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Ruin Probabilities Under Capital Constraints1
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Abstract3

In this paper, we generalise the classic compound Poisson risk model, by the intro-4

duction of ordered capital levels, to model the solvency of an insurance firm. A breach5

of the higher capital level, the magnitude of which does not cause further breaches of6

either the lower level or the so-called intermediate confidence level (of the sharehold-7

ers), requires a capital injection to restore the surplus to a solvent position. On the8

other hand, if the confidence level is breached capital injections are no longer a vi-9

able method of recapitalisation. Instead, the company can borrow money from a third10

party, subject to a constant interest rate, which is paid back until the surplus returns11

to the confidence level and subsequently can be restored to a fully solvent position by12

a capital injection. If at any point the surplus breaches the lower capital level, the13

company is considered ‘insolvent’ and is forced to cease trading. For the aforemen-14

tioned risk model, we derive an explicit expression for the ‘probability of insolvency’15

in terms of the ruin quantities of the classical risk model. Under the assumption of16

exponentially distributed claim sizes, we show that the probability of insolvency is in17

fact directly proportional to the classical ruin function. It is shown that this result18

also holds for the asymptotic behaviour of the insolvency probability, with a general19

claim size distribution. Explicit expressions are also derived for the moment generating20

function of the accumulated capital injections up to the time of insolvency and finally,21

in order to better capture the reality, dividend payments to the companies shareholders22

are considered, along with the capital constraint levels, and explicit expressions for the23

probability of insolvency, under this modification, are obtained.24

Keywords: Insolvency Probabilities, Capital Injections, Debit Interest, Accumulated25

Capital, Classical Risk Model.26
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1 Introduction27

In recent risk theory literature, more and more attention is being paid to risk models with28

recovery techniques for a surplus process in red. Two of the most prevalent techniques that29

have been proposed are debit interest (lending) and capital injections.30

Within the the framework of debit interest risk models, it is assumed that an insurance31

firm does not cease to operate when traditional ruin occurs, i.e. the surplus drops below32

zero for the first time. Instead, the insurer can borrow money at a constant interest rate33

and then repay the debts continuously from its premium income. The absolute ruin prob-34

ability, in a debit interest setting, was first introduced by Gerber (1971) for the compound35

Poisson risk model, see also Dickson and Dos Reis (1997). Following its inception in risk36

theory, the debit interest recovery technique has been applied within various different risk37

models, see Dassios and Embrechts (1989) and Embrechts and Schmidli (1994) for piece-38

wise deterministic Markov risk processes, Gerber and Yang (2007) for a jump-diffusion risk39

process, Yin and Wang (2010) for a perturbed compound Poisson risk process with invest-40

ment, Zhang et. al. (2011) for a Markov Arrival risk model, Cai (2007) for the Gerber-Shiu41

function in the compound Poisson model, and references therein.42

On the other hand, a more realistic alternative to restore capital is by means of capital43

injections. Capital injections were first introduced, in the risk theory context, by Pafumi44

(1998) and since then, the ruin probability and other ruin related quantities, such as the45

distribution of the deficit at ruin or the distribution of the surplus prior to ruin, have been46

extensively studied for the compound Poisson risk model by many authors, see among47

others, Nie et al. (2011), Eisenberg and Schmidli (2011), Dickson and Qazvini (2016) and48

the references therein.49

In this paper, we aim to derive explicit expressions for the insolvency probabilities50

(defined in Section 2), in a risk model that consists of capital levels and a confidence level51

for the shareholders. In more details, we show that the insolvency probability, under the52

aforementioned risk model, can be evaluated in terms of the ruin probability of the classical53

risk model, for which powerful methodologies, numerical techniques and many applicable54

results have been derived over the last half century. Additionally, we derive the distribution55

of the accumulated capital injections up to the time of insolvency.56

The risk process we employ consists of the following characteristics:57

a) We consider a compound Poisson risk process for which two (positive) capital levels58

are introduced, namely the upper level Cu and lower level Cl (≤ Cu), to model the59

solvency requirements of an insurance firm. We assume that the insurance firm60

starts from a solvent position which exceeds Cu. If the level Cu is crossed, due to a61

claim, the insurance firm is able to recover the capital by means of capital injections62

(given the level Cl has not been crossed), which are assumed to be provided by the63

shareholders or transferred from a different line of business .64

b) Additionally, we determine an intermediate capital level (between the Cu and Cl),65
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which indicates the confidence level of the shareholders. If the aforementioned in-66

termediate confidence level is crossed, then the shareholders lose confidence and are67

not prepared to inject the necessary capital to restore the surplus level to Cu. In68

this case, the company must borrow the funds from a third party, subject to debit69

interest, which is repaid continuously from the premium income until the confidence70

level is reached, the shareholders regain confidence and inject the remaining capital71

to bring the company back to a solvent position. The repayment of the debt, subject72

to constant debit interest, can be equivalently considered as the continuous payment73

of a penalty, which is issued to the company for being in an ‘insolvent position’.74

c) Finally, a breach of the Cl capital level means that the firm is considered as completely75

insolvent and thus the regulator’s strongest actions are enforced (trading ceases).76

The reason that capital injections are chosen as the initial recovery mechanism (versus77

debit borrowing) is confirmed both intuitively and from market evidence. On an intuitive78

level, insurance firms first look for internal methods of covering capital losses and secondly79

for external loans, since in general external loans are considered as liabilities for insurance80

firms). On the other hand, in practise, there is evidence of capital injections being imple-81

mented so as to meet the solvency levels required under Solvency II regulations [see for82

example, among others, the report of the ING group insurance in the Netherlands [17], the83

case of Liberty Insurance in Ireland, [1], or MOODY’S report of April 2016 [20]].84

The paper is organised as follows: In Section 2, we introduce the risk model, with the85

above characteristics, in terms of the surplus process of an insurance firm. A graphical in-86

terpretation of the model is given and the probability of insolvency is defined and explained.87

In Section 3, we derive an explicit expression of the probability of insolvency. This explicit88

expression is given in terms of the classical ruin probability, shifted by the level Cu, and the89

probability of hitting the intermediate confidence level before hitting Cl, in the debit envi-90

ronment. Moreover, the latter ‘hitting probability’ is analysed and an integro-differential91

equation is obtained. In the same section, under exponentially distributed claim amounts,92

we show that the insolvency probability is proportional to the classical ruin probability.93

Finally, in this section, the asymptotic behaviour for the probability of insolvency is inves-94

tigated. In Section 4, we derive explicit expressions for the expected accumulated capital95

injections up to the time of insolvency. In addition, we show that the distribution of the96

accumulated capital injections is a mixture of a degenerative distribution at zero and a97

pure continuous distribution, which is explicitly determined. In Section 5, we include a98

constant dividend barrier strategy where the shareholders can obtain part of the surplus99

as dividends. Under this modification, we again show that the probability of insolvency is100

given in terms of the ruin probability of the classical risk model under the same dividend101

barrier strategy.102
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2 The risk model103

