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ABSTRACT
We analyse the kinematics of the Galactic bar-bulge using proper motions from the ESO
public survey Vista Variables in the Via Lactea (VVV) and the second Gaia data release. Gaia
has provided some of the first absolute proper motions within the bulge and the near-infrared
VVV multi-epoch catalogue complements Gaia in highly extincted low-latitude regions. We
discuss the relative-to-absolute calibration of the VVV proper motions using Gaia. Along lines
of sight spanning −10 < �/ deg < 10 and −10 < b/ deg < 5, we probabilistically model
the density and velocity distributions as a function of distance of ∼45 million stars. The
transverse velocities confirm the rotation signature of the bar seen in spectroscopic surveys.
The differential rotation between the double peaks of the magnitude distribution confirms the
X-shaped nature of the bar-bulge. Both transverse velocity components increase smoothly
along the near side of the bar towards the Galactic Centre, peak at the Galactic Centre, and
decline on the far side. The anisotropy is σ �/σ b ≈ 1.1–1.3 within the bulk of the bar, reducing to
0.9–1.1 when rotational broadening is accounted for, and exhibits a clear X-shaped signature.
The vertex deviation in � and b is significant |ρ�b|� 0.2, greater on the near side of the bar and
produces a quadrupole signature across the bulge indicating approximate radial alignment.
We have re-constructed the 3D kinematics from the assumption of triaxiality, finding good
agreement with spectroscopic survey results. In the co-rotating frame, we find evidence of
bar-supporting x1 orbits and tangential bias in the in-plane dispersion field.

Key words: Galaxy: bulge – Galaxy: kinematics and dynamics – Galaxy: structure – Galaxy:
centre.

1 IN T RO D U C T I O N

The Milky Way bulge is the only Galactic bulge which we can
map in full kinematic detail. The combination of photometric,
spectroscopic, and proper motion studies admits the detailed study
of individual stellar populations within the Galactic bulge, revealing
the formation mechanism and subsequent evolution of this compo-
nent. The favoured theoretical picture is of a dynamically formed
bar-bulge that first forms from bar instabilities in the disc before
buckling and vertically spreading into the observed bulge compo-
nent. A classical bulge component formed from early accretion may
also be present, though this remains controversial (Shen et al. 2010;
Di Matteo et al. 2015).

Large-scale photometric studies [Optical Gravitational Lens-
ing Experiment (OGLE), Two Micron All-Sky Survey (2MASS),
UKIRT Infrared Deep Sky Survey (UKIDSS), Vista Variables in the
Via Lactea (VVV)] of the red giants towards the Galactic Centre
have produced a coherent picture of the bulge as an elongated triaxial
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bar structure viewed near end-on (major axis at ∼30 deg to the
Galactic Centre line of sight; Stanek et al. 1997; Saito et al. 2011;
Wegg & Gerhard 2013; Simion et al. 2017). Beyond |�| ≈ 10 deg,
the bar-bulge gives way to the long bar, which has been traced out to
� ∼ 40 deg (∼5.5 kpc, Wegg, Gerhard & Portail 2015) and appears
to be continuously connected to the bar-bulge. This suggests both
components are dynamically linked and co-rotate though this has
not been demonstrated conclusively.

Going beyond its structural properties, the dynamical structure
of the bar-bulge has been most clearly elucidated by spectroscopic
studies. The line-of-sight mean velocities from the Bulge Radial
Velocity Assay (BRAVA; Kunder et al. 2012), Abundances and
Radial velocity Galactic Origins Survey (ARGOS; Ness et al.
2013b), Apache Point Observatory Galactic Evolution Experiment
(APOGEE; Wilson et al. 2010; Abolfathi et al. 2018), Giraffe
Inner Bulge Survey (GIBS; Zoccali et al. 2014), and the Gaia-
ESO survey (Gilmore et al. 2012) all demonstrate the cylindrical
rotation expected for a dynamically formed bulge (Howard et al.
2009). Furthermore, dissection of the populations by spectroscopic
metallicity suggest there is a small metal-poor bulge population
not associated with the dynamically formed bulge (Ness et al.
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2013a), while the metal-rich population is characterized by orbits
typical of buckled bars (e.g. Williams et al. 2016). The photometric
and spectroscopic measurements have been successfully modelled
by Portail et al. (2017) who inferred a pattern speed of �p =
(39 ± 3.5)km s−1 kpc−1 placing corotation near ∼6 kpc consistent
with the observations of the long bar.

With the arrival of data from the Gaia satellite (Gaia Collabora-
tion 2018), there is the opportunity to complement the spectroscopic
studies of the bar-bulge with large-scale proper motion surveys to
further pin down its dynamics and formation process. Traditionally,
proper motion studies require a set of background sources with
assumed zero proper motion (e.g. quasars) to anchor the proper
motion zero-point. In the bulge region, high extinction and high
source density means background reference sources are hard to
come by and studies have been restricted to relative proper motions,
for which primarily dispersions have been measured. The earliest
proper motion study of bulge stars was undertaken by Spaenhauer,
Jones & Whitford (1992), who extracted ∼400 K and M giants from
photographic plates in Baade’s window, (�, b) = (1.02, −3.93) deg
finding (σ�, σb) ≈ (115, 100) km s−1. Further ground-based studies
have focused primarily on giant stars in other windows (Plaut’s
window and NGC 6558, Mendez et al. 1996; Vieira et al. 2007;
Vásquez et al. 2013). The OGLE survey opened the possibility of
measuring ground-based proper motions over 45 bulge fields (Sumi
et al. 2004; Rattenbury et al. 2007; Poleski et al. 2013) distributed
along b ≈ −3.5 deg and the minor axis. Rattenbury et al. (2007)
quantified for the first time variation in the proper motions with
Galactic coordinates finding both σ � and σ b increasing towards the
Galactic Centre. Space-based proper motions have been measured
using the Hubble Space Telescope (HST) for select (low extinction)
fields including Baade’s window (Kuijken & Rich 2002), Sgr I
(Kuijken & Rich 2002; Clarkson et al. 2008, 2018), NGC 6553
(Zoccali et al. 2001), NGC 6528 (Feltzing & Johnson 2002), and
three minor axis fields (Soto et al. 2014). The largest HST survey
was conducted by Kozłowski et al. (2006), who measured proper
motions of main-sequence stars in 35 fields distributed around
Baade’s window. The gradients of Rattenbury et al. (2007) were not
clearly reproduced by this study although the reported uncertainties
were a factor of a few larger. To date, the coverage of the bulge by
proper motion studies is sparse and, besides the study of Rattenbury
et al. (2007), variation of dispersion within the bulge has not been
conclusively demonstrated requiring comparison between different
studies.

A number of studies have combined spectroscopy with proper
motion surveys to reveal full 3D kinematics of the bulge. For
instance, Zhao, Spergel & Rich (1994) combined the results of
Spaenhauer et al. (1992) with radial velocity data to measure the
vertex deviation of the bulge confirming its triaxiality. Further stud-
ies with spectroscopic data have elaborated on this result (Häfner
et al. 2000; Soto, Rich & Kuijken 2007) and demonstrated the
variation of kinematics with metallicity (Babusiaux et al. 2010; Hill
et al. 2011; Vásquez et al. 2013) revealing the relative contributions
of the bar-bulge and a classical bulge (although for only limited
fields).

