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ABSTRACT Remote health monitoring is becoming indispensable, though, Internet of Things (IoTs)-based
solutions have many implementation challenges, including energy consumption at the sensing node, and
delay and instability due to cloud computing. Compressive sensing (CS) has been explored as a method to
extend the battery lifetime of medical wearable devices. However, it is usually associated with computational
complexity at the decoding end, increasing the latency of the system. Meanwhile, mobile processors
are becoming computationally stronger and more efficient. Heterogeneous multicore platforms (HMPs)
offer a local processing solution that can alleviate the limitations of remote signal processing. This paper
demonstrates the real-time performance of compressed ECG reconstruction on ARM’s big.LITTLE HMP
and the advantages they provide as the primary processing unit of the IoT architecture. It also investigates
the efficacy of CS in minimizing power consumption of a wearable device under real-time and hardware
constraints. Results show that both the orthogonal matching pursuit and subspace pursuit reconstruction
algorithms can be executed on the platform in real time and yield optimum performance on a single A15 core
at minimum frequency. The CS extends the battery life of wearable medical devices up to 15.4% considering
ECGs suitable for wellness applications and up to 6.6% for clinical grade ECGs. Energy consumption at the
gateway is largely due to an active internet connection; hence, processing the signals locally both mitigates
system’s latency and improves gateway’s battery life. Many remote health solutions can benefit from an
architecture centered around the use of HMPs, a step toward better remote health monitoring systems.

INDEX TERMS Connected health, compressed sensing, energy efficiency, heterogeneous multicore plat-
forms, internet of things, mobile real-time health monitoring, multicore processing, remote monitoring,
wearable sensors.

I. INTRODUCTION
An internet of things (IoT) based remote health monitoring
system is becoming less of a luxury and more of a normal
commodity. Due to the growing older adult population and
unhealthy lifestyle trends, there is a recent rise in chronic
diseases, escalating the demand for continuous clinical super-
vision and consequently amplifying healthcare management
costs [1]. Adopting a connected health monitoring solution

offers the ability to keep an eye on patients and provide
on-demand or automated assistance in case of emergencies—
while keeping costs in check [2]. Coupled with seamless
assimilation, it allows the patient to live normally without
regular and frequent hospital visits, improving their quality
of life.

Unfortunately, a real-time mobile health monitoring sys-
tem has many design challenges such as energy consumption

69130 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 6, 2018

https://orcid.org/0000-0001-5095-4070
https://orcid.org/0000-0002-1627-0158
https://orcid.org/0000-0003-1144-630X
https://orcid.org/0000-0002-9273-4735


M. Al Disi et al.: ECG Signal Reconstruction on the IoT-Gateway and Efficacy of CS Under Real-Time Constraints

of wearable medical devices [3]. Attempts to extend their
battery life lead to an interest in compressive sensing (CS)
within the context of physiological signals. CS is a signal
acquisition and compression scheme capable of digitizing
signals using fewer measurements than that required by the
Shannon-Nyquist theorem [4]. Considering electrocardio-
gram (ECG) signals, CS has been shown to be advantageous
over state-of-the-art wavelet-based compression schemes due
to its encoder simplicity [5]–[7]. However at the decoder
end, it requires a signal recovery process that is orders of
magnitude more complex than traditional compression [8].
Thus, a CS implementation addresses energy consumption
at one end but accumulates it onto another, in addition to
exacerbating the latecy associated with cloud computing [9].
Even though CS enhances privacy and security of transmis-
sions by bundling in free-of-charge encryption with compres-
sion [10]–[13], it does not address other challenges associated
with cloud-based systems such as instability and high energy
consumption at the gateway due to the continuous stream
of data and reliance on internet connectivity, and big data
management [9], [14].

Meanwhile, computing capacity of mobile processors is
on an exponential rise and is simultaneously becoming
more energy efficient by utilizing processing heterogene-
ity. Heterogeneous multicore platforms (HMPs) combine
slow power-efficient and fast power-hungry processors and
dynamically allocates tasks between them to optimize for
either computational resources or energy efficiency. Hence,
a remote healthmonitoring architecture based on usingHMPs
as both the system gateway and main processing unit could
effectively address many limitations. Real-time signal pro-
cessing and assessment of the patient’s health is performed
locally, emergency services are automatically alerted at the
detection of adverse events, and information about the patient
health can be uploaded at fixed intervals or on-demand.

