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ABSTRACT Electric vehicles (EV) have gained global attention due to increasing oil prices and rising 
concerns about transportation-related urban air pollution and climate change. While mass adoption of EVs 
has several economic and environmental benefits, large-scale deployment of EVs on the low-voltage (LV) 
urban distribution networks will also result in technical challenges. This paper proposes a simple and easy to 
implement single-phase EV charging coordination strategy with three-phase network supply, in which 
chargers connect EVs to the less loaded phase of their feeder at the beginning of the charging process. Hence, 
network unbalance is mitigated and, as a result, EV hosting capacity is increased. A new concept, called 
Maximum EV Hosting Capacity (HCmax) of low voltage distribution networks, is introduced to objectively 
assess and quantify the enhancement that the proposed phase-shifting strategy could bring to distribution 
networks. The resulting performance improvement has been demonstrated over three real UK residential 
networks through a comprehensive Monte Carlo simulation study using Matlab and OpenDSS tools. With 
the same EV penetration level, under-voltage probability was reduced in the first network from 100% to 54% 
and in the second network from 100% to 48%. Furthermore, percentage voltage unbalance factors in the 
networks were successfully restored to their original values before any EV connection.  

INDEX TERMS Charging management, electric vehicles, low voltage networks, voltage unbalance

I. INTRODUCTION 
During the past few years, there has been a gradually 

increasing momentum towards the adoption of low emission 
vehicles (LEV) including electric vehicles (EV) which is set 
to increase further in the years ahead. The main drivers are 
the technological improvement in batteries energy density, 
government policies and price incentives offered for EV 
adoption. There are over 40 different EV models available in 
the UK, more than 90,000 registered EVs on UK roads, and 
a growing public charging infrastructure with more than 
4,000 locations. It is expected that in the next few years more 
EV models will be launched in the UK by all major car and 
van manufacturers [1]. 

However, increased penetration of EVs on the low voltage 
(LV) distribution networks has negative impacts. These 
include substation transformers overloading, thermal stress 
on the lines, voltage drops, voltage unbalance, power losses 
and rising peak demand [2], [3], [4]. 

Many approaches have been proposed to enhance the 
integration of EVs avoiding network reinforcement which 
include network reconfiguration [5], [6], [7], on-load tap 
changers on secondary substations’ transformers, switched 
shunt capacitors and energy storage [8], [9], [10], and yet, 
since uncertainties on EV parameters (location, charge 
starting time and state of charge) have huge effects on the 
performance of these algorithms, controlled charging 
(control over timing, location, and duration of charging) is 
widely accepted as the facilitator for EV integration [11]. 

In [12], a trial was performed on nine LV networks in the 
UK using a centralized control algorithm to manage EV 
charging points. The control approach used very little 
information from the network, but an extensive monitoring 
was still required. EV charging coordination based on 
optimization techniques has been proposed in [13] and [14]. 
The available power is shared among EVs as much as the 
network will allow, taking electricity markets bids and prices 
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into account. But again, these techniques rely on extensive 
network’s state information and data processing. 

In [15], three EV demonstration projects from US, 
Germany and Denmark respectively have been analysed and 
compared. These projects proposed different technologies for 
a centralized architecture with an aggregator controlling the 
charging patterns. The approaches differ conceptually in the 
way data from EVs are gathered by chargers and in the 
arrangements regarding the tariffs from the aggregator and 
charging options to cope with end-user requirements.  

For an effective implementation of all the techniques 
mentioned above, LV networks need to be highly automated. 
Therefore, the requirements in terms of infrastructure and data 
processing for these solutions make their adoption in the mid 
and short-terms unfeasible. 

This paper proposes a simple and easy to implement 
distributed charging control strategy. It is able to mitigate 
network unbalance due to the single-phase nature of most 
loads in LV networks which is amplified with the additional 
and relatively large EV loads. In the proposed single-phase 
EV charging coordination strategy with three-phase network 
supply, the chargers connect EVs to the less loaded phase of 
their feeder at the beginning of the charging process. Hence, 
network unbalance is reduced and, as a result, EV hosting 
capacity is increased. 