The new astrometric data from the Gaia satellite (Gaia Col-
laboration 2018) opens the possibility of fully characterizing the
transverse velocity field of the bar-bulge. The second Gaia data
release provided proper motions for 1.3 billion stars with G � 21
across the whole sky and so extends the limited view of previous
proper motion surveys. Red clump stars at the Galactic Centre
have G ≈ 16, so Gaia is of limited use for highly extincted fields.
However, the recent VVV Infrared Astrometric Catalogue (VIRAC)

catalogue (Smith et al. 2018) for stars in the near-infrared Ks band
VVV catalogue extends the depth to which proper motions are
available in high-extinction regions (as AG/AKs ≈ 15). As with
previous proper motion studies of the bulge, the VIRAC catalogue
produced by Smith et al. (2018) provides relative proper motions
i.e. the proper motions are not tied to an absolute reference frame.
The Gaia second data release solves this issue, so for the first
time absolute proper motions are available for bulge stars. In
this paper, we briefly describe how absolute proper motions are
computed by using bright stars in common between Gaia and
VIRAC. Armed with this new proper motion catalogue, we present
the transverse velocity structure of the bar-bulge. We decompose
the density and velocity moments along the line of sight for fields
−10 < b/ deg < 5 and −10 < �/ deg < 10.

The paper is laid out as follows. Section 2 describes the absolute
proper motion catalogue created from Gaia and VIRAC, and the
subset of data used in this study. We describe the methods employed
in Section 3 focusing on extinction and completeness correction
and the kinematic modelling employed. In Section 4, we present
the results of our analysis, before extracting the full 3D kinematics
under the assumption of triaxiality in Section 5. We close with our
conclusions in Section 6. In a companion paper (Sanders, Smith &
Evans, 2019, Paper II), we use our results to estimate the pattern
speed of the bar using the continuity equation.

2 DATA

2.1 Astrometry

The VVV survey (Minniti et al. 2010; Saito et al. 2012) provides
two epochs of ZYJH imaging and many more epochs of Ks band
imaging over 5 yr from the VISTA Infrared Camera (VIRCAM),
covering 560 deg2 of the southern Galactic plane and bulge. The
VIRAC version 1 (Smith et al. 2018) is a proper motion catalogue
for ∼300 million sources derived from VVV survey data. VIRAC
v1 uses up to several hundred epochs of Ks band data per source by
combining the overlapping VIRCAM observations (pawprint sets)
necessary to obtain continuous coverage over the VIRCAM 1.65
deg2 field of view. VIRAC v1 astrometric accuracy varies across
the survey due to varying observing cadence and source density,
but typical errors are 0.67 mas yr−1 for 11 < Ks < 14, increasing
to a few mas yr−1 at Ks = 16. One important caveat of VIRAC v1
proper motions is that they are relative to the mean motion of the
local astrometric reference sources used, limiting its usefulness for
studying kinematics over large scales.

With the release of the Gaia DR2 data (Gaia Collaboration 2016,
2018), it is now possible to tie the relative proper motions of VIRAC
v1 to an absolute reference frame using stars common to both
catalogues. We begin this process with VIRAC v1 intermediate data,
proper motions generated from astrometric fits inside sub-arrays
(each array is divided into 5 × 5 = 25 sub-arrays each covering
2.3 × 2.3 arcmin2), as these are free from the reference-frame
distortions introduced by the averaging proper motion solutions
across overlapping pawprint sets. A detailed description of the
production of this intermediate data is provided in section 3 of Smith
et al. (2018). For each sub-array we used one of three relative to
absolute correction methods depending on the number of available
Gaia reference sources and the VVV source density. For relatively
sparse sub-arrays with sufficient Gaia reference sources, we fit
and apply a 6 coefficient linear function describing proper motion
reference frame shift, skew, and magnification as a function of sub-
array position. For more dense sub-arrays with relatively few Gaia
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Figure 1. Relative to absolute proper motion corrections in αcos δ for
sources in one pawprint set of VVV tile b371 (which contains 16 arrays).
The sub-array pattern is visible, as are regions in which linear (a gradient
across the sub-array) or constant offset (flat colour in the subarray) correction
methods were applied depending on VVV source density and the number
of available Gaia counterparts.

reference sources, we simply measure the average offsets between
VIRAC and Gaia proper motions in both dimensions and apply
these to the VIRAC proper motions. For sub-arrays with very few
(<10) available Gaia reference sources, we revert to a 6 coefficient
linear solution as described above but using Gaia reference sources
across the entire array. Potential reference sources are selected from
Gaia DR2 as those with five parameter solutions, astrometric gof al
<3, and astrometric excess noise sig <2, and from VIRAC as
having no proper motion error flags (see section 4.2 of Smith et al.
2018). Lindegren et al. (2018) also discuss using the unit weight
error for Gaia DR2 astrometric quality cuts, and since starting this
work the reduced unit weight error has been officially recommended
as the astrometric quality indicator. The pools of potential reference
sources are matched within a 1 arcsec radius keeping only the best
matches for each source. Fig. 1 shows relative to absolute proper
motion corrections for sources of one pawprint set of VVV tile
b371, the sub-array divisions are visible, as are regions in which the
linear and constant offset correction methods are applied.

In all cases, we add the uncertainty on the relative to absolute
correction in quadrature to the VIRAC v1 relative proper motion un-
certainty to produce the uncertainty on the absolute proper motions.
This procedure naturally transfers any Gaia DR2 systematic issues
to the VIRAC catalogue, but typically the magnitude of known Gaia
DR2 systematic issues is much smaller than the random errors on
the VIRAC proper motions.

Once this process of relative to absolute proper motion correction
is performed, we verify that proper motion measurements of the
same sources from overlapping pawprint sets (which are essentially
independent measurements) were consistent within their uncertain-
ties and then average these measurements following the procedure
described in section 4.3 of Smith et al. (2018). The resulting
catalogue of absolute proper motions is dubbed VIRAC v1.1.

2.2 Photometry

We primarily work with Ks photometry provided in the VIRAC
catalogue (processed using the CASU pipelines) and supplement
with J when building an extinction map and for data selection.
We also use the corresponding uncertainties σ i for quality cuts.

