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SCOPE AND PURPOSE 

 

An obvious measure of efficiency or productivity is the ratio of output to input. When 

there are multiple outputs and/or inputs one approach is to take weighted combinations 

before calculating the ratio.  How should these weights be chosen? In comparing the 

efficiency of organizational units data envelopment analysis (DEA) allows each unit to 

employ its own weights so as to maximise its score subject to the condition that these 

weights do not cause any unit to attain a score exceeding 100%.  One difficulty that arises 

with DEA is that when the number of units being compared is small there is poor 

discrimination and a large proportion of them are rated as 100% efficient. Secondly the 

DEA assumption that all inputs at a given (‘naturally enveloped’ or dominated) firm will 

be inefficient to the same degree seems to be unrealistic and unnecessary. This paper 

presents a more searching and discriminating way of showing managers the source and 

extent of inefficiencies by simply applying DEA to each input resource separately in the 

case when inputs cannot be substituted for each other.  If two or more inputs are substitutes 

then these are analysed together.  By way of illustration the approach is used to compare 

major passenger airlines. 
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INPUT EFFICIENCY PROFILING: 

AN APPLICATION TO AIRLINES 

 

 

ABSTRACT 

Data envelopment analysis (DEA) can produce results which lack discrimination, one 

consequence of this is that a large proportion of decision-making units (DMUs) appear to 

be efficient.  In addition,  because it is a radial measure of efficiency it assumes that all 

inputs at a naturally enveloped production unit need to be reduced by the same proportion 

for efficiency to be achieved.  It would seem to be more realistic to expect different inputs 

to have different efficiencies associated with them.  A method is presented which retains 

the original spirit of DEA in trying to extract as much information as possible from the 

data without applying value judgments in the form of additional constraints.  We propose 

that inputs which are not substitutes for each other be assessed separately and only with 

respect to outputs which consume them or to which they are otherwise related. In this way 

input-specific efficiency ratings are derived giving a profile for each DMU.  When applied 

to a data set of 14 airlines the method uncovers inefficiencies which DEA could not find.  

Whereas DEA found half of the airlines to be fully efficient in all factors, our profiling 

approach was more discriminating and showed that none of the airlines were efficient in all 

three of the inputs considered.  This highlights a significant difference with DEA: by 

investigating the utilisation of individual inputs we are able to identify best-practice in 

each area.  It is quite possible that no unit demonstrates best-practice in every area and so 

each unit will have targets to work toward - this is intuitively appealing as well as 

providing a link with the philosophy of best practice benchmarking. 
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INTRODUCTION 

For analysts who were used to a multiplicity of simple ratio measures involving a single 

output and a single input, the appearance of data envelopment analysis (DEA) must have 

seemed like the answer to many of their problems, for it appeared to objectively combine 

all factors in a single measure.  In its ratio form a DEA efficiency score is a sum of 

weighted outputs divided by a sum of weighted inputs, with individually calculated 

optimal weights for each firm or decision-making unit (DMU).  However such analysts 

may have been disappointed if the number of DMUs being compared was small, for in 

such cases a large proportion of them will be rated as 100% efficient.  This problem 

becomes more serious if the number of inputs or outputs is increased - i.e. more data 

actually makes things worse.  This lack of discrimination is due to the great freedom in 

choosing the weights (also called multipliers): each factor adds another dimension to the 

feasible region - greatly enhancing the possibility of finding weights which will make units 

appear efficient.  If there are few units to be compared then the constraints which limit the 

set of solutions will also be few in number. 

 

As this difficulty is fairly well known it has been addressed in a number of ways.  

There is much in the literature that deals with placing various types of restrictions on the 

weights in order to obtain more acceptable results.  Such methods normally involve either 

value judgments or arbitrary a priori bounds.  We shall not review these here but Allen et 

al [1] provide a survey.  This paper embarks upon a different direction - that of extracting 

more information from the data without making value judgments.  We aim to compare the 

efficiency with which each resource input is being utilised by each DMU to generate 

outputs.  We do this by applying a DEA-type analysis to each input in turn and only 

including those outputs to which the given input is related.  This produces a set of input 

efficiency scores for each unit, which we refer to as a profile.  In what follows we shall use 

the term ‘conventional DEA’ to represent the form which treats all inputs together. 

The efficiency score of an operational unit obviously depends on the position and 

shape of the efficient frontier from which it is derived.  This frontier determines what is 

theoretically achievable. In parametric estimations (used in econometrics) one has a variety 

of production functions with which to model the frontier e.g. Cobb-Douglas, translog, 

CES, generalised Leontief etc.; each of these models has its own underlying assumptions.  

