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Abstract

In this paper, we generalise the classic cor _...0 < uisson risk model, by the intro-
duction of ordered capital levels, to model the so. ~ncy of an insurance firm. A breach
of the higher capital level, the magnitude - -hich aoes not cause further breaches of
either the lower level or the so-called intern ~d’ate confidence level (of the sharehold-
ers), requires a capital injection to res’ e the surplus to a solvent position. On the
other hand, if the confidence level is brcaci. 1 capital injections are no longer a vi-
able method of recapitalisation. Inst-~4 th. company can borrow money from a third
party, subject to a constant interest ra.~ which is paid back until the surplus returns
to the confidence level and subsequently caa be restored to a fully solvent position by
a capital injection. If at any r uu.. *he surplus breaches the lower capital level, the
company is considered ‘insolr :nt’ anc is forced to cease trading. For the aforemen-
tioned risk model, we derive an  ¥pli 1t expression for the ‘probability of insolvency’
in terms of the ruin quan’.ties of tue classical risk model. Under the assumption of
exponentially distributed -laj .1 siz s, we show that the probability of insolvency is in
fact directly proportior al to he classical ruin function. It is shown that this result
also holds for the asy . ~totic behaviour of the insolvency probability, with a general
claim size distributio.n. Exp "-it expressions are also derived for the moment generating
function of the acc .. lated capital injections up to the time of insolvency and finally,
in order to better capt .re the reality, dividend payments to the companies shareholders
are considered, along with the capital constraint levels, and explicit expressions for the
probability of .nso’vency, under this modification, are obtained.
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1 Introduction

In recent risk theory literature, more and more attention is being paid .o ri k models with
recovery techniques for a surplus process in red. Two of the most prevale..’ techniques that
have been proposed are debit interest (lending) and capital injections.

Within the the framework of debit interest risk models, it is as .un. A that an insurance
firm does not cease to operate when traditional ruin occurs, i.c the surplus drops below
zero for the first time. Instead, the insurer can borrow monev ~t a . “nstant interest rate
and then repay the debts continuously from its premium inc me. T e absolute ruin prob-
ability, in a debit interest setting, was first introduced by Ger er (1¢.1) for the compound
Poisson risk model, see also Dickson and Dos Reis (1997 . Following its inception in risk
theory, the debit interest recovery technique has been ap »li- 4« w: shin various different risk
models, see Dassios and Embrechts (1989) and Embrc hts a»< Schmidli (1994) for piece-
wise deterministic Markov risk processes, Gerber and Yang (2007) for a jump-diffusion risk
process, Yin and Wang (2010) for a perturbed compce. nd Pe.sson risk process with invest-
ment, Zhang et. al. (2011) for a Markov Arrival risk . ade1, Cai (2007) for the Gerber-Shiu
function in the compound Poisson model, and r~-- ___ therein.

On the other hand, a more realistic alternative .~ restore capital is by means of capital
injections. Capital injections were first intrc ... * in the risk theory context, by Pafumi
(1998) and since then, the ruin probability an. sther ruin related quantities, such as the
distribution of the deficit at ruin or the div . »uti n of the surplus prior to ruin, have been
extensively studied for the compound Poiss n .isk model by many authors, see among
others, Nie et al. (2011), Eisenberg ana ' 'cnuilli (2011), Dickson and Qazvini (2016) and
the references therein.

In this paper, we aim to deri- ¢ . -olicit expressions for the insolvency probabilities
(defined in Section 2), in a risk r odel th t consists of capital levels and a confidence level
for the shareholders. In more ‘etai. w: show that the insolvency probability, under the
aforementioned risk model, ce 1 be evaluated in terms of the ruin probability of the classical
risk model, for which powertu. ~ ieth dologies, numerical techniques and many applicable
results have been derived ¢ rer the 13t half century. Additionally, we derive the distribution
of the accumulated capit il in; ~tions up to the time of insolvency.

The risk process we . ploy consists of the following characteristics:

a) We consider a co..sound Poisson risk process for which two (positive) capital levels
are introduc: d, rame.y the upper level ¢, and lower level ¢; (< ¢.), to model the
solvency re.tir .mer ¢s of an insurance firm. We assume that the insurance firm
starts from™ a so. ~ at position which exceeds c,. If the level ¢, is crossed, due to a
claim, t' e insu. wnce firm is able to recover the capital by means of capital injections
(given tL.~ leve! ¢; has not been crossed), which are assumed to be provided by the
shar aolders or transferred from a different line of business .

b) Add."ional’y, we determine an intermediate capital level (between the c, and ¢),
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which indicates the confidence level of the shareholders. If the afcremec. *ioned in-
termediate confidence level is crossed, then the shareholders lose » ... Sdence and are
not prepared to inject the necessary capital to restore the sur .lus evel to ¢,. In
this case, the company must borrow the funds from a third p~rty, .-1bject to debit
interest, which is repaid continuously from the premium income u.."1 the confidence
level is reached, the shareholders regain confidence and injr ct t > remaining capital
to bring the company back to a solvent position. The repay. e .t of the debt, subject
to constant debit interest, can be equivalently consideres” .5 the ontinuous payment
of a penalty, which is issued to the company for being n an ‘n solvent position’.

c) Finally, a breach of the ¢; capital level means that th- ..cm 15 considered as completely
insolvent and thus the regulator’s strongest action. ar- eniorced (trading ceases).

The reason that capital injections are chosen as the 1. *ial recovery mechanism (versus
debit borrowing) is confirmed both intuitively and "~om ma: ket evidence. On an intuitive
level, insurance firms first look for internal methoc - of ¢. - _ing capital losses and secondly
for external loans, since in general external loans are cc ~sidered as liabilities for insurance
firms). On the other hand, in practise, there is « idence of capital injections being imple-
mented so as to meet the solvency levels resmired u. der Solvency II regulations [see for
example, among others, the report of the ING »rc ap msurance in the Netherlands [17], the
case of Liberty Insurance in Ireland, [1], ¢ - MO'DY’S report of April 2016 [20]].

