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Abstract: Glioblastoma multiforme (GBM) is the most aggressive form of adult primary malignant
brain tumour with poor prognosis. Extracellular vesicles (EVs) are a key-mediator through which
GBM cells promote a pro-oncogenic microenvironment. Peptidylarginine deiminases (PADs),
which catalyze the post-translational protein deimination of target proteins, are implicated in
cancer, including via EV modulation. Pan-PAD inhibitor Cl-amidine affected EV release from GBM
cells, and EV related microRNA cargo, with reduced pro-oncogenic microRNA21 and increased
anti-oncogenic microRNA126, also in combinatory treatment with the chemotherapeutic agent
temozolomide (TMZ). The GBM cell lines under study, LN18 and LN229, differed in PAD2, PAD3 and
PAD4 isozyme expression. Various cytoskeletal, nuclear and mitochondrial proteins were identified
to be deiminated in GBM, including prohibitin (PHB), a key protein in mitochondrial integrity and
also involved in chemo-resistance. Post-translational deimination of PHB, and PHB protein levels,
were reduced after 1 h treatment with pan-PAD inhibitor Cl-amidine in GBM cells. Histone H3
deimination was also reduced following Cl-amidine treatment. Multifaceted roles for PADs on
EV-mediated pathways, as well as deimination of mitochondrial, nuclear and invadopodia related
proteins, highlight PADs as novel targets for modulating GBM tumour communication.
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1. Introduction

Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant
brain tumour in adults, with poor prognosis as only 28.4% of patients survive one year and 3.4%
survive to year five [1–3]. Extracellular vesicles (EVs) are lipid bilayer-enclosed structures, 30–1000 nm
in diameter, released from cells, and are key-mediators for intra/inter-tumour communication through
horizontal transfer of functional proteins and nucleic acids (mRNA, miRNA, lncRNA) [4–6], through
which GBM cells can influence the surrounding microenvironment to promote tumour growth,
angiogenesis, metabolism and invasion [7–11]. The regulation of EV biogenesis has received increasing
attention as an interceptive strategy in cancer, both to sensitize cancer cells to chemotherapy and to
limit tumour growth in vivo [12–18]. The peptidylarginine deiminase (PAD)-mediated pathway of EV
biogenesis has recently been described as a significant contributor to EV release in a range of cancer
cells [14,17,19,20].

While EVs have been recognized to play significant roles in GBM, PADs have hitherto received
little attention. PADs are a calcium-dependent enzyme family involved in physiological and
pathophysiological processes [21–24]. PADs cause irreversible post-translational protein deimination
(citrullination) of protein arginine to citrulline, using oxygen from water and releasing nitrogen
as ammonia. Each conversion of an arginine into a citrulline causes the loss of one positive
charge, increasing hydrophobicity and modifying folding of target proteins, leading to structural
and functional protein changes [21–27]. Post-translational deimination may also facilitate protein
moonlighting, an evolutionary acquired phenomenon where proteins are allowed to exhibit more than
one physiologically relevant function within one polypeptide chain [28,29]. Protein structures identified
as being most prone to deimination are intrinsically disordered proteins and β-turns, while the position
of the arginine within the protein is also of importance [22,26,30]. In mammals, five tissue-specific PAD
isozymes have been identified [21], with PADs and post-translational deimination widely studied in
the past few years in relation to various pathologies including autoimmune diseases, central nervous
system (CNS) pathologies and cancer [14,19,21–24].

Studies of PADs in CNS-related cancers have so far been limited. In a study on grade IV
GBM patient samples, an increase in cytoplasmic and nuclear deiminated proteins was observed,
but protein candidates were not identified [31]. Increased PAD4 staining has been observed in
undescribed astrocytomas [32], while upregulation of PAD2 and PAD3 via cAMP-PKA (cyclic
adenosine monophosphate- protein kinase A) signaling has been shown in U251MG astrocytoma
cells [33] and PAD-upregulation was shown in response to hypoxia in malignant gliomas [34].
The presence of glioma stem-like cells is related to the high recurrence rates of GBM tumours and
to GBM resistance to standard therapy, consisting of surgical resection followed by radiotherapy in
addition to concomitant and adjuvant chemotherapy with temozolomide (TMZ) [35,36]. This may
be of considerable relevance as there are indications that GBM stem cells reside preferentially within
the hypoxic core of the tumour mass [34], while PAD activation has been linked to hypoxia in the
CNS [34,37,38] and to modulation of neuronal stem cell growth and death [39]. As PAD-inhibitors
have previously proven to be effective regulators of EV release in a number of cancers, and to sensitize
various cancer cells to chemotherapy [14,17], we set out to identify PAD-mediated pathways in
pro-oncogenic communication in GBM.

Using immunoprecipitation and proteomic approaches, various deiminated candidates were
identified in two GBM cell lines, LN18 and LN229. Furthermore, changes in deimination of histone H3
and prohibitin (PHB) were validated in response to treatment with PAD-inhibitor Cl-amidine, as well as
in combination with chemotherapy using TMZ. Histone H3 deimination is well recognized in relation to
various cancers [24] and was previously associated with PAD-mediated EV release in prostate cancer by
our group [14]. Recent studies have highlighted multifaceted roles of PHB in cell apoptosis and survival
as well as in cancer, including for mitochondrial function and integrity [40,41]. Crucially, mitochondria
are central to cancer survival and progression, in particular due to their central role in calcium signal
control, which is altered in cancer [42,43]. In addition, EV-release has recently been related to changes
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in PHB levels and changes in mitochondrial function in cancer cells [18]. Furthermore, increased
PHB levels are linked to chemo-resistance in cancers [44,45], while post-translational modifications of
PHB can facilitate PHB shuttling between organelles to execute a variety of functions, including in
cancer [40]. Therefore changes in these two deimination candidates were further investigated in GBM
cells in response to Cl-amidine and combinatory treatment with TMZ in this study.

Modulatory effects of EV regulators on EV biogenesis, as well as on EV cargo, are of pivotal
importance. Thus, the effect of Cl-amidine on miR21, a pro-oncogenic microRNA known to be enriched
in GBM derived EVs [46,47], and on miR126, which has been found to be elevated in GBM patients
with better prognosis [48], was evaluated. The two GBM cell lines under study were chosen as an
example of a chemosensitive (LN229) and chemoresistant (LN18) GBM cell line respectively according
to their identification as such cell lines in previously published literature [49].

Multifaceted effects of PAD-modulation on GBM, revealed in this study, indicate their potential as
therapeutic targets for affecting GMB communication within the microenvironment and the penumbra.

2. Results

2.1. Protein Analysis

2.1.1. PAD Isozyme Detection and Total Protein Deimination in GBM Cells

Protein levels of PAD2, PAD3 and PAD4 isozymes differed in LN18 and LN229 cells; LN18
showed high levels of both PAD2 and PAD4, while LN229 had higher levels of PAD3 and low levels
of PAD2 and PAD 4 (Figure 1A). Both LN18 and LN229 GBM cells showed considerable levels of
deiminated proteins under normal culture conditions (Figure 1B). For identification of deiminated
protein candidates, immunoprecipitated (F95 enriched) deiminated proteins from both cell lines
(Figure 1C) were subjected to proteomic analysis (see Section 2.1.2 and Table S1).
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Proteins in LN18 and LN229 GBM Cells 

Figure 1. PADs and deiminated proteins in GBM cells. (A) PAD isozymes 2, 3 and 4 are detected at
different levels in LN18 and LN229 GBM cells. (B) Western blotting showing total deiminated proteins
(F95) in LN18 and LN229 cells (Ponceau S and β-actin shown as loading controls). (C) Immunoprecipitated
deiminated proteins from both cell lines, using the F95 pan-deimination antibody for immunoprecipitation
and detection.
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2.1.2. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis of Deiminated
Proteins in LN18 and LN229 GBM Cells

Deiminated protein eluates, immunoprecipitated from LN18 and LN229 cells using the
pan-deimination F95 antibody [50], were separated by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE), and the extracted bands subjected to LC-MS/MS analysis with peak
list files submitted to Mascot (Matrix Science, London, UK). Table S1 lists deiminated mitochondrial
associated proteins identified both in LN18 and LN229 as well as nuclear-, stress-, EV-, cytoskeletal- and
invadopodia-associated proteins. Changes in two deimination candidates, mitochondrial prohibitin
(PHB) and nuclear histone H3, were further assessed in the presence of PAD-inhibitor Cl-amidine and
TMZ by Western blotting (see Sections 2.2 and 2.3).

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, https://string-db.org/) analysis
for PHB is shown in Figure 2 with mitochondrial roles of identified binding partners highlighted.
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LN18 and LN229 cells were not significantly affected by Cl-amidine at (50 μM) (Figure S1C,D). 
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and in Combinatory Treatment with TMZ in GBM Cells 
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Figure 2. STRING analysis for Prohibitin. STRING analysis (https://string-db.org/) showing
putative binding partners (STRING combined score >0.4) for prohibitin (PHB). Lines between
nodes represent known interactions (from curated databases, blue; experimentally determined,
pink), predicted interactions (gene neighbourhood, green; gene fusions, red; gene co-occurrence,
blue) and other interactions (text-mining, lime green; co-expression, black; protein homology, grey).
(A) Mitochondrial organisation associated functional partners are highlighted by red nodes; (B) Nodes
are further colour coded for highlighting different mitochondrial parts (mitochondrial envelope and
mitochondrial membrane).

2.1.3. GBM Cell Viability in the Presence of Cl-Amidine and TMZ

LN18 cells showed a 15% decrease and 23% decrease in cell viability after 1 h incubation with 400
and 800 µM TMZ respectively, while the LN229 cells were not significantly affected with 800 µM TMZ
(Figure S1A,B); thus 800 µM TMZ was the chosen working concentration. Cell viabilities of LN18 and
LN229 cells were not significantly affected by Cl-amidine at (50 µM) (Figure S1C,D).

https://string-db.org/
https://string-db.org/
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2.2. Prohibitin Protein and Post-Translational Deimination Levels Change after 1 h Cl-Amidine Treatment and
in Combinatory Treatment with TMZ in GBM Cells

The levels of PHB protein were higher in LN18 than LN229 cells (Figure 3A), and deiminated PHB
was present in both cell lines (Figure 3B). After 1 h treatment with Cl-amidine, total PHB levels were
reduced by 5–52% in LN18 and by 3–18% in LN229 cells (Figure 3C). After 1 h Cl-amidine treatment,
deiminated PHB was reduced by 2–49% in LN18 cells and by 8–41% in LN229 cells (Figure 3D).
After 1 h combinatory treatment of Cl-amidine with TMZ, PHB was reduced by 6–34% in LN18 cells,
compared to TMZ treatment only (Figure 4A). LN229 GBM cells showed a 2–17% reduction in PHB
following combinatory treatment versus TMZ alone (Figure 4B).
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Figure 3. Prohibitin is post-translationally deiminated in GBM cells and affected by PAD-inhibitor
Cl-amidine. (A) PHB protein is present in both GBM cell lines. (B) The presence of deiminated
PHB is verified in both LN18 and LN229 cells, as assessed by probing the PHB antibody on
F95-immunoprecipitated protein eluates (IP:F95). (C) PHB protein levels are reduced in LN18 and
LN229 after 1 h treatment with Cl-amidine. (D) Post-translational deimination of PHB is reduced in
GBM cells following 1 h Cl-amidine treatment. R represents relative densitometry compared to β-actin,
which was used as the internal loading control.
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Figure 4. Cl-amidine treatment in combination with TMZ reduces PHB protein levels in GBM
compared to TMZ treatment alone. (A) PHB protein levels in LN18 cells following 1 h combinatory
Cl-amidine-TMZ treatment, compared to 1 h TMZ treatment alone. (B) PHB protein levels in LN229
cells following 1 h combinatory Cl-amidine-TMZ treatment compared to 1 h TMZ treatment alone.