The application of such approaches to deal with each input separately has been carried out 
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by Kopp [2] and Kumbhakar [3].  The latter author felt that “ knowing the magnitude of 

[overall] technical efficiency is not enough. It is important to know which inputs are 

causing the inefficiency and to what extent ”, and so any measure requiring an 

equiproportional reduction in all inputs to achieve efficiency was too restrictive. 

Kumbhakar’s investigation [3] using panel data relating to U.S. railroads found that 

inefficiency due to labour was of a much higher degree than that due to fuel, this was 

corroborated by a historical review of labour practices in the railroad industry. 

Turning now to DEA, this is described as a non-parametric approach because it 

does not assume a particular functional form for the entire frontier.  However it does make 

an assumption regarding the shape of the individual segments or facets that are used to 

model the efficient frontier; models that have been used include: piecewise linear (the most 

widely known), piecewise Cobb-Douglas, and piecewise log-linear (these are all described 

in chapter 2 of Charnes et al [4]).  In DEA equiproportional reduction of all inputs (or 

expansion of all outputs) to achieve efficiency is an assumption in the models most 

frequently used - in fact it is a consequence of using a radial measure that the ‘input mix’ is 

kept the same.  A radial efficiency measure uses a line in input space from the origin O to 

the point P being analysed.  If P is not efficient then this line will cross the frontier at F and 

the ratio OF/OP gives the efficiency score.  Ideally F will lie on a line or facet between two 

or more efficient units, P is then said to be ‘naturally enveloped’ by these ‘reference units’; 

the point F will then provide the target values for unit P. However this natural envelopment 

will not always occur and the frontier then has to be artificially extended parallel to one of 

the coordinate axes.  This gives rise to input slacks which are additional reductions in 

particular inputs beyond those arising from equiproportionate reduction.  These additional 

improvements are a consequence of incomplete frontiers and not because DEA has 

cleverly identified variations in input-specific efficiency.  A disadvantage associated with 

slacks is that they are not reflected in the efficiency score as this score only measures the 

radial contraction. Input slacks cannot occur if only one input is being analysed at a time 

and so that problem is removed, however output slacks are still possible. 

In summary, parametric approaches have been applied  to each input individually 

and we aim to do the same for the non-parametric approach.  The key advantage is the 

removal of the assumption that inefficiency occurs to the same degree in every input, thus 

for inefficient units we will no longer be required to reduce all inputs by the same 

proportion to achieve efficiency.  The remainder of this paper is arranged as follows: the 
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proposed technique is described in the next section, there then follows an application to 

data on fourteen major international passenger airlines.  The results are then compared 

with those of conventional DEA.  

 

INPUT EFFICIENCY PROFILING 

Suppose that resource xi acts as an input to s outputs yr (r =1,...,s); we emphasise that this 

may be a subset of all t outputs (s ≤ t ), for example a lecturer’s time (input) spent teaching 

undergraduates does not contribute to research output, similarly the number of pigs a 

farmer rears does not contribute to his farm’s milk production. For this reason we do not  

treat such unrelated variables together. Note that a different resource may act as an input to 

a different set of outputs, possibly fewer or more.  The relative efficiency (Eik) with which 

resource i is being utilised to produce the relevant outputs by DMU k is evaluated using the 

following L.P.(linear program) in which the u-variables are being solved for, and the y’s 

and x’s  are the observed output and input values respectively. 

 Maximize  Eik =   
irk rk

r

s

ik

u y
x

=
∑

1    (1) 

 subject to 
irk rj

r

s

ij

u y
x

=
∑

1    ≤  1      ,  j =1,...,n (2) 

    and    uirk  ≥  ε     ,    r =1,...,s  (3)  

 

Where ε  is a small positive number, n is the number of DMUs and uirk  is the weight 

attached to output r when evaluating the efficiency of input i of DMU k.  As with DEA 

each DMU has its own set of weights.  The key difference between this and the DEA 

formulation is that  here each linear program only deals with a single input rather than a 

weighted  sum of all inputs.  Thus instead of a single efficiency score we now have a score 

for each resource input.  Unlike conventional DEA there are no longer any weights on the 

input variables, thus we no longer have to impose additional conditions on the weights a 

priori in order to avoid the possibility of placing a zero/epsilon or any other unrealistic 

weight on any input.  It is no longer possible to hide poor/wasteful utilisation of any 

resource. Dyson and Thanassoulis [5] have rightly pointed out that in basic DEA models 

‘the worst performance aspects are all but ignored in the assessment’. 
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We now show how our input-specific efficiency scores may be interpreted.  

