Assessing availability and greenhouse gas emissions of lignocellulosic
 biomass feedstock supply – case study for a catchment in England

- 3
- 4

Yuanzhi Ni, Onesmus N. Mwabonje, Goetz M. Richter, Aiming Qi, Kenny Yeung, Martin Patel and Jeremy Woods

5 Yuanzhi Ni, Imperial College London, Center for Environmental Policy

6 Mwabonje, Onesmus N, Imperial College London, Center for Environmental Policy

7 Richter, Goetz, Rothamsted Research, Sustainable Soils & Grassland Systems

8 Qi, Aiming, University of Hertfordshire, Department of Biological and Environmental Sciences,

9 Yeung, Kenny, LCAworks Limited, LCA department

10 Patel, Martin, University of Geneva, Institute of Environmental Science

- 11 Woods, Jeremy, Imperial College London, Centre for Environmental Policy
- 12 13

14 ABSTRACT:

Feedstocks from lignocellulosic biomass (LCB) include crop residues and dedicated 15 perennial biomass crops, of which the latter are often considered superior in terms of 16 climate change mitigation potential. Uncertainty remains over their availability as 17 feedstocks for biomass provision and the net greenhouse gas emissions (GHG) during 18 19 crop production. Our objective was to assess the optimal land allocation to wheat and Miscanthus in a specific case study located in England, in order to increase biomass 20 21 availability, improve the carbon balance (and reduce the consequent GHG emissions), minimally constrain grain production losses from wheat. Using soil and climate variables 22 for a catchment in East England, biomass yields and direct soil nitrogen emissions were 23 simulated with validated process-based models. A 'Field to up-stream factory gate' Life 24 Cycle Assessment was conducted to estimate indirect management-related GHG 25 emissions. Results show that feedstock supply from wheat straw can be beneficially 26 supplemented with LCB from Miscanthus grown on selected low quality soils. In our 27 study, 8% of the less productive arable land area was dedicated to Miscanthus, increasing 28 total LCB provision by about 150%, with a 52% reduction in GHG emission per ton LCB 29 delivered and only a minor effect on wheat grain production (-3%). In conclusion, even 30 without considering the likely carbon sequestration in impoverished soils, agriculture 31

1		should embrace the opportunities of providing the bioeconomy with LCB from dedicated,
2		perennial crops.
3		
4		
5		Keywords: lignocellulosic biomass, greenhouse gases (GHG), Miscanthus, wheat straw,
6		feedstock supply, STAMINA, DNDC
7		
8	1	INTRODUCTION
9		With the potential benefits in climate change mitigation, development of rural economy,
10		energy security and reducing fossil fuel dependency, biomass crops have attracted interest
11		in both bioenergy and biomaterial production. At present 'first generation' biomass (1GB)
12		has been the major feedstock and technology deployed in national bio-economy strategies.
13		However, concerns about competition for food, land use change, loss of biodiversity and
14		raised GHG emissions ¹ have led to an increased focus on the utilization of lignocellulosic
15		biomass (LCB), resourced from agricultural and forestry residues and dedicated biomass
16		crops.
17		The drivers for LCB feedstocks include mainly their higher Energy Return On
18		Investment ² , and better environmental and social performance than 1GB in the sustainability

Investment², and better environmental and social performance than 1GB in the sustainability assessment. However, there are concerns regarding the actual provisioning capacity of LCB, especially from agricultural residues such as cereal straw. Although there have been many attempts to calculate this potential^{3–6}, it remains difficult to quantify⁷. Most estimates of straw production are based on measurements of grain production and assuming a constant relationship between grain and straw yield⁵. Cereal straw production is concentrated in the arable eastern parts of England; around 70% of UK wheat straw is produced in the Yorkshire and Humber region, East Midlands, East Anglia and the Southeast regions⁶. In the UK, straw

is mainly used for animal bedding, horticulture and bioenergy⁸, with 32% to 39% being 1 2 incorporated back to the soil to maintain the soil organic carbon (SOC) content⁴. Only approximate 300 to 487kt/year (2-4% of total produced cereal and oilseed rape straw) was 3 4 used for bioenergy generation⁶. There are no robust official survey data available for straw usage in animal bedding; estimates range between 5.8 Mt and 6.24 Mt annually for all cereal 5 and oilseed rape straw, based on livestock statistics from Defra (Department of 6 Environment, Food and Rural Affairs)^{6,8}. Current straw use is shown in Fig. 1 based on a 7 wide range of literature 4,6,8 . 8

9 Dedicated biomass crops have the advantage that they can be grown on marginal arable land^{9,10}. However, the actual land area needed to produce the specified amount of biomass 10 could be higher due to lower and variable local productivity¹¹. Currently, one of the main 11 challenges for lignocellulosic bioenergy or biomaterial production is that the high overall 12 production cost is dominated by pretreatment costs of LCB feedstock¹². The overall 13 production cost could be aggravated when the feedstock prices increase due to emerging 14 competition for biomass across the sub-sectors of bio-economy (bioenergy, biomaterial and 15 traditional uses, such as animal feed and bedding etc.)^{12,13,14}. 16

17 Figure 1.

Most research on biogeochemical impacts of Miscanthus are conducted on silt clay loam soil^{15–19}. However, it is less likely that those soils could be converted to Miscanthus production, due to farmers' unwillingness to change, especially on soils where they generally achieve good yields for conventional arable crops. Understanding the performance of Miscanthus on a wider range of soil types, especially on sandy soils which have low cereal yields but high nitrogen (N) losses²⁰ is important to identify the suitable locations for Miscanthus production. Compared to wheat, higher yields of Miscanthus with lower N 1

2

inputs and losses per unit of production are likely to reduce Greenhouse Gas (GHG) emissions of biomass production and lower its environmental footprint and costs.

Accurate estimates of GHG emissions and resource use efficiencies are important in 3 understanding and determining the sustainability of bioenergy and bio-based chemicals. Full 4 Life Cycle Assessment (LCA) for biorefinery chains are often constrained by the lack of 5 sufficiently detailed and site-specific information on the pre-harvest GHG balance related to 6 agricultural management, especially N₂O emissions from N fertiliser application, as an 7 important source of GHG²¹. The IPCC Tier 1 method provides a default estimate of N₂O 8 9 emissions from agriculture for both, direct and indirect emissions, based on N fertiliser inputs, but ignores other important crop management, soil and atmospheric variables. The 10 Tier 3 approach suggests the use of process-based biogeochemical models to achieve more 11 accurate site-specific estimates of the GHG flux from variable agricultural systems²². A 12 number of studies have integrated process-based model generated N2O emission results into 13 LCA^{21,23,24}. However, most of this work has been carried out solely for conventional crops 14 $(first generation biomass)^{21,23}$. Very limited work can be found for simulating the pre-harvest 15 N₂O emission for perennial energy crops such as Miscanthus based on process-based 16 17 models, due to the limited availability of such models developed for dedicated LCB crops integrated into arable cropping systems. To address this gap, process-based models 18 STAMINA (Stability and Mitigation of Arable Systems in Hilly Landscapes)²⁵ and carbon-19 nitrogen (C, N) turnover model DNDC (i.e. DeNitrification-DeComposition)²⁶ were used 20 for Tier 3 approaches to estimate dry matter yields (DMYs) and the N emissions of winter 21 22 wheat and Miscanthus.