The paper is organised as follows: In Se-tic~ 2, we introduce the risk model, with the
above characteristics, in terms of the ¢ .'< Lrocess of an insurance firm. A graphical in-
terpretation of the model is given and the L. ~bability of insolvency is defined and explained.
In Section 3, we derive an explicit exnression of the probability of insolvency. This explicit
expression is given in terms of the classi 3l ruin probability, shifted by the level ¢,, and the
probability of hitting the intermed ate cr afidence level before hitting ¢;, in the debit envi-
ronment. Moreover, the latter ‘hitting probability’ is analysed and an integro-differential
equation is obtained. In the =am‘ sec ion, under exponentially distributed claim amounts,
we show that the insolven y pro’ 2'iility is proportional to the classical ruin probability.
Finally, in this section, tF : . ~vmptotic behaviour for the probability of insolvency is inves-
tigated. In Section 4, we derive :xplicit expressions for the expected accumulated capital
injections up to the t’ ne « f insolvency. In addition, we show that the distribution of the
accumulated capital 1./~ tions is a mixture of a degenerative distribution at zero and a
pure continuous d’strihutic«, which is explicitly determined. In Section 5, we include a
constant dividen: ba' rier strategy where the shareholders can obtain part of the surplus
as dividends. Under i modification, we again show that the probability of insolvency is
given in term: of the ruin probability of the classical risk model under the same dividend
barrier strateg, -
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2 The risk model

In this section, we will adapt the classical risk model to conform wit’. th: framework in
(a)-(c) described in Section 1. Under this modification, we define t.. ‘probability of
insolvency’, which corresponds to the probability that the risk proces. down-crosses the
lower level ¢;.

In the classical Cramér-Lundberg risk model, the surplus prc ~ess of an insurance com-
pany is defined by U(t) = u + ct — S(t), t = 0, where u > 0 is *he in. “rer’s initial capital,
¢ > 0 is a constant premium rate, S(t) = Zi]i(f) X; are the ag; regate laims with {N(¢)}i>0
a Poisson process representing the number of claims that ha - arri . ed up to time t > 0,
with intensity A > 0, and {X} : k € Z; } is a sequence of mderendent and identically dis-
tributed (i.i.d.) random variables, representing the claim 7 5, w :h a common distribution
function Fx(-), density function fx(-), and mean E(Ax) = 1 . oco. It is further assumed
that {N(t)}t=0 and {X} : k € Z, } are mutually independeu. .

We assume that if the surplus falls below the c. le, ~1. dr: to the occurrence of a claim,
then the shareholders in the company inject capital 1. *antaneously to cover this fall, given
that the capital level ¢, has not been crossed. T..c ouu of total capital injections, up to
time ¢ > 0, is defined by the pure jump process {2\ }>o.

Moreover, the intermediate confidence le. 21 «, “~ which the shareholders are prepared
to inject capital is denoted by B, where ¢, > B .- ¢;. A drop, due to a claim, of the surplus
below the confidence level B, requires that " ‘ns rance firm borrows an amount of money
equal to the size of the deficit below B at a ebit force § > 0, given that the capital level
C. has not been crossed.

When the surplus is between the levels ¢; and B, debts (or the penalty for the insurance
firm) are repaid continuously fror uuc nremium income. During this period of time, the
insurance firm can either recove - back 1> level B (where the shareholders have renewed
confidence and will instantanec usly 1..'» ¢ the amount ¢, — B in order to restore the surplus
to level c.) or becomes insol" ent oy falling, due to further claims, below the level ¢; [see
Fig: 1]. Note that, using simvila. rguv anents as in Cai (2007) one can see that the confidence
level, B, depends on the + ~bit force of interest (or penalty rate) and lies in the interval
[c;,ci + §]. In order to eiaphas e the effects of the debit or penalised environment, in the
remainder of this pape w  consider the case B = ¢, + ¢/¢.

Considering the 9ov . features, the surplus process under with capital constraints,
denoted by {UZ ()" t=0, 1. = dynamics of the following form

" cdt — dS(t), UZ(t) > cu,
UL = iAZ(t), B < UZ(t) < cu, (2.1)
[c+8(UZ(t) —b)]dt —dS(t), o <UZ(t) <s,
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Figure 1: Typical sample path of the surp. s process under capital constraints.

The crucial features of the proposed risk . 00 1 could be interpret as the capital man-
agement tools employed to reduce the prr habii v of insolvency. Thus, it follows that for
the surplus process {U 5Z (t) }+>0, we should 2. = vhe time to insolvency, denoted by T, as

Ty=inf{t > 0.7¢@1) < |UF(0) =u},

with T5 = oo if UZ(t) > ¢ for al' « > 0. Then, the probability of insolvency, which we
denote 1, (u), is given by

Ur(uw =P \Ts5 < oo|U5Z(0) =u),

with ¢, (u) =1 for u < ¢ ead ¢, ) =1 —1;(u) is the corresponding probability that the
insurance firm never expe io. ~es insolvency. As it will be seen in the subsequent subsection,
¥, (u) will be derived in terms o. the ruin probability for the classical risk model, namely
().

Finally, we point ', similar to Cai (2007), that ;(u) has different sample paths
for u > ¢, and ¢ < » < 3. Therefore, we distinguish between the two situations by
denoting ¥, (u) = ;" w) for u > ¢, and ¥, (u) = 9, (u) for ¢, < u < B. Now, due to the
instantaneous canitar " :ction when the surplus lies within the interval [5,c.) we say that
for B<u<c ¥, (u, =1 (k). It follows that the corresponding solvency probabilities are
given by ¢,(u; =1—,(u) = ¢ (u), for u > c., and ¢,(u) = ¢; (u) for ¢, < u < B. Finally,
we assume oue ney profit condition holds, i.e.

n=(c/Ap) —1>0.
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3 The probability of insolvency

In this section, we derive a closed form expression for the probability of .nso vency in terms
of the infinite-time ruin probability of the classical risk model and an xiting (hitting)
probability between two capital levels. Note that 1, (u), is the risk . ~utwy of primary
interest as it is assumed that the insurance firm starts from a s.ivet level ie. u > c,.
Ultimately, we show that the probability of insolvency is propor. ons . to the classical ruin
function. Corresponding formulae for ¥; (u), ¢; < u < B, are alo~ de.i’ =d.