In this section, we will adapt the classical risk model to conform with the framework in104

(a)-(c) described in Section 1. Under this modification, we define the ‘probability of105

insolvency’, which corresponds to the probability that the risk process down-crosses the106

lower level Cl.107

In the classical Cramér-Lundberg risk model, the surplus process of an insurance com-108

pany is defined by U(t) = u+ ct− S(t), t > 0, where u > 0 is the insurer’s initial capital,109

c > 0 is a constant premium rate, S(t) =
∑N(t)

i=1 Xi are the aggregate claims with {N(t)}t>0110

a Poisson process representing the number of claims that have arrived up to time t > 0,111

with intensity λ > 0, and {Xk : k ∈ Z+} is a sequence of independent and identically dis-112

tributed (i.i.d.) random variables, representing the claim sizes, with a common distribution113

function FX(·), density function fX(·), and mean E(X) = µ < ∞. It is further assumed114

that {N(t)}t>0 and {Xk : k ∈ Z+} are mutually independent.115

We assume that if the surplus falls below the Cu level, due to the occurrence of a claim,116

then the shareholders in the company inject capital instantaneously to cover this fall, given117

that the capital level Cl has not been crossed. The sum of total capital injections, up to118

time t > 0, is defined by the pure jump process {Z(t)}t>0.119

Moreover, the intermediate confidence level up to which the shareholders are prepared120

to inject capital is denoted by B, where Cu > B > Cl. A drop, due to a claim, of the surplus121

below the confidence level B, requires that the insurance firm borrows an amount of money122

equal to the size of the deficit below B, at a debit force δ > 0, given that the capital level123

Cu has not been crossed.124

When the surplus is between the levels Cl and B, debts (or the penalty for the insurance125

firm) are repaid continuously from the premium income. During this period of time, the126

insurance firm can either recover back to level B (where the shareholders have renewed127

confidence and will instantaneously inject the amount Cu−B in order to restore the surplus128

to level Cu) or becomes insolvent by falling, due to further claims, below the level Cl [see129

Fig: 1]. Note that, using similar arguments as in Cai (2007) one can see that the confidence130

level, B, depends on the debit force of interest (or penalty rate) and lies in the interval131

[Cl, Cl + c
δ ]. In order to emphasise the effects of the debit or penalised environment, in the132

remainder of this paper we consider the case B = Cl + c/δ.133

Considering the above features, the surplus process under with capital constraints,134

denoted by {UZδ (t)}t>0, has dynamics of the following form135

dUZδ (t) =





cdt− dS(t), UZδ (t) > Cu,
∆Z(t), B 6 UZδ (t) < Cu,[
c+ δ(UZδ (t)− b)

]
dt− dS(t), Cl < UZδ (t) < B,

(2.1)136

where ∆Z(t) = Z(t)− Z(t−).137
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Figure 1: Typical sample path of the surplus process under capital constraints.

The crucial features of the proposed risk model could be interpret as the capital man-138

agement tools employed to reduce the probability of insolvency. Thus, it follows that for139

the surplus process {UZδ (t)}t>0, we should define the time to insolvency, denoted by Tδ, as140

Tδ = inf
{
t > 0 : UZδ (t) 6 Cl |UZδ (0) = u

}
,141

with Tδ = ∞ if UZδ (t) > Cl for all t > 0. Then, the probability of insolvency, which we142

denote ψI (u), is given by143

ψI (u) = P
(
Tδ <∞

∣∣UZδ (0) = u
)
,144

with ψI (u) = 1 for u 6 Cl and φI (u) = 1− ψI (u) is the corresponding probability that the145

insurance firm never experiences insolvency. As it will be seen in the subsequent subsection,146

ψI (u) will be derived in terms of the ruin probability for the classical risk model, namely147

ψ(u).148

Finally, we point out, similar to Cai (2007), that ψI (u) has different sample paths149

for u > Cu and Cl < u < B. Therefore, we distinguish between the two situations by150

denoting ψI (u) = ψ+
I (u) for u > Cu and ψI (u) = ψ−I (u) for Cl < u < B. Now, due to the151

instantaneous capital injection when the surplus lies within the interval [B, Cu) we say that152

for B 6 u < Cu, ψI (u) = ψ+
I (k). It follows that the corresponding solvency probabilities are153

given by φI (u) = 1−ψI (u) = φ+I (u), for u > Cu, and φI (u) = φ−I (u) for Cl < u < B. Finally,154

we assume the net profit condition holds, i.e.155

η = (c/λµ)− 1 > 0.156
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3 The probability of insolvency157

In this section, we derive a closed form expression for the probability of insolvency in terms158

of the infinite-time ruin probability of the classical risk model and an exiting (hitting)159

probability between two capital levels. Note that ψ+
I (u), is the risk quantity of primary160

interest as it is assumed that the insurance firm starts from a solvent level i.e. u > Cu.161

Ultimately, we show that the probability of insolvency is proportional to the classical ruin162

function. Corresponding formulae for ψ−I (u), Cl < u < B, are also derived.163

Before we proceed, we first define some ruin related quantities that will be extensively164

used in the following. First, let the time to cross the level Cu, for u > Cu, be denoted by T ,165

such that166

T = inf{t > 0 : UZδ (t) < Cu|UZδ (0) = u > Cu}, (3.1)167

with the corresponding probability of down-crossing the level Cu, defined by168

ξ(u) = P
(
T <∞

∣∣UZδ (0) = u > Cu
)
.169

Recalling the behaviour of the surplus process UZδ (t), given in equation (2.1), it is clear170

that the dynamics above the level Cu are identical to that of the classical surplus process171

under a constraint free environment, i.e. for u > Cu, we have dUZδ (t) ≡ dŨ(t) where172

Ũ(t) = ũ+ ct− S(t), t > 0,173

with Ũ(0) = ũ := u − Cu. Then, it should be clear that T , defined by equation (3.1), is174

equivalent to the time to ruin in the classical risk model with no capital constraints and175

initial capital ũ > 0, given by176

T = inf{t > 0 : Ũ(t) < 0| Ũ(0) = ũ}.177

Hence, the function ξ(u) is identical to the classic ruin probability ψ(ũ) = P(T <∞|Ũ(0) =178

ũ) = 1− φ(ũ).179

Extending the arguments of Nie et al. (2011), by conditioning on the occurrence and180

size of the first drop below Cu, for u > Cu, and using the fact that dUZδ (t) ≡ dŨ(t) above181

the level Cu, we obtain an expression for the solvency probability, φ+I (u), of the form182

φ+I (u) = φ(ũ) +

∫ Cu−B

0
g(ũ, y)φ+I (Cu) dy +

∫ Cu−Cl
Cu−B

g(ũ, y)φ−I (Cu − y) dy183

= φ(ũ) +G(ũ, Cu − B)φ+I (Cu) +

∫ Cu−Cl
Cu−B

g(ũ, y)φ−I (Cu − y) dy, (3.2)184

185

where186

G(ũ, y) = P
(
T <∞, |Ũ(T )| 6 y

∣∣ Ũ(0) = ũ
)
,187
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is the joint distribution of down-crossing the level Cu and experiencing a deficit (below Cu) of188

at most y, with g(ũ, y) = ∂
∂yG(ũ, y) the corresponding density function. This risk quantity189

was first introduced and analysed by Gerber et al. (1987) for modelling the ‘deficit at ruin’.190