The overall objective of this paper is to estimate the impacts and benefits of moving from
an 'arable only' to a proposed 'mixed (arable and perennial)' feedstock provision scenario.

We assessed the potential of local LCB provisioning capacity, and the resulting GHG
 emissions under different supply scenarios, whilst exploring the potential impacts arising
 from integrating Miscanthus into a wheat production system in eastern England.

4

2 MATERIAL AND METHODS

The crop growth model system STAMINA²⁵ and C-N turnover model DNDC²⁶ were 5 calibrated to estimate DMY data only, considering both, winter wheat and Miscanthus. No 6 model evaluation could be done for N_2O emission and NO_3^- leaching arising from their 7 supply due to lack of experimental data. They were up-scaled to the catchment to estimate 8 9 the LCB supply capacity and GHG balance of production in a rural area nearby the city of Hull in England (max. 50 km as feedstock transport distance from farm to conversion plant; 10 Fig. 2). The catchment consists of parts of the Yorkshire & Humber and East Midlands 11 regions, major wheat production areas in England. 12

Firstly, crop growth parameters for both, the STAMINA and DNDC models were 13 calibrated based on literature and evaluated against observations on farms across England. 14 Three indicators, including coefficient of determination (R^2) , root mean square error 15 (RMSE) and relative mean absolute bias error expressed as a percentage (MBE%) were 16 17 calculated to assess the goodness-of-fit between model simulated and measured yields of both crops. Secondly, LCB availability, NO₃⁻ leaching and N₂O emissions were simulated 18 for both, 'arable only' and proposed 'mixed arable-perennial' feedstock supply scenarios. 19 For the latter, Miscanthus was assumed to replace wheat on selected low-quality soils, which 20 are coarse textured, less productive and have the highest NO_3^- leaching/wheat grain 21 22 production ratio (kgN/t Grain) based on modelled results. These represent 8% of the total catchment area. Thirdly, the GHG balance results were combined with a 'field to up-stream 23 factory gate' LCA to compare the global warming potential (GWP) associated with different 24

1 lignocellulosic feedstock supply scenarios.

2 Figure 2

3 2.1 Process-based models

The STAMINA modelling system simulates micro-meteorology, hydrology, crop 4 development and growth, integrating spatial information on soil and topography for a range 5 of crops, including both arable crops (winter wheat, maize, potato, barley etc.) and perennial 6 crops (Miscanthus, willow, switchgrass etc.). The STAMINA-winter wheat model is 7 described in detail elsewhere²⁷. In this work, the catchment region is represented as a matrix 8 of 1km² cells, within which all important variables of soil, climate, crop and crop 9 management are assumed to be homogeneous. STAMINA-winter wheat model had been 10 calibrated against winter wheat yields observed in Bedfordshire (England)²⁷. Here, three sets 11 of UK weather, soil and on-farm measured yield data from an earlier study²⁸ (Table 1) were 12 used for model evaluation. DMYs were simulated with an acceptable accuracy (Fig. 3), 13 RMSE of 1.36 t/ha and MBE% of 12%. The STAMINA-BeGRAS Model is a sink-source 14 interaction model based on the principles described in LINGRA for small grasses²⁹ and was 15 expanded for the allocation of biomass to belowground biomass (rhizomes and roots). 16 BeGRAS model was implemented in the STAMINA modelling system³⁰ and calibrated for 17 Miscanthus using detailed data collected at Rothamsted Research. In this simulation work 18 for Miscanthus, weather, soil and on-farm measured yield data (Table 1) from the 19 Rothamsted 408 trial³¹ are used for model evaluation. The RMSE between measured and 20 simulated yields is 1.58 t/ha and MBE % is 12% (Fig. 3). The BeGraS model simulated 21 Miscanthus DMYs at harvest (1st to 3rd March) after two establishment years, for 13 years 22 of harvest. The RMSE between measured and simulated yields was 1.58 t/ha and MBE% is 23

12% (Fig. 3). 30-year average scenario yields (two 15-year growing cycles) were generated
 for each soil type to be used in the overall assessment.

- 3 DNDC model was originally designed to simulate C and N biogeochemical cycles occurring in agricultural systems at regional scales in the U.S.³² and was further extended to 4 cover a wider range of countries and districts and other ecosystems^{33,34}. DNDC is capable 5 of predicting the main GHGs fluxes from soil (N₂O, CO₂ and CH₄) and other key 6 environmental and economic indicators, including crop yields, ammonia (NH₃) 7 volatilization and nitrate (NO₃⁻) leaching rates and quantities^{35,36}. In DNDC, N₂O emissions 8 9 were determined based on denitrification and nitrification pathways as a function of climate, crop growth and soil environmental factors. DNDC was parameterized for winter wheat by 10 using published values³⁷ and site specific data. Comparison between modelled and measured 11 yields is shown in Fig. 4. Modelled yields compare quite well with observations, considering 12 the average values (8.64 and 8.65 t/ha respectively) and statistics (RMSE of 1.02 t/ha and 13 MBE% of 12%). Miscanthus parameters in the DNDC model had been parameterized using 14 literature data and tested earlier¹⁸ calibrated and validated using observed yields over four 15 years at a site in Urbana, Illinois, USA. To use the model under UK condition, we 16 17 recalibrated the parameters using measured Miscanthus DMYs from 1997 to 2004 in the Rothamsted 408 trial³¹, soil parameters for a clay loam (Batcombe series) and locally 18 recorded weather data. The simulated and observed DMYs are displayed in Fig. 4, with 19 RMSE of 1.57t/ha, and MBE % of 11%. 20
- Table 1.
- Figure 3.