Before we proceed, we first define some ruin related quar ities t. at will be extensively
used in the following. First, let the time to cross the level c., “or v > c., be denoted by T,
such that

T =inf{t > 0:UZ(t) < c.|]UF(0) =~ > .}, (3.1)

with the corresponding probability of down-crossing the *~vei ¢,, defined by
E(u) =P (T < co|UF (V=1 >1r.).

Recalling the behaviour of the surplus process ~' (.}, s:ven in equation (2.1), it is clear
that the dynamics above the level ¢, are identicai .~ that of the classical surplus process

under a constraint free environment, i.e. for « ~ . =ve have dUZ(t) = dU (t) where
Ut)=a+.  S.), t=0,

with ﬁ(O) =4 = u — C,. Then, it sho-ud ©~ clear that T, defined by equation (3.1), is
equivalent to the time to ruin in the classic ! risk model with no capital constraints and
initial capital @ > 0, given by

T=im*>0:0(t) <0/U0) = a}.

Hence, the function &(u) is id ntir al tc the classic ruin probability 1 (@) = P(T < co|U(0) =
) =1—¢(a).

Extending the argum .= of Nie et al. (2011), by conditioning on the occurrence and
size of the first drop below ., . T u > c., and using the fact that dUZ (t) = dﬁ(t) above
the level c,, we obtair an xpression for the solvency probability, ¢ (u), of the form

Cu—B Cu—Cy
ST =o(@ + | g(@y)of(e) dy+ / 9, 9)67 (C. — ) dy
0 Cu—B
Cu—C;
— 6ty + Glisco — B)6F () + / 9(8y)67 (C. — ) dy, (3.2)
Cu—B

where
Gli,y) =P (T < 00, |U(T)| < y| U(0) = u) ,
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is the joint distribution of down-crossing the level ¢, and experiencing a de’ cit (. ~low ¢,) of
at most y, with g(u,y) = (%G (t,y) the corresponding density function. ~. ‘s risk quantity
was first introduced and analysed by Gerber et al. (1987) for modelling <he ‘deficit at ruin’.

Note that, in the above expression, ¢ (u) is given in terms of ¢; (). 1. arder to derive
an analytic expression for ¢, (u), independent of ¢, (u), we introduce tu. ‘llowing hitting
probability.

Let x,(u,cu,;) = x;(u) be the probability that the surplu. v ocess hits the upper
confidence level B, before hitting the lower capital level ¢, fro~ . initia. capital ¢; < u < B,
defined by

X;(u) =P (TP < T5|UF (0) = u), (3.3)

where
TB:inf{t>O:U(;Z(t):B}U(;Z(O):u;, c Ju<B.

Proposition 1. For ¢, < u < B, the surplus process {UZ(t) 10, will hit either the capital
level ¢, or the confidence level B, over an infinite-time | ~ri-on, almost surely (a.s.).

Proof. Using similar arguments as in Cai (2007) — “ __ _ote that when the surplus process
is within the interval (¢, B), it is driven by the den * interest force § > 0, until the surplus
returns to level B (or experiences insolvency, < ~ofore, for initial capital ¢, < u < B, the
process is immediately subject to debit interesy -1 the amount 58—« > 0 and the evolution
of the surplus process (assuming no claim: « nea up to time t > 0), due to the dynamics
of the process below the level B, can be expr.ssed by

t
h(t;u,B) =B+ (u — B)e" + c/ % ds, t>0. (3.4)
0
Let us further define tg = to(u, 8, "~ be t1e solution to h(t;u,8) = B. Then

tozln(f ¢

1/8
——f— < oo, f ¢ <u<B, 3.5
O(u 1y +c> °e, o asd (3:5)

is the time taken for the surplu. “o reach the upper level 5, i.e. h(to; u, B) = B, in the absence
of claims and h(t;u,B) = \ 1, B) for all ¢ < tg. Therefore, it is clear that the surplus process
will recover to the up ~er "evel B, if no claims occur before time 0 < tg < oo.

Now, consider t'.e eve. ‘s E, = {1, > to}, where {7, }nen is a sequence of i.i.d. random
variables denotin¢, the inter-arrival time between the (n — 1)-th and n-th claim and ¢ is
as defined above. . en. since the inter-arrival times are i.i.d.and it is assumed that the
claims occur ¢ ccording o a Poisson process, it follows that, for all n € N, the events E,
are independe 1t and /e have

P(E,) = P(1, > tg) = e 0 > 0.
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Therefore, it follows that
> P(E,) = o0
n=1

and thus, by the second Borel-Cantelli Lemma [see Feller (1971)], it 10" ~ws Jhat

P <1im sup {7, > to}) =
n—oo
That is, the event {7,, > to} occurs infinitely often with prol ability ' (a.s.). O

Now, conditioning on which of the levels the surplus first h*s, 1. .~ mitial capital ¢; < u <
B, using the result of Proposition 1 and noticing that ¢; x) - - v for x < ¢, it follows that

&1 (u) = X, (W) (Cu- (3.6)
Substituting the above expression into equation (3.2, we ol sain
_ [~
¢ (u) = ¢(10) + ¢ (cu) {G(Cz,cu -8 9, y)x;(C. = y) dy] . B

To complete the above expression for ¢ (u), . .. ~dary condition ¢/ (c.) and the hitting
probability x,(u) need to be determined. Settl - u = ¢, in equation (3.7), and solving the
resulting equation for ¢ (c.), we have tha.

?(0)
1- (G(O,cu —5) + o 75 9(0.y)x, (e — ) dy)

and thus, equation (3.7) may be e-writv n, for u > c., as

¢ (cu) = ; (3.8)

PO ) Ll *fc" s 9000 ¢ — ) )
I a 1- (Gocu_ +f 9(0,9)x,s (Cu — )dy).