Note that, in the above expression, φ+I (u) is given in terms of φ−I (u). In order to derive191

an analytic expression for φ+I (u), independent of φ−I (u), we introduce the following hitting192

probability.193

Let χ
δ
(u, Cu, Cl) ≡ χ

δ
(u) be the probability that the surplus process hits the upper194

confidence level B, before hitting the lower capital level Cl from initial capital Cl < u < B,195

defined by196

χ
δ
(u) = P

(
TB < Tδ

∣∣UZδ (0) = u
)
, (3.3)197

where198

TB = inf
{
t > 0 : UZδ (t) = B

∣∣UZδ (0) = u
}
, Cl < u < B.199

Proposition 1. For Cl < u < B, the surplus process, {UZδ (t)}t>0, will hit either the capital200

level Cl or the confidence level B, over an infinite-time horizon, almost surely (a.s.).201

Proof. Using similar arguments as in Cai (2007), we first note that when the surplus process202

is within the interval (Cl, B), it is driven by the debit interest force δ > 0, until the surplus203

returns to level B (or experiences insolvency). Therefore, for initial capital Cl < u < B, the204

process is immediately subject to debit interest on the amount B−u > 0 and the evolution205

of the surplus process (assuming no claims appear up to time t > 0), due to the dynamics206

of the process below the level B, can be expressed by207

h(t;u, B) = B + (u− B)eδt + c

∫ t

0
eδs ds, t > 0. (3.4)208

Let us further define t0 ≡ t0(u, B) to be the solution to h(t;u, B) = B. Then209

t0 = ln

(
c

δ(u− B) + c

)1/δ

<∞, for Cl < u < B, (3.5)210

is the time taken for the surplus to reach the upper level B, i.e.h(t0;u, B) = B, in the absence211

of claims and h(t;u, B) ∈ (Cl, B) for all t < t0. Therefore, it is clear that the surplus process212

will recover to the upper level B, if no claims occur before time 0 6 t0 <∞.213

Now, consider the events En = {τn > t0}, where {τn}n∈N is a sequence of i.i.d. random
variables denoting the inter-arrival time between the (n − 1)-th and n-th claim and t0 is
as defined above. Then, since the inter-arrival times are i.i.d. and it is assumed that the
claims occur according to a Poisson process, it follows that, for all n ∈ N, the events En
are independent and we have

P(En) = P(τn > t0) = e−λt0 > 0.
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Therefore, it follows that
∞∑

n=1

P(En) =∞,

and thus, by the second Borel-Cantelli Lemma [see Feller (1971)], it follows that

P
(

lim sup
n→∞

{τn > t0}
)

= 1.

That is, the event {τn > t0} occurs infinitely often with probability 1 (a.s.).214

Now, conditioning on which of the levels the surplus first hits, from initial capital Cl < u <215

B, using the result of Proposition 1 and noticing that φ−I (x) = 0 for x 6 Cl, it follows that216

φ−I (u) = χ
δ
(u)φ+I (Cu). (3.6)217

Substituting the above expression into equation (3.2), we obtain218

φ+I (u) = φ(ũ) + φ+I (Cu)
[
G(Cl, Cu − B) +

∫ Cu−Cl
Cu−B

g(ũ, y)χ
δ
(Cu − y) dy

]
. (3.7)219

To complete the above expression for φ+I (u), the boundary condition φ+I (Cu) and the hitting220

probability χ
δ
(u) need to be determined. Setting u = Cu in equation (3.7), and solving the221

resulting equation for φ+I (Cu), we have that222

φ+I (Cu) =
φ(0)

1−
(
G(0, Cu − B) +

∫ Cu−Cl
Cu−B g(0, y)χ

δ
(Cu − y) dy

) , (3.8)223

and thus, equation (3.7) may be re-written, for u > Cu, as224

φ+I (u) = φ(ũ) +
φ(0)

[
G(Cl, Cu − B) +

∫ Cu−Cl
Cu−B g(ũ, y)χ

δ
(Cu − y) dy

]

1−
(
G(0, Cu − B) +

∫ Cu−Cl
Cu−B g(0, y)χ

δ
(Cu − y) dy

) .225

Then, since φ+I (u) = 1−ψ+
I (u), for u > Cu, the probability of insolvency, namely ψ+

I (u), is226

given by227

ψ+
I (u) = ψ(ũ)−

φ(0)
[
G(Cl, Cl − B) +

∫ Cu−Cl
Cu−B g(ũ, y)χ

δ
(Cu − y) dy

]

1−
(
G(0, Cu − B) +

∫ Cu−Cl
Cu−B g(0, y)χ

δ
(Cu − y) dy

) . (3.9)228

229

Moreover, from Dickson (2005), we have that the general form for the density of the deficit230

at ruin, with zero initial capital, is given by231

g(0, y) =
λ

c
FX(y),232
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and thus, equation (3.9) reduces to233

ψ+
I (u) = ψ(ũ)−

φ(0)
[
G(ũ, Cu − B) +

∫ Cu−Cl
Cu−B g(ũ, y)χ

δ
(Cu − y) dy

]

1− λ
c

(
µFe(Cu − B) +

∫ Cu−Cl
Cu−B FX(y)χ

δ
(Cu − y) dy

) , (3.10)234

235

where FX(x) = 1 − FX(x) and Fe(x) = 1
µ

∫ x
0 FX(y) dy is the so-called equilibrium distri-236

bution.237

Finally, by employing equation (3.10), combining equations (3.6) and (3.8) and defining238

Gũ(y) = G(ũ, y)/ψ(ũ), with gũ(y) = g(ũ, y)/ψ(ũ), such that Gũ(y) = P(|Ũ(T )| 6 y
∣∣T <239

∞) is a proper distribution function, as in Willmot (2002) (and references therein), we get240

the following Theorem for the probability of insolvency. Note that similar arguments as241

above can be applied for ψ−I (u).242

Theorem 1. For u > Cu, the probability of insolvency, ψ+
I (u), is given by243

ψ+
I (u) = ψ(ũ)


1−

φ(0)
[
Gũ(Cu − B) +

∫ Cu−Cl
Cu−B gũ(y)χ

δ
(Cu − y) dy

]

1− λ
c

(
µFe(Cu − B) +

∫ Cu−Cl
Cu−B FX(y)χ

δ
(Cu − y) dy

)


 , (3.11)244

where ψ(u) is the ruin probability of the classical risk model and ũ = u− Cu.245

246

For Cl < u < B, ψ−I (u) is given by247

ψ−I (u) = 1− φ(0)χ
δ
(u)