- 1 Figure 4.
- 2 Figure 5.
- 3 Table 2.
- 4 2.2 Inputs for feedstock scenario simulations

The catchment used for the scenario simulation covers an area of 5,856 km² and 5 comprised 48 soil series according to UK National Soil Map (1 km grid) (NATMAP vector, 6 Cranfield University, 2001), which can be grouped in to nine soil texture classes (Fig. 5). 7 The input data source and the target modelling outputs were listed in Table 2. Key soil 8 information includes soil texture, SOC, bulk density, pH, soil available water capacity 9 (AWC) within rooting depth. STAMINA modelling framework requires information on air 10 temperature, precipitation, wind speed, solar radiation and atmospheric humidity. In this 11 12 work, three climate scenarios were examined, i.e. baseline, medium and high CO₂ emissions. Hourly data collected from High Mowthorpe weather station from 1961-1990 were used for 13 baseline simulation, assuming an atmospheric CO₂ concentration of 352 mg litre⁻¹. Weather 14 data were generated for the medium and high emissions scenarios using UK Climate 15 Projections $(UKCP09)^{38,39}$. In the UKCP 09, CO₂ emissions under the three IPCC SRES 16 17 scenarios A1FI, A1B1 and B1 are used and labelled High, Medium and Low according to how different emissions pathways affect future climate. We used the projected CO₂ 18 concentrations for 2030 of 447 mg litre⁻¹ for the Medium (A1B) and 449mg litre⁻¹ for the 19 High (A1F1) Scenario as average CO₂ concentrations for 2020-2050 timeframe⁴⁰. 20

In the DNDC modelling, we applied an approach similar to that of Guo²¹ who simulated N and C dynamics using 5 years' of weather data (1986 to 1990) and an atmospheric CO₂ concentration of 360 mg litre⁻¹. In addition to the weather data, DNDC also requires N

concentration in the rainfall, atmospheric NH₃ concentration and fertiliser application 1 2 information. Rainfall N concentration were derived from the UK Eutrophying and Acidifying Pollutant Network (UKEAP). The calculated 5 years mean rainfall NH₄⁺-N and 3 4 NO_3 -N concentration at Thorganby station of 1.27mg litre⁻¹ was applied in this study. Atmospheric NH₃ 5-year average concentration obtained from UKEAP-National Ammonia 5 Monitoring Network (Easingwold station) of 2.54 µgN/m³ was applied in this study. N 6 fertiliser type is assumed to be ammonium nitrate. For winter wheat, the annual input values 7 range from 160kgN/ha to 220kgN/ha, depending on the soil series. This was calculated using 8 DEFRA's fertiliser manual (RB209) for each soil series, based on the information including 9 soil texture, soil total N level, precipitation, previous crop types and any particular crop 10 quality (feed or backing) requirements⁴¹. For Miscanthus, 60kgN/ha/year of ammonium 11 12 nitrate was assumed in the simulation.

For crop production management, the single feedstock production scenario (SP) assumes winter wheat is grown on all the arable land across the whole catchment area (Table 3). The mixed feedstock production scenario (MP) assumes that winter wheat is still the predominating crop, while Miscanthus was cultivated only on selected low quality soils (8% of total area), balancing N₂O emissions, NO₃⁻ losses, wheat grain production and LCB feedstock provision.

19 Table 3.

Straw availability was estimated based on the wheat grain production level, wheat planted area, wheat grain harvest index, harvestable straw fraction, incorporation rate and competition in demand of other uses. Due to the limited availability of data on current straw production and use, we adopted a conservative estimation of winter wheat straw provision potential for the case study area. Wheat grain harvest index (HI) is simulated by the

STAMINA-winter wheat model, resulting in a 30-year average value of 0.53 in these study 1 2 scenarios. We assume that 50% of all the leaves and stems produced over the entire wheat growing season have been lost through decay by the time of harvest. The remaining 50% of 3 4 the residual biomass is harvested in the first two years, however, in the third year it is left on the ground to maintain SOC content. The total harvestable straw tonnage is calculated 5 with Equation 1, where x is the modelled grain yield (in t/ha, 14.5% moisture) and 265,600 6 7 ha was estimated based on the assumption that due to rotation, 2/3 of the total 398,400 ha arable land is used for winter wheat cultivation: 8

9

Total straw harvested (tonnes) =
$$\left(\frac{x}{0.53} - x\right) * 0.5 * \left(1 - \frac{1}{3}\right) * 265600$$
 (1)

10 2.3 Life cycle assessment (LCA)

Field to upstream factory gate LCAs were conducted for both single SPBC and MPBC 11 scenarios. The LCA covers the emissions per unit of delivered lignocellulosic feedstock, 12 which includes the cultivation, preparation for transport, transport to storage and transport 13 14 to processing plant in defined case study locations (Fig. 6.). Within the cultivation phase the emissions are considered from upstream production of materials and raw material extraction, 15 fuel inputs required for on-farm cultivation, as well as direct and indirect N₂O emissions. 16 17 Indirect N₂O emissions due to NO₃⁻ leaching were estimated based on modelled NO₃⁻ leaching values and IPCC default emission factor EF5⁴². 18

19 Table 4.

Figure 6.

21

LCA inputs for wheat and Miscanthus cultivation are shown in Table 4. For wheat straw,general agricultural data for operations on the field (including machinery use and associated

diesel consumption) is taken from the BEAT database which derives its data from the Farm 1 Management Pocketbook⁴³. The cultivation processes include ploughing, harrowing, 2 fertiliser application, top dress, pesticide application, combine harvesting, and straw baling 3 and carting. As defined by the BEAT database, the wheat straw is naturally dried in storage 4 with no additional inputs apart from its offloading and loading from the storage location. 5 Transport is assumed to be bulk freight road transport using >32t gross weight vehicles as 6 defined in the Ecoinvent database⁴⁴. Diesel consumption for loading and offloading of 7 feedstocks is calculated basing on the movement of 15t/hour feedstock with the consumption 8 of 493 MJ/hour diesel⁴⁵. To maintain consistency with the DNDC simulations, same 9 amounts of ammonium nitrate input levels were adopted in LCA and DNDC simulations. 10 The remaining cultivation data for Miscanthus (including subsoiling, ploughing, harrowing, 11 12 fertiliser application, spraving, weed cultivation and residue removal) has been compiled from the Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB) project 13 database⁴⁶, which has been developed for Europe primarily from UK data. Transport is 14 assumed to be same as above for wheat straw. Upstream data for the production of the inputs 15 specified in the feedstock cultivation input trees is taken from Ecoinvent v3.1⁴⁴. The 16 combustion of diesel in agricultural equipment for various tasks (e.g. fertiliser application, 17 harvesting, baling etc.) is taken from IPCC²² and Kubica et al.⁴⁷. The environmental impacts 18 associated with this data is calculated in Simapro 8 using the ReCiPe Midpoint (H) LCA 19 20 impact assessment methodology.

As cultivation data count for the whole wheat crop, the impacts of cultivation need to be
allocated to wheat grain or straw. Three allocation methods were applied in this work, i.e.
economic allocation, RED_allocation and CV_allocation. Economic data for wheat straw
and grain taken from Statistics Denmark show prices of €0.074 and €0.15/kg, respectively,
assuming provision of the public good 'straw for energy'⁴⁸. According to Renewable Energy

Directive (EU RED)⁴⁹, straw shall be considered to have zero life-cycle GHG emissions up
to the process of collection of those materials. Additionally, we allocated emissions based
on the real calorific values (CV) of wheat grain and straw, which are 16.5 and 17.6 MJ/kg,
respectively⁵⁰.