Consider a branch which uses two inputs and has a score of 0.8 in relation to input 1 and 

0.9 for input 2, this means it could aim to maintain the same outputs as before but using 

only 80% of the current level of input 1 and 90% of the current level of input 2.  If instead 

we are interested in raising output levels, then based on input 1 the outputs are currently 

20% below the projected value, and 10% below in relation to input 2.  If we choose the 

lower output target (that associated with the 10% figure) then we should keep input 2 fixed 

at its current level whilst also achieving a reduction in input 1.  Whereas if we select the 

higher output target we shall fully utilise input 1 and we shall need additional supplies of 

input 2. 

It may be worth noting that the objective function in the above LP is in fact a linear 

combination of simple ratios each with the same input denominator.  Hence profiling in the 

present context may be viewed as lying somewhere between ratio analysis and DEA.  

Note that a production unit cannot appear to be efficiently utilising a small quantity 

of one input by using a large amount of another input since, by hypothesis, the inputs are 

non-substitutable.  If, however, in a given situation two or more inputs are substitutes then 

they should be dealt with together in the same LP.  This is achieved by placing a linear 

combination of the inputs in the denominator of (1) and (2), the weights being determined 

by the optimisation model.  For instance if x2 and x3 were substitutes then to evaluate the 

efficiency with which these were being utilised the denominator of (1) and (2) would be 

replaced by v1k x1k + v2k x2k , where the v’s are weight variables to be obtained by the 

optimization process.  (Note that the resulting problem can still be solved as a linear 

programme by including the normalising constraint v1k x1k + v2k x2k = 1.) Since the weights 

are interpreted as trade-offs between inputs (Chang and Guh [10], Norman and Stoker [6], 

page 47) or marginal rates of substitution, it follows that in DEA there is an implicit 

assumption that any input can act as a substitute for any other since it employs a  weighted 

combination of all the inputs.  However this is clearly not always appropriate: for example 

in a power plant the fuel and the staff employed cannot be substituted for each other, and 

in the case of a university the professors and secretaries cannot normally replace each 

other.  It then becomes unclear what physical interpretation the weights arising from 

conventional DEA can have. 

 

APPLICATION TO MAJOR AIRLINES 
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The data to be used (Table 1) has been taken from Schefczyk [7] and covers 14 major  

international passenger carriers for the year 1990, (we have excluded one of the airlines 

because it only transported cargo).  The variables are as follows: 

x1 = aircraft capacity in ton kilometres 

x2 = operating cost  

x3
 
 = non-flight assets (all assets not already reflected in x1, ) e.g. reservation systems, 

 facilities, current assets) 

y1 = passenger kilometres 

y2 = non-passenger revenue 

 

INSERT Table 1  HERE 

 

 

 

 

We presume that each of the inputs is related to both outputs when generating the profiles, 

although such an assumption does not in general have to be made with the profiling 

method.  Table 2 displays as percentages both the DEA efficiency scores according to the 

Charnes, Cooper, Rhodes input minimisation model, constant returns to scale formulation 

(see [4] chapter 2), as well as the input efficiency profiles. 
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Table 2  
 
Percentage efficiency scores according to DEA and input profiling. 

 
 

 
AIRLINE 

 

 
DEA 

Constant returns to scale model 
 

 
             PROFILING 

constant returns 

 
METHOD 

variable returns     

 OVERALL 
 

E(x1) E(x2) E(x3) E1 E2 E3 E1 E2 E3 

AIR CANADA 
 

87 87 72 87 79 56 49 81 56 50 

ALL NIPPON 
 

84 84 45 58 84 45 24 86 46 24 

AMERICAN 
AIRLINES 

 

95 95 95 95 77 74 66 100 100 100 

BRITISH 
AIRWAYS 

 

96 96 83 96 79 57 71 94 81 83 

CATHAY 
PACIFIC 

 

100 100 100 100 73 79 100 89 95 100 

DELTA AIR 
 

98 98 95 98 75 68 96 91 89 98 

IBERIA 
 

100 100 100 100 100 57 47 100 59 50 

JAPAN 
AIRLINES 

 

86 86 86 69 85 64 37 95 90 40 

KLM 
 

95 95 95 61 89 76 40 89 89 41 

KOREAN AIR 
 

100 100 100 100 77 100 56 82 100 62 

LUFTHANSA 
 

100 100 100 100 100 81 100 100 100 100 

QUANTAS 
 

100 100 100 100 92 89 54 93 98 54 

SINGAPORE 
AIRLINES 

 

100 100 100 100 100 100 42 100 100 42 

UAL 
 

100 100 100 100 81 71 98 100 100 100 
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The first thing to notice is that according to DEA seven of the fourteen airlines are 

deemed efficient (score of 100% and no slacks; slack values are not displayed here).  This 

illustrates the lack of discrimination mentioned in the introduction.  So according to DEA 

half of the airlines in our data set do not need to make any adjustments whatsoever in their 

input or output levels.  Anyone using these results as a launching point for best-practice 

benchmarking of these seven airlines would therefore not be able to make any 

recommendations nor set any targets for the future.  Much greater discrimination is shown 

by the profile scores (also using a constant returns to scale formulation).  One observes that 

none of the airlines are efficient in all three inputs; this is perhaps more in keeping with 

what one would expect: that there will usually be some area where an improvement is due. 