1− λ
c

(
µFe(Cu − B) +

∫ Cu−Cl
Cu−B FX(y)χ

δ
(Cu − y) dy

) . (3.12)248

Remark 1. From equations (3.11) and (3.12), it follows that the two types of insolvency249

probabilities are given in terms of the (shifted) ruin probability and deficit of the classical250

risk model, as well as the probability of exiting between two levels. Thus, ψ+
I (·) and ψ−I (·)251

can be calculated by employing the well known results, with respect to Gũ(·) and ψ(·) (see252

for example Gerber et al. (1987), Dickson (2005), and the references therein), whilst the253

latter exiting probability, χ
δ
(u), can be calculated as follows.254

Proposition 2. For Cl < u < B, the probability of the surplus process, {UZδ (t)}t>0, hitting255

the upper level B before hitting the lower level Cl (under a debit force δ > 0), denoted χ
δ
(u),256

satisfies the following integro-differential equation257

(δ(u− B) + c)χ′
δ
(u) = λχ

δ
(u)− λ

∫ u−Cl

0
χ
δ
(u− x) dFX(x), (3.13)258

with boundary conditions259

lim
u↑B

χ
δ
(u) = 1,260

lim
u↓Cl

χ
δ
(u) = 0.261

262
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Proof. Using the notations introduced in the proof of Proposition 1, by conditioning on263

the time and amount of the first claim, it follows that264

χ
δ
(u) = e−λt0 +

∫ t0

0
λe−λt

∫ h(t;u,B)−Cl

0
χ
δ

(
h(t;u, B)− x

)
dFX(x) dt. (3.14)265

Employing the change of variable y = h(t;u, B) and recalling the form of t0 given in equation266

(3.5), we have that267

χ
δ
(u) =

(
δ(u− B) + c

c

)λ
δ

+ λ (δ(u− B) + c)
λ
δ

∫ B

u
(δ(y − B) + c)−

λ
δ
−1

268

×
∫ y−Cl

0
χ
δ
(y − x) dFX(x) dy. (3.15)269

270

Differentiating the above equation, with respect to u, and combining the resulting equation271

with equation (3.15), we obtain equation (3.13).272

The first boundary condition can be found by letting u → B in equation (3.15). Now,273

for the second boundary condition one can see that if274

lim
u↓Cl

∫ B

u

[(
δ(y − B) + c

)−λ
δ
−1
∫ y−Cl

0
χ
δ
(y − x) dF (x)

]
dy <∞,275

then276

lim
u↓Cl

λ
(
δ(u− B) + c

)λ
δ

∫ B

u

[(
δ(y − B) + c

)−λ
δ
−1
∫ y−Cl

0
χ
δ
(y − x) dF (x)

]
dy = 0,277

since B = Cl + c
δ . Alternatively, if278

lim
u↓Cl

∫ B

u

[(
δ(y − B) + c

)−λ
δ
−1
∫ y−Cl

0
χ
δ
(y − x) dF (x)

]
dy =∞,279

then, by L’Hopital’s rule, we have280

lim
u↓Cl

λ
(
δ(u− B) + c

)λ
δ

∫ B

u

[(
δ(y − B) + c

)−λ
δ
−1
∫ y−Cl

0
χ
δ
(y − x) dF (x)

]
dy = 0.281

Using the above limiting results and taking the limit u→ Cl, in equation (3.15), we obtain282

the second boundary condition.283

Recalling Remark 1 and Theorem 1, the two types of insolvency probabilities depend284

heavily on the solution of the integro-differential equation (3.13), which is discussed in the285

next subsection.286
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3.1 Explicit expressions for exponential claim size distribution287

In this subsection, we derive explicit expressions for the two types of insolvency prob-288

abilities, under the assumption of exponentially distributed claim amounts. Then, by289

comparing the explicit expression of the insolvency probabilities with the classical ruin290

probability under exponentially distributed claims, we identify that these two probabilities291

are proportional. To illustrate the applicability of our results (and thus the relationship292

between ψ+
I (u) and ψ(u)), we finally provide numerical results.293

Let us assume the claim sizes are exponentially distributed with parameter β > 0, i.e.294

FX(x) = 1− e−βx, x > 0. Then, equation (3.13) reduces to295

(δ(u− B) + c)χ′
δ
(u) = λχ

δ
(u)− λ

∫ u

Cl
βe−β(u−x)χ

δ
(x) dx, Cl < u < B. (3.16)296

The above integro-differential equation can be solved as a boundary value problem, since297

from Proposition 2 the boundary conditions at Cl and B are given. Thus, differentiating298

the above equation with respect to u, yields a second order homogeneous ODE of the form299

χ′′
δ
(u) + p(u)χ′

δ
(u) = 0, (3.17)300

where301

p(u) =
δ − λ+ β[δ(u− B) + c]

δ(u− B) + c
=

δ − λ
δ(u− B) + c

+ β. (3.18)302

Employing the general theory of differential equations, the above ODE has a general solu-303

tion of the form304

χ′
δ
(u) = Ce−

∫
p(u) du,305

where C is an arbitrary constant that needs to be determined. Recalling the form of p(u),306

given in equation (3.18), the above solution reduces to307

χ′
δ
(u) = Ce−βu (δ(u− B) + c)

λ
δ
−1 .308

Integrating the above equation from Cl + ε to u, for some small ε > 0 and Cl < u < B, we309

have that310

χ
δ
(u)− χ

δ
(Cl + ε) = C

∫ u

Cl+ε
e−βw (δ(w − B) + c)

λ
δ
−1 dw.311

Letting ε → 0 and using the second boundary condition of Proposition 2, the general312

solution of equation (3.17) is given by313

χ
δ
(u) = C

∫ u

Cl
e−βw (δ(w − B) + c)

λ
δ
−1 dw314

= Cc
λ
δ
−1
∫ u

Cl
e−βw

(
δ(w − B)

c
+ 1

)λ
δ
−1

dw. (3.19)315

316
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Finally, in order to complete the solution we need to determine the constant C, which317

can be obtained by using the first boundary condition for χ
δ
(u) of Proposition 2 i.e.318

limu→B χδ(u) = 1. Letting u→ B in equation (3.19), we obtain319

C−1 = c
λ
δ
−1
∫ B

Cl
e−βw

(
δ(w − B)

c
+ 1

)λ
δ
−1

dw320

= c
λ
δ
−1C−11 ,321

322

where C−11 =
∫ B
Cl e
−βw

(
δ(w−B)

c + 1
)λ
δ
−1

dw.323

Proposition 3. For Cl < u < B and exponentially distributed claim amounts with parame-324

ter β > 0, the probability of the surplus process {UZδ (t)}t>0 hitting the upper level B, before325

hitting the lower level Cl, under a debit force δ > 0, is given by326

χ
δ
(u) = C1

∫ u

Cl
e−βw

(
δ(w − B)

c
+ 1

)λ
δ
−1

dw, (3.20)327

where328

C−11 =

∫ B

Cl
e−βw

(
δ(w − B)

c
+ 1

)λ
δ
−1

dw. (3.21)