Then, since ¢} (u) = 1 — ¢ (u, for u > c., the probability of insolvency, namely ;" (u), is
given by

6(0) |Glei.ci—5) + fgu-glgm ¥)X (€ — ) dy|

(G()cu— )+ J5 S 9(0,9)x, (e y)dy)'

Moreover, fro. 1 Dicks m (2005), we have that the general form for the density of the deficit
at ruin, wit> zei. * _.cial capital, is given by

Ui (v = p(@ -

(3.9)

9(0,y) = %fx(y),
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and thus, equation (3.9) reduces to

90 [0~ ) + Jo 5" ot vlen —v) ] 510

1—*<MF B) + [ 5 Fx(y)x,(cu — ) Ay

where Fx(z) =1 — Fx(z) and F.(z) = % fO Fx(y)dy is the so :alle i  ~milibrium distri-
bution.

Finally, by employing equation (3.10), combining equation’ (v.6) and (3.8) and defining
Galy) = G(a,y)/v¥(a), with ga(y) = g(@,y)/¢ (), such tha Ga(y) = P(U(T)| < y|T <
o0) is a proper distribution function, as in Willmot (2002) (anc. ~ef-_ences therein), we get
the following Theorem for the probability of insolvency No*_ “hat similar arguments as
above can be applied for ¥, (u).

Ui (u) = (@) -

Theorem 1. For u > c., the probability of insolvency, 1, 1), is given by

9(0) |Gale. = 8) + o< gl x (e — w) dy

wj(u) = 1,[1("&) 1 - A el no— ) (311)
1= 2 (uFlen—B) + 75 T x ()X, (e — y)dy)
where (u) is the ruin probability of the clas ..." =<k model and & = u — C..
For ¢, <u < B, ¥; (u) is given by
H(0
Yr(u)=1-—"7"—"" — (O (w) : (3.12)

1= 2 (nFules =2+ 85 Fx)xs (e —y) dy)

Remark 1. From equations (3.17) ana (3.12), it follows that the two types of insolvency
probabilities are given in terms o, *he (s ifted) ruin probability and deficit of the classical
risk model, as well as the prot ibility o, exiting between two levels. Thus, ¥} () and 7 (+)
can be calculated by employi a the wr .l known results, with respect to Gy (-) and ¥(-) (see
for example Gerber et al. (.981,, T.ckson (2005), and the references therein), whilst the
latter exiting probability, (s 1), can be calculated as follows.

Proposition 2. For ¢ < B, the probability of the surplus process, {UZ (t)}i=0, hitting
the upper level B befor > hit ing the lower level ¢; (under a debit force 6 > 0), denoted x;(u),
satisfies the followirg . ~aro-differential equation

(00 - B) r o) (u) = Axy () — A / ys (1 — ) dFx (), (3.13)
with boundary condit. ms
] -1
J%X(s( u) =1,
] =0.
ulféllx“( u)
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Proof. Using the notations introduced in the proof of Proposition 1, by conu “ioning on
the time and amount of the first claim, it follows that

to h(t;u,B)—C;
X (u) = e~ Ao +/ Ae_)‘t/ X5 (h(t;u,B) — x) dFx (=) du. (3.14)
0 0

Employing the change of variable y = h(t; u, B) and recalling the f cm « 1 £y given in equation
(3.5), we have that

rB

| (8l —B) + 0)7%71

0(u—B)+c
c

A
5

Xé(u):< >§+)\(5(u—8)+c)

—q
X /y X;(y —x) dFx(z) dy. (3.15)
0

Differentiating the above equation, with respect to * and< -_mbining the resulting equation
with equation (3.15), we obtain equation (3.13).

The first boundary condition can be found 1, letting u — B in equation (3.15). Now,
for the second boundary condition one can s~= that u

B A - y- "
hf(rjl [(5(y—6) +c) 0 ,f sy —x) dF(:):)] dy < oo,

v

then

>

ilira AMé(u—B)+c)

since B = ¢, + %. Alternatively if

>

B
lim [(5( (—B)+ )

(G
/ Xs(y — ) dF(x)] dy = oo,
uwlCr Sy 0

then, by L’Hopital’s ric, ve have

A

A B y—Ci
Ilti¢ré1l/\(5(u—’)+c)k/u {(5(3;—8)4—0) s /0 xé(y—:c)dF(ac)} dy = 0.

Using the above "mit.. < results and taking the limit u — ¢, in equation (3.15), we obtain
the second bc indary -ondition. O

Recalling P mai.. . and Theorem 1, the two types of insolvency probabilities depend
heavily o the s 1tion of the integro-differential equation (3.13), which is discussed in the
next subse “tion.
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3.1 Explicit expressions for exponential claim size distribu ciown

In this subsection, we derive explicit expressions for the two types r: in olvency prob-
abilities, under the assumption of exponentially distributed claim a.. ~ nts. Then, by
comparing the explicit expression of the insolvency probabilities wi.> the :lassical ruin
probability under exponentially distributed claims, we identify tha’ . ese v..0 probabilities
are proportional. To illustrate the applicability of our results ( .nd .nus the relationship
between ¥ (u) and v (u)), we finally provide numerical results.

Let us assume the claim sizes are exponentially distribut' d wit! parameter g > 0, i.e.
Fx(x) =1—e 5 x> 0. Then, equation (3.13) reduces to

u
(0(u— B) + )X, (1) = Ax;(u) — A Cﬂaﬂwﬂugmd, o <u<B. (3.16)

1
The above integro-differential equation can be solved as « houndary value problem, since
from Proposition 2 the boundary conditions at ¢; «.~1 B ar . given. Thus, differentiating
the above equation with respect to u, yields a secou. ' orac. nomogeneous ODE of the form

X, (u) + p(u)x; ) =0, (3.17)
where 5— A+ B5(u—B) 5—
plu) = 2 BB G A s .19

Employing the general theory of differential « vuations, the above ODE has a general solu-
tion of the form

fpe) = Ce TP,

where C' is an arbitrary constant .~at ne .ds to be determined. Recalling the form of p(u),
given in equation (3.18), the 2)ove so.. cion reduces to

A
X, = JePu(s(u—B)+e)o .