2.3. Deiminated Histone H3 Levels are Reduced after 1 h Cl-Amidine Treatment and Combinatory Treatment
with TMZ in GBM Cells

Histone H3 deimination was reduced following 1 h Cl-amidine treatment by 47–62% in LN18
(Figure 5A) and 2–8% in LN229 cells (Figure 5B). After 1 h combinatory treatment with Cl-amidine
and TMZ, citH3 levels were reduced by 19–62% in LN18 and 2–31% in LN229 cells, compared to TMZ
treatment alone (Figure 6A,B).
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(A) Deimination of histone H3 (citH3) in LN18 cells following 1 h treatment with Cl-amidine.
(B) Deimination of histone H3 (citH3) in LN229 cells after 1 h Cl-amidine treatment, compared to
control untreated cells. R represents relative densitometry compared to β-actin, which was used as the
internal loading control.
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Figure 6. Cl-amidine treatment in combination with TMZ reduces citH3 levels in GBM compared to
TMZ treatment alone. (A) Deiminated histone H3 (citH3) in LN18 cells following 1 h combinatory
Cl-amidine-TMZ treatment, compared to 1 h TMZ treatment alone. (B) CitH3 in LN229 cells following
1 h combinatory Cl-amidine-TMZ treatment, compared to 1 h TMZ treatment alone. R represents
relative densitometry compared to β-actin, which was used as the internal loading control.
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2.4. Effects of Pan-PAD Inhibitor Cl-Amidine on EV Biogenesis in GBM Cells

Both LN18 (Figure 7A,C) and LN229 (Figure 7B,D) cells showed a profile of EV release in the
range of 20–500 nm. The EVs were characterized by electron microscopy and verified to be positive for
the EV-specific markers CD63 and Flotillin-1 [51]. In LN18 cells, the modal size of EVs released (73.3 to
87.6 nm) did not differ significantly between treatment groups (Figure 7E), and the same was seen in
LN229 cells (modal size of EVs 78.3 to 89.8 nm) (Figure 7F).

Int. J. Mol. Sci. 2018, 19, x 8 of 23 

 

2.4. Effects of pan-PAD Inhibitor Cl-Amidine on EV Biogenesis in GBM Cells 

Both LN18 (Figure 7A,C) and LN229 (Figure 7B,D) cells showed a profile of EV release in the 
range of 20–500 nm. The EVs were characterized by electron microscopy and verified to be positive 
for the EV-specific markers CD63 and Flotillin-1 [51]. In LN18 cells, the modal size of EVs released 
(73.3 to 87.6 nm) did not differ significantly between treatment groups (Figure 7E), and the same was 
seen in LN229 cells (modal size of EVs 78.3 to 89.8 nm) (Figure 7F). 

 
Figure 7. EV release in GBM cells under standard conditions and after 1 h Cl-amidine and TMZ 
treatment. (A) NTA histogram, as by Nanosight analysis, showing EVs released from LN18 GBM cells 
under standard conditions; EVs are characterized by EM and WB of EV-specific markers CD63 and 
Flot-1, as well as by TEM (scale bar is 100 nm). (B) NTA histogram showing EVs released from LN229 
GBM cells under standard conditions; EVs are characterized by EM and WB of EV-specific markers 
CD63 and Flot-1, as well as by TEM (scale bar is 100 nm). (C,D) Proportions of EVs released from 
LN18 and LN229 cells under standard conditions. (E,F) Modal size of EVs released from LN18 and 
LN229 control and untreated cells, versus Cl-amidine or TMZ treated cells. 

Further analysis of a numbers released of EVs in the size range ≤ 100 nm, EVs at 101–200 nm and 
EVs at 201–500 nm was performed between treatment groups, based on size-exclusion, using 
nanoparticle tracking analysis (NTA). After 1 h incubation with Cl-amidine (50 μM), LN18 cells 
showed 68.75% reduction of EVs ≤ 100 nm (p < 0.0001), 18.25% reduction (nil significance) in the 101–
200 nm EVs, while a significant 76% increase (p = 0.0028) was observed in the 201–500 nm EVs, 
compared to control treated cells (Figure 7A,C,E). In LN229 cells, release of EVs ≤ 100 nm was reduced 
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Figure 7. EV release in GBM cells under standard conditions and after 1 h Cl-amidine and TMZ
treatment. (A) NTA histogram, as by Nanosight analysis, showing EVs released from LN18 GBM cells
under standard conditions; EVs are characterized by EM and WB of EV-specific markers CD63 and
Flot-1, as well as by TEM (scale bar is 100 nm). (B) NTA histogram showing EVs released from LN229
GBM cells under standard conditions; EVs are characterized by EM and WB of EV-specific markers
CD63 and Flot-1, as well as by TEM (scale bar is 100 nm). (C,D) Proportions of EVs released from LN18
and LN229 cells under standard conditions. (E,F) Modal size of EVs released from LN18 and LN229
control and untreated cells, versus Cl-amidine or TMZ treated cells.

Further analysis of a numbers released of EVs in the size range ≤ 100 nm, EVs at 101–200 nm
and EVs at 201–500 nm was performed between treatment groups, based on size-exclusion, using
nanoparticle tracking analysis (NTA). After 1 h incubation with Cl-amidine (50 µM), LN18 cells
showed 68.75% reduction of EVs ≤ 100 nm (p < 0.0001), 18.25% reduction (nil significance) in the
101–200 nm EVs, while a significant 76% increase (p = 0.0028) was observed in the 201–500 nm EVs,
compared to control treated cells (Figure 7A,C,E). In LN229 cells, release of EVs ≤ 100 nm was
reduced by 41.70% (p = 0.0074) after 1 h Cl-amidine treatment, while the 101–200 nm sized EVs were
not significantly affected, but release of the 201–500 nm EVs was significantly reduced by 91.60%
(p < 0.0001) (Figure 7B,D,F).

2.5. Effects of Cl-Amidine on EV Biogenesis in the Presence of TMZ

For LN18 cells, 1 h incubation with TMZ increased release of EVs ≤ 100 nm by 62.50% (p = 0.0024)
(Figure 8A), the 101–200 nm EVs by 49.37% (p < 0.0001) (Figure 8C) and the 201–500 nm EVs by 82.35%
(p < 0.0001) (Figure 8E). For LN229 cells, 1 h incubation with TMZ decreased release of EVs ≤ 100 nm
by 41.70% (p = 0.0043) (Figure 8B), did not significantly 101–200 nm sized EVs (Figure 8D) and reduced
EVs in the 201–500 nm size range by 94.00% (p < 0.0001) (Figure 8F).
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The two GBM cell lines also differed in EV release profiles after 1 h treatment with Cl-amidine
and TMZ. For LN18 cells, the TMZ-induced release of EVs ≤ 100 nm was reduced by 31.20% in the
combinatory treatment with Cl-amidine (p = 0.0438; Figure 8A), compared to TMZ alone. Combinatory
Cl-amidine-TMZ incubation had no significant effect on TMZ-induced release of 101–200 nm sized
EVs (Figure 8C), but combinatory treatment did reduce the TMZ induced release of 201–500 nm sized
EVs by 29.41% (p = 0.0376; Figure 8E). In the LN229 GBM cells, Cl-amidine in combination with TMZ
reduced the release of EVs ≤ 100 nm by 16.21% (p = 0.0149) compared to TMZ alone (Figure 8B), and
that of the 101–200 nm EVs by 10.77% (p = 0.0242; Figure 8D) and also significantly reduced the release
of EVs in the 201–500 nm range by 90.00% (p = 0.0094) compared to TMZ treatment alone (Figure 8F).Int. J. Mol. Sci. 2018, 19, x 9 of 23 
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Figure 8. Cl-amidine, alone and in combination with TMZ, modulates EV release from GMB cells. EV
release was assessed by NTA analysis after 1 h treatment with Cl-amidine, TMZ or TMZ in combination
with Cl-amidine. (A) Release of EVs ≤ 100 in the LN18 GBM cell line after 1 h treatment. (C) Release of
101–200 nm EVs in LN18 cells following 1 h treatment. (E) Release of 201–500 nm EVs in LN18 cells
following 1 h treatment. (B) Release of EVs≤ 100 in LN229 cells following 1 h treatment. (D) Release of
101–200 nm EVs in LN229 cells following 1 h treatment. (F) Release of 201–500 nm EVs in LN229 cells
following 1 h treatment. The p-values indicated above the bars in the histograms are significant changes
compared to control treated cells; significant changes between TMZ and combinatory treatment of
TMZ with Cl-amidine are also indicated by brackets.

2.6. Cl-Amidine Modulates miRNAs in GBM Cells and Derived EVs

LN18 and LN229-derived EVs, and their respective cell lysates, were analysed for relative changes
in microRNA expression [52] for the pro-oncogenic miR21 and the anti-oncogenic miR126 following 1 h
incubation with Cl-amidine. Compared to un-treated control cells, relative expression of pro-oncogenic
miR21 was significantly reduced both in LN18 and LN229-derived EVs and the respective cell lysates
(Figure 9A). The levels of anti-oncogenic miR126 were significantly increased in both cell lysates and
cell-derived EVs after 1 h treatment with Cl-amidine (Figure 9B).



Int. J. Mol. Sci. 2019, 20, 103 10 of 23
Int. J. Mol. Sci. 2018, 19, x 10 of 23 

 

 
Figure 9. Cl-amidine reduces miR21 and increases miR126 export in EVs released from GBM cells. (A) 
Pro-oncogenic miR21 relative expression in EVs released from LN18 and LN229 GBM cells and the 
respective cell lysates. (B) Anti-oncogenic miR126 relative expression in cell lysates and in EVs 
released from both LN18 and LN229 cells. Exact p-values for changes in Cl-amidine versus control 
treated cells are indicated (n = 4 for each treatment group for LN18; n = 3 for each treatment group for 
LN229. Relative fold-changes are shown. 

2.7. Cl-amidine in Combination with TMZ Modulates miRNAs in GBM Cells and Derived EVs 

GBM cells were further assessed for modulation in microRNA cargo following 1 h treatment 
with TMZ alone versus combinatory treatment of TMZ with Cl-amidine (Figure 10A,B). After 1 h 
combinatory treatment, pro-oncogenic miR21 was significantly reduced both in EVs released from 
LN18 and LN229 GBM cells, as well as in the respective cell lysates, compared to TMZ treatment 
alone (Figure 10A). Anti-GBM associated miR126 was significantly increased after 1 h combinatory 
Cl-amidine-TMZ treatment in EVs released from both LN18 and LN229 cells, compared to TMZ 
treatment alone (Figure 10B). In the respective cell lysates, miR126 was significantly increased in 
LN229 cells, and while also increased in LN18 cells, the difference was not statistically significant 
compared to TMZ treatment alone (Figure 10B). 

Figure 9. Cl-amidine reduces miR21 and increases miR126 export in EVs released from GBM cells.
(A) Pro-oncogenic miR21 relative expression in EVs released from LN18 and LN229 GBM cells and
the respective cell lysates. (B) Anti-oncogenic miR126 relative expression in cell lysates and in EVs
released from both LN18 and LN229 cells. Exact p-values for changes in Cl-amidine versus control
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LN229. Relative fold-changes are shown.