Using Theorem 1 and Proposition 3, the two types of insolvency probabilities, namely329

ψ+
I (u) and ψ−I (u), under exponentially distributed claim amounts, are given in the following330

Theorem.331

Theorem 2. Let the claim amounts be exponentially distributed with parameter β > 0.332

Then, for u > Cu, the probability of insolvency, ψ+
I (u), is given by333

ψ+
I (u) =

(1 + η)e
λη
c
Cu

1 + λη
c C
−1
1 eβCu

ψ(u), (3.22)334

and, for Cl < u < B, ψ−I (u) is given by335

ψ−I (u) = 1−
λη
c e

βCu ∫ u
Cl e
−βw

(
δ(w−B)

c + 1
)λ
δ
−1

dw

1 + λη
c C
−1
1 eβCu

, (3.23)336

where C−11 is given in Proposition 3.337

Proof. Let us begin by considering the numerator in equation (3.11) i.e.338

φ(0)

[
Gũ(Cu − B) +

∫ Cu−Cl
Cu−B

gũ(y)χ
δ
(Cu − y) dy

]
.339
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Assuming that the claim amounts are exponentially distributed, employing the correspond-
ing forms for Gũ(y) and gũ(y), from Dickson(2005) i.e.

Gũ(y) = 1− e−βy

gũ(y) = βe−βy,

and using equation (3.20) of Proposition 3, it follows that the above equation may be340

written as341

φ(0)

[(
1− e−β(Cu−B)

)
+ C1β

∫ Cu−Cl
Cu−B

e−βy
∫ Cu−y

Cl
e−βw

(
δ(w − B)

c
+ 1

)λ
δ
−1

dwdy

]
.

(3.24)342

Changing the order of integration, evaluating the resulting inner integral and after some343

algebraic manipulations, equation (3.24) can be re-written in the form344

φ(0)

[
1− e−β(Cu−B)

(
1− C1

∫ B

Cl
e−βw

(
δ(w − B)

c
+ 1

)λ
δ
−1
dw

)
− C1

c

λ
e−βCu

]
,345

which, after recalling the definition of the constant C1 given in Proposition 3, reduces to346

the concise form347

φ(0)
[
1− C1

c

λ
e−βCu

]
.348

Now, considering a similar methodology as above, the corresponding denominator in equa-349

tion (3.11) reduces to350

1− 1

1 + η

(
1− C1

c

λ
e−βCu

)
.351

Substituting the above forms of the numerator and denominator of equation (3.11), we352

have that the insolvency probability, for u > Cu, is given by353

ψ+
I (u) = ψ(ũ)

(
1− φ(0)A

1− 1
1+ηA

)
,354

355

where356

A =
(

1− C1
c

λ
e−βCu

)
.357

Re-arranging the above equation, substituting the forms of both φ(0) and ψ(ũ), under358

exponentially distributed claim sizes (see Grandell (1991)) and noticing that ψ(ũ) = ψ(u−359

Cu) = e
λη
c
Cuψ(u), since ψ(u) = 1

1+ηe
−λη

c
u, we obtain our result. For ψ−I (u), given by360

equation (3.23), one can apply similar arguments and thus the proof is omitted.361
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Remark 2. (i) From equation (3.22), we conclude that the constant (1+η)e
λη
c Cu

1+λη
c
C−1

1 eβCu plays362

the role of a ‘measurement of protection’ for the insurer. Thus, given a set of param-363

eters, the above factor could lead to lower/higher value of ψ+
I (u), compared to the364

classical ruin probability ψ(u), in the sense that the insurer is more/less protected by365

the capital constraints.366

(ii) If we set Cu = B = 0 such that Cl = − c
δ , then equation (3.22) becomes367

ψ+
I (u) =

e−
λη
c
u

1 + λη
c C
−1
1

u > 0,368

where C−11 =
∫ 0
− c
δ
e−βw

(
δw
c + 1

)λ
δ
−1

dw and thus we retrieve Theorem 12 of Dassios369

and Embrechts (1989) for the ruin probability in the classical risk model with debit370

interest, under exponentially distributed claim sizes.371

Example 1 (Comparison of the probability of insolvency versus the classical ruin prob-372

ability). In order to compare the insolvency probability ψ+
I (u), u > Cu, with the classical373

ruin probability, ψ(u), recall that under exponentially distributed claim sizes, ψ(u) is given374

by375

ψ(u) =
1

1 + η
e−

λη
c
u, u > 0.376

In addition, we consider the following set of parameters λ = β = 1, η = 5%, which due377

to the net profit condition, fixes our premium rate at c = 1.05. We further set the debit378

force δ = 0.05 and the fixed lower capital level Cl = 3, which in turn gives B = 24, since379

B = Cl + c
δ . Table 1 (below) shows the comparison of the classical and the insolvent ruin380

probabilities for several values of u and the level Cu such that u > Cu > B = 24.381

Cu = 25 Cu = 30 Cu = 50

u ψ(u) ψ+
I (u) ψ(u) ψ+

I (u) ψ(u) ψ+
I (u)

Cu 0.290 0.509 0.228 6.933× 10−3 0.088 1.439× 10−11

Cu + 5 0.228 0.401 0.180 5.464× 10−3 0.069 1.134× 10−11

Cu + 10 0.180 0.316 0.142 4.306× 10−3 0.055 8.938× 10−12

Cu + 15 0.142 0.249 0.112 3.394× 10−3 0.043 7.044× 10−12

Cu + 20 0.112 0.196 0.088 2.675× 10−3 0.034 5.552× 10−12

Table 1: Classical ruin against insolvency probabilities, exponential claims.

Furthermore, in Table 2 (below), numerics for the required initial capital are given in the382

case of a fixed probability of insolvency and Cu level.383

384
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u

ψ+
I (u) Cu = 25 Cu = 26 Cu = 27

0.1 59.17 47.32 31.34
0.05 73.72 61.87 45.90
0.025 88.28 76.43 60.46
0.01 107.52 95.67 79.70

Table 2: Initial capital required for varying insolvency probabilities and Cu levels

For reasons explained in Section 3, numerics for ψ−I (u) are omitted.385

3.2 Asymptotics results for the probability of insolvency386

In this subsection we derive an asymptotic expression for the probability of insolvency,387

namely ψ+
I (u). Note that an asymptotic expression for ψ−I (u) cannot be considered since388

Cl < u < B.389

Hence, using the form for ψ+
I (u) given in Theorem 1, and the fact it is expressed in390

terms of ψ(·) and G·(·), we can derive an explicit asymptotic expression for the probability391

of insolvency, in terms of the ruin probability of the classical risk model.392

We begin by deriving asymptotic expressions for Gũ(y) and gũ(y). From Gerber et al.393