In the development of our real-time health monitoring sys-
tem, we implement and analyze implementations of different
data processing frameworks on HMPs. This paper inves-
tigates (a) real-time CS ECG signal reconstruction on the
IoT gateway and (b) whether CS is still capable of reducing
energy consumption on wearable sensors under real-time and
hardware constraints. It also compares the gateway from the
conventional viewpoint of a simple router against the utiliza-
tion as the primary processing unit of the IoT architecture.

The reminder of the paper is organized as follows. Related
work and the main contributions of the paper are presented
in section II. Section III gives a brief background about
CS and relevant reconstruction algorithms. An overview of
our gateway-centric connected health system is given in
section IV. Sections V and VI discuss the employed per-
formance metrics and obtained results respectively. Finally,
the paper is concluded in section VII.

II. RELATED WORK
IoT-based remote monitoring systems consist of minia-
turized and networked sensors, continuously measuring

and transmitting signals of interest to a nearby gate-
way through low-power wireless communications [15].
The gateway—typically a mobile phone—routes the data to a
remote IoT platform where it is analyzed and then visualized
by the end user. [15].

As the technology for collecting, analyzing and transmit-
ting data in the IoT continues to grow and evolve, more
IoT-driven healthcare applications, services and systems
emerge. In [16], the need of an integration of IoT tech-
nologies (e.g. wearable devices) and e-Health solutions was
addressed with focus on an integrated system for the contin-
uous monitoring of students at risk of high blood pressure
as well as quick treatment and consultation from medical
experts at a distance. Riazul Islam et al. analyzed a variety
of medical IoT applications, such as remote health moni-
toring, fitness programs, and elderly care [17]. The authors
in [18] experimented with portable devices and different
communications protocols and models for the creation of
e-Health applications, like CardioNet. Moreover, a tested
real-time monitoring platform that uses IoT-gateways and
medical devices showed the effectiveness real-time e-Health
services and introduced its need of edge computing [19]. In a
similar context, the exploitation of fog computing in health-
care IoT systems is proposed in [20], where an implementa-
tion of a Smart e-Health Gateway (UT-GATE) suitable for the
deployment in clinical environments was demonstrated.

Mobile devices have been recently levered for more
than data routing. In the simplest form, they are used
to provide feedback to patients by displaying remotely
extracted information through web-based applications [21].
The authors in [22] extended their system’s gateway with a
radio frequency identification (RFID) reader to detect tagged
patients and extracted eight ECG features locally, reducing
server-side computational costs. Also, Gradl et al. [23] and
Oresko et al. [24] demonstrated real-time ECG QRS com-
plex detection, feature extraction, and heart beat classifi-
cation on an Android and Windows-based mobile phones
respectively.

The CS scheme has been thoroughly studied for
ECG signals. Dixon et al. experimented with their com-
pressibility with varying sensing matrix designs and recon-
struction algorithms, demonstrating ECG dimensionality
reduction up to 16 times [25]. In [26], Zigei et al. estab-
lished a clinically acceptable tolerance for distortion in
ECG signals. With that tolerance in mind, the authors in [27]
and [6], [5], and [28] reported 2.5, 3.44, and 5 compres-
sion factors respectively. Additionally, there is also con-
tinuous development of CS reconstruction algorithms to
reduce error-rates or address special applications in remote
monitoring. Zhang et al. recently proposed a reconstruc-
tion algorithm that capitalizes on the signals’ structure
and its intra-block correlation, showing its accuracy advan-
tages over popular greedy algorithms, and its use for fetal
ECGmonitoring [29]–[31]. Although, in the previous studies,
signal recovery from compressed vectors is done offline and
on workstation computers using time-complex and accurate

VOLUME 6, 2018 69131



M. Al Disi et al.: ECG Signal Reconstruction on the IoT-Gateway and Efficacy of CS Under Real-Time Constraints

algorithms. This allows for better compression performance
but prohibits real-time applications.