2.7. Cl-Amidine in Combination with TMZ Modulates miRNAs in GBM Cells and Derived EVs

GBM cells were further assessed for modulation in microRNA cargo following 1 h treatment
with TMZ alone versus combinatory treatment of TMZ with Cl-amidine (Figure 10A,B). After 1 h
combinatory treatment, pro-oncogenic miR21 was significantly reduced both in EVs released from
LN18 and LN229 GBM cells, as well as in the respective cell lysates, compared to TMZ treatment
alone (Figure 10A). Anti-GBM associated miR126 was significantly increased after 1 h combinatory
Cl-amidine-TMZ treatment in EVs released from both LN18 and LN229 cells, compared to TMZ
treatment alone (Figure 10B). In the respective cell lysates, miR126 was significantly increased in LN229
cells, and while also increased in LN18 cells, the difference was not statistically significant compared
to TMZ treatment alone (Figure 10B).
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3. Discussion

The two GBM cell lines under study contained a range of deiminated proteins under normal
culture conditions. In LN18 cells PAD2 and PAD4 were the dominating isozymes, while in LN229
cells PAD3 was the main isozyme. The three PAD isozymes have been described in the CNS and
show distinct substrate preferences although some targets overlap [53–58]. All three isozymes have
been detected in the nucleus, albeit PAD4 is the only isozyme with a classic nuclear translocation
signal [39,59–62]. Both PAD2 and PAD4 have roles in various cancers via changes in cell proliferation,
invasion and regulation of tumour growth [60,63–66], as well as affecting gene transcription and
epigenetic cross talk [67]. PAD3 plays roles in CNS regeneration [61] and is associated with neuronal
stem cells [39]. The strong presence of PAD3 in LN229 may thus indicate more stem-like properties
of this GBM cell line. Some proteins previously identified as deiminated in hypoxic astrocytoma cell
lysates [34] were here identified in both LN18 and LN229 under normal culture conditions, including
cytoskeletal proteins (vimentin, filamin-A, cytoplasmic actin-1) and stress-related proteins (GRP78:
78 kDa glucose-regulated protein and G3P: Glyceraldehyde-3-phosphate dehydrogenase) (Table S1).

Cl-amidine [68] is a pan-PAD inhibitor, and although more recent and PAD-isozyme specific
inhibitors have been developed [69–81], Cl-amidine was used here as a first proof of principle for
PAD-modulation in GBM, particularly as Cl-amidine is an effective EV inhibitor in various cancer
cells [14,17,19,20] and promotes CNS repair [37,38,61]. Deimination of histone H3 was found reduced
both in LN18 than LN229 cells following Cl-amidine treatment. Prohibitin (PHB) levels were reduced
in both cell lines following Cl-amidine treatment, as well as deiminated PHB, as verified by blotting
the F95 immunoprecipitated eluate with the PHB antibody. While PHB has been linked to GBM
regulation [82,83] and associated with high grade tumours [84–86], post-translational deimination
of PHB has hitherto not been described. As central roles for post-translational modifications are
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increasingly acknowledged in the multifaceted functions of PHB [40,87], the newly discovered
deimination of PHB here may be of considerable interest. Post-translational modifications facilitate
shuttling of PHB between organelles [40], can affect each other [38], and furthermore, PHB can be
regulated via micro-RNAs [88,89]. Accumulation of PHB is a common cellular response to stressing
stimuli and can protect cancer cells from ER stress and chemotherapy-induced cell death [45]. Thus,
reduced levels of PHB protein, as well as changes in deiminated PHB observed here after 1 h
Cl-amidine treatment, may affect GBM functions including via mitochondrial function and changes
in chemoresistance.

Further deiminated proteins identified and related to GBM invasion and progression included
AHNAK (Neuroblast differentiation-associated protein; Table S1), which was identified in LN18 cells
only. AHNAK has been shown to enable EV release from mammary carcinoma cells, playing critical
roles in EV communication for promotion of cancer progression in the tumour microenvironment [90].
Stromal interacting molecule 1 (STIM1), was identified as deiminated in both LN18 and LN229 cells,
and is a membrane ER-resident protein and an ER Ca2+ sensor, involved in sustaining long-term
calcium signaling and thus critical for cellular functions [91,92]. STIM1 protein has been found to
be elevated in several human cancer cells including in GBM where STIM activity is essential for
invasion [93] while STIM silencing shows anti-proliferative effects both in vitro and in vivo [94].
Moesin was identified as deiminated in LN18 cells only; it connects the actin cytoskeleton to
transmembrane receptors and increases cell invasion and migration of various GBM cells upon
upregulation [95]. Moesin acts as an oncogene by increasing stem cell neurosphere formation and
its overexpression is related to more aggressive and high-grade GBM [96,97]. Phosphorylation
of moesin has been shown to be involved in its activation and interaction with CD44 and the
Wnt/β-catenin pathway [96], but post-translational deimination of moesin has not been described
before. The deiminated candidate proteins identified here (Table S1), were further matched against
previously identified key invasive proteins which were also found exported in EVs from six GBM
cell lines [98]. Out of fourteen proteins identified as markers for more aggressive disease four were
here identified as deimination candidates; Cathepsin D and GAPDH were common to both LN18 and
LN229, while Annexin A1 and Integrin beta-1 were identified as deiminated in LN229 only (Table S1).

Histones undergo various posttranslational modifications that affect gene regulation and can
also act in concert [99,100]. Histones known to undergo deimination are H2A [101], H2B [102], H3
and H4 [103] and were here identified as being deiminated in GBM cells (Table S1). In addition,
HDAC (histone deacetylase) 1 and 2, histone-binding protein and histone H1x were identified as
deiminated in GBM cells (Table S1). Therapeutic targeting of histone modifications has received
considerable attention in high-grade gliomas, where HDAC overexpression has been reported in
high-grade, late-stage proliferative tumors [104]. Recent findings also support roles for histone H3
deimination/methylation cross-talk via PAD2 and PAD4 in the regulation of gene transcription in
cancer [105], while crosstalk between histone deacetylation and deimination via PAD4 and HDAC2
regulates p53 [67]. Furthermore, PAD4 has also been shown to interact with HDAC1 in vitro and
in vivo [106]. Histone deimination has also been shown to regulate miRNA expression and oncogenic
mRNAs [107] and identified as a driver of Interleukin-6 production [108]. In addition, deiminated
histone H3 is a key player in neutrophil release of nuclear chromatin and a marker of neutrophil
extracellular trap formation, which is related to promoted tumour progression and spread, including
in GBM [109].

Effects of PAD inhibitor Cl-amidine on microRNA expression, both in GBM cells and derived EVs,
highlights approaches for targeted modulation of EV cargo to change GBM intra- and inter-tumour
communication. Chemotherapy with TMZ has previously been shown to affect EVs released by GBM
cells [110], and here we found changes both in EV numbers and microRNA cargo released upon
combinatory treatment with Cl-amidine and TMZ, compared to TMZ treatment alone. Notably we
observed a higher sensitivity of LN18 to 1 h treatment with high doses of TMZ than seen in LN229,
which somewhat contradicts with previous literature indicating that LN18 is a chemoresistant GBM
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cell line [49]. It must though be considered that such observed chemoresistance was following repeated
TMZ exposure at lower levels of TMZ for longer time periods [49] and this may thus not be reflected
in the 1 h high dose treatment performed in the current study. Furthermore, LN18 showed higher
levels of EV release in the presence of TMZ, which may correlate with previously published studies on
chemoresistance of LN18, and may imply that increased EV release acts as a mechanisms to facilitate
drug efflux, as has been shown for other cancers [12,13,15,16]. In addition, in the LN18 cells an increase
in release of 201–500 nm sized EVs in response to Cl-amidine treatment observed here, may indicate
signs of pseudoapoptotic responses, where the cell can use the apoptosome to form an EV to export
hazardous agents [111,112].

Changes in microRNA21 have been shown to affect viability, senescence and invasion in
GBM [47,113], with miR21 silencing leading to decreased tumour size and improved survival in
GBM animal models [114]. Inhibition of miR21 has also been shown to enhance chemo-sensitivity of
TMZ-resistant GBM cells in vitro [115]. In GBM-derived patient samples, miR126 is significantly lower
than in paired non-tumoural controls and related to high histopathological grades; while patients
with higher intra-tumoural miR126 levels have significantly improved survival duration compared
to patients with lower miR126 levels [48]. In vitro, over-expression of miR126 suppresses glioma cell
proliferation and invasion via regulation of ERK (extracellular signal-regulated kinase) and KRAS
(Kirsten rat sarcoma viral oncogene) [116]. The observed decrease in pro-oncogenic miR21 and increase
in anti-oncogenic miR126 levels, caused by Cl-amidine here, indicates thus active anti-GBM functions
of this PAD-inhibitor.

Various proteins, critical to GBM progression, were identified to be deiminated while some
differences were observed between LN18 and LN229 cells. This may possibly reflect preferences in
target proteins deiminated by the different PAD isozymes, further emphasising GBM heterogeneity.
Besides PAD-enzymes being calcium-regulated themselves, their downstream deimination of proteins
involved in calcium regulation as identified here, such as STIM and proteins crucial for mitochondrial
integrity, given also that the mitochondrium has a central role in calcium homeostasis [42,43,117,118],
indicate a complex involvement in EV biogenesis, which itself is driven by calcium [119–121].
Nonetheless, the observed ability of Cl-amidine to modulate EVs and associated microRNA cargo,
as well as affecting PHB and histone H3 deimination, indicates common PAD-mediated pathways.
Using tailored PAD-inhibitors may thus offer novel strategies for GBM cancer treatment and
sensitization to chemotherapy.

4. Materials and Methods

4.1. Cell Cultures—LN18 and LN229

LN18 (ATCC® CRL-2610™, grade IV glioblastoma derived from a male patient with a right
temporal lobe glioma) and LN229 (ATCC® CRL-2611™, glioblastoma derived from a female patient
with right frontal parietal-occipital glioblastoma) (American Type Culture Collection, Manassas,
VA 20108, USA), were cultured using ATCC’s recommendations to 80% confluence in 75 cm2

flasks in complete Dulbecco’s Modified Eagle’s Medium (DMEM Gibco®, ThermoFisher Scientific,
Loughborough, Leicestershire, UK), with 5% foetal bovine serum (FBS Gibco®, ThermoFisher Scientific,
UK) at 37 ◦C/5% CO2. The cell lines were chosen as an example of a chemo-resistant (LN18) and
chemo-sensitive (LN229) GBM cell line respectively, according to previously published literature [49].

4.2. Protein Analysis of GBM Cells

4.2.1. Protein Preparation

Total protein was extracted from LN18 and LN229 cells, or isolated EV pellets, in the presence of
RIPA+ buffer (Sigma-Aldrich, Saint Louis, MO 63103, USA) containing 10% protease inhibitor complex
(Sigma-Aldrich), pipetting gently with regular intervals while shaking the cell preparation on ice
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for 2 h. Thereafter the cell or EV preparations were centrifuged at 16,000× g (4 ◦C/20 min) and the
supernatant containing the extracted protein collected. Protein extracts were either used immediately
for immunoprecipitation and proteomic analysis, or re-constituted in 2× Laemmli sample buffer for
Western blotting.

4.2.2. Immunoprecipitation and Proteomic Analysis of Deiminated Protein Candidates from LN18 and
LN229 GBM Cell Lines

For isolation of total deiminated proteins from LN18 and LN229 cells, the monoclonal F95
pan-deimination antibody, that is raised against a deca-citrullinated peptide and specifically detects
protein citrulline [50], was used in conjunction with the Catch and Release® v2.0 Reversible
Immunoprecipitation System (Merck, Nottingham, UK), according to the manufacturer’s instructions.
Bound proteins were eluted and either subjected to Western blotting analysis after re-constitution in 2×
Laemmli sample buffer, or analysed by LC-MS/MS for identification of deiminated protein candidates,
with the peak list files submitted to MASCOT (Cambridge Centre for Proteomics, Cambridge, UK).

4.2.3. Western Blotting Analysis

Protein extracts from LN18 and LN229 cells or EVs (as described in 4.2.1), in 2× Laemmli
sample buffer containing 5% β-mercaptoethanol, were boiled for 5 min at 100 ◦C before separation by
SDS-PAGE, using 4–20% Mini-Protean TGX protein gels (BioRad, Watford, UK), followed by Western
blotting analysis. Approximately 5 µg of protein was loaded per lane and even transfer to nitrocellulose
membranes (0.45 µm, BioRad) was assessed using Ponceau S staining (Sigma-Aldrich). The membranes
were blocked for 1 h at room temperature (RT) in 5% BSA (Sigma-Aldrich) in Tris buffered saline (TBS)
with 0.001% Tween20 (TBS-T), followed by overnight incubation at 4 ◦C with the following primary
antibodies for the cell lysates (used 1/2000 in TBS-T): anti-PAD2 (ab50257, Abcam, Cambridge, UK),
anti-PAD3 (ab50246), anti-PAD4 (ab50332), anti-prohibitin (ab75771), anti-citH3-r2-r8-r17 (ab5103),
F95 (1/5000; [45]), while for EV characterization the EV-specific markers CD63 (ab68418) and Flot-1
(ab41927) were used (1/1000 in TBS-T). Thereafter, membranes were washed in TBS-T, incubated
for 1 h at RT with the corresponding HRP-conjugated secondary antibodies (anti-rabbit IgG or
anti-mouse IgM, BioRad), followed by TBS-T washes and visualisation using ECL (Amersham, Fisher
Scientific, Loughborough, Leicestershire, UK) and the UVP BioDoc-ITTM System (Fisher Scientific,
Loughborough, Leicestershire, UK). HRP-conjugated anti-β-actin antibody (ab20272, Abcam, 1/5000
in TBS-T) was used as an internal loading control and densitometry analysis was carried out using
ImageJ1 (https://imagej.net/ImageJ1).