Unbalance between phases in LV networks result in voltage 
appearing on the neutral connection (zero sequence voltage 
V0), and produce phase voltages different in magnitude and no 
longer phase-shifted by 120°. This affects the performance and 
life expectancy of the network assets. Phase balancing reduces 
active power losses and increases the capacity of distribution 
lines. Methods to balance the network include network 
reconfiguration, loads control and phase swapping [16], [17], 
[18]. But, these techniques require high computational effort 
for solving the power flow. The complex control systems 
required, make these strategies unaffordable on today’s 
Distribution Networks (DN). 

The approach proposed in this paper is similar to that 
adopted in [18], but with the smart charger only requiring the 
knowledge of the less loaded phase in the feeder. This 
information can be easily provided by the secondary 
substation. The necessary communication between chargers 
and the controller on the top of the feeder might flow through 
the existing channel used by smart meters. The suggested 
architecture is shown in Fig. 1. 

The remaining of the paper is organised as follows: Section 
II describes the methodology of the EV charging strategy 
proposed in this work. A new concept, called Maximum EV 
Hosting Capacity (HCmax) of LV networks, is introduced to 
objectively assess the enhancement the proposed strategy 
could produce. Section III presents a comprehensive 
assessment of the distribution networks used in this study 
without any EV integration. Section IV presents a detailed 
probabilistic analysis of their EV hosting capacities. Section V 
demonstrates the enhancement achieved with the distributed 

control algorithm on three real UK LV networks. Section VI 
discusses the proposed control scheme and conclusions drawn 
from this work are summarised in Section VII. 

II.  NETWORK SIMULATION METHODOLODY 
To assess the performance of the proposed EV charging 

control strategy, a series of simulations are presented using 
Matlab and OpenDSS (an open-source electric power 
distribution system simulator [19]). Fig. 2 depicts the 
simulation platform adopted in this work. The LV networks 
are modelled in OpenDSS and Maltab implements all control 
algorithms. Communication between the two programs is 
established via a COM Interface. 

The models of three real UK North West’s electricity 
distribution networks (Networks 3, 7 and 21) [20] have been 
simulated under different hosting scenarios. These models 
include transformers, lines and load details. The 
characteristics of these LV networks models including the 
number of customers, phase distribution, length and 
geographical layout are summarised in Table I and Fig. 3. 

Load demand was modelled using a pool of 100 datasets 
(loadshapes) with 1-minute resolution over 24 hours (1,440 
values) based on the CREST tool developed by Loughborough 
University, UK [21]. This tool provides electricity 
consumption for a number of typical UK households taking 
into account the number of residents, month of the year, type 
of day and the power consumption of major appliances. A 
typical weekday in January (maximum demand in the UK) 
was considered with a share of houses having one resident 
(30%), two residents (34%), three residents (16%) and four 
residents or more (20%) based on UK National Statistics [22]. 
The resulting loadshapes are displayed in Fig. 4. Loadshapes 
were randomly assigned from this pool to every load in the 
three networks. 

Initially, the performance of the networks without any EV 
connected was analysed including powers, transformers 
saturation, losses, voltage profiles, voltage drops and voltage 
unbalance along the feeders. Then, the maximum EV hosting 
capacity (HCmax) without control was assessed for each 
network. This is a new concept introduced in this paper, as EV 
enhancement resulting from integration techniques has not 
been quantified before. This is probably due to the random 
behavior of EV demand with respect to allocation, charging 
starting time, its duration and power, which makes the 
quantification uncertain and complex. A probabilistic 
approach is therefore more appropriate. 

In [23], the hosting capacity of a given network is calculated 
for different charging strategies. The authors defined EV 
hosting capacity as “the highest EV penetration rate that can 
be achieved without exceeding the feeder current constraints 
and the grid voltage constraints”. This approach used a profile 
generation technique to statistically represent the household 
consumption and the EVs charging profiles. Then, based on 
these profiles, the resulting hosting capacities for the most 
widely adopted charging strategies such as uncoordinated 
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charging, residential off-peak charging, and EV-based peak 
shaving were assessed. These penetration rates do not 
characterize the network hosting capacities as only one 
scenario regarding household consumption and EVs schedule 
was considered. 