5 3 RESULTS

6 3.1 Single feedstock production scenarios

7 Modelled 30-year average grain yields for all the soil series range from 7.20 to 8.33 t/ha (14.5% moisture), depending on variable soil AWC. Weighted average yield was calculated 8 9 basing on the proportion of each soil series in total area. The overall weighted average yield in the region is 7.94 t/ha (14. 5% moisture). Yields were also simulated for medium and high 10 emission climate change scenarios (Table 4). Like in the baseline results, soils of high AWC 11 can achieve slightly higher yields. The overall weighted average yields are 8.54 and 8.76 12 t/ha for medium and high emission scenarios respectively. Total amount of harvestable 13 wheat straw are estimated to be 623, 670 and 688 kt/year for the chosen catchment area 14 under baseline, medium and high emission scenarios, respectively (Table 5). About 97% of 15 the current wheat straw currently has other uses^{4,6,8} (Fig. 1), which is 604kt per year. Under 16 17 the medium and high emission scenario, assuming the annual demands from other uses will remain stable, then a total amount of 66 and 83 kt wheat straw could become available for 18 bioenergy or biomaterial production. 19

20 Table 5.

Figure 7.

Simulated NO_3^- leaching and winter wheat grain yields of different soil textures show a high variation in NO_3^- leaching and gas flux from different soil textures (Fig. 7) in the DNDC outputs. NO_3^- leaching is the main sink for N loss; depending on soil texture, the 4-year average NO₃⁻leached ranges between 14 and135 kgN/ha/year. The annual leaching fractions
(NO₃⁻ leached per N fertiliser inputs) for different soil textures range from 6 to 60% of total
applied N. The weighted average leaching amount is 63.3 kg N/ha which corresponds to a
leaching fraction of 30%.

These results are similar to the IPCC Tier 1 estimate for FracLEACH-(H) (N losses by leaching/runoff for regions), according to which the rate of N loss by leaching or run off is 30% of the total N fertiliser input, with an uncertainty range of 10 to 80%²². This result is also in accordance with the winter wheat long-term field trial 'Broadbalk Experiment' conducted in England, where 21% and 31% N loss were observed for the 192 and 240kgN/ha N fertiliser application treatments, respectively⁵¹.

11 3.2 Mixed feedstock production scenarios

In the mixed feedstock production (MP) scenarios, Miscanthus was assumed to be 12 planted on all those soils with loamy fine sand texture. For those soils, simulated winter 13 wheat yields are much lower than on the other soils while the N leaching is substantially 14 higher than finer textured soils (Fig. 7). On these soils, the Miscanthus produces about 12-15 13t/ha, compared to only 1.5 to 2.0 t/ha of winter wheat straw becoming available. The 16 comparison of modelled NO₃⁻ leaching and N₂O emissions between wheat straw and 17 Miscanthus on those four loamy fine sand soils are shown in Fig. 8. Similar to winter wheat 18 production, model outputs also show a positive effect of increasing CO₂ concentration on 19 Miscanthus production (Table 6). Compared with the SP scenario, total available LCB 20 increases from 19 kt (SPBC) to 384 kt (MPBC) under the baseline climate. Under the 21 22 medium and higher climate change scenarios, the differences increase from 365 to 504 kt and 545 kt total available LCB production, respectively (Fig. 9). 23

Figure 8.

1 Figure 9.

2	About 11% of NO ₃ ⁻ leaching could be prevented when MPBC feedstock scenarios were
3	adopted (Table 7), equating to a saving of approximately 2.81 million kg N/year. A
4	relatively minor reduction (6.06%) in direct N_2O emissions is estimated by DNDC
5	(0.66kgN/ha for SPBC and 0.62kgN/ha for MPBC). In total, 34,925 kg N/year (10,408 t
6	$CO_2eq/year$) N ₂ O emission could be saved moving from SPBC to MPBC feedstocks.

7 Table 7.

8 3.3 LCA results

The direct and indirect N₂O emission results were included in the field to upstream 9 factory gate LCA for both SPBC and MPBC scenarios (Fig. 10). When economic allocation 10 was applied, the LCA shows an impact of 0.20 kg CO₂eq/kg delivered LCB for SPBC 11 scenario, and this figure decreases for 52% in MPBC system. A similar trend can be found 12 13 when CV allocation was used. However if RED allocation was considered, the GWP for SPBC is only 0.020 kg CO₂eq/kg and increases to 0.087 kg CO₂eq/kg when MPBC was 14 adopted. This is due to that RED allocation approach requires all the emissions of wheat 15 cultivation to be attributed to grain production. It can also be noted that cultivation phrase 16 contributes to the biggest portion of GWP (from 77% to 94%) in all the scenarios except SP 17 when RED allocation is used. Furthermore, N₂O emission accounts for 14% to 16% of total 18 emissions except for SPBC scenario under RED allocation. 19

20 Figure 10.

21

22 4 DISCUSSION

In this study, the process based models DNDC and STAMINA, were calibrated and 1 2 evaluated for winter wheat and Miscanthus under local English conditions. Both models simulated yields quite well when compared to observed yields for both crops. DNDC has 3 4 been widely used for simulating C and N dynamics for a range of crops. However, as 5 Miscanthus was not included in the original version of the model, only two articles have been published using DNDC to simulate Miscanthus growth before^{18,52}. In the work reported 6 here, we tested the DNDC model's performance in simulating Miscanthus yields under local 7 conditions, however, uncertainty remains on the model's ability to accurately simulate N 8 dynamics, for which it was not possible to calibrate the model in this work. 9

10 Due to the lack of information on current straw production and use, a conservative estimate of winter wheat straw provision potential was adopted. It has been suggested that 11 straw which was used for animal bedding could be used locally for soil incorporation after 12 (serving as farmyard manure), allowing substantial reduction of the incorporated straw and 13 making more straw available for bio-energy or bio-material production. However, this is less 14 likely to happen considering current records from Copeland and Turley⁶ according to which 15 a large volume of straw is moved from the Eastern Counties to the South West of England, 16 17 Wales and Scotland to meet the market demands for animal bedding in the livestock sector⁷, rather than being used locally. 18

Medium and high CO₂ emission climate change scenarios were used to model production of winter wheat and Miscanthus, however, as both STAMINA and UKCP only examine the impacts of altered atmospheric factors (CO₂ concentration, rainfall, temperature etc.) on crop growth, they do not include issues such as altered occurrence of pest and diseases, which are likely to impact on yields. Based on simulations of projected CO₂ concentration and corresponding weather information from the UKCP, no negative impacts on wheat and