Integrating the above ec .atic ~ from ¢, + € to u, for some small € > 0 and ¢, < u < B, we
have that u
X;(1—s(a+e)=C e P ((S(w—B)—l-c)%_1 dw.
Ci+e
Letting ¢ — 0 ard uring the second boundary condition of Proposition 2, the general
solution of equati.> 3.17, is given by

y.(wy=C [ e P ((5(?1)—8)4-0)%_1 dw
G

>

u _ 71
= Ccﬁl/ e=Pv (‘S(wcr”) + 1) dw. (3.19)
C

i
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Finally, in order to complete the solution we need to determine the ce .stan. ', which
can be obtained by using the first boundary condition for x,(u) of 7. position 2 i.e.
lim, 5 x;(u) = 1. Letting u — B in equation (3.19), we obtain

A1
where O ! = fclj e P ((S(LC_B) + 1> " dw.

Proposition 3. Forc, < u < B and exponentially distril utes” cic 'm amounts with parame-
ter 8 > 0, the probability of the surplus process {U(;Z(t)1+>0 hitti.g the upper level B, before
hitting the lower level ¢;, under a debit force § > 0, is give > by

u 4 Q) N s T
X, (u) = Cy / e=Bv ( “1) dw, (3.20)
C

1

where N
21
= , S
e :/ —Bw (5( S 1) dw. (3.21)
G

Using Theorem 1 and Proposition 3, the t."o vypes of insolvency probabilities, namely
¥ (u) and ¥; (u), under exponentially ¢ triuw.ed claim amounts, are given in the following
Theorem.

Theorem 2. Let the claim amo wnts be exponentially distributed with parameter > 0.
Then, for u > c., the probability o, insol ency, ¥, (u), is given by

(1+ n)eLch“

4
() = —— """
vy 14 2207 ehCu

Y(u), (3.22)

and, for ¢, < u < B, ¥; (u) is go.2n by

A1
A1 o BCu fcl (5(w B) +1)5 dw

c
v (u) - 1—
T 1+ 2207 ehCu

: (3.23)

where C’l_1 s 7.uen In . roposition 3.

Proof. Let us egin Iy considering the numerator in equation (3.11) i.e.

o0 [ate -+ [ utnste. — o]
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Assuming that the claim amounts are exponentially distributed, employing the . ~rrespond-
ing forms for G(y) and g (y), from Dickson(2005) i.e.

Galy) =1—e
ga(y) = Be ",

and using equation (3.20) of Proposition 3, it follows that the b )ve equation may be
written as

Cu—C Cu—y §n — B
#(0) {(1 — 67’8((:"78)) + C18 eﬁy/c e Pv (oo —8! + 1>

C.—B : \

o>

1
dwdy | .

O

(3.24)
Changing the order of integration, evaluating the resu. *ng .__.er integral and after some
algebraic manipulations, equation (3.24) can be re-written 1 the form

B d(w — b, 51 c
»(0) [1 — e A8 (1 — C’l/ e Pv <’ - 1> dw) — Cl)\e_BC“} ,
C &

which, after recalling the definition of the cc "Sva .. 77 given in Proposition 3, reduces to
the concise form

»(0) [1 ~oCe ’BC“} :

7\
Now, considering a similar methodolog, =s «. " /e, the corresponding denominator in equa-
tion (3.11) reduces to

1 v c
1- 1- f—f”cu).
1T4+n\ Cl)\e

Substituting the above forms of ‘he numerator and denominator of equation (3.11), we
have that the insolvency prou. b'iity. or u > ¢,, is given by

w1 004
wl\»—wm(l 1A>,

e

where

A= (1 - Clge_ﬁc“) .

Re-arranging the abc e equation, substituting the forms of both ¢(0) and (@), under
exponentially tistrib “ted claim sizes (see Grandell (1991)) and noticing that () = ¥ (u—

MC . —Mu . — 3
Cu) = e mh 1), sivce Y(u) = e, we obtain our result. For ¢, (u), given by
equation (7.z3), one can apply similar arguments and thus the proof is omitted. 1
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/ e,
Remark 2. (i) From equation (3.22), we conclude that the constant % o blays
0T

the role of a ‘measurement of protection’ for the insurer. Thus, g'sen ., set of param-
eters, the above factor could lead to lower/higher value of ¥} (u,, ompared to the
classical ruin probability 1 (u), in the sense that the insurer is mec ~/less protected by
the capital constraints.

(i) If we set ¢, = B =0 such that ¢, = —%, then equation (3.22) ' comes
oy,
V) = — s u0
1+ 21Cy

A
where C’l_1 = ffg e Pw (‘%w + 1) > dw and thus e ret~_ve Theorem 12 of Dassios
4
and Embrechts (1989) for the ruin probabilitu in the “lassical risk model with debit
interest, under exponentially distributed claim s..-s.

Example 1 (Comparison of the probability of inenl~ 'y versus the classical ruin prob-
ability). In order to compare the insolvency prouv.™ility ¥} (u), u > C., with the classical
ruin probability, 1 (u), recall that under expo . *iolly distributed claim sizes, P (u) is given

by
1
=—— %, ux=0.
1479

In addition, we consider the following .t u; .arameters A = 8 = 1, n = 5%, which due
to the net profit condition, fizes our premiu..1 rate at ¢ = 1.05. We further set the debit
force § = 0.05 and the fized lower cu, *tal level ¢; = 3, which in turn gives B = 24, since
B=¢ + 5. Table 1 (below) sho s the ¢ mparison of the classical and the insolvent ruin
probabilities for several values ~fu w4 he level ¢, such that u > ¢, > B = 24.

(u)

Cu = 2 C. = 30 C. = 50

u P(u) T (u) | Y(u) (D) Y(u) Y1 (u)

Cu 0.29C | L.709 | 0.228 | 6.933 x 1073 | 0.088 | 1.439 x 10~ 11
c.+5 | 0.2°2 ' 0.401 | 0.180 | 5.464 x 1073 | 0.069 | 1.134 x 10~!1
c.+10 || 0 .80 0.316 | 0.142 | 4.306 x 1073 | 0.055 | 8.938 x 1012
Co+15 || 9142 | 0.249 | 0.112 | 3.394 x 1073 | 0.043 | 7.044 x 10712
. +20 " 0.1:2 ] 0.196 | 0.088 | 2.675 x 1073 | 0.034 | 5.552 x 10~!2

Table 1. 7" ssic .l ruin against insolvency probabilities, exponential claims.