In [24], the DN’s EV hosting capacity was defined as the 
EV charging demand that can be accommodated by the DN 
such that all the technical constraints (e.g. voltage deviation) 
are guaranteed and the charging requests of EV owners are 
fully satisfied. However, the authors did not provide any 
information on how this could be quantified. 

 In this paper, HCmax is defined as the number of EVs that 
will cause under-voltages at some charging points of certain 
feeders with 100% probability. Only slow charging mode was 
considered in this simulation study with a constant charging 
rate of 3.6 kW and a power factor of 0.98 lagging. 

The proposed algorithm to quantify HCmax starts with 
inputting the number of EVs (N) to be charged. Allocation and 
charge starting time of each EV are assigned randomly 
through Monte Carlo simulation by considering only one EV 
per household. The phase to which each EV is going to be 
connected to charge will be the phase already feeding the 
dwelling. The charge starting time is also randomly assigned, 
between 6 pm and 11 pm and more than one EV can be 
connected to charge simultaneously. Differences in EVs 
batteries states of charge (SoC) have not been taken into 
account, therefore once a vehicle starts charging it will not be 
interrupted and will continue for 6 hours and 40 minutes to 
fully charge the 24 kWh battery. 

The approach used to estimate the hosting capacity is 
probabilistic, as it is highly dependant on both EV allocation 
and charge starting time. To deal with this, the process is 
repeated 100 times for every number of EVs to be hosted, 
resulting in the probability of these undesired effects such as 
under-voltages to occur with that level of EV integration. The 
number of EVs to be hosted is successively increased by one 
till this probability reaches 100%. A simplified flowchart of 
this algorithm is illustrated in Fig. 5. 

The EV integration analysis is repeated again, but this time 
with the application of distributed phase shifting control. Each 
EV is connected to the less loaded phase of the feeder at the 
time it starts charging, no matter which phase feeds the 
household. The new HCmax values are calculated and the 
results are compared to quantify the improvements achieved 
with this control strategy. This process was applied on the 
three networks and the results are presented in Section V. 

III.  NETWORKS PERFORMANCE WITHOUT EV 
Fig. 6 shows the total active power and the active power of 

each phase delivered by the transformers on Networks 3, 7 and 
21 during a whole day. 

All the loads are modelled as constant ܲ and ܳ with the 
same power factor of 0.95. Table II shows the supplied energy, 
power losses and maximum power along the feeders of each 
network during one single day. 

Table III presents the results related to transformers 
saturation and losses on each network. 

The voltage profiles along the networks without EVs at 
peak and off-peak hours are shown in Fig. 7. The following 
color code is adopted in this figure and throughout the paper: 
Phase 1 (black), Phase 2 (red), Phase 3 (blue). In Network 3, 
Phase 2 is the least loaded and at peak hour there are points on 
Phase 1 where the voltage drops close to 0.98 pu. In Network 
7, Phase 2 is the most loaded and at peak hour there are points 
where the voltage reached 0.94 pu. Network 21 is the shortest 
and less loaded network. The voltage exceeds 1 pu even at 
peak hour. 

The voltage at the load points varies every minute. Fig. 8 
shows the range of voltage variation and its average value at 
every supply point. The supply voltage should not differ from 
the nominal voltage of the system by more than ± 10% [25], 
and the results show that this constraint is satisfied. However, 
in Network 3, feeders 1 to 3 are the feeders with the lowest 
voltage on Phase 1. This is observed mainly on feeder 2 where 
unbalance in Phase 1 can be noticed. In Network 7, feeder 4 
(the longest with 4197 m) exhibits a larger unbalance and 
voltage drops on Phase 2. Network 21 is shorter and has less 
loads and therefore it does not present any problems in hosting 
EVs. 

The voltage unbalance along the networks was analysed 
using the percentage voltage unbalance factor (%VUF), 
defined as the ratio of the negative sequence voltage 
component (ܸିሻ	to the positive sequence voltage component 
(ܸାሻ [26]. 

ሺ%ሻܨܷܸ ൌ
௏ష

௏శ
ൈ 100																																ሺ1ሻ         

Distribution Network Operators (DNO) in the UK are 
obliged to comply with 2% limit of voltage unbalance and 
1.3% at the point of common coupling for systems with a 
nominal voltage below 33 kV [27].  