Miscanthus yields have been seen. On the contrary, our simulations predict increases of 1 2 7.6% and 10.3% for wheat grain yields under medium and high scenarios respectively, and 33.9% and 43.2% increase of Miscanthus yields compared with the baseline climate. 3 4 Simulated increases in wheat productivity were in accordance with most of the current research in that C3 crops show yield increases in response to rising CO₂ concentration 5 through increased rates of photosynthesis and decreased water use⁵³. Unlike C3 crops, the 6 impacts of elevated CO₂ concentration on C4 crops growth remains uncertain⁵³. In theory, 7 the increase of biomass from elevated atmospheric CO₂ concentration on C4 crops should 8 be very limited or even none, however this has been shown only in some of the research 9 conducted⁵³, whilst others have seen substantial increases in photosynthesis and biomass 10 production at increased CO₂ concentrations^{54,55}. Apart from the elevated CO₂ concentration, 11 12 our simulated increases in Miscanthus yields under climate change scenarios could be explained by the much warmer climate (48.71% and 46.67% higher average hourly 13 temperatures), higher average humidity (13.91% and 14.21% higher humidity) and slightly 14 higher annual precipitation levels (2.51% and 2.56% higher annual rainfall) projected by 15 UKCP compared with the baseline climate. It has been widely discussed that Miscanthus 16 growth in Northern Europe is mainly constrained from reaching its potential by the cold 17 temperature^{11,56}. 18

Comparing our estimated total available LCB for single and mixed feedstock production under different climate change scenarios, it is clear that the proposed MP scenarios benefit significantly more than the SP scenarios. Under the SP scenarios, it is impossible to ensure sufficient feedstock for a new development of an exclusively locally supplied lignocellulosic biofuel or biomaterial plant in the case study area, even for the SPHE scenario, when the available LCB is estimated to be 82kt/year. However, if the 8% selected area with low quality soils were to be converted to Miscanthus cultivation, available LCB supply is

estimated to be 383kt/year for MPBC and 628kt/year for MPHE, which is sufficient to
support one to two commercial scale lignocellulosic biofuel or biomaterial plants, with 3%
reduction in regional wheat grain supply.

The simulated and estimated NO₃⁻ leaching and N₂O emissions of both SPBC and MPBC 4 5 scenarios indicated that if Miscanthus is integrated into the arable system by replacing conventional cereal crops on low-quality soils (where wheat production levels are lower and 6 N losses higher), weighted average NO_3^{-} leaching across the whole feedstock supply region 7 would be reduced by 10% and the total of direct and indirect N₂O emissions would be 8 9 reduced by 8%. The reduction of GWP from SPBC to MPBC scenario becomes larger according to the LCA results, due to the reduced fertiliser application, machinery use and 10 associated energy consumption. 11

When calculating GWP from agricultural residues, the choice of allocation method is crucial in deciding the LCA results. In this work, when RED allocation is used, the results were completely in contrary to those using economic allocation and CV allocation. It suggests that the current allocation method in RED is too simplified to reflect the real GHG dynamics reliably, especially when comparison with perennial crops is made.

Assessing the C stock impacts arising from the change in land use from wheat to 17 Miscanthus was outside the scope of this work. However, a few studies have shown C stock 18 increases for arable land converted to Miscanthus, in both above ground biomass and below 19 ground C pool⁵⁷⁻⁶⁰. Our recent analyses show that soil carbon enrichment under Miscanthus 20 can be marginal on soils rich in carbon⁹ but considerable in low quality soils⁶¹. Thus, we 21 would expect to see a further reduction of GWP by moving from SPBC to MPBC as C stocks 22 would increase from land use change to perennial crops. GWP arising from land use change 23 will be assessed in an additional paper. 24

1

2 5 CONCLUSION

GWP of the non-food bioeconomy can be improved considerably (5-6%) when LCB 3 resourcing is changed from a SPBC to a MPBC system. Integrating Miscanthus on sandy 4 5 soils into the UK arable system improves the feedstock availability omitting low yield and high N loss locations for wheat production. In such an MP scenario, total available LCB 6 increases by more than an order of magnitude with limited impact on wheat production. 7 Simulated NO₃⁻ leaching and N₂O emissions from Miscanthus production are 50% to 60% 8 lower than from wheat on these low-quality soils, showing a win-win situation regarding 9 environmental and economic criteria. 10

This work clearly challenges two preconceptions that have emerged for the non-foodbioeconomy:

Its increased biomass demand would exacerbate competition for land and
 environmental impacts of crop production, and

Farmers could not produce more with less and not overcome the 'food vs fuel
 vs biomaterials' conflict through improved cropping and integrated land use.

This work has evaluated the GWP impacts regarding improved N-use to reduce GHG emissions; future work needs to include possible C stock changes likely to arise from arable land converted to perennials. Secondly, this case study is speculative in the sense that the only empirical data available were for wheat and Miscanthus yields, as measurement for N fluxes were not available and solely based on models. Future work should also account for below- and above-ground C stock changes, both, in biomass and soil, which together with N-flux measurements would reduce the uncertainty of the models. Thirdly, this work is

- limited to the case study area, so the methodology we proposed should also be tested with
 broader applications.
- 3

4 6 ACKNOWLEGEMENTS

We thank the European Commission's Climate-KIC programme for financial support 5 provided in the context of the project Adaptation and Mitigation through Bio-Succinate 6 7 Innovation (ADMIT Bio-SuccInnovate). Co-authors Qi and Richter acknowledge the support by the UK Engineering Physical Sciences Research Council (EPSRC), through grant 8 9 EP/K036734/1 "Bioenergy value chains: Whole systems analysis and optimisation" (Supergen Bioenergy Challenge) and by Rothamsted Research's Institute Strategic 10 Programmes "Soil to Nutrition" (BB/PO1268X/1) and "ASSIST" (BBS/E/C/000I0110) 11 funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC). 12

13

14 7 REFERENCES

- 15 1. Black MJ, Whittaker C, Hosseini SA, Diaz-Chavez R, Woods J, Murphy RJ, Life Cycle
- 16 Assessment and sustainability methodologies for assessing industrial crops, processes and

17 end products. *Ind Crops Prod* **34**:1332-1339 (2011).

Hammerschlag R. Ethanol's energy return on investment: A survey of the literature 1990 –
 Present. *Environ Sci Technol* 40:1744-1750 (2006).

- 20 3. Donaldson E, Schillinger WF, Dofing SM, Straw production and grain yield relationships
 21 in winter wheat. *Crop Sci* 41:100-106 (2001).
- 4. Glithero NJ, Wilson P, Ramsden SJ. Straw use and availability for second generation
 biofuels in England. *Biomass and Bioenergy* 55:311-321 (2013).
- 5. Engel R, Long D, Carlson G, Wallander R. Estimating straw production of spring and winter