There are three studies closely related to this work. First,
Mamaghanian et al. demonstrated the superiority of CS
over wavelet-based compression on the ShimmerTM wearable
device [5]. They also report that CS extends the sensor battery
life by 9.7% compared to no-compression alternatives. How-
ever, CS reconstruction is performed offline by the SPGL1
solver [32], [33]. Furthermore, the analysis uses MIT ECG
records, fed into the sensors through a wire, not signals
collected from the wearable device itself which are typically
more noisy and subsequently less compressible. Second,
the authors in [34] showcased real-time reconstruction of
ECG signals on an iPhone using a modified version of the
iterative shrinkage-thresholding algorithm (ISTA), but do not
consider trade-offs between execution time, power consump-
tion, allocated computational resources, and signal dimen-
sions. Those limitations were addressed in [35] and [36]
where a real-time, single-thread implementation of the
orthogonal matching pursuit (OMP) and focal underdeter-
mined system solver (FOCUSS) is thoroughly studied on
ARM’s big.LITTLETM HMP. Additionally, real-time energy-
efficient reconstruction has been demonstrated on an ARM’s
Cortex-M4F microcontroller [37]. In [35]–[37], compression
is carried out using a custom-designed rakeness-based sens-
ing matrix. This approach exploits the uneven distribution of
information in sparse signals to further reduce the number
of samples needed for faithful acquisition. Consequently,
the computational complexity of reconstruction is lowered in
comparison to traditional sensing matrices [37].

In light of the aforementioned works, this article focuses
on offering a practical viewpoint of CS under real-time and
hardware constraints. It also signifies the advantages of local
processing on the gateway and how it might be able to
enhance connected health. The main contributions of this
paper are as follows:

• At the level of the signal: ECG compression perfor-
mance is assessed using signals obtained from the wear-
able device.

• At the level of the wearable device: a more recent
ShimmerTM wearable device is used. Signal acquisition,
CS real-time constraints, signal window sizes, recon-
struction accuracy, and transmission of non-compressed
delayed real-time signals are factored in the energy anal-
ysis. Finally, an improved compression implementation
that reduces processing time is presented.

• At the level of the gateway: the subspace pursuit (SP)
reconstruction algorithm is implemented and compared
to OMP including their multithreaded performance and
energy consumption trade-offs. By simulating a real-
world remote monitoring scenario, we demonstrate the
energy saving advantages and feasibility of a gateway-
processing for connected heath architectures.

III. COMPRESSIVE SENSING BACKGROUND
The CS framework can capture and recover sparse signals
using fewer measurements than that required by the Nyquist
rate [25]. A signal x ∈ Rn is sparse if it can be presented as:

x =
n∑
i=1

αiψ i = ψα (1)

where α ∈ Rn is a column vector with only few non-zero
elements, and ψ ∈ Rn×n is a matrix containing a domain’s
coefficients (Fourier, wavelet, etc.). ECG signals have sparse
representations in multiple domains and hence can be com-
pressively acquired using CS.

In practice, CS can be done directly on analog sig-
nals as an alternative to conventional data acquisition sys-
tems or applied to signals sampled at the Nyquist rate for
dimensionality reduction (i.e. digital CS). This study belongs
to the latter where the compressed signal is expressed as
follows:

y = ϕx = ϕψα = Aα (2)

where y ∈ Rm is the compressed signal, ϕ ∈ Rm×n is
a sensing matrix with m << n, and A = ϕψ ∈ Rm×n

is a matrix linking the sparse representation of x with the
compressed signal y.

To reconstruct signals faithfully, the sensing matrix must
meet the restricted isometry property (RIP) and be incoherent
with the sparsfying basis [38]. Those requirements make
their design non-trivial, but fortunately, it has been shown
that a sensing matrix populated with independent identically
distributed (i.i.d) values such as those obtained for a Gaussian
or a Bernoulli distribution satisfy the two with overwhelming
probability [38].

Recovering the sparse signal α from the compressed
signal y requires solving an under-determined system which
has infinite solutions [4]. But since α is known to be sparse,
a solution can be obtained by searching for the sparsest ver-
sion of α that satisfies (2). This can be achieved with relaxed
convex optimization such as [39]:

α̂ = argmin ‖α‖1 subject to ‖Aα − y‖2 < ε (3)

where α̂ ∈ Rn is the recovered version of α, ‖ · ‖1 =∑n
i=1 | ·i | denotes the `1-norm, and ε relaxes the optimiza-

tion problem. Finally, the signal can be reconstructed by
computing x̂ = ψα̂.
Linear programing approaches can solve (3) in near poly-

nomial time but that is still too slow for a real-time implemen-
tation, especially considering dimensionally large signals [4].
Greedy algorithms are a family of solvers that are typically
fast and less complex making them preferred for a real-time
systems. The caveat is however, that they provide suboptimal
results. Two greedy algorithms are considered in this study:
OMP and SP [40]
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FIGURE 1. Overview of REMS.