As load demand varies every minute, unbalance varies too. 
Fig. 9 shows the percentage voltage unbalance factor averages 
and ranges along the feeders. The maximum %ܸܷܨ is 1.222% 
for Network 3, 2.284% for Network 7 and 0.358% for 
Network 21. They are produced at peak time on feeders 2, 4 
and 1 respectively.  

IV.  EV INTEGRATION ANALYSIS 
The next step is concerned with assessing the maximum EV 

hosting capacity of the networks without any control. The 
flowchart of Fig. 5 is used to calculate HCmax,. 

The simulations carried out on Network 3 resulted in 100% 
of under-voltage (< 0.9 pu) probability on at least one supply 
point, with an EV integration level greater than 56%, i. e. 207 
vehicles. For Network 7, HCmax was 23%, i.e. 108 EVs. 
Finally, for Network 21, with the assumption that there is only 
one EV per house, the expected HCmax was not reached. The 
simulations carried out over this network did not result in any 
undesirable issues regarding neither voltages nor transformers 
saturation even with full EV integration, i.e. 157 EVs 
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connected to charge. Table IV gives the calculated HCmax for 
the three networks. 

When 100% under-voltage probability was reached, the 
maximum power delivered by the transformer in Network 3 
was in the range of 991.9 – 1,019.7 kW in the 100 simulations 
performed with an average value of 1,007.1 kW (125.88% 
transformer saturation). The resulting minimum voltage at the 
supply points was in the range of 0.8385 - 0.8978 pu. For 
Network 7, the power supplied by the transformer was 
between 724.8 and 742.9.7 kW with an average value of 735.6 
kW (91.95% saturation). The minimum voltage was between 
0.8038 and 0.8888 pu. For Network 21, the transformer output 
power was between 647.9 and 678.9 kW and with an average 
of 665.9 kW (83.24% saturation). The minimum voltage 
ranged between 0.9626 and 0.9751 pu. The only difference in 
these 100% EV integration simulation scenarios on this 
network, was the EVs charge starting time as every house was 
allocated only one EV. Table V shows the distribution of EVs 
along the feeders for these scenarios on Networks 3 and 7. 

Fig. 10 shows the power delivered by the transformers on 
each network with the EV integration level determined by 
HCmax obtained in one of the 100 simulations (100% EV 
integration for network 21 case). Between 5:40 am and 6:00 
pm, the profiles correspond exactly with those shown in Fig. 
6 with a different scale. The changes appeared outside that 
period, when some EVs were charging and unbalance between 
phases becomes noticeable. 

Fig. 11 shows the resulting voltage ranges and averages at 
supply points during the day obtained from the same 
simulations. For Network 3, under-voltages appeared on 
feeders 1 and 3. In other simulation results not, shown here, 
and with this number of EVs, under-voltages also appeared on 
feeder 2. For Network 7, the feeders affected by under-
voltages were feeders 1 and 4. These two feeders are the 
longest in the network and have the largest number of 
connected EVs. For Network 21, there were no voltage 
deviations but on feeder 3, a 1% gap between average voltages 
in Phase 2 and others was observed. 

The comparison between the percentage voltage unbalance 
factors along the feeders before (Fig. 9) and after the EV 
integration (Fig. 12), resulted in a considerable rise in %VUF 
on all feeders. For Network 3, there was a significant rise of 
%VUF to 1.720% on feeder 1. For Network 7, %VUF 
increased to 3.517% on feeder 4 and in Network 21, feeder 1 
showed an increase in %VUF about three times the unbalance 
obtained previously without EVs. 

V.  ENHANCED EV INTEGRATION WITH DISTRIBUTED 
PHASE SHIFTING CONTROL 

The method proposed to enhance EV integration is based 
on identifying the less loaded phase at the top of the feeder 
every time a new EV is being connected to the network, and 
then shifting the connection if this causes an overload on the 
phase. In other words, instead of connecting the EV to the 

phase supplying the dwelling, it will be connected to the less 
loaded phase of that feeder at that time. 