(1987), it follows that the distribution of the deficit at ruin, namely G(u, y), satisfies the394

following renewal equation395

G(u, y) =
λ

c

∫ u

0
G(u− x, y)FX(x) dx+

λ

c

∫ u+y

u
FX(x) dx, (3.25)396

which is a defective renewal equation since λ
c

∫∞
0 FX(x) dx = λµ

c < 1, given that the net397

profit condition holds. Thus, as in Feller (1971) we assume there exists a constant R,398

known as the Lundberg exponent, such that399

λ

c

∫ ∞

0
eRxFX(x) dx = 1,400

then, λ
c e
RxFX(x) forms a density of a proper probability function. Multiplying equation401

(3.25) by eRu, with R satisfying the above condition, we have402

eRuG(u, y) =
λ

c

∫ u

0
eR(u−x)G(u− x, y)eRxFX(x) dx+

λ

c
eRu

∫ u+y

u
FX(x) dx, (3.26)403

which is now in the form of a proper renewal equation. Then, direct application of the Key404

Renewal Theorem [see Rolski et al. (1999), Thm 6.1.11], gives that405

lim
u→∞

eRuG(u, y) =

∫∞
0 eRt

∫ t+y
t FX(x) dxdt∫∞

0 teRtFX(t) dt
.406
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Following a similar argument [see also, Grandell (1999)], we obtain the following asymptotic407

expression for the classic probability of ruin408

lim
u→∞

eRuψ(u) =

∫∞
0 eRt

∫∞
t FX(x) dxdt∫∞

0 teRtFX(t) dt
.409

Finally, since Gu(y) = G(u,y)
ψ(u) , using a similar argument as in Willmot (2002), we have410

lim
u→∞

Gu(y) =

∫∞
0 eRt

∫ t+y
t FX(x) dxdt∫∞

0 eRt
∫∞
t FX(x) dxdt

.411

from which it follows, by differentiating the above equation with respect to y, that412

lim
u→∞

gu(y) =

∫∞
0 eRtFX(t+ y)dt∫∞

0 eRt
∫∞
t FX(x) dxdt

.413

Thus, combining the above asymptotic expressions and using equation (3.11) the asymp-414

totic behaviour of ψ+
I (u), as u→∞, is given by the following Proposition.415

Proposition 4. The probability of Insolvency, ψ+
I (u), behaves asymptotically as416

ψ+
I (u) ∼ Kψ(u), u→∞,417

where ψ(u) is the classical ruin probability and K is a constant of the form418

K = 1−
φ(0)

[∫∞
0 eRt

∫ t+(Cu−B)
t FX(x) dxdt+

∫ Cu−Cl
Cu−B

∫∞
0 eRtFX(t+ y)χ

δ
(Cu − y) dt dy

]

µη
R

(
1− λ

c

(
µFe(Cu − B) +

∫ Cu−Cl
Cu−B FX(y)χ

δ
(Cu − y) dy

)) .419

4 Probability characteristics of the accumulated capital in-420

jections421

In this section we aim to obtain the probabilistic characteristics of the accumulated capital422

injections up to the time of insolvency, including an analytic expression for the first moment423

and an expression for the moment generating function. For the latter, we show that the424

distribution of the accumulated capital injections up to the time of insolvency is a mixture425

of a degenerate and continuous distribution.426

4.1 Moments of the accumulated capital injections up to time of insol-427

vency428

Let the total accumulated capital injections, up to time t > 0, be denoted by the pure jump429

process {Z(t)}t>0 and consider E(Zu,Cu), where Zu,Cu = Z(Tδ) is the accumulated capital430
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injections up to the time of insolvency, given the initial capital level u. Due to similar431

reasons as the insolvency probability, it is necessary to decompose E(Zu,Cu) depending on432

the size of the initial capital. Therefore define E(Zu,Cu) = E(Z+
u,Cu) when u > Cu and433

E(Zu,Cu) = E(Z−u,Cu), when Cl < u < B. Using a similar argument as in the previous section434

(that is, conditioning on the amount of the first drop below the capital level Cu), we have435

that E(Z+
u,Cu), for u > Cu, satisfies436

E(Z+
u,Cu) =

∫ Cu−B

0

(
y + E

(
Z+
Cu,Cu

))
g(ũ, y) dy437

+

∫ Cu−Cl
Cu−B

(
(Cu − B) + E

(
Z+
Cu,Cu

))
g(ũ, y)χ

δ
(Cu − y)dy438

=

∫ Cu−B

0
yg(ũ, y) dy + (Cu − B)

∫ Cu−Cl
Cu−B

g(ũ, y)χ
δ
(Cu − y)dy439

+ E
(
Z+
Cu,Cu

)[
G(ũ, Cu − B) +

∫ Cu−Cl
Cu−B

g(ũ, y)χ
δ
(Cu − y)dy

]
.

(4.1)

440

441

In order to complete the calculation for E
(
Z+
u,Cu

)
, given by the above expression, we need442

to compute the value of E(Z+
u,Cu) at u = Cu, namely E(Z+

Cu,Cu), which can be obtained by443

setting u = Cu in equation (4.1). That is,444

E
(
Z+
Cu,Cu

)
=

∫ Cu−B

0
yg(0, y) dy + (Cu − B)

∫ Cu−Cl
Cu−B

g(0, y)χ
δ
(Cu − y)dy445

+ E
(
Z+
Cu,Cu

)[
G(0, Cu − B) +

∫ Cu−Cl
Cu−B

g(0, y)χ
δ
(Cu − y)dy

]
,446

447

from which we have that448

E
(
Z+
Cu,Cu

)
=

∫ Cu−B
0 yg(0, y) dy + (Cu − B)

∫ Cu−Cl
Cu−B g(0, y)χ

δ
(Cu − y)dy

1−
(
G(0, Cu − B) +

∫ Cu−Cl
Cu−B g(0, y)χ

δ
(Cu − y)dy

) . (4.2)449

On the other hand, in order to compute E
(
Z−u,Cu

)
, for Cl < u < B, note that E

(
Z−u,Cu

)
450

satisfies451

E
(
Z−u,Cu

)
= χ

δ
(u)
(

(Cu − B) + E
(
Z+
Cu,Cu

))
, Cl < u < B, (4.3)452

with E
(
Z+
Cu,Cu

)
given by equation (4.2).453

To illustrate the applicability of the results for E
(
Z+
u,Cu

)
and E

(
Z−u,Cu

)
, we will give454

explicit expressions for the two types of the expected accumulated capital injections up to455

the time of insolvency, when the claim amounts are exponentially distributed.456
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Proposition 5. Let the claim amounts be exponentially distributed with parameter β > 0,457

i.e. F (x) = 1− e−βx, x > 0. Then, the expected accumulated capital injections, E
(
Z+
u,Cu

)
458

for u > Cu, is given by459

E
(
Z+
u,Cu

)
= K1ψ

+
I (u), (4.4)460

where461

K1 =
1

1 + η

(
λ

cβ
C−11 eβCu

(
1− e−β(Cu−B)

)
− (Cu − B)

)
,462

and ψ+
I (u) is the probability of insolvency, for u > Cu, given in Theorem 2.463