The OMP mechanism selects one column of the sensing
matrix that highly correlates with a residual at each iter-
ation [41]. Selected columns are added to an active set,
and removed from ϕ so they are not reselected [4]. After-
wards, a solution is calculated from the active set using a
least square operation and is subsequently subtracted from
the residual. The algorithm stops when residual `2-norm
meets a user-defined criterion. SP selects multiple columns
per iteration and does not remove them from ϕ [42]. The
active set is updated at each iteration. Hence, subopti-
mal columns added in earlier iterations (that are proven to
be not well correlated with the residual) can be removed
later [42].

IV. SYSTEM OVERVIEW
The proposed remote elderly monitoring system (REMS)
consists of three components as in conventional IoT archi-
tectures and is illustrated in Fig. 1. Wearable medical sen-
sors, equipped with state-of-the-art power saving techniques
(e.g. CS), transmit physical and physiological data to a nearby
gateway. The gateway is the main component of this system.
It is a HMP that is responsible for most of the processing
and data treatment which includes CS signal reconstruction—
as in the scope of this paper—and other data analysis algo-
rithms such as heart beat detection and classification, fall
detection, biometric identification, among others. As for the
‘‘remote’’ part of this architecture, the gateway stores day to
day activities and the health status of the patient and transmits
summarized reports in fixed intervals or by demand of the

end user. This allows for trends of the various physical and/or
physiological monitored parameters to be analyzed over time.
Additionally, through its classification, it notifies emergency
services and caregivers of any unfortunate events and then
transmits physiological data in real-time for early diagnosis,
and can host physician to patient video or audio calls for early
and remote assistance. As mentioned earlier, this approach
eliminates system latency and addresses stability concerns
associated with cloud-computing and internet connectivity
dependence. It also facilitates large scale deployment of
connected health. When new subjects are introduced to the
system, they are equipped with their own processing unit, and
hence, there is no additional load onto the cloud-platform,
which reduces the infrastructure costs of the system. Finally,
HMPs provide a plethora of computational resource configu-
rations, enabling customizability and optimizations on a case
to case basis.

In this implementation, the wearable device is the
Shimmer3TM ECG/EMG unit [43], [44]. Hardware-wise,
it operates on a Texas Instruments MSP430F5437A—a
16-bit microcontroller running at 24 MHz with 16 kB of
RAM and 256 kB of flash. The unit communicates through an
RN-42 Bluetooth module, is powered by a 450 mAh battery,
and weighs 31 grams. As for software, the manufacturer
provides the firmware of the device written in C [45] which
can be compiled using Texas Instruments Code Composer
Studio (v7.4) [46], and written it into the Shimmer using
its dock. REMS uses three ECG electrodes to acquire left
arm (LA) - right arm (RA) lead signals sampled in 16-bits
(0.074 mV resolution) and with a gain of four, at 360 samples
per second.

The gateway is a HardKarnel’s Odroid XU4 board [47] fea-
turing ARM’s big.LITTLETM heterogeneous multicore solu-
tion (Fig. 2). Running it is Samsung’s Exynos 5422 octa-core
processor which houses a cluster of four Cortex-A15 cores
(big) and a cluster of four Cortex-A7 cores (LITTLE).
This architecture can be found in modern mobile phones
(e.g. Samsung’s Galaxy S5), and hence considered a good
candidate for simulating real-world mobile connected health
scenarios. There are no built-in wireless options and con-
sequently USB Bluetooth and WiFi modules were used for
connectivity. It operates on Ubuntu 16.04 (Linux 3.10 +
armv7)—algorithms were implemented in C++ using the
Armadillo (v8.3) library [48] for linear algebra and com-
plied using gcc (v5.4).