This control strategy was implemented on the three 
networks. Firstly, the under-voltage probability was assessed 
with the same EV integration level defined by the HCmax of the 
network. Secondly, the new HCmax was evaluated with the 
proposed control. Furthermore, to deal with any possible 
random scenarios, the probability-based approach consisted of 
100 different simulations for every level of integration, with a 
random assignment of locations and charge starting times for 
every EV. 

The HCmax for Network 3 without any coordination was 
55.9% (207 EVs for which under-voltages will appear at some 
supply point of some feeder with 100% probability). With  
phase-shifting control, the under-voltage probability with 207 
EVs was reduced to 54%. For Network 7, with 108 EVs the 
under-voltage probability dropped to 48%. In Network 21, 
there were no under-voltages observed neither with nor 
without control. 

Table VI presents the number of supply points with under-
voltage (SPU) probability with the number of EVs given by 
HCmax without control. For Network 3, there were 46 scenarios 
with no under-voltage issues. In the worst-case scenario, 45 
out of 370 (12.16%) supply points exhibited under-voltage. In 
Network 7, the worst-case scenario was 82 out of 471 
(17.41%) supply points exhibited under-voltage at some time 
during the day. 

Table VII shows the distribution of EVs along the feeders 
that produced the two extreme SPU results. Feeders 3 and 6 in 
Network 3 and feeders 4 and 6 in Network 7 are the feeders 
with the largest number of EVs and those which affected the 
grid the most by producing 45 and 82 supply points with 
under-voltage respectively. 

Fig. 13 shows the power delivered by the transformers with 
the EV integration level determined by the HCmax of the 
networks (100% for Network 21), obtained in one of the 100 
simulations (case SPU = 0) with phase shifting control. A 
comparison with the results of Fig. 10 shows that, in this case, 
there is a balance between phases during EV charging period. 

The average voltages and ranges at supply points resulting 
from the same simulations (SPU = 0) are shown in Fig. 14. 
These results clearly demonstrate the benefits and 
improvements achieved with the proposed control strategy. 
There are no under-voltages, higher minimum values and a 
better balance between phases. 

The %VUF averages and ranges along the feeders that 
resulted from the same simulations (SPU = 0) are shown in 
Fig. 15. A comparison with Fig. 12 (without control) reveals a 
substantial improvement in the performance of the networks. 
In Network 3, without EVs the maximum %VUF was 1.222%, 
with EVs and uncontrolled charging 1.720% and with EVs and 
distributed control 1.447%. In Network 7 without EV the 
maximum %VUF was 2.284%, with EVs and uncontrolled 
charging 3.517% and with EV and distributed control 2.292%. 
Finally, in Network 21 without EVs the maximum %VUF was 
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0.258%, with EVs and uncontrolled charging 0.774% and with 
EVs and distributed control 0.361%. 

The unbalance occurring outside the charging periods may 
not be improved by the proposed control. For this reason, the 
maximum %VUF during a day with EVs and controller will 
be equal to the existing %VUF without EVs or greater. 

Finally, for Network 3 it was necessary to increase the 
number of EVs to 274 to get a 100% under-voltage 
probability. With phase-shifting control, the EV hosting 
capacity HCmax increased from 54% to 74%. For Network 7, 
HCmax increased from 23% to 46% (218 EVs) with the 
proposed distributed control scheme. 

In [24], the EV penetration level (EVp) was defined as the 
ratio of total EV charging demand to the total DN demand 
during the day, with the following formulation. 

ܧ ௣ܸ ൌ
∑ ∑ ௖ܲ,௧

஼ு,஺௏
௖ఢ஼௧ఢ்

∑ ∑ ௝,௧݌ ൅ ∑ ∑ ௖ܲ,௧
஼ு,஺௏

௖ఢ஼௧ఢ்௝ఢ௃௧ఢ்
														ሺ2ሻ 

Where pj,t is the active power at node j at time t, Pc,t
CH,AV is 

the average aggregated EV charging demand at time t and at a 
charging facility c, C is the set of EV charging facilities, T is 
the set of time slots and J is the set of DN nodes. Note that, 
with this definition the resulting EVp  is the same and does not 
depend neither on the charging time (since it was assumed that 
SoC = 0 and charging duration = 6 h 40 min) nor on the 
allocation. It varies only with the number of EVs. 