4.3. Cell Viability Assays

Cell viability of LN18 and LN229 GBM cells was assessed after 1 h incubation with Cl-amidine
(50 µM, a kind gift from Prof Paul Thompson, UMASS) and after 1 h incubation with TMZ (Sigma-Aldrich)
concentrations of 100, 200, 400 or 800 µM, compared to DMSO control-treated cells (Figure S1A,B).
Cell viability was further assessed after 1 h combinatory treatment of Cl-amidine (50 µM) with
TMZ (800 µM), compared to Cl-amidine alone (50 µM), TMZ alone (800 µM) or control-treated cells
(Figure S1C,D). Cell viability assessment was carried out before the start of every experiment using the
Guava ViaCount cell death assay (Guava Millipore) as previously described [17,18].

4.4. Modulation of EV Biogenesis Using Pan-PAD Inhibitor Cl-Amidine

The effect of Cl-amidine (50 µM) on EV release after 1 h incubation was assessed. LN18 and
LN229 cells were seeded at a density of 5 × 105 cells per well, in triplicate, in the presence of culture
medium (pre-warmed DMEM, supplemented with 10% FBS; Gibco®, ThermoFisher Scientific, UK).
The cell preparations were thereafter washed with pre-warmed PBS (EV-free), and resuspended in
pre-warmed serum- and EV-free DMEM and plated at 5 × 105 cells per well. Cl-amidine (50 µM) in
PBS was incubated with the cells for 1 h at 37 ◦C/5% CO2; PBS (EV-free) treated cells were used as

https://imagej.net/ImageJ1
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controls. The plates were briefly placed on ice (1 min) and the supernatant collected from each well.
Cell debris was removed by centrifugation at 200× g for 5 min and thereafter EVs were isolated from
the remaining supernatant as described in 4.6.

4.5. Effects on EV Biogenesis in the Presence of Temozolamide (TMZ)

LN18 and LN229 cells were cultured and prepared for EV isolation and quantification as described
in 2.4 and respectively treated for 1 h with 50 µM Cl-amidine alone as before, for 1 h with TMZ alone
(800 µM in 0.001% DMSO as determined by the cell viability assay in 4.3) or for 1 h with a combination
of Cl-amidine (50 µM) and TMZ (800 µM). DMSO-treated cells were used as control.

4.6. EV Isolation and Quantification by Nanoparticle Tracking Analysis–1 h Treatment

Differential centrifugation was carried out on the cell culture supernatants as follows: First the
supernatants were centrifuged at 4000× g for 1 h for removal of cell debris, followed by centrifuging the
collected supernatant at 100,000× g for 1 h/4 ◦C. The isolated EV pellets were then resuspended and
washed in Dulbecco’s PBS (DPBS), centrifuged at 100,000× g for 1 h/4 ◦C and thereafter resuspended
in 100 µL sterile EV-free PBS. Nanoparticle tracking analysis (NTA) was carried out using the NS300
Nanosight (Malvern Panalytical, Malvern, Worcestershire, UK), equipped with a sCMOS camera and
a 405 nm diode laser, to enumerate the EVs. Samples were diluted 1:10 in sterile-filtered EV-free
DPBS and the number of particles in the field of view was maintained in the rage of 20–40 with
a minimum concentration of samples at 5 × 107 particles/mL. Camera settings were according to
the manufacturer’s instructions (Malvern Panalytical), recording four 90 s videos per sample and
averaging the obtained replicate histograms. Each experiment was repeated three times.

4.7. Preparation of EVs for Transmission Electron Microscopy (TEM)

A suspension of isolated EVs was fixed with 2.5% glutaraldehyde in 100 mM sodium cacodylate
buffer (pH 7.0) for 1 h at 4 ◦C, whereafter they were gently pelleted, washed and re-suspended in
100 mM sodium cacodylate buffer (pH 7.0). Next, a drop (~5–10 µL) of the suspension was placed on
to a grid with carbon support film previously glow discharged. When the suspension had partly dried,
the grid was washed by touching it three times to the surface of a drop of distilled water. Excess water
was removed by touching the grid to a filter paper. A small drop of stain (2% aqueous Uranyl Acetate,
Sigma-Aldrich) was then applied to the grid. After 10 s the excess stain was removed by touching the
edge to a filter paper. The grid was dried at room temperature and thereafter the samples were viewed
in TEM.

4.8. miRNA Analysis in GBM Cells and Derived EVs

For assessment of microRNA cargo in the GBM-derived EVs, LN18 and LN229 cells were cultured
to 75% confluency in T75 flasks in DMEM supplemented with 10% FBS. The cells were washed with
EV-free DPBS and thereafter fresh EV and serum-free medium was added, containing Cl-amidine
(50 µM), TMZ (800 µM) or a combination of TMZ (800 µM) and Cl-amidine (50 µM), and 0.001%
DMSO for control treatment. After 1 h incubation time, the cell medium was collected for EV isolation
and the cells were pelleted for further RNA isolation and microRNA analysis. EVs were isolated as
described in 4.6 for RNA isolation, cDNA translation and assessment for expression of microRNAs
miR21 and miR126. Each experiment was repeated three times. RNA was extracted from treated
and non-treated control cells using Trizol (Sigma-Aldrich) and RNA concentration and purity was
measured using the NanoDrop Spectrophotometer at 260 and 280 nm absorbance. RNA was reverse
transcribed to cDNA using the qScript microRNA cDNA Synthesis Kit (Quantabio, Beverly, MA 01915,
USA) according to the manufacturer’s protocol. The resulting cDNA was used to assess the expression
of microRNAs miR21, the main microRNA associated with pro-oncogenic function, and miR126,
associated with protective function in GBM, while U6 was used as a reference RNA for normalisation
of miR expression levels. The PerfeCTa SYBR® Green SuperMix (Quantabiowas used together with
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MystiCq microRNA qPCR primers for both miR21 (hsa-miR-21-5p) and mir126 (hsa-miR-126-5p),
which were obtained from Sigma-Aldrich). The sequences for U6 primers were U6 forward,
5′-GCTTCGGCAGCACATATACTAAAAT-3′ and reverse 5′-CGCTTCACGAATTTGCGTGTCAT-3′.
The thermocycling conditions were as follows: Denaturation at 95 ◦C/2 min, followed by 40 cycles
at 95 ◦C/2 s and 60 ◦C/15 s, and extension at 72◦ C/15 s. The miR21 and miR126 expression
levels were normalized to that of U6 using the 2(−Delta Delta C(T)) method according to Livak and
Schmittgen [52].

4.9. Statistical Analysis

The histograms and graphs were prepared and statistical analysis was performed using GraphPad
Prism version 6 (GraphPad Software, San Diego, CA, USA). One-way ANOVA was performed followed
by Tukey’s post-hoc analysis. Experiments were repeated in triplicates, histograms represent mean of
data and standard error of mean (SEM) are indicated by the error bars. Significant differences were
considered as p ≤ 0.05.

5. Conclusions

Here we show novel roles for PAD-mediated deimination in two GBM cell lines, including the
identification of mitochondrial, nuclear and invadopodia-related protein targets. For the first time a
modulatory effect of pan-PAD-inhibitor Cl-amidine is shown on EV release and EV cargo in GBM cells.
Cl-amidine treatment resulted in reduction of pro-oncogenic miR21 and elevation of anti-oncogenic
miR126 in GBM cells and derived EVs, both when used alone or in combination with TMZ, the standard
chemotherapeutic drug for GBM. The two GBM cell lines under study varied in PAD isozymes,
indicating PAD-mediated contribution to GBM heterogeneity. Histone H3 deimination was found to
be reduced in GBM following Cl-amidine treatment. Furthermore, prohibitin (PHB), a multifaceted
protein involved in mitochondrial housekeeping and cancer chemo-resistance, was identified for the
first time to be post-translationally deiminated in GBM cells and reduced upon Cl-amidine treatment.
Our findings indicate that PAD-inhibition may be used to lower anti-chemotherapeutic responses of
GBM to TMZ and to modulate EV-mediated communication of GBM, both by affecting EV numbers
released and by modifying EV cargo to an anti-oncogenic signature.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/1/
103/s1. Table S1: Deiminated protein candidates identified by LC-MS/LS in LN18 and LN229 cells, Figure S1:
GBM cell viability after 1 h incubation with Cl-amidine, TMZ and Cl-amidine in combination with TMZ.
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Abbreviations

AHNAK Neuroblast differentiation-associated protein
citH3 Deiminated Histone H3
CNS Central Nervous System
DMEM Dulbecco’s Modified Eagle’s Medium
EVs Extracellular Vesicles
ER Endoplasmic Reticulum
FBS Foetal Bovine Serum
GBM Glioblastoma Multiforme
G3P Glyceraldehyde-3-phosphate dehydrogenase
GRP78 78 kDa glucose-regulated protein
HDAC Histone Deacetylase
LC-MS/MS Liquid Chromatography Mass Spectrometry
miRNA microRNA
MV Microvesicle
PAD Peptidylarginine Deiminase
PHB Prohibitin
STIM1 Stromal Interacting Molecule 1
TBS Tris Buffered Saline
TMZ Temozolomide

References

1. Brodbelt, A.; Greenberg, D.; Winters, T.; Williams, M.; Vernon, S.; Collins, V.P.; (UK) National Cancer
Information Network Brain Tumour Group. Glioblastoma in England: 2007–2011. Eur. J. Cancer 2015,
51, 533–542. [CrossRef] [PubMed]

2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2016, 66, 7–30. [CrossRef] [PubMed]
3. Rice, T.; Lachance, D.H.; Molinaro, A.M.; Eckel-Passow, J.E.; Walsh, K.M.; Barnholtz-Sloan, J.; Ostrom, Q.T.;

Francis, S.S.; Wiemels, J.; Jenkins, R.B.; et al. Understanding inherited genetic risk of adult glioma—A review.
Neurooncol. Pract. 2016, 3, 10–16. [CrossRef] [PubMed]

4. Lasda, E.; Parker, R. Circular RNAs Co-Precipitate with Extracellular Vesicles: A Possible Mechanism for
circRNA Clearance. PLoS ONE 2016, 11, e0148407. [CrossRef] [PubMed]

5. Fatima, F.; Nawaz, M. Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering
Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies. Non-Coding RNA 2017,
3, 10. [CrossRef] [PubMed]

6. Barbagallo, D.; Caponnetto, A.; Cirnigliaro, M.; Brex, D.; Barbagallo, C.; D’Angeli, F.; Morrone, A.;
Caltabiano, R.; Barbagallo, G.M.; Ragusa, M.; et al. CircSMARCA5 Inhibits Migration of Glioblastoma
Multiforme Cells by Regulating a Molecular Axis Involving Splicing Factors SRSF1/SRSF3/PTB. Int. J.
Mol. Sci. 2018, 19, 480. [CrossRef] [PubMed]

7. Pegtel, D.M.; Peferoen, L.; Amor, S. Extracellular vesicles as modulators of cell-to-cell communication in the
healthy and diseased brain. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369. [CrossRef]