V. PERFORMANCE METRICS
One aspect for comparison between OMP and SP is the
compression ratio (CR = n/m) achieved for a partic-
ular reconstruction accuracy. Reconstruction accuracy is
computed using the average reconstruction signal to noise
ratio (ARSNR) defined as [37]:

ARSNR = Ex[(
‖x‖2
‖x− x̂‖2

)dB] (4)
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FIGURE 2. ARM’s big.LITTLE heterogeneous multicore solution.

where x̂ is the reconstructed version of the original signal
x—with its dc component removed—and Ex indicates the
averaging over all considered instances of x.
Three ECG signal durations are considered: a half-second

(n = 180), one-second (n = 360), and 1.42-seconds
(n = 512)—capped due to limitations of the Shimmer.
In REMS, transmission of real-time ECG windows to health-
care services is limited to few cases, and hence, so is the need
of medical grade signals. Furthermore, signal analysis algo-
rithms (e.g. heart rate detection and beat classification) can
accommodate higher levels of signal distortion while remain-
ing effective. For those reasons, two levels of reconstruction
accuracies are defined: high quality (HQ) and low quality
(LQ). They were both classified by visual inspection—with
Zigei et al. [26] clinical grade ECG distortion in mind—such
that:

• HQ: ECG signals are reconstructed with minimal error.
Suitable for accurate clinical diagnosis.

• LQ: ECG features can be clearly identified. Maintains
precision for wellness applications.

Figure 3 depicts a Shimmer recorded ECG and its two oper-
ative points, which are defined as follows:

• HQ: Probability[RSNR ≥ 11.5] ≤ 97%
• LQ: Probability[RSNR ≥ 7.5] ≤ 97%

On the platform, the execution time of reconstruction is
assessed by averaging an algorithm’s execution time for
50 consecutive windows using Armadillo’s built-in timer.
Reconstruction is performed using the two core types
(A15 big cores and A7 LITTLE cores), processor frequency
ranges between 0.8 − 1.4 GHz, and 1 − 4 cores. For a fair
comparison between the three ECG dimensions, the average
reconstruction time is normalized over the real-time window
(i.e. time gap between two consecutive windows) which
equals the window duration. Reconstruction power consump-
tion ismeasured by logging the readings of a digital wattmeter
in series with the gateway’s power source. After selecting
a reconstruction algorithm, and setting the processor type,
frequency, and number of cores, the idle power draw is calcu-
lated and subsequently subtracted from the active (i.e. recon-
struction) power draw. It has been observed that window sizes
do not affect the algorithms power consumption, so instead,
we considered energy consumption per window, which is

FIGURE 3. A Shimmer recorded ECG segment and its HQ and LQ
reconstruction points computed with window size n = 512 and OMP.

TABLE 1. Highest CR that achieves the LQ and HQ targets with probability
of 97% for SP and OMP at ECG window sizes (n).

computed as average power consumption × reconstruction
time.

On the Shimmer, the compression processing time is calcu-
lated from the difference between two timestamps, recorded
before and after processing, sent in packets’ header. Each
packet also contains the battery voltage of the sensor which
is subsequently converted into battery percentage at the
receiver. After running the sensor for 10minutes under partic-
ular settings (e.g. CS or no CS) while continuously recording
the battery percentage, the data is linearly fitted, obtaining the
percentage drop per packet. The experiment is repeated three
times for each test case, and the average percentage drop per
packet is scaled by the number of packets per hour and then
multiplied by the battery capacity to estimate the Shimmer’s
power consumption in mAh.

VI. RESULTS
A. RECONSTRUCTION PERFORMANCE
A MATLAB simulation is performed to compare between
SP and OMP by investigating the highest achievable CR
with respect to the predefined qualities of service and ECG
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FIGURE 4. Per window normalized reconstruction time (top) and energy consumption (bottom) of HQ and LQ ECG reconstruction using SP (left) and OMP
(right) with variable signal lengths, cores type, number, and frequency.

window sizes. The procedure involves computing ARSNR
with a confidence interval of 97% from reconstructed ECG
windows segmented from a 45-minute Shimmer ECG record-
ing. Table 1 reports the obtained results and the data clearly
indicate the superiority of SP for the HQ target while OMP
remains more suited for the LQ operative point. Hence,
for the remainder of this paper, HQ and LQ refers to
ECG signals—compressed at their corresponding highest
CR—reconstructed with SP and OMP respectively.