For Network 3, with 207 EVs, the EV penetration level was 
EVp = 0.6093. For Network 7, with 108 EVs, EVp =0.3878. 
Finally, for Network 21 with 157 EVs, EVp =0.7401. With the 
same EV penetration level, with the distributed control, the 
under-voltage probability was reduced in Network 3 from 
100% to 54% and in Network 7 from 100% to 48%. However, 
Network 21 with the higher penetration level did not show any 
problem. The EV penetration level is not a valid indicator of 
the hosting capacity. 

VI. DISCUSSION 
To successfully implement the control scheme presented in 

this paper, the following elements are required: a controller in 
the secondary substation, chargers with phase-shifting ability 
and a communication channel between chargers and the 
controller. 

The controller has a very simple function: gather and 
compare phase powers from each feeder and transmit a code 
pointing to the less loaded phase. These tasks can easily be 
performed by many intelligent electronic devices (IED) or 
programmable logic controllers (PLC) which are available in 
the market. 

Chargers will receive the information about the phase that 
should feed the next EV which is going to be connected if any. 
The phase shifting strategy can be implemented using static 
transfer switches based on triacs like in [18]. Note that there 
will not be any stability issues since no dynamic load 
switching is pretended and the phase-shifting would take place 
before charging starts. 

Since charging may be temporarily interrupted without 
affecting the customer comfort, EVs can be considered as 
shiftable loads. A remote control over the EV single-phase 
charger with direct three-phase connection to the LV network, 
would provide distribution network operators (DNO) with 
direct load control and would allow EVs to participate in 
demand side management programs. 

Concerning the communication requirements, there is 
already, in many countries including the UK, a 
communication infrastructure in place that could be used to 
implement this control system. This is the smart metering 
network. There are over 4.2 million smart meters operating 
across homes and businesses in the UK, deployed by both 
large and small energy suppliers. The UK Government 
through the Smart Metering Programme aims to roll-out smart 
meters to all domestic properties in the UK by the end of 2020. 
This means that there will be a communication channel 
between every consumer and the DNO. This communication 
channel is already bidirectional, as it allows remotely 
switching the supply on and off. In fact, one of the common 
minimal functional requirements for smart meters described in 
[28] is to provide two-way communication between the smart 
metering system and external networks for maintenance and 
control. 

When compared to more advanced control charging 
techniques, the proposed chargers do not need to supply any 
information to the aggregators. Hence, EVs do not require any 
communication protocols and are therefore easily adapted to 
the control system. The communication infrastructure already 
exists and the automation is simple and easy to implement. 
Only three phase network supply is required. In addition, 
advanced application of this distributed phase shifting control 
architecture would enable DNO to manage demand response 
and balance networks, improving the benefits of advanced 
smart meters for demand response based control of 
distribution networks [29]. 

Phase-shifting is not a new idea and has been applied to 
reduce voltage unbalances in power systems. However, this 
concept, to the best of the authors’ knowledge has not been 
applied to EV charging management. 

VII. CONCLUSION 
In this paper, a simple and effective single-phase EV 

charging coordination strategy with three-phase network 
supply has been proposed. Chargers connect EVs to the less 
loaded phase of their feeder at the instant when charging 
begins. With this control strategy, the network unbalance is 
mitigated, the performance of the network is enhanced and 
hence the EV hosting capacity is increased. 

The improvements achieved with this control scheme have 
been demonstrated on three real UK residential networks with 
different configurations. As EV hosting capacity is highly 
dependent on location, charge starting time and state of 
charge, a comprehensive Monte Carlo simulation study using 
Matlab and OpenDSS tools has been performed. 
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To objectively quantify the hosting capacity enhancements 
that phase-shifting control could bring to distribution 
networks, a new concept called Maximum EV Hosting 
Capacity (HCmax) of low voltage distribution networks, is 
introduced. It is defined as the number of EVs for which, 
under-voltages will appear at some service point of a feeder 
(100% probability) and its assessment is probabilistic. 