1		wheat. Fertilizer Facts Montana State University Extention Bulletin 33 (2005)
2	6.	Copeland J, Turley D. National and regional supply/demand balance for agricultural straw
3		in Great Britain. (2012). [Online]. Available at:
4		http://www.northwoods.org.uk/northwoods/files/2012/12/StrawAvailabilityinGreatBritain
5		.pdf [April 26, 2017]
6	7.	Rosillo-Calle F, De Groot P, Hemstock SL, Woods J, editors. The biomass assessment
7		handbook: Energy for a sustainable environment. Routledge (2015).
8	8.	Nicholson, F., Kindred, D., Bhogal, A., Roques, S., Kerley, J., Twining, S., Brassington, T.,
9		Gladders, P., Balshaw, H., Cook, S., Research Review No. 81. Straw incorporation review.
10		(2014). [Online]. Available at: https://cereals.ahdb.org.uk/media/470361/rr81-web.pdf
11		[April 26, 2017]
12	9.	Richter GM, Agostini F, Redmile-Gordon M, White R, Goulding KWT, Sequestration of C
13		in soils under Miscanthus can be marginal and is affected by genotype-specific root
14		distribution. Agric Ecosyst Environ 200:169-177 (2015).
15	10.	CLIFTON-BROWN JC, Breuer J, Jones MB, Carbon mitigation by the energy crop,
16		Miscanthus. Glob Chang Biol. 13:2296-307 (2007).
17	11.	Lewandowski I, Clifton-Brown JC, Scurlock JM, Huisman W, Miscanthus: European
18		experience with a novel energy crop. Biomass and Bioenergy. 19:209-227 (2000).
19	12.	Patel M, Crank M, Dornberg V Hermann B, Roes L, Hüsing B et al., Medium and Long-
20		term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from
21		Renewable Resources - The Potential of White Biotechnology. Utrecht University,
22		Department of Science, Technology and Society (STS)/Copernicus Institute, Utrecht
23		(2006). [Online]. Available at: http://edepot.wur.nl/183326 [April 13, 2018].
24	13.	Philp J, Biobased chemicals and bioplastics: Finding the right policy balance. Ind
25		Biotechnol. 10:379-383 (2014).

1	14. Diaz-chavez R. Socio-Economic Impacts of Bioenergy Production. (2014). [Online].
2	Available from: http://link.springer.com/10.1007/978-3-319-03829-2 [April 13, 2018]
3	15. Christian DG, Quantifying the yield of perennial grasses grown as a biofuel for energy
4	generation. Renew Energy 5:762-766 (1994).
5	16. Christian DG, Riche AB, Nitrate leaching losses under Miscanthus grass planted on a silt
6	clay loam soil. Soil Use Manag 14:131-135 (1998).
7	17. Christian DG, Riche AB, Yates NE, Growth, yield and mineral content of Miscanthus x
8	giganteus grown as a biofuel for 14 successive harvests. Ind Crops Prod 28:320-27
9	(2008).
10	18. Gopalakrishnan G, Cristina Negri M, Salas W, Modeling biogeochemical impacts of
11	bioenergy buffers with perennial grasses for a row-crop field in Illinois. GCB Bioenergy
12	4 :739-750 (2012).
13	19. Heaton EA, Dohleman FG, Long SP, Meeting US biofuel goals with less land: The
14	potential of Miscanthus. Glob Chang Biol 14:2000-2014 (2008).
15	20. Hellebrand HJ, Scholz V, Kern J, Fertiliser induced nitrous oxide emissions during energy
16	crop cultivation on loamy sand soils. Atmos Environ 42:8403-8411 (2008).
17	21. Guo M, Li C, Bell JNB, Murphy RJ, Influence of agro-ecosystem modeling approach on
18	the greenhouse gas profiles of wheat-derived biopolymer products. Environ Sci Technol
19	46 :320-330 (2012).
20	22. Garg A, Kazunari K, Pulles T, 2006 IPCC guidelines for national greenhouse gas
21	inventories. Intergovernmental Panel on Climate Change (2006). [Online]. Available
22	from: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ [April 13, 2018].
23	23. Goglio P, Smith WN, Grant BB, Desjardins RL, Gao X, Hanis K, Tenuta M, Campbell
24	CA, McConkey BG, Nemecek T, Burgess PJ, A comparison of methods to quantify
25	greenhouse gas emissions of cropping systems in LCA. J Clean Prod 172:4010-4017

2	24.	Fisher S, Karunanithi A, Contemporary comparative LCA of commercial farming and
3		urban agriculture for selected fresh vegetables consumed in Denver, Colorado. Proc 9th
4		Int Conf Life Cycle Assess Agri-Food Sect. (2014). [Online] Available from:
5		http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.832.8968&rep=rep1&type=pdf
6		[April 13, 2018].
7	25.	Richter GM, Rana G, Ferrara RM, Ventrella D, Acutis M, Trevisiol P, Mayr Th, Baggeley
8		N, Morris, J, Holmes A, Trawick P, Dailey AG, Robbins P, Simota C, Stability and
9		mitigation of arable systems in hilly landscapes. EU-QLK-5-CT-2002-013013. Report to
10		the European Commission, Brussels. (2006).
11	26.	Li C, Farahbakhshazad N, Jaynes DB, Dinnes DL, Salas W, McLaughlin D, Modeling
12		nitrate leaching with a biogeochemical model modified based on observations in a row-
13		crop field in Iowa. <i>Ecol Modell</i> 196 :116-130 (2006).
14		
15	27.	Ferrara RM, Trevisiol P, Acutis M, Rana G, Richter GM, Baggaley N, Topographic
16		impacts on wheat yields under climate change: two contrasted case studies in Europe.
17		<i>Theor Appl Climatol</i> 99 :53-65 (2010).
18	28.	Richter GM, Semenov MA, Modelling impacts of climate change on wheat yields in
19		England and Wales: Assessing drought risks. Agric Syst.;84:77-97 (2005).
20	29.	Schapendonk AHC., Stol W, van Kraalingen DW., Bouman BA, LINGRA, a sink/source
21		model to simulate grassland productivity in Europe. Eur J Agron 9:87-100 (1998).
22	30.	Richter GM, Qi A, Semenov M a., Jaggard KW, Modelling the variability of UK sugar
23		beet yields under climate change and husbandry adaptations. Soil Use Manag 22:39-47
24		(2006)

1	31.	Richter GM, Riche AB, Dailey AG, Gezan SA, Powlson DS, Is UK biofuel supply from
2		Miscanthus water-limited? Soil Use Manag 24:235-245 (2008).
3	32.	Giltrap DL, Singh J, Saggar S, Zaman M, A preliminary study to model the effects of a
4		nitrification inhibitor on nitrous oxide emissions from urine-amended pasture. Agric
5		Ecosyst Environ 136:310–317 (2010).
6	33.	Abdalla M, Jones M, Yeluripati J, Smith P, Burke J, Williams M, Testing DayCent and
7		DNDC model simulations of N_2O fluxes and assessing the impacts of climate change on
8		the gas flux and biomass production from a humid pasture. Atmos Environ 44:2961-2970
9		(2010).
10	34.	Kesik M, Brüggemann N, Forkel R, Kiese R, Knoche R, Li C, et al., Future scenarios of N
11		2 O and NO emissions from European forest soils. J Geophys Res 111 (2006).
12	35.	Giltrap DL, Li C, Saggar S, DNDC: A process-based model of greenhouse gas fluxes
13		from agricultural soils. Agric Ecosyst Environ 136:292-300 (2010).
14	36.	Li C, Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl
15		Agroecosystems 259-276 (2000).
16	37.	Wattenbach M, Sus O, Vuichard N, Lehuger S, Gottschalk P, Li L, et al., The carbon
17		balance of European croplands: A cross-site comparison of simulation models. Agric
18		Ecosyst Environ 139:419-453(2010).
19	38.	Jenkins G, Murphy J, Sexton D, Lowe J, Jones P, Kilsby C, UKCP09 Briefing report
20		(2009). [Online]. Available from:
21		http://ukclimateprojections.defra.gov.uk/media.jsp?mediaid=87852&filetype=pdf [April
22		13, 2018].
23	39.	Murphy JM, Sexton DM, Jenkins GJ, Booth BB, Brown CC, Clark RT, Collins M, Harris
24		GR, Kendon EJ, Betts RA, Brown SJ, UK climate projections science report: climate