We check the calibration of the photometry against the 2MASS
catalogue (Skrutskie et al. 2006) using the relationships reported
by González-Fernández et al. (2018): J2 = J + 0.0703(J − Ks)
and Ks2 = Ks − 0.0108(J − Ks) (CASU v1.3). These expressions
ignore extinction which produces corrections of −0.003E(J − Ks)
in J and 0.001E(J − Ks) in Ks (González-Fernández et al. 2018) so
are negligible for all but the most highly extincted stars. For VIRAC
catalogue entries with 11.5 < J < 14, 11 < Ks < 14, and σ J, σ Ks

< 0.2, we select the nearest 2MASS source within 1 arcsec with
ph qual = A,B,C,D and cc flg = 0 in both J2 and Ks2. For
0.5 deg by 0.5 deg fields, we compute the median offset between
the VVV bands transformed to the 2MASS system and the 2MASS
bands. We find that the difference in Ks band varies by �0.02 mag
across the bulge region (corresponding to a distance systematic of
∼70 pc at the Galactic Centre) and J by �0.03 mag (corresponding
to Ks variations of ∼0.014 mag for our assumed extinction law).
The photometric systematic uncertainties are therefore negligible
for our application.

2.3 Selection

Red clump giants have been used as a tracer of the structure of
the bulge in numerous studies (Stanek et al. 1997; Saito et al.
2011; Wegg & Gerhard 2013; Simion et al. 2017) due to their
standard candle nature. They appear as a clear peak in bulge colour–
magnitude diagrams, lying at (J − Ks)0 ≈ 0.6 and between Ks0 ≈ 12
and Ks0 ≈ 14 depending on Galactic longitude � (subscript 0 denotes
unextincted – we describe extinction correction in the following
section). We select data from VIRAC v1.1 and cross-match to the
Gaia DR2 catalogue using a 1 arcsec radius (using the algorithm
from Koposov & Bartunov 2006), not accounting for the proper
motions and epoch difference. From this combined catalogue, we
select sources according to the following criteria:

(i) 11.5 < Ks0 < 14.5,
(ii) 0.4 < (J − Ks)0 < 1 (if J available),
(iii) σ Ks < 0.2,
(iv) 	 < 0.75 mas or 	 /σ	 < 5 (if 	 available),

where 	 is the Gaia parallax and σ	 its uncertainty. Fur-
thermore, we remove stars within three half-light radii of known
globular clusters (Harris 1996, 2010 edition). The magnitude selec-
tion encompasses the bulge red clump peak while also providing
sufficient stars at 11.5 < Ks0 < 12 and 14 < Ks0 < 14.5 to estimate
the broader disc giant component over the range 12 < Ks0 < 14.
At Ks < 11.5 mag, non-linearity and saturation affect the VVV
magnitudes (Gonzalez et al. 2013). The colour selection removes
many nearby contaminant main-sequence disc stars. However, if J
is unavailable, we still include the source in our selection so as not
to affect the Ks completeness (Wegg & Gerhard 2013). The parallax
cut is a measure to remove nearby dwarf contaminants.

We have simulated our selection using GALAXIA (v0.7.2, Sharma
et al. 2011) with the default set of parameters. In Fig. 2, we
display the colour–magnitude diagrams from VVV and GALAXIA

for a 0.04 deg2 field at (�, b) = (−3,−3) deg. Brighter than Ks0 =
14.5 deg, there are both giants primarily located in the centre of
the Galaxy and foreground blue main-sequence stars. The colour
cut efficiently removes these. A caveat is that we select stars that
do not have J magnitudes. Some of these stars could be blue main
sequence. However, for our test field the probability of this is at most
∼1242/8876 ≈ 14 per cent, but given a lack of J measurement it is
more likely to be a redder star so the probability is significantly
lower.
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Figure 2. Unextincted colour–magnitude diagrams for VVV (left) and
Galaxia (right) for a field centred on (�, b) = (−3,−3) deg. Our selection
corresponds to the top right box. The insets give the number of stars in each
box and d is the number of dwarfs in the top right box.

Within the giant selection box, there are nearby lower main-
sequence stars but these are subdominant. From GALAXIA, we
find 94/8211 ≈ 1 per cent and in the data the cut on parallax
removes 139 of 8876. The similar ratios give us confidence we
are removing most contaminating dwarfs with the parallax cut.
At higher latitudes, b = −10 deg the dwarf contamination fraction
increases to ∼17 per cent but checking with GALAXIA, many of these
dwarfs are within ∼1.5 kpc. Removing these reduces the dwarf
contamination fraction to 5 per cent. Near the plane, fewer Gaia
parallaxes are available but the dwarf contamination is less of an
issue as we are overwhelmed by the distant giants.

From GALAXIA, we find that approximately a third of the selected
giant stars are from the ‘disc’ populations i.e. they are drawn from
the disc density profiles as opposed to the bulge profile. As the disc
density profile is broad compared with the bulge profile, it produces
a more featureless magnitude distribution. From purely photometric
data, it is very difficult to separate these populations so from the
perspective of our modelling both populations together comprise
the bulge.

For sources observed by both Gaia and VVV, we combine the
equatorial proper motions from VIRAC and Gaia DR2 using inverse
variance weighting. This assumes the estimates are independent
which is not completely true due to our absolute-to-relative cor-
rection procedure for the VIRAC proper motions. We transform
the resulting proper motions to Galactic coordinates propagating
the covariances. When modelling the proper motions, we adopt the
further quality cuts:

(i) σμi < 1.5 mas yr−1.
(ii) |μi − 〈μi〉| < 3
μi.

For component i, σμi is the proper motion uncertainty, 〈μi〉 the
median proper motion in a given field, and 
μi the dispersion
computed using the 16th and 84th percentile. These two quality
cuts remove spurious proper motions (Smith et al. 2018) as well as
those which are highly uncertain offering little constraining power.
Although the proper motion error is a function of Ks, so cutting
on proper motion error preferentially removes fainter stars, our
modelling will constrain p(μ|Ks) so this is not a concern.

3 M E T H O D O L O G Y

Our aim is to deconvolve the volume density and velocity structure
for the data described in Section 2. We approach this problem in
two stages: first, extracting the density structure in small on-sky
bins by modelling the unextincted Ks magnitude distribution for
red giant stars, and secondly, combining the density structure with
the proper motions to extract the transverse velocity distributions
along the line of sight. Before embarking on this, we must model
the extinction and completeness which are significant for many of
the considered bulge fields. We then describe the entire kinematic
model before explaining how it is broken into two stages.