8. Godlewski, J.; Krichevsky, A.M.; Johnson, M.D.; Chiocca, E.A.; Bronisz, A. Belonging to a network–
microRNAs, extracellular vesicles, and the glioblastoma microenvironment. Neuro Oncol. 2015, 17, 652–662.
[CrossRef]

9. Gourlay, J.; Morokoff, A.P.; Luwor, R.B.; Zhu, H.J.; Kaye, A.H.; Stylli, S.S. The emergent role of exosomes in
glioma. J. Clin. Neurosci. 2017, 35, 13–23. [CrossRef]

10. Anthiya, S.; Griveau, A.; Loussouarn, C.; Baril, P.; Garnett, M.; Issartel, J.P.; Garcion, E. MicroRNA-Based
Drugs for Brain Tumors. Trends Cancer 2018, 4, 222–238. [CrossRef]

11. Lefranc, F.; Le Rhun, E.; Kiss, R.; Weller, M. Glioblastoma quo vadis: Will migration and invasiveness
reemerge as therapeutic targets? Cancer Treat. Rev. 2018, 68, 145–154. [CrossRef] [PubMed]

12. Federici, C.; Petrucci, F.; Caimi, S.; Cesolini, A.; Logozzi, M.; Borghi, M.; D’Ilio, S.; Lugini, L.; Violante, N.;
Azzarito, T.; et al. Exosome release and low pH belong to a framework of resistance of human melanoma
cells to cisplatin. PLoS ONE 2014, 9, e88193. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ejca.2014.12.014
http://www.ncbi.nlm.nih.gov/pubmed/25661102
http://dx.doi.org/10.3322/caac.21332
http://www.ncbi.nlm.nih.gov/pubmed/26742998
http://dx.doi.org/10.1093/nop/npv026
http://www.ncbi.nlm.nih.gov/pubmed/26941959
http://dx.doi.org/10.1371/journal.pone.0148407
http://www.ncbi.nlm.nih.gov/pubmed/26848835
http://dx.doi.org/10.3390/ncrna3010010
http://www.ncbi.nlm.nih.gov/pubmed/29657282
http://dx.doi.org/10.3390/ijms19020480
http://www.ncbi.nlm.nih.gov/pubmed/29415469
http://dx.doi.org/10.1098/rstb.2013.0516
http://dx.doi.org/10.1093/neuonc/nou292
http://dx.doi.org/10.1016/j.jocn.2016.09.021
http://dx.doi.org/10.1016/j.trecan.2017.12.008
http://dx.doi.org/10.1016/j.ctrv.2018.06.017
http://www.ncbi.nlm.nih.gov/pubmed/30032756
http://dx.doi.org/10.1371/journal.pone.0088193
http://www.ncbi.nlm.nih.gov/pubmed/24516610


Int. J. Mol. Sci. 2019, 20, 103 18 of 23

13. Jorfi, S.; Ansa-Addo, E.; Kholia, S.; Stratton, D.; Valley, S.; Lange, S.; Inal, J. Inhibition of microvesiculation
sensitizes prostate cancer cells to chemotherapy and reduces docetaxel dose required to limit tumor growth
in vivo. Sci. Rep. 2015, 5, 13006. [CrossRef] [PubMed]

14. Kholia, S.; Jorfi, S.; Thompson, P.R.; Causey, C.P.; Nicholas, A.P.; Inal, J.; Lange, S. A Novel Role for
Peptidylarginine Deiminases (PADs) in Microvesicle Release: A Therapeutic Potential for PAD Inhibitors to
Sensitize Prostate Cancer Cells to Chemotherapy. J. Extracell. Vesicles 2015, 4, 26192. [CrossRef] [PubMed]

15. Koch, R.; Aung, T.; Vogel, D.; Chapuy, B.; Wenzel, D.; Becker, S.; Sinzig, U.; Venkataramani, V.; von Mach, T.;
Jacob, R.; et al. Nuclear Trapping through Inhibition of Exosomal Export by Indomethacin Increases
Cytostatic Efficacy of Doxorubicin and Pixantrone. Clin. Cancer Res. 2016, 22, 395–404. [CrossRef] [PubMed]

16. Muralidharan-Chari, V.; Kohan, H.G.; Asimakopoulos, A.G.; Sudha, T.; Sell, S.; Kannan, K.; Boroujerdi, M.;
Davis, P.J.; Mousa, S.A. Microvesicle removal of anticancer drugs contributes to drug resistance in human
pancreatic cancer cells. Oncotarget 2016, 7, 50365–50379. [CrossRef] [PubMed]

17. Kosgodage, U.S.; Trindade, R.P.; Thompson, P.R.; Inal, J.M.; Lange, S. Chloramidine/Bisindolylmaleimide-I-
Mediated Inhibition of Exosome and Microvesicle Release and Enhanced Efficacy of Cancer Chemotherapy.
Int. J. Mol. Sci. 2017, 18, 1007. [CrossRef]

18. Kosgodage, U.S.; Mould, R.; Henley, A.B.; Nunn, A.V.; Guy, G.W.; Thomas, E.L.; Inal, J.M.; Bell, J.D.;
Lange, S. Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer.
Front. Pharmacol. 2018, 9, 889. [CrossRef]

19. Lange, S.; Gallagher, M.; Kholia, S.; Kosgodage, U.S.; Hristova, M.; Hardy, J.; Inal, J.M. Peptidylarginine
Deiminases—Roles in Cancer and Neurodegeneration and Possible Avenues for Therapeutic Intervention
via Modulation of Exosome and Microvesicle (EMV) Release? Int. J. Mol. Sci. 2017, 18, 1196. [CrossRef]

20. Lange, S.; Kholia, S.; Kosgodage, U.S.; Inal, J.M. Treatment of prostate cancer using deimination
antagonists and microvesicle technology. In Protein Deimination in Human Health and Disease; Nicholas, A.,
Bhattacharya, S., Thompson, P., Eds.; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-58244-3.

21. Vossenaar, E.R.; Zendman, A.J.; van Venrooij, W.J.; Pruijn, G.J. PAD, a growing family of citrullinating
enzymes: Genes, features and involvement in disease. Bioessays 2003, 25, 1106–1118. [CrossRef]

22. György, B.; Toth, E.; Tarcsa, E.; Falus, A.; Buzas, E.I. Citrullination: A posttranslational modification in health
and disease. Int. J. Biochem. Cell Biol. 2006, 38, 1662–1677. [CrossRef] [PubMed]

23. Wang, S.; Wang, Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis.
Biochim. Biophys. Acta 2013, 1829, 1126–1135. [CrossRef] [PubMed]

24. Witalison, E.E.; Thompson, P.R.; Hofseth, L.J. Protein Arginine Deiminases and Associated Citrullination:
Physiological Functions and Diseases Associated with Dysregulation. Curr. Drug Targets 2015, 16, 700–710.
[CrossRef] [PubMed]

25. Bicker, K.L.; Thompson, P.R. The protein arginine deiminases: Structure, function, inhibition, and disease.
Biopolymers 2013, 99, 155–163. [CrossRef] [PubMed]

26. Tarcsa, E.; Marekov, L.N.; Mei, G.; Melino, G.; Lee, S.C.; Steinert, P.M. Protein unfolding by peptidylarginine
deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and
filaggrin. J. Biol. Chem. 1996, 271, 30709–30716. [CrossRef] [PubMed]

27. Nemmara, V.V.; Tilvawala, R.; Salinger, A.J.; Miller, L.; Nguyen, S.H.; Weerapana, E.; Thompson, P.R.
Citrullination Inactivates Nicotinamide-N-methyltransferase. ACS Chem. Biol. 2018, 13, 2663–2672. [CrossRef]
[PubMed]

28. Henderson, B.; Martin, A.C. Protein moonlighting: A new factor in biology and medicine. Biochem. Soc. Trans.
2014, 42, 1671–1678. [CrossRef]

29. Jeffrey, C.J. Protein moonlighting: What is it, and why is it important? Philos. Trans. R. Soc. B Biol. Sci. 2018,
373, 20160523. [CrossRef]

30. Nomura, K. Specificity and mode of action of the muscle-type protein-arginine deiminase. Arch. Biochem.
Biophys. 1992, 293, 362–369. [CrossRef]

31. Nicholas, A.P.; Lu, L.; Heaven, M.; Kadish, I.; van Groen, T.; Accavitti-Loper, M.A.; Wewering, S.; Kofskey, D.;
Gambetti, P.; Brenner, M. Ongoing studies of deimination in neurodegenerative diseases using the F95
antibody. In Protein Deimination in Human Health and Disease; Nicholas, A.P., Bhattacharya, S.K., Eds.;
Springer: New York, NY, USA, 2014; pp. 257–280.

32. Chang, X.; Han, J. Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol. Carcinog.
2006, 45, 183–196. [CrossRef]

http://dx.doi.org/10.1038/srep13006
http://www.ncbi.nlm.nih.gov/pubmed/26302712
http://dx.doi.org/10.3402/jev.v4.26192
http://www.ncbi.nlm.nih.gov/pubmed/26095379
http://dx.doi.org/10.1158/1078-0432.CCR-15-0577
http://www.ncbi.nlm.nih.gov/pubmed/26369630
http://dx.doi.org/10.18632/oncotarget.10395
http://www.ncbi.nlm.nih.gov/pubmed/27391262
http://dx.doi.org/10.3390/ijms18051007
http://dx.doi.org/10.3389/fphar.2018.00889
http://dx.doi.org/10.3390/ijms18061196
http://dx.doi.org/10.1002/bies.10357
http://dx.doi.org/10.1016/j.biocel.2006.03.008
http://www.ncbi.nlm.nih.gov/pubmed/16730216
http://dx.doi.org/10.1016/j.bbagrm.2013.07.003
http://www.ncbi.nlm.nih.gov/pubmed/23860259
http://dx.doi.org/10.2174/1389450116666150202160954
http://www.ncbi.nlm.nih.gov/pubmed/25642720
http://dx.doi.org/10.1002/bip.22127
http://www.ncbi.nlm.nih.gov/pubmed/23175390
http://dx.doi.org/10.1074/jbc.271.48.30709
http://www.ncbi.nlm.nih.gov/pubmed/8940048
http://dx.doi.org/10.1021/acschembio.8b00578
http://www.ncbi.nlm.nih.gov/pubmed/30044909
http://dx.doi.org/10.1042/BST20140273
http://dx.doi.org/10.1098/rstb.2016.0523
http://dx.doi.org/10.1016/0003-9861(92)90407-N
http://dx.doi.org/10.1002/mc.20169


Int. J. Mol. Sci. 2019, 20, 103 19 of 23

33. Masutomi, H.; Kawashima, S.; Kondo, Y.; Uchida, Y.; Jang, B.; Choi, E.K.; Kim, Y.S.; Shimokado, K.;
Ishigami, A. Induction of peptidylarginine deiminase 2 and 3 by dibutyryl cAMP via cAMP-PKA signaling
in human astrocytoma U-251MG cells. J. Neurosci. Res. 2017, 95, 1503–1512. [CrossRef] [PubMed]

34. Sase, T.; Arito, M.; Onodera, H.; Omoteyama, K.; Kurokawa, M.S.; Kagami, Y.; Ishigami, A.; Tanaka, Y.;
Kato, T. Hypoxia-induced production of peptidylarginine deiminases and citrullinated proteins in malignant
glioma cells. Biochem. Biophys. Res. Commun. 2017, 482, 50–56. [CrossRef] [PubMed]

35. Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.;
Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
N. Engl. J. Med. 2005, 352, 987–996. [CrossRef] [PubMed]

36. Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.;
Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the
central nervous system: A summary. Acta Neuropathol. 2016, 131, 803–820. [CrossRef] [PubMed]

37. Lange, S.; Rocha-Ferreira, E.; Thei, L.; Mawjee, P.; Bennett, K.; Thompson, P.R.; Subramanian, V.;
Nicholas, A.P.; Peebles, D.; Hristova, M.; et al. Peptidylarginine deiminases: Novel drug targets for
prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. J. Neurochem. 2014,
130, 555–562. [CrossRef] [PubMed]

38. Lange, S. Peptidylarginine Deiminases as Drug Targets in Neonatal Hypoxic-Ischemic Encephalopathy.
Front. Neurol. 2016, 7, 22. [CrossRef] [PubMed]

39. Subramanian, V.; Nicholas, A.P.; Thompson, P.R.; Ferretti, P. Modulation of calcium-induced cell death in
human neural stem cells by the novel peptidylarginine deiminase-AIF pathway. Biochim. Biophys. Acta 2014,
1843, 1162–1171.