Larger ECG windows improve compressibility, by scaling
the number of samples from n = 180 to n = 512, CR
increases by nearly 28% with the majority gain (≈ 23%)
occurring at the first step (180 → 360). It is worth men-
tioning that, in comparison to the literature, the CRs are low,
which we believe is caused by (i) the higher amounts of non-
idealities in the 3-electrode Shimmer recording and (ii) the
less accurate but real-time friendly greedy algorithms.

B. RECONSTRUCTION ON THE PLATFORM
Execution time of the algorithms, and the consequent energy
required per window depends on many variables: the original
signal length (n), the compressed signal length (m), and the
type, number, and frequency of the cores assigned to the
process. The performance of the platform and the effects of
all the aforementioned variables are comprehensively sum-
marized in Fig. 4. It should be noted that the time and energy
plots have reversed x and y axes for easier viewing and
normalized reconstruction time is plotted at the top row.

At first glance, it is clear that there is an exponential growth
against the use of larger windows, and hence, potential ben-
efits of higher compression on the sensing node are met with
higher energy requirements at the gateway. Big (A15) cores
expedite processing by an average of 1.7 to 4 times without
affecting energy consumption significantly, which can be eas-
ily observed by the plot peaks. At a fixedminimum frequency
and n = 512, HQ reconstruction is 3.25 times faster using
a single A15 and only consumes 19% more energy than its

single LITTLE core counterpart. In fact, for LQ, it speeds
up the process by 3.52 and consumes 12% less energy as
the speed gained is significant enough to compensate for the
increased average power consumption of the big core.

OMP has many parallelizable instructions and benefits
greatly from utilizing more cores. On the other hand, SP
has a greater number of sequential instructors. This indi-
cates that using higher CPU frequencies rivals or is better
than higher core number. At a fixed frequency, on average,
and for HQ and LQ respectively, going from 1×A7 to
(2 → 3 → 4) provides (24% → 10% → 5%) and
(60%→ 25%→ 9%) faster reconstructionwhile consuming
(32% → 22% → 11%) and (4% → 7% → 8%) more
energy. In a similar manner, increasing the core frequency
from 0.8 to (1.0 → 1.2 → 1.4) GHz speeds up processing
by (23%→ 18%→ 16%) and (20%→ 15%→ 12%) with
(10% → 12% → 20%) and (4% → 8% → 9%) growth
in energy requirements. Subsequent increments to the core
frequency or their number returns lower and lower improve-
ments to reconstruction time, deteriorating more steeply for
the number of cores. Interestingly, for dimensionally large
signals, the energy consumption of OMP is almost constant
against the number of LITTLE cores and, in fact, decreases
at the 2-core mark. However, a single A15 core at 0.8 GHz is
still a better option for OMP, as it consumes equivalent or less
energy of a LITTLE core but reconstruct signals much faster.

Maximum energy efficiency on that gateway can be
achieved by using shorter ECG segments and a single A7 and
A15 for HQ and LQ reconstruction respectively. However,
this results in reduced signal compressibility, and theoret-
ically, increased power consumption of the sensing node.
Moreover, a 1× A15 core can halve or quarter HQ execution
time, especially for larger windows, while consuming slightly
more energy than its 1×A7 counterpart. Hence, optimal real-
time and energy reconstruction performance for the gate-
way can be achieved using a single A15 core at minimum
frequency.

VOLUME 6, 2018 69135



M. Al Disi et al.: ECG Signal Reconstruction on the IoT-Gateway and Efficacy of CS Under Real-Time Constraints

FIGURE 5. ARSNR verses the number of non-zero elements per row of the
sensing matrix.

C. COMPRESSION ON THE SHIMMER
A digital CS implementation on the sensing node is carried
out using the following steps. First, ECG signals must be
buffered to their desired window size and then a matrix mul-
tiplication is performed on it to reduce its dimensions prior to
transmission. If a sensingmatrix with binary elements is used,
the multiplications turn into additions, further simplifying
CS deployment. Since CS inherently requires a delayed
real-time (DRT) implementation, this section compares CS
to both real-time and non-compressed DRT transmission
modes.