3.1 Extinction

We follow Gonzalez et al. (2011) constructing a 2D extinction E(J −
Ks) from the red clump giant stars (we ignore any extinction varia-
tion along the line of sight assuming the majority of the extinction is
from foreground dust). We divide the VIRAC catalogue into fields
of 3, 5, and 10 arcmin2 for |b| < 1.5 deg, 1.5 deg < |b| < 5 deg,
and b < −5 deg as a compromise between number statistics and
resolving the fine-scale dust structure. In each field, we select stars
in a diagonal colour–magnitude box to account for extinction such
that J < 14 + 0.482(J − Ks − 0.62) and (J − Ks) > 0.5 and require
uncertainties in J and Ks less than 0.2 mag. In (J − Ks), we find
the peak (J − Ks)RC using a multi-Gaussian fit and record the full
width at half-maximum (FWHM) of this peak converting this into a
standard deviation σ (J − Ks). The unextincted red clump in Baade’s
window is (J − Ks)0,BW = 0.62 mag (obtained by transforming
the Gonzalez et al. 2011 result to the VVV bands, Simion et al.
2017) which we assume is valid across the bulge. In each field the
extinction is given by E(J − Ks) = (J − Ks)RC − (J − Ks)0,BW with
corresponding uncertainty σE(J−Ks ) as (Wegg & Gerhard 2013)

σ 2
E(J−Ks ) = σ (J − Ks)

2 − 〈σJ 〉2 − 〈σKs〉2 − σ (J − Ks)
2
RC, (1)

where we adopt an intrinsic red clump width of σ (J − Ks)RC =
0.05 mag and compute the median magnitude uncertainty 〈σ i〉 in
each field (if σ 2

E(J−Ks ) < 0 we set σE(J−Ks ) = 0). We adopt the
extinction law AKs = 0.482E(J − Ks) which is consistent with the
measurements of Nishiyama et al. (2009) using 2MASS photometry
and the studies of Majaess et al. (2016), Alonso-Garcı́a et al.
(2017), and Minniti et al. (2018) using VVV photometry (Wegg &
Gerhard 2013, also considered the Cardelli, Clayton & Mathis
(1989) extinction law and found the resulting large-scale bar-bulge
properties to be unchanged). The results of our procedure are shown
in the left-hand panel of Fig. 3.

3.2 Completeness

There are two sources of incompleteness in our adopted catalogue.
The first is incompleteness in the source catalogues used by VIRAC
and the second is incompleteness due to each source not being
assigned a proper motion. We assess the first of these using the
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Figure 3. Extinction and completeness: left-hand panel shows the adopted extinction map, central panel the completeness (both source and proper motion
completeness) at unextincted Ks0 = 14 mag, and the right-hand panel shows the completeness at different lines of sight coloured by the Galactic latitude. The
three black lines correspond to the square fields in the central panel (left line the central square, middle line the disc field at � ∼ 6 deg, and right line the minor
axis field at b ∼ −5 deg).

method of Saito et al. (2012) and Wegg & Gerhard (2013) by
inspecting the recovery of fake stars injected into the VVV images.
For each bulge field, we choose the image with seeing closest
to 0.75 arcsec. For each array, we randomly add 5000 stars with
randomly selected magnitude 11 < Ks < 18 mag (using a Gaussian
psf with FWHM of the seeing) and attempt to extract them using
CASU’s IMCORE. We repeat this procedure five times and record
the average fraction extracted as a function of Ks. Naturally the
completeness correlates with the source density, so is a strong
function of b with fields at |b| � 1 deg approximately 50 per cent
incomplete at Ks = 16 mag.

Additionally, for each image we compare the true source cat-
alogue to the sources with VIRAC proper motions and record
the fraction with proper motions as a function of Ks. In general,
this incompleteness is less severe than the source incompleteness.
When analysing data we are concerned with the incompleteness
as a function of unextincted magnitude. In Fig. 3, we display
the total VIRAC completeness at Ks0 = 14 mag. We see how the
completeness is a complex function of source density and extinction.

3.3 Kinematic modelling

From the described data, we wish to construct maps of the transverse
velocity components v� and vb as a function of Galactic location
within the Galactic bulge region. For a single sightline (�, b), we
construct p(Ks, μ|�), where Ks is the dereddened extinction Ks (we
drop the subscript zero from now on), μ = (μ�, μb) is the proper
motion vector, and

� =
(

σ 2
μ� ρ�bσμ�σμb

ρ�bσμ�σμb σ 2
μb

)
(2)

is the uncertainty covariance matrix with σμi the uncertainty in μi

and ρ�b the correlation coefficient. We ignore uncertainties in Ks.
This is given by

p(Ks, μ|�) = N−1S(Ks)M(Ks, μ|�), (3)

where M(Ks,μ|�) is the model for the bulge giant stars, S(Ks) is
the completeness ratio, and N is a normalization constant given by

N =
∫ 14.5

11.5
dKs S(Ks)

∫
d2μ M(Ks, μ|�). (4)

We write

M(Ks, μ|�) =
∫

ds s2ρ(s)p(MKs)p(μ|MKs, s,�), (5)

where ρ(s) is the density profile as a function of distance s along the
line of sight specified by (�, b). The giant branch luminosity function
p(MKs) is evaluated at MKs = Ks − 2.171ln s − 10 (s in kpc). The
kinematic distribution p(μ|MKs, s,�) is in general a function of
location s and stellar type MKs. The kinematics are expected to be
functions of both age and metallicity of the population. However,
they will be weak functions of MKs as along the giant branch we
expect all stellar populations to contribute. Therefore, for simplicity
we model p(μ|s,�) only, for which we assume a Gaussian random
field

p(μ|s,�) = N (μ|m(s),�m(s) + �), (6)

where m(s) is the mean proper motion at each distance and �m(s)
the covariance.1 We model the density profile using a set of log-
Gaussian basis functions.

ρ(s) =
Nc∑
i

wiN (ln s|gi, σi), (7)

where gi are the set of means in ln s, σ i a set of widths, w is a
simplex, and Nc the number of components which we set to three.

3.4 Luminosity function

Our model is for all giant stars towards the Galactic Centre which
can include both ‘disc’ and ‘bulge’ stars. In theory, we require
different luminosity functions for each component. However, as the
disc density profile is broad, details of its luminosity function (e.g.
metallicity) are unimportant so we use a single luminosity function
for both components.

The luminosity function p(MKs) is adopted from Simion et al.
(2017) composed of three Gaussian peaks for the AGB, RGB,
and RC bumps along with a background RGB exponential:
MKs ∝ exp (ag(MKs + 1.53)) where Simion et al. (2017) sets
ag = ag0 = 0.642. Simion et al. (2017) allowed the mean mag-
nitude of the red clump to vary in their modelling. Requiring
a Galactic Centre distance of 8 kpc, Simion et al. (2017) found
MK,RC = −1.63 mag consistent with the solar neighbourhood re-
sult of MK,RC = −1.61 mag (Alves 2000; Hawkins et al. 2017).
From stellar models (Girardi & Salaris 2001; Salaris & Girardi
2002), the red clump magnitude is a function of (at least) alpha-
enhancement, age, and metallicity. From different assumptions,

1Throughout the paper we use the notation N (m, s) for a univariate normal
distribution with mean m and standard deviation s and N (m, �) for a
multivariate normal distribution with mean m and covariance �.
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Kinematics of the Galactic bar-bulge 5193

Wegg & Gerhard (2013) employed a brighter red clump magnitude
of MK,RC = −1.73 mag but also observed a significant vertical
gradient in the inferred Galactic Centre distance, probably due to
metallicity gradients in the bulge (Gonzalez et al. 2013). Our early
models also displayed a gradient in the inferred Galactic Centre
distance corresponding to a gradient in the absolute magnitude
of the red clump of ∼0.1 mag kpc−1. Fixing the distance to the
Galactic Centre as R0 = (8.12 ± 0.03) kpc (Gravity Collaboration
2018) gives MK,RC = −1.67 mag + 0.1 mag kpc−1|z/ kpc|. This is
pleasing as it implies the low-latitude clump stars are on average
supersolar metallicity, while those at higher latitudes are consistent
with solar metallicity. For instance, in Baade’s window b = −4 deg
we would expect MK,RC = −1.61 as z ≈ 0.57 kpc, which is perfectly
consistent with the solar neighbourhood (Hawkins et al. 2017).