1	change projections. (2009). [Online]. Available from:
2	http://ukclimateprojections.metoffice.gov.uk/media.jsp?mediaid=87893 [April 13, 2018].
3	40. IPCC Data Distribution Centre. (2014). [Online]. Available from: http://www.ipcc-
4	data.org/ancilliary/tar-bern.txt [April 13, 2018].
5	41. Department of the Environmetnal, Food and Rural Affairs, Fertiliser Manual (RB209).
6	(2010) [Online]. Available from: https://ahdb.org.uk/documents/rb209-fertiliser-manual-
7	110412.pdf [April 13, 2018].
8	42. IPCC. Indirect N ₂ O Emissions from Agriculture. Good Practice Guidance and
9	Uncertainty Management in National Greenhouse Gas Inventories. (2000). [Online].
10	Available from: <u>https://www.ipcc-</u>
11	nggip.iges.or.jp/public/gp/bgp/4_6_Indirect_N2O_Agriculture.pdf [April 13, 2018].
12	43. Nix JS, Farm management pocketbook 2008. The Anderson Centre (2007).
13	44. Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B. The ecoinvent
14	database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21:1218-
15	1230 (2016).
16	45. Grant JF, Hetherington R, Horne RE, Mortimer ND. Energy and carbon analysis of using
17	straw as a fuel. (1995). [Online]. Available from:
18	https://inis.iaea.org/search/search.aspx?orig_q=RN:26063228. [April 13, 2018].
19	46. Mortimer ND, Hatto C, Mwabonje O. Sustainable Liquid Biofuels from Biomass
20	Biorefining(SUNLIBB). (2014).
21	47. Kubica K, Paradiz B, Dilara P, Klimont Z, Kakareka S, Debsk B, EMEP/EEA air
22	pollutant emission inventory guidebook. (2009). [Online]. Available from:
23	https://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009
24	[April 13, 2018].

48. Statistics Denmark. Kapit1:Farm gate prices on barley and wheat by defined districts and

1		type of crop.(2015). [Online]. Available from: http://www.statbank.dk/KAPIT1 [April 13,
2		2018]
3	49.	European Parliament and Council. Directive 2009/28/EC of 23 April 2009 on the
4		promotion of the use of energy from renewable sources.(2009) [Online]. Available from:
5		http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:EN:PD
6		F [July 13, 2018]
7	50.	BSI. BS EN 14961-1: 2010 Solid Biofuels. Fuels Specifications and Classes. General
8		Requirements. (2010). London: British Standards Institution.
9	51.	Brentrup F, Palliere C, Nitrogen use efficiency as an agro-environmental indicator.
10		(2010). [Online]. Available from: <u>http://www.oecd.org/tad/sustainable-</u>
11		agriculture/44810448.pdf [April 16, 2017]
12	52.	Borzcka-Walker M, Faber A, Kozyra J, Pudelko R, Mizak K, Syp A, Modelling Impact of
13		Climate Change on Willow and Miscanthus Potential Productivity in Poland. J Food,
14		Agric Environ 10 :1437-1440 (2010).
15	53.	de Souza AP, Arundale RA, Dohleman FG, Long SP, Buckeridge MS, Will the
16		exceptional productivity of Miscanthus x giganteus increase further under rising
17		atmospheric CO ₂ ? Agric For Meteorol 171 :82-92 (2013).
18	54.	de Souza AP, Gaspar M, Da Silva EA, Ulian EC, Waclawovsky AJ, Nishiyama MY, et
19		al., Elevated CO ₂ increases photosynthesis, biomass and productivity, and modifies gene
20		expression in sugarcane. Plant, Cell Environ. 31:1116-1127 (2008).
21	55.	Ottman MJ, Kimball BA, Pinter PJ, Wall GW, Vanderlip RL, Leavitt SW, et al., Elevated
22		CO ₂ increases sorghum biomass under drought conditions. New Phytol 150:261-273
23		(2001).
24	56.	Kandel TP, Hastings A, Jørgensen U, Olesen JE, Simulation of biomass yield of regular
25		and chilling tolerant Miscanthus cultivars and reed canary grass in different climates of

4		
1		
-	-	

Europe. Ind Crops Prod 86:329-333 (2016).

2	57. Harris ZM, Spake R, Taylor G, Land use change to bioenergy: A meta-analysis of soil
3	carbon and GHG emissions. Biomass and Bioenergy 82:27-39 (2015).
4	58. Hansen EM, Christensen BT, Jensen LS, Kristensen K. Carbon sequestration in soil
5	beneath long-term Miscanthus plantations as determined by 13C abundance. Biomass and
6	<i>Bioenergy</i> 26 :97-105 (2004).
7	59. Hillier J, Whittaker C, Dailey G, Aylott M, Casella E, Richter GM, et al., Greenhouse gas
8	emissions from four bioenergy crops in England and Wales: Integrating spatial estimates
9	of yield and soil carbon balance in life cycle analyses. GCB Bioenergy 1:267-281 (2009).
10	60. Dondini M, Alberti G, Delle Vedove G, Ventura M, Tonon G, Viger M, Harris ZM,
11	Jenkins JR, Richards M, Pogson M, Taylor G, Evaluation of the ECOSSE model to
12	predict heterotrophic soil respiration by direct measurements. Eur J Soil Sci 68:384-493
13	(2017).
14	61. Gregory AS, Dungait JAJ, Shield IF, Macalpine WJ, Cunniff J, Durenkamp M, et al.,
15	Species and Genotype Effects of Bioenergy Crops on Root Production, Carbon and
16	Nitrogen in Temperate Agricultural Soil. BioEnergy Research 11 (2):382-97 (2018).
17	

1	Table Caption
2	Table 1. Three data sets used for model calibration for winter wheat and Miscanthus
3	Table 2. Specifications of models inputs and outputs
4	Table 3. Single and mixed crop production (SP, MP) and climate change scenarios Baseline
5	Climate (BC), Medium Emission (ME) and High Emission (HE); atmospheric carbon dioxide
6	concentration [CO ₂]
7	Table 4. Life cycle inventory for wheat and Miscanthus cultivation used in this study
8	Table 5. Weighted average grain yield outputs and total annual collectable straw in
9	catchment area based on STAMINA-winter wheat
10	Table 6. Simulated Miscanthus yield (and standard deviation) on selected loamy fine sand
11	soils
12	Table 7. NO_3^- Leaching and N_2O emissions (and standard deviation) of SPBC and MPBC scenarios
13	
14	
15	
16	
17	
18	