Furthermore, in Tabi 2 (below), numerics for the required initial capital are given in the
case of a fixed . b~ Lility of insolvency and c, level.
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406

u

vi(u) || c.=25]c.=26|c, =27
0.1 59.17 47.32 31.34
0.05 73.72 61.87 45.90
0.025 88.28 76.43 60.46
0.01 107.52 95.67 79.70

Table 2: Initial capital required for varying insolvency probal. 'itir s and ¢, levels

For reasons explained in Section 3, numerics for 1, (u) are ¢ nitted.

3.2 Asymptotics results for the probability c( in- .'vency

In this subsection we derive an asymptotic expressic. for ths probability of insolvency,
namely 9" (u). Note that an asymptotic expression for ¢, ‘u) cannot be considered since
o <u<B.

Hence, using the form for ;" (u) given in Theo.~m 1, and the fact it is expressed in
terms of ¥(-) and G.(-), we can derive an explicit ~~==7 tic expression for the probability
of insolvency, in terms of the ruin probability of v..~ classical risk model.

We begin by deriving asymptotic express <. “r (5(y) and gz(y). From Gerber et al.
(1987), it follows that the distribution of the (='icit at ruin, namely G(u,y), satisfies the

following renewal equation

e A [ty
G(u,y) = C/o G(u—a, Fxx)dr+ c/ Fx(x)dz, (3.25)

which is a defective renewal eque .ion s, >ce % IS Fx(x)de = ’\7” < 1, given that the net
profit condition holds. Thus, as ™ Fel'sr (1971) we assume there exists a constant R,
known as the Lundberg expor :nt. suc.. that

X X

: g =1
c JO € X(x) dx )

then, %eRZFX(:):) formr = . density of a proper probability function. Multiplying equation
(3.25) by eff*, with F sati fying the above condition, we have

uty

eMGlu,y) = - / UG (0 — 2, y)eF x () do + i\eR“/ Fx(x)dz,  (3.26)
N

u

which is now i « the f vm of a proper renewal equation. Then, direct application of the Key
Renewal Thec "em [se - Rolski et al. (1999), Thm 6.1.11], gives that

© Rt t*H/F dadt
lim GRUG(U,y) _ fO eoo t - x(z)dz
U—00 fO teRtF)((t> dt
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Following a similar argument [see also, Grandell (1999)], we obtain the follc #ing = svmptotic
expression for the classic probability of ruin

lim ef(u) = Jo e ftoofx(:c) d:vdt'
e Jo teRtFx(t) dt

Finally, since G, (y) = Gw(?j)/), using a similar argument as in Wi moe  (2002), we have

0 Rt terF de dt
U—»00 fO eRt ft FX )dacu

from which it follows, by differentiating the above equat on - .1tL respect to y, that

foo eRtfx(t + 0’\fit

lim g, (y) = -2 — —.
g (y) fOOO eRt tOO _Lﬁv(x) df] jt

UuU—00

Thus, combining the above asymptotic expressions a.. ! using equation (3.11) the asymp-

totic behaviour of 1] (u), as u — oo, is given b, ne tollowing Proposition.

Proposition 4. The probability of Insolven. ., +(u), behaves asymptotically as
P (u) ~ I M), u— oo,
where ¥ (u) is the classical ruin probab 't an? K is a constant of the form
00 Cu—B 00 -
[fo Rt ft+( ) Fx(z) dxdt—l—f lfo e Ex (t+ y)x; (Cu — y) dtdy]

b1 (1 —2 (er(cu B+ o5 FxW)x, (e — y) dy))

Kzl—

4 Probability charac’eristics of the accumulated capital in-
jections

In this section we aim te obtain vie probabilistic characteristics of the accumulated capital
injections up to the tir .e o) insolvency, including an analytic expression for the first moment
and an expression for .» . moment generating function. For the latter, we show that the
distribution of the iccrrmuiated capital injections up to the time of insolvency is a mixture
of a degenerate a_ 1 ¢onti- uous distribution.

4.1 Mome nts o1 the accumulated capital injections up to time of insol-
vency

Let the tc ;al acce mulated capital injections, up to time ¢t > 0, be denoted by the pure jump
process {~ ‘t)};~, and consider E(Z,¢,), where Z, ¢, = Z(T5) is the accumulated capital
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injections up to the time of insolvency, given the initial capital level u. Duc *o similar
reasons as the insolvency probability, it is necessary to decompose E(Z. (" depending on
the size of the initial capital. Therefore define E(Z,¢c,) = E(ZICW\ wh nu > ¢, and
E(Zuc,) =E(Z,¢,), when ¢; <u < B. Using a similar argument as i. the , ~evious section
(that is, conditioning on the amount of the first drop below the canital . el ¢,), we have
that E(Z" we, ) for u > cy, satisfies

Bz = | T+ E(280)) st dy

Cu—C [
+/ ((Cu —B)+Elzc - )) 9t y)x,(c. —y)dy
u*B A

Cu—B Cu—Cy
=/0 yg(t,y) dy + (cu — B)/ . 9(U,y) x5 7 — y)dy
’ ‘ Cu—C
+E (Zéu cu) [G(u, e / (@ y)x; (Cu = y)dy| -
C,—B
(4.1)

\
In order to complete the calculation for E (ZL -, Cen by the above expression, we need
to compute the value of E(Z;Cu) at u = " . na.ely E(Z(}: ¢,)» which can be obtained by
setting u = ¢, in equation (4.1). That is,

Cu—C;

Cu—B
E (th,cu) = /0 y9(0,y)dy + - — B)/ 9(0,y)x;(C. — y)dy

Cucy
+e(z8 ) [ote-s+ [ g0mte - na]
from which we have that

SO B ygy)dy + (e —Bf 9(0,9)x;(C. — y)dy
E(2,c)="" /‘ ’ L (42
1= 1G0,co—8) + 75 900, y>x5<cu ~ y)dy)