3.5 Discretization

We discretize both the integrals over distance and magnitude. We
evaluate equation (5) by discretizing the integral as

M(Ks, μ) =
∑

i

(
 ln s) s3
i ρ(si)p(MKs(Ks, si))p(μ|si), (8)

using a uniform grid in ln s of Ns = 24 points between 4 and 14 kpc
(this upper limit choice only just encompasses the red clump at the
far end of the bar – tests with larger upper limit choices produce very
similar results). For each grid point, we model the proper motion
distribution as a Gaussian

p(μ|si , �) = N (μ|mi , � + �mi). (9)

Furthermore, we compute the normalization integral in equation (4)
using a uniform grid of NK = 30 points in Ks as

N =
∑

j

(
Ks) S(Ks,j )
∑

i

(
 ln s) s3
i ρ(si)p(MKs(Ks,j , si)). (10)

3.6 Inference

We split our inference into two stages for each field. Each model
is written in the probabilistic programming language, STAN (Car-
penter et al. 2017). First, we evaluate the density profile ρ(s) by
running NUTS (Hoffman & Gelman 2011) (for 1000 iterations) with
likelihood p(Ks) = ∫

d2μp(Ks, μ) and priors

gi ∼ U(4 kpc, 14 kpc),

ag ∼ N (ag0, 0.1ag0)

ln(σi/ ln kpc) ∼ N (−1, 2).

(11)

We infer the parameters gi, wi, σ i, and ag: that is the means,
components, and width of the Gaussian mixture for the distance
distribution, and the slope of the giant branch absolute magnitude
distribution. A further simplification is that we compute p(Ks) on
the grid and interpolate for each datum.

For each field, we take the median ρ(s) fitted using this procedure
and use the probability density function p(μ|Ks) to infer the
parameters m(si) and �(si). For speed reasons, we first infer
the full proper motion covariance marginalized over distance2

2As we know the means and dispersions vary with distance, this procedure
will be biased by the selection in Ks (which is also affected by our error
cut in proper motion) and is not representative of all stars in the range 11.5
< Ks < 14.5 at each location. The average values obtained this way will
vary with completeness, extinction etc. on the sky. However, we can check

(p(μ|si) = N (μ|m, �m + �)) and then fit the distance dependence
of the two proper motion components, μ�, μb independently. In our
later modelling, we assume that the intrinsic correlation between μ�

and μb is approximately independent of distance for computational
speed, despite Clarkson et al. (2008) demonstrating that ρ�b varies
with distance within the bulge. For each model, we run the NUTS

sampler for 100 iterations. We work with proper motions, μ′, shifted
by the median and scaled by the standard deviation. We adopt a
‘smoothing spline’ prior to regularize p(μ′|s) as

m′
i si ∼ N (2m′

i−1si−1 − m′
i−2si−2, τm(8 kpc)),

σ ′
i si ∼ N (2σ ′

i−1si−1 − σ ′
i−2si−2, τs(8 kpc)),

(12)

where m′
i and σ ′

i are the mean and variance for a single scaled and
shifted proper motion component at distance si. These priors act
to minimize the second derivatives with respect to log distance of
the mean and standard deviations of the physical velocities (hence
multiplying by the distance). We further adopt the priors

m′
1 ∼ N (0, 5), m′

2 ∼ N (0, 5), τm ∼ N (0, 1), τm > 0,

σ ′
1 ∼ N (0, 5), σ ′

2 ∼ N (0, 5), τs ∼ N (0, 1), τs > 0.
(13)

For the distance-marginalized model, we adopt

m′ ∼ N (0, 5), σ ′ ∼ N (1, 5), ρ�b ∼ N (0, 0.4), (14)

where ρ�b is the covariance. In principle, we could also impose
smoothing in the means and dispersions between different (�, b)
pixels. However, such a model would have a very large number of
free parameters, so we analyse each field independently.

Transverse velocities are estimated in the heliocentric frame
which we transform to the Galactocentric frame using a solar
motion of (U,V + Vc, W ) = (11.1, 245.5, 7.25) km s−1 (Reid &
Brunthaler 2004; Schönrich, Binney & Dehnen 2010; Gravity
Collaboration 2018).

3.7 An example field

In Fig. 4, we show the results of fitting the model to a 0.2 deg
by 0.2 deg field at (�, b) = (−3, −3) deg. This field has 9203
stars satisfying our initial set of cuts and 8945/8952 satisfying
the proper motion cuts in �/b. The first column of panels shows
the results of the density fit. Both the raw and the completeness-
corrected unextincted magnitude distributions are displayed along
with our model fit. The peak of the bulge red giants is clearly
visible at K0 ∼ 13 mag. This corresponds to the inferred density
distribution in the lower panel peaking just beyond the assumed
Galactic Centre distance. The second column shows the inferred
run of the mean and standard deviation of the proper motions
in the two components along with uncertainties. We also show
the average inferred from marginalization over distance. The third
column shows the corresponding solar-reflex-corrected velocities.
The mean μb and vb are flat implying no net vertical flow at
any position (as per expectation). The longitude motion is more
interesting. The mean proper motion falls from ∼ − 4 mas yr−1 at
s = 5 kpc to ∼ − 7 mas yr−1 beyond s = 10 kpc. In the velocities,
this corresponds to a ‘rotation curve’ crossing zero near the Galactic
Centre distance and rising to ∼150 km s−1 at the extremes. We also
note the slight change in gradient ∼1 kpc from the Galactic Centre
which mirrors the rotation curves derived from proper motion data
by Clarkson et al. (2008).

against our non-marginalized model results, doing the averaging along the
line of sight in the correct way, and the results are very similar.
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5194 J. L. Sanders et al.

Figure 4. An example model fit for a 0.2 deg by 0.2 deg field centred on (�, b) = (−3, −3) deg. The top left-hand panel shows the unextincted Ks distribution
(in green and completeness-corrected in blue). Samples from the model fit are shown in black. The bottom left-hand panel shows the giant distance distribution
with the vertical line at the assumed Galactic Centre distance 8.12 kpc. The second column of panels show the run of the mean (top) and standard deviation
(bottom) of the proper motions (� in blue, b in green) with 1σ uncertainties. The dashed horizontal lines correspond to the distance-marginalized model. The
third column are the corresponding space velocities corrected for the solar reflex. The final column shows the proper motion distributions of the data: top panel
histograms of proper motions in � (blue) and b (green) along with samples from the distance-marginalized model and bottom panel a 2D histogram (log scaled)
with a single contour from the multivariate Gaussian fit overplotted in red.