40. Peng, Y.T.; Chen, P.; Ouyang, R.Y.; Song, L. Multifaceted role of prohibitin in cell survival and apoptosis.
Apoptosis 2015, 20, 1135–1149. [CrossRef] [PubMed]

41. Ande, S.R.; Moulik, S.; Mishra, S. Interaction between O-GlcNAc modification and tyrosine phosphorylation
of prohibitin: Implication for a novel binary switch. PLoS ONE 2009, 4, e4586. [CrossRef] [PubMed]

42. Boland, M.L.; Chourasia, A.H.; Macleod, K.F. Mitochondrial dysfunction in cancer. Front. Oncol. 2013, 3, 292.
[CrossRef] [PubMed]

43. Danese, A.; Patergnani, S.; Bonora, M.; Wieckowski, M.R.; Previati, M.; Giorgi, C.; Pinton, P. Calcium
regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs).
Biochim. Biophys. Acta 2017, 1858, 615–627. [CrossRef] [PubMed]

44. Cheng, J.; Gao, F.; Chen, X.; Wu, J.; Xing, C.; Lv, Z.; Xu, W.; Xie, Q.; Wu, L.; Ye, S.; et al. Prohibitin-2 promotes
hepatocellular carcinoma malignancy progression in hypoxia based on a label-free quantitative proteomics
strategy. Mol. Carcinog. 2014, 53, 820–832. [CrossRef] [PubMed]

45. Tortelli, T.C.J.; de Godoy, L.M.F.; de Souza, G.A.; Bonatto, D.; Otake, A.H.; de Freitas Saito, R.; Rosa, J.C.;
Greene, L.J.; Chammas, R. Accumulation of prohibitin is a common cellular response to different stressing
stimuli and protects melanoma cells from ER stress and chemotherapy-induced cell death. Oncotarget 2017,
8, 43114–43129.

46. Chan, J.A.; Krichevsky, A.M.; Kosik, K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma
cells. Cancer Res. 2005, 65, 6029–6033. [CrossRef] [PubMed]

47. Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Sena-Esteves, M.; Curry, W.T., Jr.; Carter, B.S.;
Krichevsky, A.M.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote
tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 2008, 10, 1470–1476. [CrossRef] [PubMed]

48. Han, I.B.; Kim, M.; Lee, S.H.; Kim, J.K.; Kim, S.H.; Chang, J.H.; Teng, Y.D. Down-regulation of MicroRNA-126
in Glioblastoma and its Correlation with Patient Prognosis: A Pilot Study. Anticancer Res. 2016, 36, 6691–6697.
[CrossRef] [PubMed]

49. Lee, S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016, 3, 198–210. [CrossRef]
50. Nicholas, A.P.; Whitaker, J.N. Preparation of a monoclonal antibody to citrullinated epitopes: Its characterization

and some applications to immunohistochemistry in human brain. Glia 2002, 37, 328–336. [CrossRef]
51. Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.;

Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018
(MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the
MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [CrossRef]

http://dx.doi.org/10.1002/jnr.23959
http://www.ncbi.nlm.nih.gov/pubmed/27704563
http://dx.doi.org/10.1016/j.bbrc.2016.10.154
http://www.ncbi.nlm.nih.gov/pubmed/27818200
http://dx.doi.org/10.1056/NEJMoa043330
http://www.ncbi.nlm.nih.gov/pubmed/15758009
http://dx.doi.org/10.1007/s00401-016-1545-1
http://www.ncbi.nlm.nih.gov/pubmed/27157931
http://dx.doi.org/10.1111/jnc.12744
http://www.ncbi.nlm.nih.gov/pubmed/24762056
http://dx.doi.org/10.3389/fneur.2016.00022
http://www.ncbi.nlm.nih.gov/pubmed/26941709
http://dx.doi.org/10.1007/s10495-015-1143-z
http://www.ncbi.nlm.nih.gov/pubmed/26091791
http://dx.doi.org/10.1371/journal.pone.0004586
http://www.ncbi.nlm.nih.gov/pubmed/19238206
http://dx.doi.org/10.3389/fonc.2013.00292
http://www.ncbi.nlm.nih.gov/pubmed/24350057
http://dx.doi.org/10.1016/j.bbabio.2017.01.003
http://www.ncbi.nlm.nih.gov/pubmed/28087257
http://dx.doi.org/10.1002/mc.22040
http://www.ncbi.nlm.nih.gov/pubmed/23661548
http://dx.doi.org/10.1158/0008-5472.CAN-05-0137
http://www.ncbi.nlm.nih.gov/pubmed/16024602
http://dx.doi.org/10.1038/ncb1800
http://www.ncbi.nlm.nih.gov/pubmed/19011622
http://dx.doi.org/10.21873/anticanres.11280
http://www.ncbi.nlm.nih.gov/pubmed/27920004
http://dx.doi.org/10.1016/j.gendis.2016.04.007
http://dx.doi.org/10.1002/glia.10039
http://dx.doi.org/10.1080/20013078.2018.1535750


Int. J. Mol. Sci. 2019, 20, 103 20 of 23

52. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [CrossRef]

53. Darrah, E.; Rosen, A.; Giles, J.T.; Andrade, F. Peptidylarginine deiminase 2, 3 and 4 have distinct
specificities against cellular substrates: Novel insights into autoantigen selection in rheumatoid arthritis.
Ann. Rheum. Dis. 2012, 71, 92–98. [CrossRef] [PubMed]

54. Knuckley, B.; Causey, C.P.; Jones, J.E.; Bhatia, M.; Dreyton, C.J.; Osborne, T.C.; Takahara, H.; Thompson, P.R.
Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein
arginine deiminase 3. Biochemistry 2010, 49, 4852–4863. [CrossRef] [PubMed]

55. Assohou-Luty, C.; Raijmakers, R.; Benckhuijsen, W.E.; Stammen-Vogelzangs, J.; de Ru, A.; van Veelen, P.A.;
Franken, K.L.; Drijfhout, J.W.; Pruijn, G.J. The human peptidylarginine deiminases type 2 and type 4 have
distinct substrate specificities. Biochim. Biophys. Acta 2014, 1844, 829–836. [CrossRef] [PubMed]

56. Wang, Y.; Wysocka, J.; Sayegh, J.; Lee, Y.H.; Perlin, J.R.; Leonelli, L.; Sonbuchner, L.S.; McDonald, C.H.;
Cook, R.G.; Dou, Y.; et al. Human PAD4 regulates histone arginine methylation levels via demethylimination.
Science 2004, 306, 279–283. [CrossRef] [PubMed]

57. Cuthbert, G.L.; Daujat, S.; Snowden, A.W.; Erdjument-Bromage, H.; Hagiwara, T.; Yamada, M.; Schneider, R.;
Gregory, P.D.; Tempst, P.; Bannister, A.J.; et al. Histone deimination antagonizes arginine methylation. Cell
2004, 118, 545–553. [CrossRef] [PubMed]

58. Zhang, X.; Bolt, M.; Guertin, M.J.; Chen, W.; Zhang, S.; Cherrington, B.D.; Slade, D.J.; Dreyton, C.J.;
Subramanian, V.; Bicker, K.L.; et al. Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination
facilitates estrogen receptor α target gene activation. Proc. Natl. Acad. Sci. USA 2012, 109, 13331–13336.
[CrossRef] [PubMed]

59. Asaga, H.; Nakashima, K.; Senshu, T.; Ishigami, A.; Yamada, M. Immunocytochemical localization of
peptidylarginine deiminase in human eosinophils and neutrophils. J. Leukoc. Biol. 2001, 70, 46–51.

60. Nakashima, K.; Hagiwara, T.; Yamada, M. Nuclear localization of peptidylarginine deiminase V and histone
deimination in granulocytes. J. Biol. Chem. 2002, 277, 49562–49568. [CrossRef]

61. Lange, S.; Gögel, S.; Leung, K.Y.; Vernay, B.; Nicholas, A.P.; Causey, C.P.; Thompson, P.R.; Greene, N.D.;
Ferretti, P. Protein deiminases: New players in the developmentally regulated loss of neural regenerative
ability. Dev. Biol. 2011, 355, 205–214. [CrossRef]

62. Guo, W.; Zheng, Y.; Xu, B.; Ma, F.; Li, C.; Zhang, X.; Wang, Y.; Chang, X. Investigating the expression, effect
and tumorigenic pathway of PADI2 in tumors. Onco Targets Ther. 2017, 10, 1475–1485. [CrossRef]

63. Cherrington, B.D.; Zhang, X.; McElwee, J.L.; Morency, E.; Anguish, L.J.; Coonrod, S.A. Potential role for
PAD2 in gene regulation in breast cancer cells. PLoS ONE 2012, 7, e41242. [CrossRef] [PubMed]

64. Tanikawa, C.; Ueda, K.; Nakagawa, H.; Yoshida, N.; Nakamura, Y.; Matsuda, K. Regulation of protein
Citrullination through p53/PADI4 network in DNA damage response. Cancer Res. 2009, 69, 8761–8769.
[CrossRef]

65. Zhang, X.; Gamble, M.J.; Stadler, S.; Cherrington, B.D.; Causey, C.P.; Thompson, P.R.; Roberson, M.S.;
Kraus, W.L.; Coonrod, S.A. Genome-wide analysis reveals PADI4 cooperates with Elk-1 to activate c-Fos
expression in breast cancer cells. PLoS Genet. 2011, 7, e1002112. [CrossRef] [PubMed]

66. Zheng, Y.; Zhao, G.; Xu, B.; Liu, C.; Li, C.; Zhang, X.; Chang, X. PADI4 has genetic susceptibility to gastric
carcinoma and upregulates CXCR2, KRT14 and TNF-α expression levels. Oncotarget 2016, 7, 62159–62176.
[CrossRef] [PubMed]

67. Li, P.; Wang, D.; Yao, H.; Doret, P.; Hao, G.; Shen, Q.; Qiu, H.; Zhang, X.; Wang, Y.; Chen, G.; et al. Coordination
of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene 2010, 29, 3153–3162.
[CrossRef]

68. Luo, Y.; Arita, K.; Bhatia, M.; Knuckley, B.; Lee, Y.H.; Stallcup, M.R.; Sato, M.; Thompson, P.R. Inhibitors and
inactivators of protein arginine deiminase 4: Functional and structural characterization. Biochemistry 2006,
45, 11727–11736. [CrossRef] [PubMed]

69. Slack, J.L.; Causey, C.P.; Thompson, P.R. Protein arginine deiminase 4: A target for an epigenetic cancer
therapy. Cell Mol. Life Sci. 2011, 68, 709–720. [CrossRef] [PubMed]