1	Figure	Legends
-	1 Barc	LCBCHQ2

- 2 Figure 1. Estimated current straw use in UK based on literature, total straw production
- 3 estimate ranges from 10.70⁸ to 11.88 Mt/year⁶
- 4 **Figure 2.** Map showing the case study area-50km radius of Hull
- 5 Figure 3. STAMINA model evaluation results for winter wheat and miscanthus
- 6 Figure 4. DNDC model evaluation results for winter wheat and miscanthus
- 7 **Figure 5.** Proportion of each soil type in total case study catchment
- 8 **Figure 6.** Process flow diagram showing the LCA system boundary used in this study
- 9 **Figure 7.** Simulated NO₃⁻ leaching rate and average annual grain yield for winter wheat
- 10 production for different soil texture groups
- 11 Figure 8. (a) NO₃⁻ leaching and (b) direct N₂O emission from winter wheat straw and
- 12 Miscanthus cultivation on selected soils under baseline climate scenario
- 13 Figure 9. Total LCB provision for SP and MP scenarios
- Figure 10. GWP of LCB delivered to feedstock processing plant under SPBC and MPBC
 scenarios
- 16
- 17
- 18
- 19

Table 1. Three data sets used for model calibration for winter wheat and Miscanthus

	Сгор	Site	Years of Simulation	_
	Winter wheat	Rosemaund (R)	1993-1996	_
		Gleadthorpe (G)	1991-1994	_
		Boxworth (B)	1993-1995	_
	Miscanthus	Rothamsted 408 (408)	1997-2004	
2				_
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				

Table 2. Specifications of models inputs and outputs

	Soil	Weather	Background N	N fertiliser inputs	Output
STAMINA	NATMAP*	Hourly data from High Mowthorpe weather station (1961-1990)	Not needed; assumed to be non-limiting	Not needed	Yield for 30 years winter wheat and Miscanthus cultivations
DNDC	NATMAP*	Daily data from High Mowthorpe weather station (1986-1990)	UK Eutrophying and Acidifying Pollutant Network (UKEAP)	Specific value for each soil series based on RB209 ⁴¹	NO ₃ ⁻ leaching and N ₂ O emission from winter wheat and Miscanthus cultivation from 1986-1990

- NATMAP vector, Cranfield University, UK

- 1 **Table 3.** Single and mixed crop production (SP, MP) and climate change scenarios Baseline
- 2 Climate (BC), Medium Emission (ME) and High Emission (HE); atmospheric carbon dioxide
- 3 concentration [CO₂]

Scenario	Description	Wheat cultivation	Miscanthus cultivation	Climate change scenario
		allocation	allocation	
SPBC	Single crop Production	On all arable soils	None	Baseline weather
	under Baseline Climate			[CO ₂] 352 mg l ⁻¹
SPME	Single crop Production	On all arable soils	None	Medium Emission
	under Medium Emission			[CO ₂] 447mg l ⁻¹
	climate change			
SPHE	Single crop Production	On all arable soils	None	High Emission
	under High Emission			[CO ₂] 449mg l ⁻¹
	climate change			
МРВС	Mixed crop Production	Excluding selected	On Selected low	Baseline weather
	under Baseline Climate	low quality soils	quality soils	[CO ₂] 352 mg I ⁻¹
MPME	Mixed crop Production	Excluding selected	On Selected low	Medium Emission
	under Medium Emission	low quality soils	quality soils	[CO ₂] 447mg l ⁻¹
	climate change			
МРНЕ	Mixed crop Production	Excluding selected	On Selected low	High Emission
	under High Emission	low quality soils	quality soils	[CO ₂] 449mg l ⁻¹
	climate change			
4				<u> </u>

1 **Table 4.** Life cycle inventory for wheat and Miscanthus cultivation used in this study.

2 Cultivation data for wheat is taken from the Biomass Environmental Assessment Tool (BEAT)

- 3 v2.1 database and from the Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB)
- 4 project for Miscanthus.

	Unit	Wheat	Miscanthus
Seeds	kg /ha/year	175	0
Rhizomes	kg /ha/year	0	5921
Ammonium nitrate ^a	kg N /ha/year	205	60
Triple superphosphate	kg P_2O_5 /ha/year	39	7
Potassium chloride	kg K₂O /ha/year	48	0
Potassium sulphate	kg K₂O /ha/year	0	105
Calcium oxide	kg CaO /ha/year	0	175
Manganese sulphate	kg /ha/year	0	5.6
Total pesticides (unspecified)	kg /ha/year	1.03	1.15
Total diesel consumption	kg /ha/year	230	0.74
Direct N ₂ O emissions from soil ^b	kg N /ha/year	0.66	0.15
NO ₃ - leaching ^b	kg N /ha/year	63.30	50.03
Indirect N ₂ O from NO ₃ ⁻ leaching	kg N /ha/year	0.48	0.38
Road transport (farm to storage)	km	50	50
Road transport (storage to plant)	km	50	50
Diesel (Loading & Offloading)	kg / kg feedstock	7.68E-04	7.68E-04

Ammonium nitrate input levels for winter wheat range from 160 to 220 kgN/ha/year, the weighted average value was
 applied in this LCA work

7 b. DNDC simulated results, the weighted average value was applied in this LCA work (0.768 kg diesel per ton feedstock)

1 **Table 5.** Weighted average (and standard deviation) grain yield outputs and total annual

2 collectable straw in catchment area based on STAMINA-winter wheat

		Baseline Climate	Medium Emission	High Emission
			scenario	scenario
	Wheat grain yield	7.94 (0.39)	8.54 (0.12)	8.76 (0.11)
	(t/ha 14.5% moisture)			
	Total collectable straw	623.37	670.48	687.80
	(kt/year 14.5% moisture)			
3				
4				
5				
6				
0				
7				
8				
9				
10				
11				
11				
12				
13				
14				

1 Table 6. Simulated Miscanthus yield (and standard deviation) on selected loamy fine sand

2 soils

_		Baseline Climate	Medium Emission	High Emission
			scenario	scenario
-	Miscanthus yield	13.76 (0.35)	18.43 (0.42)	19.71 (0.67)
	(t/ha 14.5% moisture)			
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				

Table 7. NO₃⁻ Leaching and N₂O emissions (and standard deviation) of SPBC and MPBC scenarios

	SPBC	MPBC
NO3 ⁻ Leaching (kg N/ha/year)	64.47 (7.25)	57.41 (6.87)
Direct N₂O (kg N/ha/year)	0.66 (0.18)	0.62 (0.17)
Indirect N ₂ O(kg N/ha/year)	0.48 (0.05)	0.43(0.05)
Total N ₂ O (kg N/ha/year)	1.14	1.05