The velocity dispersions rise from (σ�, σb) ≈ (50, 50) km s−1 at
s = 5 kpc towards the Galactic Centre distance. σ � peaks at the
Galactic Centre at ∼105 km s−1 and declines to ∼70 km s−1 at s =
12 kpc while σ b continues to rise. The σ b behaviour is not exactly in
agreement with our expectations. It appears that the model struggles
to distinguish between stars at the Galactic Centre and those beyond
it, assigning a similar proper motion dispersion to both populations.
The problem is not mirrored in � possibly because the mean is
evolving. We have inspected the μb distribution and it appears that
for fainter magnitudes there is a slightly narrower peak embedded
in a broader envelope, possibly highlighting deficiencies of simply
modelling the distribution by a single Gaussian. However, this is
not conclusive and needs further attention in future work. Although
our selection is designed to remove disc contamination, nearby stars
could also produce such a signal. Separation of the sample into two
(J − Ks)0 bins shows that the proper motion distributions (in both
� and b) only differ significantly for Ks < 12 mag meaning disc
contamination is present but at low levels so is unlikely to cause
such a signature. However, the dispersion at these locations could
genuinely be high. At distances of 12 kpc we are observing Galactic
heights of 600 pc corresponding to the classical thin–thick interface
region.

Finally, Fig. 4 also shows the proper motion distributions in
each component and compare to our distance-marginalized model.
We see that the μ� distribution is approximately Gaussian but
has a wing towards more positive μ�. The μb distribution is
highly symmetric. In the 2D histograms we see the correlation
between the proper motions as well as the additional wing in μ�

corresponding to a slightly narrower range of μb, which possibly
corresponds preferentially to the ‘disc’ population in the central
Galaxy. The correlation is measured as ρ�b = 0.06 ± 0.01 implying
the velocity ellipsoid in (�, b) is pointing towards to Galactic
Centre.

4 R ESULTS

We have applied our modelling procedure to fields of 0.2 deg by
0.2 deg in � and b across the VVV bulge region (−10 < �/ deg < 10
and −10 < b/ deg < 5). This amounts to modelling ∼44.5 million
stars which when completeness corrected, represents ∼59 million
stars. Of the 44.5 million, approximately 24 million are associated
with the overdensity in the magnitude distribution and can reliably
be attributed to the ‘bulge’ component. The excess we attribute
to a more extended ‘disc’ background. However, our modelling
considers all stars together, and makes no distinction between disc
and bulge. We show the completeness-corrected number density in
Fig. 5. The bulge plus disc structure is clear with the asymmetric
bar structure visible at high latitude.

4.1 Distance-marginalized results

We display the � and b proper motion dispersions for the bulge
stars in the top panels of Fig. 6. The left column σ i shows the
total dispersion of all stars with 11.5 < Ks < 14.5 while the
right column 〈σ i〉 shows the dispersion at each distance averaged
along the line of sight. The first of these is larger due to rotational
broadening (Zhao et al. 1994), particularly in σ � – the effect on
σ b is not clearly distinguishable. The central regions of the bulge
are kinematically hottest and both dispersions display a boxy-
shaped profile similar to the density field with a central collimated
structure and a suggestion of an X-shape structure at larger |�|. The
rotationally broadened � dispersion is boxier than its de-broadened
counterpart. Both dispersions decline with increasing |�| and |b|.
In the plane, the dispersions are small probably reflecting the more
dominant disc population in these bins and potentially issues with
extinction modelling. We have overlaid in grey the region where
the AKs extinction is greater than 0.8 mag, as this appears by eye
to be the region where fine structure due to extinction appears,
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Kinematics of the Galactic bar-bulge 5195

Figure 5. Completeness-corrected bulge giant number density in bins of
0.2 deg by 0.2 deg. The colourbar is square-root scaled and the contours are
evenly spaced in log10(N). The inset gives the total number of stars with (N)
and without (Nc-c) completeness correction.

suggesting our procedure is not valid here. Both dispersions display
an asymmetry in � with a tendency for larger dispersions at � > 0
than � < 0. This is consistent with viewing an edge-on bar with the
nearer side at positive longitudes. At high latitude |b| � 8 deg, the
dispersion increases slightly due to the dominance of the foreground
disc and absence of the bulge in these fields. We note that the � and b
dispersions on the minor axis do not decline as strongly as off-axis.
This is possibly due to the double-peaked nature of the minor-axis
fields as we observe both sides of the X-shaped bulge. There are
clear artefacts in these maps: the vertical strips are due to the VVV
imaging strategy and the diagonal features are due to the Gaia
scanning law.

Inspecting the ratio of σ � to σ b, we find the rotationally broadened
ratio is ∼1.1 on and around the minor axis and increases to ∼1.2
in an elongated X-shape for |�| � 3 deg. The low dispersion ratio
of the disc is visible at low latitudes and large |�|. Removing the
effects of rotational broadening, we see the dispersion ratio remains
∼1.1 at low latitudes while at higher latitudes, b ∼ −6 deg where
the X-shape is contributing the ratio has dropped to 0.9–1.

The correlation between the proper motion components is shown
in Fig. 7. We see a clear quadrupole pattern corresponding to near
alignment with the line towards the Galactic Centre. The correlation
is larger at positive longitude than negative longitude, possibly
due to the geometric projection. The maximum amplitude of the
correlation is around ∼0.2 at negative � agreeing well with the more
limited study of Kozłowski et al. (2006). The typical uncertainty is
around 0.02. The correlation is small near the plane and increases in
magnitude away from the plane reaching maximum values around
b ∼ −5 deg for � > 0 and b ∼ −4 deg for � < 0 due to the triaxial
shape. Beyond this, the number of bulge stars falls off so it is
not clear whether radial alignment weakens or is diluted by the
increased disc contribution. Along the minor axis, the ellipsoid is
orientated ∼90 deg with respect to the axis. Finally, we comment
that the Gaia proper motions have star-to-star correlations on small
scales which could affect our measurements. However, the signature

we have extracted is sufficiently large scale that it is insensitive to
any systematics.

4.2 Distance-dependent results

We proceed to plot the density and velocity dispersions separated
by distance in Fig. 8. As we sweep through the bar in distance, we
observe the peak density shifting from positive to negative longitude
as expected when viewing a near end-on bar. The more extended
disc component is visible at positive � in the most distant bin.
Corresponding to the density, the transverse velocity dispersions are
low (70–80 km s−1) at the near end of the bar � > 0 and then increase
towards the Galactic Centre (up to ∼130 km s−1) before declining
again on the far side of the bar (� < 0, back to 70–80 km s−1).
We also display the dispersion ratio σ �/σ b in different distance
slices. As we sweep through the bar, we see the σ �/σ b ≈ 1.1–1.2
X-shape appear at positive longitude and then move to negative
longitudes. This region appears to be surrounded by a colder σ �

envelope.
For a different perspective on these results, we can bin the

estimates of the moments with �, b, and s which is displayed
in Fig. 9. Each column is normalized to one and log scaled. We
also weight by distance to produce approximately equally spaced
observations in distance instead of log distance. In v�, we see an
asymmetric loop due to the two sides of the bar. The top branch
corresponds to the near side of the bar while the lower branch the
far side. We see at � = 0 the two branches both contribute with a
gap between them due to the X-shape of the bar. The two branches
are clear in the plot against b and we see that at fixed b we have
contributions from both branches except at b � −9 deg, where the
far-side branch does not reach. The striations in these plots are due
to Gaia systematics as they correlate with the Gaia scanning law.
As a function of distance, v� is nearly linear with a scatter due to
different �. The near side of the bar rotates slightly slower than the
far side in v� due to geometric effects. The other noticeable feature
in the v� plots is the more isolated peaks at |v�| ≈ 200 km s−1, which
is the presence of the disc population.

