). The large increase in
source numbers, in particular of the complex sources, within
the full LoTSS coverage will require a different approach.
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Fig. 8. Contribution to the overall identification fraction (i.e.
the ratio of the number of sources with identifications within
each category to the total number of sources) for sources at a
given 150 MHz flux density, in bins of 0.23 dex, for all sources
(blue) and via the two major methods: LGZ (green) and LR
(orange). Filled regions show the errors that are estimated using
Monte Carlo simulations drawn from Poissonian distributions.

This may involve an expansion of our LGZ Zooniverse
project to the public, similar to ‘Radio Galaxy Zoo’ (Ban-
field et al. 2015), which is using citizen scientists to cross-
match over 170,000 radio sources. Work has been done on
automated algorithms that can perform the cross-matching
of complex radio sources (e.g. Proctor 2006; van Velzen
et al. 2015; Fan et al. 2015), but these have mostly used
simple pattern recognition algorithms that will only identify
the simplest, most common, cases (e.g. well-defined dou-
ble or triple sources). More recent work involves machine
learning techniques such as self-organising maps or Koho-
nen maps (e.g. parallelised rotation/flipping INvariant Ko-
honen maps, or PINK; Polsterer et al. 2015) to construct
prototypes of radio galaxy morphologies, which are being
applied to the LoTSS data (Mostert 2017). Aniyan & Tho-
rat (2017) have used convolutional neural networks to clas-
sify radio galaxy images into Fanaroff & Riley (1974) Type
1 or 2 (FRI/FRII) classes. Similarly, Lukic et al. (2018) have
classified radio galaxy morphologies in distinct classes, opti-
mising the convolutional neural network parameters to pro-
duce four classes consisting of compact, single-, double-, and
multiple-component extended sources. While many of these
efforts are still focussed on the morphological classification
of the radio structures and not on the optical/IR identifica-
tion, they do allow a means to identify similar cases where
the identification can be made relatively easily with auto-
mated algorithms, and outliers which may require human
intervention to identify any counterparts.

The value of these identifications are further enhanced
by estimates of the distances (via redshifts), from which one
can calculate instrinsic properties such as luminosities and
physical sizes. Photometric redshift and rest-frame colour
estimates for all radio sources with identified optical coun-
terparts presented in this paper are provided by Duncan
et al. (2019, DR1-III). In the future, spectroscopic surveys
such as WEAVE-LOFAR (Smith et al. 2016) will provide
precise redshift estimates and robust source classification
for large numbers of the LoTSS source population.
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Fan, D., Budavári, T., Norris, R. P., & Hopkins, A. M. 2015, MNRAS,

451, 1299
Fanaroff, B. L. & Riley, J. M. 1974, MNRAS, 167, 31P
Fleuren, S., Sutherland, W., Dunne, L., et al. 2012, MNRAS, 423,

2407
Hardcastle, M. J., Gürkan, G., van Weeren, R. J., et al. 2016, MNRAS,

462, 1910
Hill, G. J., Gebhardt, K., Komatsu, E., et al. 2008, in Panoramic

Views of Galaxy Formation and Evolution, Vol. 399, 115
Hill, G. J. & Lilly, S. J. 1991, ApJ, 367, 1
Huynh, M. T., Jackson, C. A., Norris, R. P., & Prandoni, I. 2005, AJ,

130, 1373
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