Singapore Airlines is efficient in two inputs but is only 42% efficient in its utilisation of 

non-flight assets. Quantas and UAL have a DEA score of 100% and yet do not obtain this 

rating in any of the three input efficiencies.  In fact the DEA score must always be at least 

as large as the largest of the input efficiencies which form our profile.  This is because the 

latter are special cases of DEA with zero weights on all but one of the inputs i.e. they are 

just some of the feasible solutions in the DEA LP: the feasible regions in the profiling LPs 

for a given unit are subsets of the feasible region in the DEA LP for that unit. 

We can use conventional DEA  to provide efficiency ratings for individual inputs 

by radially projecting onto the frontier and then adjusting for any slack in the given input.  

Taking this as a target value, the conventional DEA input efficiency is then the ratio of the 

target input to the observed input.  These are displayed as E(x1) etc. in Table 2 for 

comparison purposes.  We see that the reductions that can be made in any given input (i.e. 

potential improvements) are in every instance greater according to profiling than according 

to DEA.  The overall DEA score is in fact the largest of the individual ratios for a given 

unit; one can reduce all inputs to this proportion and still maintain current output levels. 

Using this line of argument we might select the largest input efficiency from the profile of 

each DMU as being the overall efficiency score.  These will of course be lower than the 

overall scores from DEA and so our approach will be more demanding in terms of the 

degree of suggested improvement at each DMU.  This is consistent with the oft-stated line 

that conventional DEA shows each unit in the best possible light.  Its single figure scores 

are obtained by emphasising strengths and downplaying weaknesses.  By contrast, input 

profiling tries to shine the light in corners that some might prefer to remain in darkness. 
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The above analysis assumed constant returns to scale which, according to Good et 

al [8] is consistent with the vast majority of the airline literature.  Nevertheless we have 

also carried out our analysis allowing for variable returns to scale (Banker, Charnes 

Cooper input minimisation model [9] ) and present in the last three columns of Table 2 the 

associated results.  As one might expect, the greater flexibility of variable returns leads to 

scores which are at least as good and often higher.  We have that three airlines (American, 

Lufthansa and UAL) now have perfect profiles whereas none did previously. Interestingly 

American Airlines and UAL are the two largest in our data set, so there is some evidence 

here of decreasing returns to scale.  When conventional DEA with variable returns is 

applied (results not shown in table) we find one more airline (American) appearing fully 

efficient, making eight in total; the remaining units show small increases in score apart 

from Japan Airlines which jumps from 86% to 95%. Clearly, what is theoretically 

achievable depends on the model being used - different models lead to different frontiers.  

One would also expect different results when comparing traditional parametric production 

function models with those which are input-specific.  The approach we have taken here is 

consistent with that which underlies the benchmarking philosophy: to look for the best in 

all spheres - to identify areas of best-practice in other firms and attempt to combine them 

all together in one firm by the setting of appropriate targets. 
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SUMMARY 

 

DEA is a radial measure of efficiency and so assumes that an inefficient unit which 

is naturally enveloped by its reference set must contract all its inputs in the same 

proportion to become efficient.  We take the view that in any organization it is more likely 

that some inputs will be utilised less efficiently than others and that it would be useful to 

managers to identify these.  Another disadvantage which sometimes arises with 

conventional DEA is that a large proportion of the operational units being compared turn 

out to be 100% efficient.  Hence we have the possibility of poor discrimination in two 

different ways: firstly in identifying the inefficient units and secondly in identifying which 

inputs used by those units give the greatest cause for concern.  This paper has attempted to 

tackle these problems not by adding constraints based on either a priori or subjective 

judgments, but by taking each resource input in turn and only analysing it together with 

those outputs it affects or which consume it.  Such an approach is appropriate if the inputs 

are not substitutes for each other.  If two or more inputs are substitutable then they must be 

analysed together.  DEA uses such a linear combination of all the inputs in its formulation.  

In this light we now see that DEA is in fact the special case where every input can act as a 

substitute for every other and each input is consumed by every output. 

By taking each input separately there is no longer any scope for extreme or 

unrealistic weights on the inputs since they are not weighted at all.  This significantly cuts 

down the dimensions and hence the size of the solution space by comparison with DEA.  

As a result the computed scores no longer show a large proportion of units displaying 

100% ratings.  For DEA-inefficient units too the profiles show more scope for 

improvement.  This improved discrimination was demonstrated on data for fourteen major 

air carriers.  
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