The main challenge is the storage of the sensing matrix
and computing compression in real-time. A generic binary
sensing matrix generated from a Gaussian distribution has
approximately (nm/2) non-zero elements, which is impossi-
ble to store nor it allows for real-time compression. Thank-
fully, the authors in [5] experimentally showed—using MIT
arrhythmia database—that a sparse binary sensing matrix
designed by populating a fixed number of randomly dis-
tributed 1s in each column can provide compression per-
formance equivalent to conventional sensing matrices. In a
system with two compression points (HQ and LQ), a sparse
sensing matrix where non-zero elements are distributed per
row is more memory efficient. Since rows are independent
from each other, the Shimmer only needs to store the larger
HQ matrix and can utilize it for the LQ point by evaluating
less compressed samples (i.e. use less rows from the stored
matrix). The appropriate number of non-zero elements per
row is determined experimentally by computing the recon-
struction accuracy against the number of non-zero elements in
a row (Fig. 5). Clearly, the output ARSNR saturates between
10 to 12 non-zero elements for the HQ operative point and
16 to 18 for LQ. Since one matrix is used for both oper-
ation points, a single matrix with 18-ones in each row—
generated independently using MATLAB’s sprandn()
function—is used for compression for the remainder of this
implementation.

FIGURE 6. Probability density function ECG sample values with their
mean removed (top) and their corresponding compressed packets
compared to [5]’s redundancy removal method (bottom) computed from
256000 samples.

The Shimmer stores ECG samples in 16-bit integers, how-
ever, it was observed that much of the information contained
in those variables pertain to the dc-level of the signal and
not its morphology. And since CS requires a buffering, the
dc-component can be removed to reduce the number of bits
needed to represent the ECG. Figure 6 concludes that 8-bit
are sufficient to represent zero-mean DRT ECGs and 10-bits
are required for the corresponding compressed samples.
This reduction of bit-range was reported on in [5], however,
it was attributed to interpacket redundancy compressed pack-
ets and addressed by subtracting a packet from the one sent
before it. But as Fig. 6 shows, redundancy removal does
not further decrease the bit-range. The cause of the lower
bit-range is dc-removal, meaning that this property can be
extended to DRT ECGs and can be addressed in a simpler
manner. Digital CS is primarily concerned with reducing
the number of bytes prior to transmission. Since compressed
samples are 25% larger than their zero-mean DRT counter-
part, our HQ and LQ CRs are reduced by the same amount to
{1.00, 1.39, 1.46} and {2.25, 2.65, 2.87} respectively.

Compression is typically computed in bursts after the
ECG buffer has been filled. Using this approach, our most
computationally complex case (n = 512 HQ) executes in
under 18 ms which is under real-time constraints but is higher
than the sampling period. Consequently, unless a secondary
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FIGURE 7. Shimmer power consumption for real-time (RT), DRT and
CS transmission modes and varying window sizes.

TABLE 2. Shimmer battery lifetime estimation for real-time (RT), DRT and
CS transmission modes and varying window sizes.

buffer and an interrupt implementation is used, some samples
between two consecutive windows will be lost, which could
be problematic if they were in the QRS region. We optimized
CS execution time by taking advantage of the sampling period
to perform a small number of additions for the compressed
samples. The sensing matrix is stored as the locations of
ones per column and once an ECG sample is measured it
is immediately added to the compressed samples where it
is present. When the buffer is ready, the compressed vector
is computed in 1.7 ms, which is the time associated with
m-subtractions for mean removal and 5m/4 shift operations
for bit reduction. Finally, the output of CS was validated
by test packets containing both the original and compressed
versions and computing the compressed output in MATLAB,
where identical results were observed.

The Shimmer’s power consumption in real-time, DRT, and
CS modes are shown in Fig. 7. Most of the power saving
benefits can be obtained by a simple DRT implementation as
the figure shows a significant drop in comparison to real-time
transmission. Furthermore, using a larger window is observed
to reduce power consumption by a constant of ≈ 1.5 mAh,
perhaps due to increased idle vs active ratio of the Blue-
tooth connection. Relative to real-time transmission, DRT
improves the device’s power consumption by (36, 40, 45)
percent for 180, 360, 512 ECG windows respectively. Obvi-
ously, HQ ‘‘compression’’ at n = 180 drains more of the

battery since it transmits an equivalent number of bytes but
adds computational costs. Although, the small increase of
1.8% attests to CS encoder simplicity. The battery lifetime
of the sensing node in the different modes is estimated in
Table 2. HQ CS provides at most 1.4 hours extension to the
sensor battery life (6.6%); it could be argued that this small
amount is not worth the added ECG distortion and the recon-
struction costs at the gateway. LQ, on the other hand, can add
up to 3.1 hours of battery life extension (15.4%) and makes
the device 1.5 hours short of continuous 24 hours operation.
Maximum energy efficiency of the wearable device can be
achieved using n = 512 ECGswith HQ and LQ compression.