70. Willis, V.C.; Gizinski, A.M.; Banda, N.K.; Causey, C.P.; Knuckley, B.; Cordova, K.N.; Luo, Y.; Levitt, B.;
Glogowska, M.; Chandra, P.; et al. N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein
arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J. Immunol. 2011,
186, 4396–4404. [CrossRef]

http://dx.doi.org/10.1006/meth.2001.1262
http://dx.doi.org/10.1136/ard.2011.151712
http://www.ncbi.nlm.nih.gov/pubmed/21859690
http://dx.doi.org/10.1021/bi100363t
http://www.ncbi.nlm.nih.gov/pubmed/20469888
http://dx.doi.org/10.1016/j.bbapap.2014.02.019
http://www.ncbi.nlm.nih.gov/pubmed/24594197
http://dx.doi.org/10.1126/science.1101400
http://www.ncbi.nlm.nih.gov/pubmed/15345777
http://dx.doi.org/10.1016/j.cell.2004.08.020
http://www.ncbi.nlm.nih.gov/pubmed/15339660
http://dx.doi.org/10.1073/pnas.1203280109
http://www.ncbi.nlm.nih.gov/pubmed/22853951
http://dx.doi.org/10.1074/jbc.M208795200
http://dx.doi.org/10.1016/j.ydbio.2011.04.015
http://dx.doi.org/10.2147/OTT.S92389
http://dx.doi.org/10.1371/journal.pone.0041242
http://www.ncbi.nlm.nih.gov/pubmed/22911765
http://dx.doi.org/10.1158/0008-5472.CAN-09-2280
http://dx.doi.org/10.1371/journal.pgen.1002112
http://www.ncbi.nlm.nih.gov/pubmed/21655091
http://dx.doi.org/10.18632/oncotarget.11398
http://www.ncbi.nlm.nih.gov/pubmed/27556695
http://dx.doi.org/10.1038/onc.2010.51
http://dx.doi.org/10.1021/bi061180d
http://www.ncbi.nlm.nih.gov/pubmed/17002273
http://dx.doi.org/10.1007/s00018-010-0480-x
http://www.ncbi.nlm.nih.gov/pubmed/20706768
http://dx.doi.org/10.4049/jimmunol.1001620


Int. J. Mol. Sci. 2019, 20, 103 21 of 23

71. Bicker, K.L.; Anguish, L.; Chumanevich, A.A.; Cameron, M.D.; Cui, X.; Witalison, E.; Subramanian, V.;
Zhang, X.; Chumanevich, A.P.; Hofseth, L.J.; et al. D-amino acid based protein arginine deiminase inhibitors:
Synthesis, pharmacokinetics, and in cellulo efficacy. ACS Med. Chem. Lett. 2012, 3, 1081–1085. [CrossRef]

72. Wei, L.; Wasilewski, E.; Chakka, S.K.; Bello, A.M.; Moscarello, M.A.; Kotra, L.P. Novel inhibitors of protein
arginine deiminase with potential activity in multiple sclerosis animal model. J. Med. Chem. 2013, 56, 1715–1722.
[CrossRef]

73. Bozdag, M.; Dreker, T.; Henry, C.; Tosco, P.; Vallaro, M.; Fruttero, R.; Scozzafava, A.; Carta, F.; Supuran, C.T.
Novel small molecule protein arginine deiminase 4 (PAD4) inhibitors. Bioorg. Med. Chem. Lett. 2013,
23, 715–719. [CrossRef] [PubMed]

74. Ferretti, P.; Vagaska, B.; Merchant, R.; Matthews, C.J.; Marson, C.M. Discovery of a structurally novel,
drug-like and potent inhibitor of peptidylarginine deiminase. Med. Chem. Commun. 2013, 4, 1109–1113.
[CrossRef]

75. Knight, J.S.; Subramanian, V.; O’Dell, A.A.; Yalavarthi, S.; Zhao, W.; Smith, C.K.; Hodgin, J.B.; Thompson, P.R.;
Kaplan, M.J. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney,
skin and vascular disease in lupus-prone MRL/lpr mice. Ann. Rheum. Dis. 2015, 74, 2199–2206. [CrossRef]
[PubMed]

76. Lewis, H.D.; Liddle, J.; Coote, J.E.; Atkinson, S.J.; Barker, M.D.; Bax, B.D.; Bicker, K.L.; Bingham, R.P.;
Campbell, M.; Chen, Y.H.; et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET
formation. Nat. Chem. Biol. 2015, 11, 189–191. [CrossRef] [PubMed]

77. Subramanian, V.; Knight, J.S.; Parelkar, S.; Anguish, L.; Coonrod, S.A.; Kaplan, M.J.; Thompson, P.R. Design,
synthesis, and biological evaluation of tetrazole analogs of Cl-amidine as protein arginine deiminase
inhibitors. J. Med. Chem. 2015, 58, 1337–1344. [CrossRef] [PubMed]

78. Trabocchi, A.; Pala, N.; Krimmelbein, I.; Menchi, G.; Guarna, A.; Sechi, M.; Dreker, T.; Scozzafava, A.;
Supuran, C.T.; Carta, F. Peptidomimetics as protein arginine deiminase 4 (PAD4) inhibitors. J. Enzym. Inhib.
Med. Chem. 2015, 30, 466–471. [CrossRef] [PubMed]

79. Jamali, H.; Khan, H.A.; Tjin, C.C.; Ellman, J.A. Cellular activity of new small molecule protein arginine
deiminase 3 (PAD3) inhibitors. ACS Med. Chem. Lett. 2016, 7, 847–851. [CrossRef]

80. Muth, A.; Subramanian, V.; Beaumont, E.; Nagar, M.; Kerry, P.; McEwan, P.; Srinath, H.; Clancy, K.; Parelkar, S.;
Thompson, P.R. Development of a selective inhibitor of protein arginine deiminase 2. J. Med. Chem. 2017,
60, 3198–3211. [CrossRef]

81. Mondal, S.; Parelkar, S.S.; Nagar, M.; Thompson, P.R. Photochemical Control of Protein Arginine Deiminase
(PAD) Activity. ACS Chem. Biol. 2018, 13, 1057–1065. [CrossRef]

82. Kenig, S.; Frangež, R.; Pucer, A.; Lah, T. Inhibition of cathepsin L lowers the apoptotic threshold of
glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7. Apoptosis 2011, 16, 671–682.
[CrossRef]

83. Chen, W.; Qi, J.; Bao, G.; Wang, T.; Du, C.W.; Wang, M.D. Emerging role of microRNA-27a in human
malignant glioma cell survival via targeting of prohibitin. Mol. Med. Rep. 2015, 12, 1515–1523. [CrossRef]
[PubMed]

84. Hiratsuka, M.; Inoue, T.; Toda, T.; Kimura, N.; Shirayoshi, Y.; Kamitani, H.; Watanabe, T.; Ohama, E.;
Tahimic, C.G.; Kurimasa, A.; et al. Proteomics-based identification of differentially expressed genes in human
gliomas: Down-regulation of SIRT2 gene. Biochem. Biophys. Res. Commun. 2003, 309, 558–566. [CrossRef]
[PubMed]

85. Iwadate, Y.; Sakaida, T.; Hiwasa, T.; Nagai, Y.; Ishikura, H.; Takiguchi, M.; Yamaura, A. Molecular
classification and survival prediction in human gliomas based on proteome analysis. Cancer Res. 2004,
64, 2496–2501. [CrossRef] [PubMed]

86. Zhou, J.Q.; Wang, J.T.; Liu, Q.H.; Guo, X.B.; Zhou, J.; Song, L.J. Proteomic profiling and identification of
malignant grade related proteins in human brain astrocytoma. Chin. J. Nanomed. 2012, 11, 780–783.

87. Mishra, S.; Ande, S.R.; Nyomba, B.L. The role of prohibitin in cell signaling. FEBS J. 2010, 277, 3937–3946.
[CrossRef] [PubMed]

88. Fletcher, C.E.; Dart, D.A.; Sita-Lumsden, A.; Cheng, H.; Rennie, P.S.; Bevan, C.L. Androgen-regulated
processing of the oncomir miR-27a, which targets Prohibitin in prostate cancer. Hum. Mol. Genet. 2012,
21, 3112–3127. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/ml300288d
http://dx.doi.org/10.1021/jm301755q
http://dx.doi.org/10.1016/j.bmcl.2012.11.102
http://www.ncbi.nlm.nih.gov/pubmed/23265898
http://dx.doi.org/10.1039/c3md00091e
http://dx.doi.org/10.1136/annrheumdis-2014-205365
http://www.ncbi.nlm.nih.gov/pubmed/25104775
http://dx.doi.org/10.1038/nchembio.1735
http://www.ncbi.nlm.nih.gov/pubmed/25622091
http://dx.doi.org/10.1021/jm501636x
http://www.ncbi.nlm.nih.gov/pubmed/25559347
http://dx.doi.org/10.3109/14756366.2014.947976
http://www.ncbi.nlm.nih.gov/pubmed/25198885
http://dx.doi.org/10.1021/acsmedchemlett.6b00215
http://dx.doi.org/10.1021/acs.jmedchem.7b00274
http://dx.doi.org/10.1021/acschembio.8b00053
http://dx.doi.org/10.1007/s10495-011-0600-6
http://dx.doi.org/10.3892/mmr.2015.3475
http://www.ncbi.nlm.nih.gov/pubmed/25777779
http://dx.doi.org/10.1016/j.bbrc.2003.08.029
http://www.ncbi.nlm.nih.gov/pubmed/12963026
http://dx.doi.org/10.1158/0008-5472.CAN-03-1254
http://www.ncbi.nlm.nih.gov/pubmed/15059904
http://dx.doi.org/10.1111/j.1742-4658.2010.07809.x
http://www.ncbi.nlm.nih.gov/pubmed/20840588
http://dx.doi.org/10.1093/hmg/dds139
http://www.ncbi.nlm.nih.gov/pubmed/22505583


Int. J. Mol. Sci. 2019, 20, 103 22 of 23

89. Qian, X.; Zhao, P.; Li, W.; Shi, Z.M.; Wang, L.; Xu, Q.; Wang, M.; Liu, N.; Liu, L.Z.; Jiang, B.H. MicroRNA-26a
promotes tumor growth and angiogenesis in glioma by directly targeting prohibitin. CNS Neurosci. Ther.
2013, 19, 804–812. [CrossRef]

90. Silva, T.A.; Smuczek, B.; Valadão, I.C.; Dzik, L.M.; Iglesia, R.P.; Cruz, M.C.; Zelanis, A.; de Siqueira, A.S.;
Serrano, S.M.; Goldberg, G.S.; et al. AHNAK enables mammary carcinoma cells to produce extracellular
vesicles that increase neighboring fibroblast cell motility. Oncotarget 2016, 7, 49998–50016. [CrossRef]

91. Liou, J.; Kim, M.L.; Heo, W.D.; Jones, J.T.; Myers, J.W.; Ferrell, J.E., Jr.; Meyer, T. STIM is a Ca2+ sensor
essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 2005, 15, 1235–1241. [CrossRef]

92. Spassova, M.A.; Soboloff, J.; He, L.P.; Xu, W.; Dziadek, M.A.; Gill, D.L. STIM1 has a plasma membrane role
in the activation of store-operated Ca2+ channels. Proc. Natl. Acad. Sci. USA 2006, 103, 4040–4045. [CrossRef]

93. Motiani, R.K.; Hyzinski-García, M.C.; Zhang, X.; Henkel, M.M.; Abdullaev, I.F.; Kuo, Y.H.; Matrougui, K.;
Mongin, A.A.; Trebak, M. STIM1 and Orai1 mediate CRAC channel activity and are essential for human
glioblastoma invasion. Pflugers Arch. 2013, 465, 1249–1260. [CrossRef] [PubMed]

94. Li, G.; Zhang, Z.; Wang, R.; Ma, W.; Yang, Y.; Wei, J.; Wei, Y. Suppression of STIM1 inhibits human
glioblastoma cell proliferation and induces G0/G1 phase arrest. J. Exp. Clin. Cancer Res. 2013, 32, 20.
[CrossRef] [PubMed]

95. Wang, Q.; Lu, X.; Zhao, S.; Pang, M.; Wu, X.; Wu, H.; Hoffman, R.M.; Yang, Z.; Zhang, Y. Moesin Expression Is
Associated with Glioblastoma Cell Proliferation and Invasion. Anticancer Res. 2017, 37, 2211–2218. [CrossRef]
[PubMed]

96. Zhu, X.; Morales, F.C.; Agarwal, N.K.; Dogruluk, T.; Gagea, M.; Georgescu, M.M. Moesin is a glioma
progression marker that induces proliferation and Wnt/β-catenin pathway activation via interaction with
CD44. Cancer Res. 2013, 73, 1142–1155. [CrossRef] [PubMed]

97. Wang, Q.; Lu, X.; Wang, J.; Yang, Z.; Hoffman, R.M.; Wu, X. Moesin Up-regulation Is Associated
with Enhanced Tumor Progression Imaged Non-invasively in an Orthotopic Mouse Model of Human
Glioblastoma. Anticancer Res. 2018, 38, 3267–3272. [CrossRef] [PubMed]

98. Mallawaaratchy, D.M.; Hallal, S.; Russell, B.; Ly, L.; Ebrahimkhani, S.; Wei, H.; Christopherson, R.I.;
Buckland, M.E.; Kaufman, K.L. Comprehensive proteome profiling of glioblastoma-derived extracellular
vesicles identifies markers for more aggressive disease. J. Neurooncol. 2017, 131, 233–244. [CrossRef]
[PubMed]

99. Latham, J.A.; Dent, S.Y. Cross-regulation of histone modifications. Nat. Struct. Mol. Biol. 2007, 14, 1017–1024.
[CrossRef]

100. Bird, A. Perceptions of epigenetics. Nature 2007, 447, 396–398. [CrossRef]
101. Hagiwara, T.; Hidaka, Y.; Yamada, M. Deimination of histone H2A and H4 at arginine 3 in HL-60 granulocytes.