The two dispersions display similar trends with (�, b, s). Both rise
from approximately 70–80 km s−1 at � = 10 deg to maximums of
100–130 km s−1 at �= 0 declining again towards � = −10 deg. Both
dispersions are weakly asymmetric in � due to geometric effects. In
b, we observe similar but more symmetric behaviour. The gradients
with b are present but significantly flatter than those in �. Noticeably
the disc population is visible in the mid-plane at low dispersions.
Against distance, both profiles rise from ∼40 km s−1 towards the
Galactic Centre. Beyond this, σ � instantly declines back down to
near its near-field value (specifically for � = 7.5) while σ b plateaus
before declining beyond 10 kpc (a feature also seen in our example
field in Fig. 4). The coloured lines show the averages over 1 deg
bins in �. We see that the dispersion for the near side of the bar � >

0 peaks at smaller distances than the far-side � < 0.
We can compare the dispersion profiles with those obtained for

disc stars in e.g. Sanders & Das (2018). The run of vertical disper-
sion σ b appears to connect on to the vertical dispersion with radius
presented there although for the intermediate-age populations. This
might be a reflection of selection effects of our approach (e.g. red
clump stars are more likely from a younger population ∼2 Gyr, see
fig. 15 of Bovy et al. 2014) but perhaps more interestingly could
be a reflection of the populations within the bar and when the bar
buckled.

In Fig. 10, we display the v� field in Galactocentric Cartesian
coordinates at a range of z slices. We see a clear asymmetry in
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5196 J. L. Sanders et al.

Figure 6. On-sky proper motion field: left-hand panels show the dispersion of all giant stars within 11.5 < Ks < 14.5 and right-hand panels show the mean
dispersion averaged along the line of sight of these stars. The latter of these removes the effects of rotational broadening. Top row shows the longitudinal proper
motion, middle the latitudinal, and bottom their ratio. Note the different scales, particularly for the top two and lower two plots. The grey overlay shows the
region within which the extinction AKs > 0.8.
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Kinematics of the Galactic bar-bulge 5197

Figure 7. The correlation ρ�b between the two proper motion components.
The ellipses shows the shape of the velocity ellipsoid averaged over 9 pixels.
The ellipsoid is nearly everywhere radially aligned. The grey overlay shows
the region within which the extinction AKs > 0.8.

the velocity field indicative of the bar (an axisymmetric rotation
field in this space would be symmetric ±y). We find that in all z

slices, the line-of-nodes (where v� = 0) is orientated at ∼77.5 deg
to � = 0. We display a plot for results from a simulation (described
in Paper II) which shows a similar relationship between the major
axis of the bar and the line-of-nodes in v�. We also observe at high
latitude (e.g. z = 860 pc) the double-peaked density field is visible
and corresponds to distinctly different kinematics.

4.3 Comparison with previous studies

Early proper motion studies of the bulge were restricted to a
number of isolated low-extinction fields (Spaenhauer et al. 1992;
Mendez et al. 1996; Zoccali et al. 2001; Feltzing & Johnson
2002; Kuijken & Rich 2002). Additionally, the lack of background
sources restricted these studies to relative proper motions and
hence no measurement of the mean transverse velocities. The
large HST programme of Kozłowski et al. (2006) extended the
coverage of the bulge proper motions to 35 fields centred around
(�, b) = (2.5, −3) deg for 16.5 < I < 21.5 and Rattenbury et al.
(2007) used the OGLE proper motion catalogue of Sumi et al.
(2004) for 45 fields distributed mainly along b ≈ −3.5 deg for 12.5
< I < 14.5. Both authors measured the proper motion dispersions
and the correlation between the components of the proper motion.
Both studies produced consistent results finding a declining σ b

profile with � and variation of the proper motion correlation across
the inspected fields. In Fig. 11, we show a comparison of our proper
motion measurements (not removing rotational broadening effects)
within the slice −4.5 < b/ deg < −2.5 with those of Kozłowski
et al. (2006) and Rattenbury et al. (2007). For the Rattenbury et al.
(2007) measurements, the random errorbars are typically smaller
than the data points (∼0.02 mas yr−1). Our σ � measurements agree
well with those of Kozłowski et al. (2006) and are smaller than
those of Rattenbury et al. (2007). On the whole, we find very good
agreement between our measurements and these previous studies.
As we move away from the minor axis, our measurements decline

with the fall in σ b steeper than that in σ �. In both dispersions, there
is asymmetry in � with lower dispersions on the far side of the bar.
Our measurements are consistent with Kozłowski et al. (2006) and
generally slightly smaller than Rattenbury et al. (2007), except in
σ � for � > 0. This agrees with the models of Portail et al. (2017),
who found the Rattenbury et al. (2007) dispersions overpredict
their model (their fig. 16). This discrepancy could be caused by
underestimated uncertainties in Rattenbury et al. (2007) or by the
presence of contaminating populations.

Finally, the correlation measurements agree well with both previ-
ous studies over the entire � range, in particular with the Rattenbury
et al. (2007) results. As observed previously, the correlation is
smaller at negative longitude than at positive longitude. In the
range 0 < �/ deg < 5 our measured correlation is smaller (greater
magnitude) than some of the Kozłowski et al. (2006) measurements.

4.4 Comparison with spectroscopic surveys

With proper motions, only two components of the velocity field can
be mapped, unless we enforce some symmetry as in Section 5. To
fully map the velocity field, we require results from spectroscopic
surveys. While we reserve the combination of spectroscopic obser-
vations with the proper motions provided here to a separate work,
we here briefly compare the transverse velocity measurements to
the line-of-sight measurements across the bulge.

We consider results from five spectroscopic surveys: BRAVA,
ARGOS, APOGEE, GIBS, and Gaia-ESO. For BRAVA and AR-
GOS, we take the mean velocities and dispersions from Kunder
et al. (2012) and Ness et al. (2013b) using our assumed solar
velocities. For APOGEE, we take all fields from DR14 (Abolfathi
et al. 2018) within the VVV bulge footprint, remove duplicates
and dwarf stars (log g > 3.5) and compute the mean velocity
(corrected for the solar reflex) and dispersion in each field. For
Gaia-ESO, we adopt a similar procedure using DR3 (Gilmore et al.
2012). There is only a single field with a sufficient number of
stars (at (�, b) ∼ (1, −4) deg). We remove dwarf stars if log g is
available and apply a parallax cut of 	 < 1.5 mas to remove nearby
contaminants. For GIBS we use the radial velocity data from Zoccali
et al. (2014) and compute the reflex-corrected mean velocity and
dispersion in each of the 33 fields.