464

For Cl < u < B, E
(
Z−u,Cu

)
is given by465

E
(
Z−u,Cu

)
= K2φ

−
I (u) (4.5)466

where467

K2 =
1

βη

(
1− e−β(Cu−B)

)
+ (Cu − B),468

and φ−I (u) is the solvency probability, for Cl < u < B, which can be obtained from equation469

(3.23) of Theorem 2.470

Proof. The result follows from employing the ruin related quantities, under exponentially471

distributed claims (see Section 3.1), in equations (4.1), (4.2) and (4.3), making some al-472

gebraic manipulations and recalling the forms of ψ+
I (u) and ψ−I (u) = 1 − φ−I (u), from473

Theorem 2.474

4.2 The distribution of the accumulated capital injections up to the time475

of insolvency476

In this subsection, we show that the distribution of the accumulated capital injections up to477

the time of insolvency is a mixture of a degenerative distribution at zero and a continuous478

distribution.479

Extending the arguments of Nie et al. (2011), we first consider the case where u = Cu.480

Then, the probability that there is a first capital injection is; the probability that the surplus481

process drops, due to a claim, between Cu and B, which happens with probabilityG(0, Cu−B),482

or the surplus process drops, due to a claim, between B and Cl and then recovers back up to483

the level B before crossing Cl, which happens with probability
∫ Cu−Cl
Cu−B g(0, y)χ

δ
(Cu − y) dy.484

Given that there exists a first capital injection, the process restarts from the level Cu.485

Hence, if we let N denote the number of capital injections up to the time of insolvency,486

then by the above reasoning, N has a geometric distribution with p.m.f., for n = 0, 1, 2, . . .487
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P(N = n) =

(
G(0, Cu − B) +

∫ Cu−Cl
Cu−B

g(0, y)χ
δ
(Cu − y) dy

)n
488

×
(

1−
[
G(0, Cu − B) +

∫ Cu−Cl
Cu−B

g(0, y)χ
δ
(Cu − y) dy

])
,489

490

and thus, a probability generating function given by491

E
(
zN
)

= PN (z) =
1−

(
G(0, Cu − B) +

∫ Cu−Cl
Cu−B g(0, y)χ

δ
(Cu − y) dy

)

1− z
(
G(0, Cu − B) +

∫ Cu−Cl
Cu−B g(0, y)χ

δ
(Cu − y) dy

) .492

Then, the accumulated amount of the capital injections up to the time of insolvency starting493

from u = Cu, namely Z+
Cu,Cu , has a compound geometric distribution of the form494

Z+
Cu,Cu =

N∑

i=1

Vi,495

where {Vi}∞i=1 are i.i.d. random variables, denoting the size of the i-th injection, with p.d.f.496

fV (y) =





g(0,y)

G(0,Cu−B)+
∫ Cu−Cl
Cu−B g(0,x)χ

δ
(Cu−x) dx

0 < y < Cu − B,
∫ Cu−Cl
Cu−B g(0,x)χ

δ
(Cu−x) dx

G(0,Cu−B)+
∫ Cu−Cl
Cu−B g(0,x)χ

δ
(Cu−x) dx

y = Cu − B,
497

and thus the moment generating function of Z+
Cu,Cu can be expressed as498

MZ+

Cu,Cu
(z) = PN (MV (z)),499

where500

MV (z) = E
(
ezV
)

=

∫ Cu−B
0 ezyg(0, y) dy + ez(Cu−B)

∫ Cu−Cl
Cu−B g(0, x)χ

δ
(Cu − x) dx

G(0, Cu − B) +
∫ Cu−Cl
Cu−B g(0, x)χ

δ
(Cu − x) dx

.501

Now, in order to find the moment generating functions of the accumulated capital injections
up to the time of insolvency with general initial capital, namely Z+

u,Cu when u > Cu and

Z−u,Cu , when Cl < u < B, we first note that Z+
u,Cu and Z−u,Cu are equivalent in distribution

to
(
Y +
u + Z+

Cu,Cu

)
I{A+} and

(
Y −u + Z+

Cu,Cu

)
I{A−}, respectively, where Y +

u is the amount

of the first capital injection, starting from initial capital u > Cu, Y −u from initial capital
Cl < u < B and I{·} is the indicator function with respect to the event that a capital
injections occurs from initial capital u. Note that the event that a capital injections occurs
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from initial capital u can be decomposed to the sub events depending the value of the
initial capital and thus we denote A+ and A− the events that a capital injections occurs
from initial capital u > Cu and Cl < u < B, respectively, with probabilities

P(A+) = G(ũ, Cu − B) +

∫ Cu−Cl
Cu−B

g(ũ, y)χ
δ
(Cu − y) dy,

and
P(A−) = χ

δ
(u).

Based on the above notation, for ũ = u− Cu, the density of Y +
u is given by502

fY +
u

(y) =





g(ũ,y)

G(ũ,Cu−B)+
∫ Cu−Cl
Cu−B g(ũ,x)χ

δ
(Cu−x) dx

0 < y < Cu − B,
∫ Cu−Cl
Cu−B g(ũ,x)χ

δ
(Cu−x) dx

G(ũ,Cu−B)+
∫ Cu−Cl
Cu−B g(ũ,x)χ

δ
(Cu−x) dx

y = Cu − B,
503

whilst Y −u has a probability mass function of the following form504

P(Y −u = i) =

{
1, i = Cu − B
0 otherwise.

505

Then, since Y +
u and Z+

Cu,Cu are independent, the moment generating function of Z+
u,Cu is506

given by507

MZ+

u,Cu
(z) =

(
MY +

u
(z)MZ+

Cu,Cu
(z)

)
P(A+) + P((A+)c), (4.6)508

where509

MY +
u

(z) = E
(
ezY

+
u

)
=

∫ Cu−B
0 ezyg(ũ, y) dy + ez(Cu−B)

∫ Cu−Cl
Cu−B g(ũ, x)χ

δ
(Cu − x) dx

G(ũ, Cu − B) +
∫ Cu−Cl
Cu−B g(ũ, x)χ

δ
(Cu − x) dx

,510

whilst, following a similar argument as above, the moment generating function of Z−u,Cu is511

given by512

MZ−
u,Cu

(z) =

(
MY −u

(z)MZ+

Cu,Cu
(z)

)
P(A−) + P((A−)c), (4.7)513

where514

MY −u
(z) = E

(
ezY

−
u

)
= ez(Cu−b).515

From equations (4.6) and (4.7), it should be clear that the distribution of the accumulated516

capital injections up to the time of insolvency, is mixture of a degenerative distribution at517

zero and a continuous distribution.518
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5 Constant dividend barrier strategy with capital constraints519

In reality the surplus of a company will not be left to grow indefinitely as a proportion of the520

profits are paid out as dividends to its shareholders. As mentioned in the previous section,521

the shareholders can contribute to the capital of the firm, by means of capital injections,522

for which they would expect financial incentives and therefore the consideration of divi-523

dend payments is important when analysing a firms portfolio and insolvency probabilities.524

Dividend strategies have been extensively studied in the risk theory literature since their525

introduction by De Finetti (1957), with a main focus on optimisation of the companies526

utility, see also Avanzi (2009) and references therein for a comprehensive review.527

In this section we derive an explicit expression for the insolvency probability to the risk528

model under the framework in Section 2, with the addition of a constant dividend barrier529

b > Cu, such that when the surplus reaches the level b, dividends are paid continuously530

at rate c until a new claim appears (see Fig: 2). The amended surplus process, denoted531

UZδ,b(t), has dynamics of the following form532

dUZδ,b(t) =





−dS(t), UZδ,b(t) = b,

cdt− dS(t), Cu 6 UZδ,b(t) < b,

∆Z(t), B 6 UZδ,b(t) < Cu,[
c+ δ(UZδ (t)− B)

]
dt− dS(t), Cl < UZδ,b(t) < B.