D. SYSTEM EVALUATION
In real-world remote health monitoring systems, the gate-
way would be responsible for much more than signal recon-
struction. It establishes Bluetooth and WiFi/cellular network
connections, routes data from the sensor to the cloud, and
in REMS—continuously performs analysis on the signal.
This section compares the use of HMPs as a simple router
and as a main processing unit (i.e. in REMS) by simulating
real-world configuration and measuring and averaging power
consumption at the gateway. Estimation of its battery lifetime
is based on 10.78 Wh battery such as in [36]. In REMS,
the transmission of clinical grade ECGs is limited, and hence,
the battery life is estimated assuming a 25% time allocation
for remote streaming of HQ data and 75% for LQ with local
analytics.

Bluetooth and WiFi reception and routing of data is done
through a Python script and Dropbox [49] to simulate the
remote server. The script is assigned to 1× A7 at 0.8 GHz to
minimize its energy footprint. In REMS scenarios, three addi-
tional processes are implemented in C++ which are filtering,
QRS detection using Pan and Tompkins [50], and K-nearest
neighbour classifications (KNN). Note that the accuracy of
those algorithms is not within the scope of this work, they are
simply used to artificially load the CPU and more accurately
simulate real-world performance. Four configurations are
considered: conventional router, and three REMS scenarios
that minimize or optimize the energy consumption at the
wearable device and the gateway. The configurations, and
their objectives and descriptions are summarized in Table 3.

The power consumption and the corresponding battery life
for each configuration are depicted in Fig. 8 and Table 4
respectively. By comparing CFG1 with any DRT configu-
ration, it is concluded that most energy consumption at the
gateway is due to WiFi utilization and not CS reconstruction
or signal processing. It must be noted that even in LQ cases,
the gateway is still connected toWiFi but idling, meaning that
it could still receive notifications from the server or quickly
switch to medical grade ECG transmission in case of acci-
dents. Also, the observed computational time for the three
aforementioned additional signal processing is 15ms on aver-
age. Hence, more operations can be implemented on the
gateway without worry about real-time performance. If the
signal is both processed and transmitted, energy consumption
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TABLE 3. Configurations, and their objective and description.

FIGURE 8. Gateway power consumption under the different
configurations.

TABLE 4. Battery life of the wearable device and the gateway in different
configurations.

at the gateway rises in comparison with the conventional
approach (CFG1), but by limiting the transmission period
(i.e. only transmitting when abnormalities are detected or at
the request of the end user), the overall battery life of the
gateway is extended. CFG2 provides the best outcomes for
a connected health system because both the wearable device
and the gateway have approximately 24 hours of operation.

VII. CONCLUSIONS
Traditional IoT-based remote health monitoring systems gen-
erally suffer from latency and reliability issues associated
with cloud computing. which can be addressed by the mobile
and efficient processing power of HMPs. This work presented
REMS, amobile real-time remote healthmonitoring architec-
ture centered around the utilization of ARM’s big.LITTLETM

heterogenousmulticore platform for signal processing, focus-
ing on the efficacy of ECG CS under real-time and hardware
constraints. Compressively sensed signal recovery can be per-
formed on the gateway in real-time while minimizing energy
consumption of the gateway in comparison to the traditional
gateway-as-router point of view.With a single A15 (big) core,
reconstruction occurred in under 30% CPU utilization and
consumed an equivalent amount of energy to the energy-
efficient LITTLE cores. On the wearable device, CS reduced
the power consumption of the wearable device by up to 15.4%
when considering ECGs suitable for wellness applications.
However, performance was generally suboptimal for clinical
grade signals. Power consumption at the gateway was largely
due to the continuous wireless transmission of data, hence,
a system that relies on the gateway as a signal processing unit
benefits from an ample extension in battery life. Due to its
capacity for real-time and energy efficient computation and
ever-growing potential of adoption, HMPs can be considered
a suitable technology for connected health, leading the way
towards a more reliable remote health monitoring system.
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