The HCmax of the three networks were calculated without 
phase-shifting control (207 EVs 56%, 108 EVs 23% and 157 
EVs 100%) and with phase-shifting control (274 EVs 74%, 
218 EVs 46% and 157 EVs 100%). With the same EV 
penetration level, the under-voltage probability was reduced 
from 100% to 54% in the first network and from 100% to 48% 
in the second network. The third network did not present any 
under-voltages neither without nor with charging control. 
However its unbalance was improved. 
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FIGURE 1.  Proposed control architecture for EV charging based on 
phase-shifting. 

 

 

FIGURE 2.  Network simulation methodology. 
 

 

FIGURE 3.  Networks geographical layout. 
 

 

FIGURE 4.  Loadshapes pool used in the model. 

 

 
FIGURE 5.  Maximum EV hosting capacity of the network (HCmax) 
assess algorithm. 

 

FIGURE 6.  Powers delivered by transformers without any EV. 



 

VOLUME XX, 2017 9 

 

FIGURE 7.  Voltage profiles at (a) peak and at (b) off-peak hours without 
any EV. 

 

FIGURE 8.  Average voltages and ranges at load points without any EV. 
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FIGURE 9.  Average percentage voltage unbalance factors (%VUF) and 
ranges along the feeders without any EV. 

 

FIGURE 10.  Power delivered by transformers with the EV integration 
level based on the maximum EV hosting capacity of the network 
(HCmax). 
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FIGURE 11.  Average voltages and voltage ranges at the supply points 
with the EV integration level based on the maximum EV hosting 
capacity of the network (HCmax). 

 

FIGURE 12.  Percentage voltage unbalance factor (%VUF), averages 
and ranges with the EV integration level based on the maximum EV 
hosting capacity of the network (HCmax). 
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FIGURE 13.  Power delivered by transformers with the EV integration 
level determined by the maximum EV hosting capacity of the network 
(HCmax) with phase shifting control. 

 

FIGURE 14.  Average voltages and voltage ranges at supply with the EV 
integration level determined by the maximum EV hosting capacity of the 
network (HCmax) with phase shifting control. 
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FIGURE 15.  Percentage voltage unbalance factor (%VUF ) averages 
and ranges along the feeders with phase shifting control. 

 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE I 

CHARACTERISTICS OF LV NETWORKS MODELS USED 
Network 3 

 F1 F2 F3 F4 F5 F6  Total 
#Customers 94 68 100 38 21 49  370 
Phase A (%) 40.4 42.6 32.0 34.2 42.9 40.8  38.1 
Phase B (%) 26.6 26.5 31.0 26.3 23.8 32.7  28.4 
Phase C (%) 33.0 30.9 37.0 39.5 33.3 26.5  33.5 
Length (km) 3.029 2.142 2.312 0.993 0.669 1.338  10.484
Farthest load (m) 448 423 640 619 398 272  640 

Network 7 
 F1 F2 F3 F4 F5 F6 F7 Total 
#Customers 71 58 50 186 61 23 22 471 
Phase A (%) 42.3 25.9 30.0 31.7 32.8 30.4 40.9 32.9 
Phase B (%) 18.3 25.9 30.0 48.9 18.0 56.5 22.7 34.6 
Phase C (%) 39.4 48.3 40.0 19.4 49.2 13.1 36.4 32.5 
Length (km) 1.716 1.423 1.107 4.197 1.065 0.410 0.559 10.476
Farthest load (m) 501 328 274 465 250 133 239 501 

Network 21 
 F1 F2 F3 F4 F5   Total 
#Customers 22 23 67 18 27   157 
Phase A (%) 50.0 43.5 34.3 44.4 33.3   38.9 
Phase B (%) 27.3 34.8 28.4 27.8 37.0   30.6 
Phase C (%) 22.7 21.7 37.3 27.8 29.6   30.6 
Length (km) 0.777 0.648 1.226 0.394 1.352   4.396 
Farthest load (m) 310 196 211 126 493   493 

 
 

TABLE II 
ENERGY, LOSSES AND MAXIMUM POWER ALONG FEEDERS WITHOUT EV 

Network 3 
 Supplied energy Losses Max power 
 (kWh) (kVArh) (kWh) (kW) 

F1 792 261 9 72 
F2 599 197 6 62 
F3 853 281 11 76 
F4 329 108 3 38 
F5 166 55 1 22 
F6 447 147 2 51 

Total 3186 1049 32 302 
Network 7 

 Supplied energy Losses Max power 
 (kWh) (kVArh) (kWh) (kW) 