Biochemistry 2005, 44, 5827–5834. [CrossRef]
102. Sohn, D.H.; Rhodes, C.; Onuma, K.; Zhao, X.; Sharpe, O.; Gazitt, T.; Shiao, R.; Fert-Bober, J.; Cheng, D.;

Lahey, L.J.; et al. Local Joint inflammation and histone citrullination in a murine model of the transition from
preclinical autoimmunity to inflammatory arthritis. Arthritis Rheumatol. 2015, 67, 2877–2887. [CrossRef]

103. Chen, R.; Kang, R.; Fan, X.-G.; Tang, D. Release and activity of histone in diseases. Cell Death Dis. 2014,
5, e1370. [CrossRef] [PubMed]

104. Williams, M.J.; Singleton, W.G.; Lowis, S.P.; Malik, K.; Kurian, K.M. Therapeutic Targeting of Histone
Modifications in Adult and Pediatric High-Grade Glioma. Front. Oncol. 2017, 7, 45. [CrossRef] [PubMed]

105. Clancy, K.W.; Russell, A.M.; Subramanian, V.; Nguyen, H.; Qian, Y.; Campbell, R.M.; Thompson, P.R.
Citrullination/Methylation Crosstalk on Histone H3 Regulates ER-Target Gene Transcription.
ACS Chem. Biol. 2017, 12, 1691–1702. [CrossRef] [PubMed]

106. Denis, H.; Deplus, R.; Putmans, P.; Yamada, M.; Métivier, R.; Fuks, F. Functional connection between
deimination and deacetylation of histones. Mol. Cell Biol. 2009, 29, 4982–4993. [CrossRef] [PubMed]

107. DeVore, S.B.; Young, C.H.; Li, G.; Sundararajan, A.; Ramaraj, T.; Mudge, J.; Schilkey, F.; Muth, A.;
Thompson, P.R.; Cherrington, B.D. Histone citrullination represses miRNA expression resulting in increased
oncogene mRNAs in somatolactotrope cells. Mol. Cell Biol. 2018, 38, e00084-18. [CrossRef] [PubMed]

108. McNee, G.; Eales, K.L.; Wei, W.; Williams, D.S.; Barkhuizen, A.; Bartlett, D.B.; Essex, S.; Anandram, S.;
Filer, A.; Moss, P.A.; et al. Citrullination of histone H3 drives IL-6 production by bone marrow mesenchymal
stem cells in MGUS and multiple myeloma. Leukemia 2017, 31, 373–381. [CrossRef]

http://dx.doi.org/10.1111/cns.12149
http://dx.doi.org/10.18632/oncotarget.10307
http://dx.doi.org/10.1016/j.cub.2005.05.055
http://dx.doi.org/10.1073/pnas.0510050103
http://dx.doi.org/10.1007/s00424-013-1254-8
http://www.ncbi.nlm.nih.gov/pubmed/23515871
http://dx.doi.org/10.1186/1756-9966-32-20
http://www.ncbi.nlm.nih.gov/pubmed/23578185
http://dx.doi.org/10.21873/anticanres.11556
http://www.ncbi.nlm.nih.gov/pubmed/28476784
http://dx.doi.org/10.1158/0008-5472.CAN-12-1040
http://www.ncbi.nlm.nih.gov/pubmed/23221384
http://dx.doi.org/10.21873/anticanres.12591
http://www.ncbi.nlm.nih.gov/pubmed/29848673
http://dx.doi.org/10.1007/s11060-016-2298-3
http://www.ncbi.nlm.nih.gov/pubmed/27770278
http://dx.doi.org/10.1038/nsmb1307
http://dx.doi.org/10.1038/nature05913
http://dx.doi.org/10.1021/bi047505c
http://dx.doi.org/10.1002/art.39283
http://dx.doi.org/10.1038/cddis.2014.337
http://www.ncbi.nlm.nih.gov/pubmed/25118930
http://dx.doi.org/10.3389/fonc.2017.00045
http://www.ncbi.nlm.nih.gov/pubmed/28401060
http://dx.doi.org/10.1021/acschembio.7b00241
http://www.ncbi.nlm.nih.gov/pubmed/28485572
http://dx.doi.org/10.1128/MCB.00285-09
http://www.ncbi.nlm.nih.gov/pubmed/19581286
http://dx.doi.org/10.1128/MCB.00084-18
http://www.ncbi.nlm.nih.gov/pubmed/29987187
http://dx.doi.org/10.1038/leu.2016.187


Int. J. Mol. Sci. 2019, 20, 103 23 of 23

109. Thålin, C.; Lundström, S.; Seignez, C.; Daleskog, M.; Lundström, A.; Henriksson, P.; Helleday, T.;
Phillipson, M.; Wallén, H.; Demers, M. Citrullinated histone H3 as a novel prognostic blood marker in
patients with advanced cancer. PLoS ONE 2018, 13, e0191231. [CrossRef]

110. André-Grégoire, G.; Bidère, N.; Gavard, J. Temozolomide affects Extracellular Vesicles Released by
Glioblastoma Cells. Biochimie 2018, 155, 11–15. [CrossRef]

111. Inal, J.M.; Kosgodage, U.; Azam, S.; Stratton, D.; Antwi-Baffour, S.; Lange, S. Blood/plasma secretome and
microvesicles. Biochim. Biophys. Acta 2013, 1834, 2317–2325. [CrossRef]

112. Mackenzie, A.B.; Young, M.T.; Adinolfi, E.; Surprenant, A. Pseudoapoptosis induced by brief activation of
ATP-gated P2X7 receptors. J. Biol. Chem. 2005, 280, 33968–33976. [CrossRef]

113. Yin, Y.; Ornell, K.J.; Beliveau, A.; Jain, A. Modulation of MicroRNAs 34a and 21 Affects Viability, Senescence,
and Invasion in Glioblastoma Multiforme. J. Biomed. Nanotechnol. 2016, 12, 1782–1797. [CrossRef] [PubMed]

114. Costa, P.M.; Cardoso, A.L.; Custódia, C.; Cunha, P.; Pereira de Almeida, L.; Pedroso de Lima, M.C. MiRNA-21
silencing mediated by tumor-targeted nanoparticles combined with sunitinib: A new multimodal gene
therapy approach for glioblastoma. J. Control. Release 2015, 207, 31–39. [CrossRef] [PubMed]

115. Wong, S.T.; Zhang, X.Q.; Zhuang, J.T.; Chan, H.L.; Li, C.H.; Leung, G.K. MicroRNA-21 inhibition enhances
in vitro chemosensitivity of temozolomide-resistant glioblastoma cells. Anticancer Res. 2012, 32, 2835–2841.
[PubMed]

116. Li, Y.; Li, Y.; Ge, P.; Ma, C. MiR-126 Regulates the ERK Pathway via Targeting KRAS to Inhibit the Glioma
Cell Proliferation and Invasion. Mol. Neurobiol. 2017, 54, 137–145. [CrossRef] [PubMed]

117. Stefano, G.B.; Kream, R.M. Cancer: Mitochondrial Origins. Med. Sci. Monit. 2015, 21, 3736–3739. [CrossRef]
[PubMed]

118. Rizzuto, R.; De Stefani, D.; Raffaello, A.; Mammucari, C. Mitochondria as sensors and regulators of calcium
signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 566–578. [CrossRef] [PubMed]

119. Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013,
200, 373–383. [CrossRef] [PubMed]

120. Stratton, D.; Moore, C.; Zheng, L.; Lange, S.; Inal, J. Prostate cancer cells stimulated by calcium-mediated
activation of protein kinase C undergo a refractory period before re-releasing calcium-bearing microvesicles.
Biochem. Biophys. Res. Commun. 2015, 460, 511–517. [CrossRef] [PubMed]

121. Savina, A.; Furlán, M.; Vidal, M.; Colombo, M.I. Exosome release is regulated by a calcium-dependent
mechanism in K562 cells. J. Biol. Chem. 2003, 278, 20083–20090. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0191231
http://dx.doi.org/10.1016/j.biochi.2018.02.007
http://dx.doi.org/10.1016/j.bbapap.2013.04.005
http://dx.doi.org/10.1074/jbc.M502705200
http://dx.doi.org/10.1166/jbn.2016.2274
http://www.ncbi.nlm.nih.gov/pubmed/29345889
http://dx.doi.org/10.1016/j.jconrel.2015.04.002
http://www.ncbi.nlm.nih.gov/pubmed/25861727
http://www.ncbi.nlm.nih.gov/pubmed/22753745
http://dx.doi.org/10.1007/s12035-015-9654-8
http://www.ncbi.nlm.nih.gov/pubmed/26732596
http://dx.doi.org/10.12659/MSM.895990
http://www.ncbi.nlm.nih.gov/pubmed/26621573
http://dx.doi.org/10.1038/nrm3412
http://www.ncbi.nlm.nih.gov/pubmed/22850819
http://dx.doi.org/10.1083/jcb.201211138
http://www.ncbi.nlm.nih.gov/pubmed/23420871
http://dx.doi.org/10.1016/j.bbrc.2015.03.061
http://www.ncbi.nlm.nih.gov/pubmed/25797625
http://dx.doi.org/10.1074/jbc.M301642200
http://www.ncbi.nlm.nih.gov/pubmed/12639953
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Protein Analysis 
	PAD Isozyme Detection and Total Protein Deimination in GBM Cells 
	Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis of Deiminated Proteins in LN18 and LN229 GBM Cells 
	GBM Cell Viability in the Presence of Cl-Amidine and TMZ 

	Prohibitin Protein and Post-Translational Deimination Levels Change after 1 h Cl-Amidine Treatment and in Combinatory Treatment with TMZ in GBM Cells 
	Deiminated Histone H3 Levels are Reduced after 1 h Cl-Amidine Treatment and Combinatory Treatment with TMZ in GBM Cells 
	Effects of Pan-PAD Inhibitor Cl-Amidine on EV Biogenesis in GBM Cells 
	Effects of Cl-Amidine on EV Biogenesis in the Presence of TMZ 
	Cl-Amidine Modulates miRNAs in GBM Cells and Derived EVs 
	Cl-Amidine in Combination with TMZ Modulates miRNAs in GBM Cells and Derived EVs 

	Discussion 
	Materials and Methods 
	Cell Cultures—LN18 and LN229 
	Protein Analysis of GBM Cells 
	Protein Preparation 
	Immunoprecipitation and Proteomic Analysis of Deiminated Protein Candidates from LN18 and LN229 GBM Cell Lines 
	Western Blotting Analysis 

	Cell Viability Assays 
	Modulation of EV Biogenesis Using Pan-PAD Inhibitor Cl-Amidine 
	Effects on EV Biogenesis in the Presence of Temozolamide (TMZ) 
	EV Isolation and Quantification by Nanoparticle Tracking Analysis–1 h Treatment 
	Preparation of EVs for Transmission Electron Microscopy (TEM) 
	miRNA Analysis in GBM Cells and Derived EVs 
	Statistical Analysis 

	Conclusions 
	References