On the other hand, . ~ der to compute E (Zu ) for ¢; < u < B, note that E (Zu Cu)

satisfies
L <Zu,Cu\ = x,(u) ((cu —B)+E (chu)) , a<u<B;B, (4.3)
with E (Z(}:’C ) give. by equation (4.2).
To illustrate ' applicability of the results for E (Z:[ cu> and E <Z7: Cu>’ we will give

explicit e pressic s for the two types of the expected accumulated capital injections up to
the time ¢ insol- ency, when the claim amounts are exponentially distributed.
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Proposition 5. Let the claim amounts be exponentially distributed with ; aran. ter 8 > 0,
ie. F(x)=1- e P x> 0. Then, the expected accumulated capital in‘_c. ms, E (Z:[ycu)
for u = c., is given by

E(Zfe,) = Kuvi (w), (4.4)

and Y (u) is the probability of insolvency, for u > c., given n Theo em 2.

where

Forc <u<B, E (Zf ) s given by

u,Cy
E(Zye,) = Kao; (1) (4.5)
where 1
Ky = — (1 e BB gy
Bn / )
and ¢, (u) is the solvency probability, for ¢, ~ ~ ~ B. which can be obtained from equation

(3.23) of Theorem 2.

Proof. The result follows from employing t. e . *in related quantities, under exponentially
distributed claims (see Section 3.1), i* -~mat. s (4.1), (4.2) and (4.3), making some al-
gebraic manipulations and recalling the .. ~ms of ¥} (u) and ¥; (u) = 1 — ¢; (u), from
Theorem 2. O

4.2 The distribution of the ~ccu nulated capital injections up to the time
of insolvency

In this subsection, we show “ha, he  istribution of the accumulated capital injections up to
the time of insolvency is ¢ mixture of a degenerative distribution at zero and a continuous
distribution.

Extending the argr me ts of Nie et al. (2011), we first consider the case where u = c..
Then, the probability -hat chere is a first capital injection is; the probability that the surplus
process drops, due ) a cla. . between ¢, and B, which happens with probability G(0, c.,—B),
or the surplus pre _ess drors, due to a claim, between 8 and ¢; and then recovers back up to
the level B before ci. sin | ¢;, which happens with probability f(i“__gl 9(0,9)x;(cu —y) dy.

Given that there exists a first capital injection, the process restarts from the level c,.
Hence, if we .>t N drnote the number of capital injections up to the time of insolvency,
then by the ~bov. _asoning, N has a geometric distribution with p.m.f., forn =0,1,2,...
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P(N =n) = (G(O,Cu - B)+ /jrcz 9(0,y)x, (¢ —y) dy>n

-B

Cu—C;
X <1 — |:G(07C’u, — B) + / 9(07y\/x5 ‘cy — o) dy:|> )
u_B

and thus, a probability generating function given by

L= (G008 + T g0 0 dy)
1—2 (G(O,cu —B) + fcu“:l g0, x;s(Cu —y) dy) ‘

Then, the accumulated amount of the capital injections u, to v..c time of insolvency starting
from u = ¢,, namely Za ¢, has a compound geometric dist ibution of the form

E (zV) = Pn(2) =

+ _
Zene, =

"=

i=1

where {V;}2°, are i.i.d. random variables, den tin , w.e size of the i-th injection, with p.d.f.

(O Lo — O<y<c.—B
G(0Cs=B)+ G 0. 165120 a) da
fV(y) = fg“ glg ‘(Ly £)dx

y:Cu_Ba
G(0,C,—B +f Bgouxé(cu z)dzx

and thus the moment generating runctio. of th ¢, can be expressed as

Mggu ju(Z) = Py(My(2)),

where

féiu zyg(o y> dy + eZ(Cu B) fcu O )X5 (Cu — ZIZ’) dx
G(0,¢0 = B) + [5" 5 9(0,2)x, (o — ) d '

My (z)=E (eZV\ =

Now, in order to fir 4 the mc_nent generating functions of the accumulated capital injections
up to the time ¢ ing,lve cy with general initial capital, namely Z C when v > ¢, and

Zye,» when ¢, ~u <~ we first note that Zr we, and Z o are equivalent in distribution

0 (YUJr + 75 n”u) ;4 y and (Yu_ + 78 Cu> I{4-y, respectively, where Y, is the amount
of the first pival iujection, starting from initial capital u > c., Y, from initial capital
¢ < u < Bana Ipy is the indicator function with respect to the event that a capital
injections « ~curs .rom initial capital u. Note that the event that a capital injections occurs

19



502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

from initial capital u can be decomposed to the sub events depending .he v.'ue of the
initial capital and thus we denote AT and A~ the events that a capita’ .. iections occurs
from initial capital u > ¢, and ¢; < u < B, respectively, with probabili* es

Cu—C;
P(A") = G(ad,c. — B) + / 9(@, y) x5 (Cu — ) T,
w—DB
and

P(A7) = X, (u).

Based on the above notation, for & = u — ¢, the density of Y,,” is ¢"ven by

g(ﬂvy) O
< y<cu— B,
G(aCu—B)+ 5 g a(im)xs (Cuma) Y
fy+(y) = JE+ 5 g(a)x; (Cue) d s
Cl.Cu—B)+ 5 FL o)X (Cun o w — B,
whilst Y, has a probability mass function of the #1l~— g form

P(Yu_:z’):{‘” o

0 -.herwise.

Then, since Y} and Zé; ¢, are independent, the moment generating function of Zj c, 1s
given by

MZjC (z) = (My+(z)MZ+ (z)) P(AT) +P((AT)), (4.6)
where
My (2) =B () = I evati,y) dy + ) Joi g, ), (00 — ) da
Y, - - ’

(@00 — B) + [ 5 gl x)x, (Cu — @) do

whilst, following a similar argu.-ent as above, the moment generating function of Z . is
given by

My, o) = (M (g () LA + R4 (@.7)

SLu

where -
My () = (&) = e,

From equatioi s (4.6) wmd (4.7), it should be clear that the distribution of the accumulated
capital inje~*ion. . to the time of insolvency, is mixture of a degenerative distribution at
zero and . conti, 1ous distribution.
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5 Constant dividend barrier strategy with capital co..<traints

In reality the surplus of a company will not be left to grow indefinitely ac a pr bportion of the
profits are paid out as dividends to its shareholders. As mentioned in the _revious section,
the shareholders can contribute to the capital of the firm, by means o. ~apial injections,
for which they would expect financial incentives and therefore t'.e « »msideration of divi-
dend payments is important when analysing a firms portfolio an. insolvency probabilities.
Dividend strategies have been extensively studied in the risk th=ory "‘terature since their
introduction by De Finetti (1957), with a main focus on o timisa ion of the companies
utility, see also Avanzi (2009) and references therein for a coi nrehe isive review.