533

534

535

Figure 2: Typical sample path of the surplus process under capital constraints with constant divi-
dend barrier.
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The time to insolvency, in the dividend amended model, can be defined by536

Tδ,b = inf
{
t > 0 : UZδ,b(t) 6 Cl |UZδ,b(0) = u

}
537

and the probability of insolvency, which we denote by ψI ,b(u), is defined as538

ψI ,b(u) = P
(
Tδ,b <∞

∣∣UZδ,b(0) = u
)
,539

with the corresponding solvency probability defined by φI ,b(u) = 1− ψI ,b(u).540

We once again note that the insolvency probability, as in the previous sections, can541

be decomposed for Cu 6 u 6 b and Cl < u < B, for which we define ψI ,b(u) = ψ+
I ,b(u)542

and ψI ,b(u) = ψ−
I ,b(u), for the two separate cases with corresponding solvency probabilities543

φ+
I ,b(u) and φ−

I ,b(u), respectively.544

In order to derive an expression for the solvency probability for Cu 6 u 6 b, namely545

φ+
I ,b(u), (or equivalently the insolvency probability ψ+

I ,b(u)) we will need to define the cross-546

ing probability of the surplus below the level Cu (as we did in Section 3), given by547

ξb(u) = P(Tb <∞
∣∣ Cu 6 UZδ,b(0) = u 6 b),548

where Tb = inf{t > 0 : UZδ,b(t) < Cu
∣∣ Cu 6 UZδ,b(0) = u 6 b} is the first time the process down549

crosses the level Cu.550

Using a similar argument as in Section 3, it follows that the dynamics of the surplus551

process UZδ,b(t) above the level Cu are equivalent to that of the classic surplus process with552

a constant dividend barrier b̃ = b − Cu (i.e. no capital constraint levels). That is, for553

Cu 6 UZδ,b(t) 6 b, we have dUZδ,b(t) ≡ bŨb̃(t) where554

Ũb̃(t) = ũ+ ct− S(t), 0 6 Ũb̃(0) = ũ 6 b̃,555

with dynamics556

dŨb̃(t) =

{
−dS(t), Ũb̃(t) = b̃,

cdt− dS(t), 0 6 Ũb̃(t) < b̃.
557

558

559

Thus, it is clear that Tb, defined above, is equivalent to the time of ruin in the classical risk
model with a constant dividend barrier strategy and initial capital 0 6 ũ 6 b̃, given by

Tb = inf{t > 0 : Ũb̃(t) < 0
∣∣0 6 Ũb̃(0) = ũ 6 b̃},

and the probability ξb(u) is identical to the probability of ruin, namely ψb̃(ũ) = P(Tb <560

∞
∣∣Ũb̃(0) = ũ) = 1 − φb̃(ũ), for the classical risk model with a constant dividend barrier561

strategy.562

To obtain an expression for the insolvency probability under a constant dividend barrier563

strategy, recall the fact that dUZδ,b(t) ≡ dŨb̃(t) when the surplus is above the level Cu and564
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condition on the occurrence and amount of the first drop below the capital level Cu. Then565

for Cu 6 u 6 b, the respective solvency probability φ+
I ,b(u), is given by566

φ+
I ,b(u) = φb̃(ũ) +

∫ Cu−B

0
gb̃(ũ, y)φ+

I ,b(Cu) dy +

∫ Cu−Cl
Cu−B

gb̃(ũ, y)φ−
I ,d(Cu − y) dy567

= φb̃(ũ) +Gb̃(ũ, Cu − B)φ+I ,b(Cu) +

∫ Cu−Cl
Cu−B

gb̃(ũ, y)φ−
I ,b(Cu − y) dy,568

569

where570

Gb̃(ũ, y) = P
(
Tb <∞, |Ũb(Tb)| 6 y

∣∣Ũb(0) = ũ
)

571

is the distribution of the deficit below Cu at the time of crossing the capital level, under the572

constant dividend barrier strategy, and gb̃(ũ, y) = ∂
∂yGb̃(ũ, y) its corresponding density.573

For Cl < u < B, we have574

φ−
I ,b(u) = χ

δ
(u)φ+

I ,b(Cu),575

where χ
δ
(u) is the probability of hitting the upper confidence level B before the lower level576

Cl, in a debit environment, as studied in Section 3. We point out that the function χ
δ
(u)577

is unaffected by the addition of the dividend barrier and therefore the integro-differential578

equation given in Proposition 3 still holds, along with the corresponding boundary condi-579

tions. Following similar arguments as in Section 3 we obtain the following Theorem.580

Theorem 3. For Cu 6 u 6 b,the probability of insolvency under a constant dividend barrier581

strategy, ψ+
I,b(u), satisfies582

ψ+
I,b(u) = ψb̃(ũ)−

φb̃(0)
[
Gb̃(ũ, Cu − B) +

∫ Cu−Cl
Cu−B gb̃(ũ, y)χ

δ
(Cu − y) dy

]

1−
(
Gb̃(0, Cu − B) +

∫ Cu−Cl
Cu−B gb̃(0, y)χ

δ
(Cu − y) dy

) . (5.1)583

For Cl < u < B, ψ−
I,b(u) is given by584

ψ−
I,b(u) = 1− φb̃(0)χ

δ
(u)

1−
(
Gb̃(0, Cu − B) +

∫ Cu−Cl
Cu−B gb̃(0, y)χ

δ
(Cu − y) dy

) . (5.2)585

Remark 3. Similarly to Remark 1, we point out that from equations (5.1) and (5.2),586

that the two types of insolvency probabilities for the risk model under capital constraints587

with the addition of a constant dividend barrier, are given in terms of the (shifted) ruin588

probability and deficit of the classical risk model with constant dividend barrier, as well as589

the probability of exiting between two capital levels. Thus, ψ+
I,b(·) and ψ−

I,b(·) can be calculated590

by employing known results, with respect to Gb(·, ·) and ψb(·) (see Lin et al. (2003), among591

others), whilst the latter exiting probability, χ
δ
(u), can be evaluated by Propositions 2 and592

3 .593
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