F1 620 202 12 63 
F2 500 164 5 48 
F3 447 147 3 49 
F4 1,605 529 46 141 
F5 539 177 4 58 
F6 175 58 1 22 
F7 205 67 1 27 

Total 4091 1344 72 372 
Network 21 

 Supplied energy Losses Max power 
 (kWh) (kVArh) (kWh) (kW) 

F1 171 56 1 24 
F2 181 59 0 28 
F3 552 181 2 50 
F4 169 56 0 21 
F5 250 82 1 31 

Total 1323 434 4 119 
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TABLE III 

SATURATION AND LOSSES OF TRANSFORMERS WITHOUT EV 
 Transformer 

saturation 
(%) 

Max Power 
rate 

Daily active 
energy losses 

(kWh) 

Daily reactive 
energy losses 

(kVArh) 
Network 3 37.75 302/800 3 8 
Network 7 46.50 372/800 5 13 
Network 21 14.87 119/800 1 1 

 
TABLE IV 

UNDER-VOLTAGE PROBABILITY RELATED TO EV INTEGRATION LEVEL 

Network 3  Network 7  Network 21 

No. EV  
(% IL) 

uV(P) 
 

No. EV  
(% IL) 

uV(P) 
 

No. EV  
(% IL) 

uV(P) 

128 (34.6%) 40%  60 (12.7%) 94%  157 (100%) 0% 
135 (36.5%) 50%  70 (14.9%) 96%    
165 (44.6%) 70%  80 (17.0%) 96%    
197 (53.2%) 98%  85 (18.0%) 98%    
199 (53.8%) 97%  90 (19.1%) 99%    
201 (54.3%) 99%  100 (21.2%) 99%    
203 (54.8%) 99%  105 (22.3%) 99%    
205 (55.4%) 99%  107 (22.7%) 99%    
207 (55.9%) 100%  108 (22.9%) 100%    

IL = integration level, uV(P) = under-voltage probability. 
 

TABLE V 
EV DISTRIBUTION ALONG THE FEEDERS 

Network 3 

Feeder #Customers 
No. of EV 

Case Vmin=0.8385 Case Vmin=0.8978 
1 94 43 51 
2 68 44 31 
3 100 39 45 
4 38 27 29 
5 21 20 20 
6 49 34 31 

Total 370 207 207 
Network 7 

Feeder #Customers 
No. of EV 

Case Vmin=0.8038 Case Vmin=0.8888 
1 71 18 21 
2 58 10 16 
3 50 12 8 
4 186 39 33 
5 61 14 19 
6 23 7 7 
7 22 8 4 

Total 471 108 108 
 

TABLE VI 
NUMBER OF SUPPLY POINTS WITH UNDER-VOLTAGE PROBABILITY 

    Network 3 
(207 EV, 370 supply points) 

 
Network 7 

(108 EV, 471 supply points) 
SPU Probability  SPU Probability 

0 46%  0 52% 
1-10 4%  1-10 8% 

11-20 8%  11-20 5% 
21-30 20%  21-30 5% 
31-40 15%  31-40 3% 
41-50 7%  41-50 7% 
51-60 0%  51-60 10% 
61-70 0%  61-70 5% 
71-80 0%  71-80 3% 
81-90 0%  81-90 2% 
> 90 0%  > 90 0% 

SPU= supply points with under-voltage probability. 
 

 
TABLE VII 

EV DISTRIBUTION ALONG THE FEEDERS FOR EXTREME SPU RESULTS 
Network 3 

Feeder #Customers 
No. of EV 

SPU = 0 SPU = 45 
1 94 56 42 
2 68 43 33 
3 100 42 64 
4 38 27 25 
5 21 15 14 
6 49 24 29 

Total 370 207 207 
Network 7 

Feeder #Customers 
No. of EV 

SPU = 0 SPU = 82 
1 71 16 16 
2 58 14 10 
3 50 10 8 
4 186 41 51 
5 61 11 9 
6 23 7 8 
7 22 9 6 

Total 471 108 108 
SPU= supply points with under-voltage probability. 

 
 