In this section we derive an explicit expression for the "usolvency probability to the risk
model under the framework in Section 2, with the addit »n Jf a :onstant dividend barrier
b > Cu, such that when the surplus reaches the level » divid nds are paid continuously
at rate ¢ until a new claim appears (see Fig: 2). The amec ‘ded surplus process, denoted
Ufb(t), has dynamics of the following form

~dS(t), UZ(t) =0,
cdt — dS(t), c. <UZ(t) < b,
AZ(t), B < Ugy(t) < cu,
[c+0(UF(t)—rldt dS(t), o <UF(t) <s
Ué?.b(t)
b —

t
[ Tsp

Figure 2: " 'ypical ample path of the surplus process under capital constraints with constant divi-
dend barri. .

21



536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

The time to insolvency, in the dividend amended model, can be defined ky
Tsp = inf {t > 0: U§,(t) < ¢ [UF(0) = u}
and the probability of insolvency, which we denote by 9, ;(u), is defi. 1 as
Yrp(u) =P (T@b < oo’Ufb(O) = u) ,

with the corresponding solvency probability defined by ¢;p(ud 1 — " p(u).

We once again note that the insolvency probability, as n the | revious sections, can
be decomposed for ¢, < u < b and ¢ < u < B, for which ve de e ¥, ,(u) = w;':b(u)
and ¥, p(u) = ¢;b(u), for the two separate cases with cor espr—ling solvency probabilities
qﬁib(u) and ¢, (u), respectively.

In order to derive an expression for the solvency pi.habwuty for ¢, < u < b, namely
qﬁj:b(u), (or equivalently the insolvency probability v*, (u)) w : will need to define the cross-
ing probability of the surplus below the level ¢, (¢~ we 'id .n Section 3), given by

&(u) = P(Th < 0| e < 0) = u < b),

where Tj, = inf{t > 0 : Ufb(t) AR U§b< ., 2 < b} is the first time the process down
crosses the level c,,.

Using a similar argument as in Sectio. ” it Mllows that the dynamics of the surplus
process U fb(t) above the level ¢, are equivawnt .o that of the classic surplus process with

a constant dividend barrier b = b — ¢ /16,10 capital constraint levels). That is, for
Cu < Ufb(t) < b, we have deb(t) = bU;(t) wuere

U(ty=a -ct—5t), 0<U0)=a<b,

with dynamics

S

o {750, Us(t) =,

Ldt—dS(t),  0<Ty(t) <b.

=
~—

Thus, it is clear that 74, dr ined above, is equivalent to the time of ruin in the classical risk
model with a constant " vidend barrier strategy and initial capital 0 < u < b, given by

Ly = inf{t > 0: Uj(t) < 0|0 < T;(0) = a < b},

and the probe ity < (u) is identical to the probability of ruin, namely ;(u) = P(T;, <
oo|(75(0) = u, = 1 — pz(@), for the classical risk model with a constant dividend barrier
strategy.

To ob ain an xpression for the insolvency probability under a constant dividend barrier
strategy, 1. ~all t.e fact that deb(t) = dﬁg(t) when the surplus is above the level ¢, and
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condition on the occurrence and amount of the first drop below the capit .l lev.' ¢,. Then
for ¢, < u < b, the respective solvency probability gbjb(u), is given by

Cu—B Cu—C;
67, () = ¢5(3) + /0 630 9)6F,(c.) dy + /C 65 w)oy.(c0 ) dy
cufclu
— 63(0) + Gy, Cu — B)FT(c) + /C e (=) dy

where B B
Gy(it,y) =P (Ty < o0, 10,(Th)| < |00, ~

is the distribution of the deficit below ¢, at the time of c1ss’ 4g t 1e capital level, under the
constant dividend barrier strategy, and g;(u,y) = %G , 1, ) it corresponding density.
For ¢, < u < B, we have

¢1_75(u) = Xs (u)qj)—,ifb\g ),

where X, (u) is the probability of hitting the upper cown. dence level 5 before the lower level
¢, in a debit environment, as studied in Sectio.. 5. We point out that the function x, (u)
is unaffected by the addition of the dividend barrier ~nd therefore the integro-differential
equation given in Proposition 3 still holds, ai. ng wiva the corresponding boundary condi-
tions. Following similar arguments as in S~ctiol. 3 we obtain the following Theorem.

Theorem 3. Forc, < u < b,the probability o, insolvency under a constant dividend barrier
strategy, w;rb(u), satisfies

5(0) [u‘g\? ¢ = 8) + Jo 5 93 y)x; (€ — ) dy]

() = gy(a) — . (5.)
¥ ’ 1 —k““’o/ﬂ‘ —l—f "B gbnyé(Cu—y)dy>
For ¢, <u < B, ¢ (u) is giver. "y
Yrp(u) =1— %00 (v) (5.2)

1—<G (0,c. — B +f ngny(;(Cu—y)dy)

Remark 3. Simil .rly to Remark 1, we point out that from equations (5.1) and (5.2),
that the two type of .mso'vency probabilities for the risk model under capital constraints
with the addition oy ~ ¢ nstant dividend barrier, are given in terms of the (shifted) ruin
probability an  defict of the classical risk model with constant dividend barrier, as well as
the probability of exiti .g between two capital levels. Thus, w:’“b(-) and w;b(-) can be calculated
by employi~ , kno... results, with respect to Gy(-,-) and ¥p(-) (see Lin et al. (2003), among
others), t hilst ti.> latter exiting probability, x,(u), can be evaluated by Propositions 2 and
3.
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