In Fig. 12, we compare the line-of-sight mean velocities and
dispersions from these surveys with the results from this paper for
the transverse velocity field. To attempt to compare like-to-like,
we have averaged the derived transverse velocities weighted by the
density profile along the line of sight. In the mean velocities, there is
a rotation signature in all three components. The strongest signature
is in the line-of-sight velocities. The longitudinal rotation signature
is weaker but still visible, particularly for � > 0 where the rotation
is increasingly in the longitudinal direction. The rotation signature
is also visible in the latitudinal direction, where as we move away
from the plane there is a small rotation projection in this direction.
The anticipated quadrupole signature is offset from the minor axis
due to the geometry of the bar. We note that in these projections the
Gaia scanning law is visible, particularly near the plane for the b
velocities.

In the dispersions, we see a consistent lobed structure across
the three velocity components with the line-of-sight dispersion
larger than the longitudinal and latitudinal. The line-of-sight and
longitudinal lobes are more flattened and boxy than the slightly
collimated latitudinal lobe.
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5198 J. L. Sanders et al.

Figure 8. On-sky density and velocity dispersions of bulge giants at a series of distances. Each panel covers the same on-sky area and the distance in kpc is
shown in the inset. Grey pixels correspond to uncertainties greater than: 10 times larger than the signal in density, 7 km s−1 in σ i, and 0.1 in σ�/σ b. As the
distance increases, the high density region moves from positive to negative Galactic longitude consistent with viewing a near end-on bar. The density peaks
coincide with rising � and b dispersion as we approach the Galactic Centre and then a decline on the far side of the bar. The X-shape of the bar is visible in the
dispersion ratio which is 1–1.2 everywhere within the X.

4.5 The double red clump

One of the key pieces of evidence pointing towards an X-shaped
bar-bulge is the presence of a double red clump peak in the
magnitude distribution of stars selected along the bulge’s minor axis
(McWilliam & Zoccali 2010; Nataf et al. 2010). The interpretation
of this feature as two spatially separated populations of stars has
been challenged and claimed to arise from population effects (Lee,
Joo & Chung 2015). These claims can be refuted using the transverse

velocity field for the multiple peaks. If population effects were
the cause of the split, each peak would have similar kinematics.
However, an X-shaped bulge scenario would give rise to differential
rotation between the two peaks with the faint peak rotating in the
opposite direction in the Galactocentric rest frame (Poleski et al.
2013). In Fig. 10, it is clear the transverse velocities of the two
peaks present at high |z| are quite distinct. However, this plot has
been generated using a luminosity function to transform from K0 to
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Kinematics of the Galactic bar-bulge 5199

Figure 9. Column normalized log-scaled histograms of the velocity moments against �, b, and distance s (v� is corrected for the motion of the Sun). In the
right column we show the running medians of 1 deg bins in � centred on 0 (blue), −7.5 (purple), and 7.5 (orange). We have only used data with uncertainties
in v� and σ i better than 30 km s−1.

Figure 10. Top-down views of the reflex-corrected Galactic longitude velocity field in the bar for a series of Galactic height slices (labelled by the white
insets). (x, y) are left-handed Galactocentric Cartesian coordinates. The 80th percentile density contour is shown in black. The black dots show the location
of zero velocity. The black lines are the bar major axis and a line angled at 12.5 deg to the horizontal which appears to follow the black points. A rotation
signal is clear but it is asymmetric in � as expected for a non-axisymmetric structure. The broad features are reproduced by the simulation on the right, which
is described in Paper II.

distance. Instead, in Fig. 13 we show a field of 0.6 deg by 0.6 deg
centred at (�, b) = (0,−8) deg. We show the fitted density model
which exhibits a clear double peak. We also display a running
median of the μ� distribution. This exhibits a clear trend with K0

demonstrating the kinematic difference between the two peaks.
We also fit a Gaussian mixture model where there is a fixed
contaminant contribution independent of K0. We generate samples
from our model using EMCEE (Foreman-Mackey et al. 2013). This
model is shown by the green points which exhibit a slightly more
significant difference in rotation velocity between the two peaks.

This demonstrates conclusively that the two peaks are two spatially
separated populations.

5 TR I A X I A L S T RU C T U R E

We have inspected the bar’s density and transverse velocity
structure. However, the transverse velocity field is awkward to
interpret as it is biased by our perspective. In this section, we shall
assume triaxial symmetry for the bar-bulge allowing us to combine
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Figure 11. Comparison of this study with previous bulge proper motion
studies. We compare the proper motion dispersions in � and b and the
correlation between the proper motion components (blue points, black line
shows median trend) with the studies of Kozłowski et al. (2006, green
squares) and Rattenbury et al. (2007, red triangles).

estimates of the velocity moments and de-project to recover the
intrinsic velocity moments (and infer the missing line-of-sight
velocity component). This also leads to more precise estimates
of the velocity moments as we can combine up to eight different
measurements.

5.1 Triaxial density field

We first compute the frame in which the bar appears maximally
triaxial following the method of Wegg & Gerhard (2013). For
guesses of the Galactic Centre distance, R0, and bar angle, α, we
linearly interpolate the inferred density distributions on a rectan-
gular grid in bar-aligned coordinates and compute the variance of
the density estimates for the eight symmetry points (or fewer if
the symmetry points fall outside the measured volume) divided by
the mean density at the corresponding z. We minimize this quantity
ignoring |z| < 380 pc to find α = 23 deg and R0 = 8.23 kpc (where
we note that our red clump magnitude was chosen to approximately
match the Gravity Collaboration 2018 measurement of R0). We
find that the inference of α is a function of Galactic height where
closer to the disc plane smaller α is inferred. The bar angle is
slightly smaller than that of Wegg & Gerhard (2013) (27 deg) who
modelled the overdensity relative to the smooth background. Our
modelling of both disc and bulge modifies this slightly and our

early models which were more similar to Wegg & Gerhard (2013)
produced bar angles of ∼28 deg. We therefore adopt R0 = 8.12 kpc
and α = 27 deg.

In this frame, we find the density field from averaging the (up
to eight) equivalent points. We show slices through the resulting
distribution in the top two panels of Fig. 14, both in the major-
intermediate axis plane and major-minor axis plane. Confirming the
results of Wegg & Gerhard (2013), we see the X-shape of the bar-
bulge. In the plane the bar is short and boxy with a central density
peak. As we move to higher Galactic heights, the bar elongates
and around z ≈ 600 pc, the density peak splits into two. This peak
moves outwards as we continue to increase the Galactic height.
Correspondingly, in the major-minor axis slices, the bar appears
peanut-shaped towards central slices and as we move along the
intermediate axis the X-shape appears. In the edge-on projections
the X-shape is difficult to see at high |y| due to the presence of the
disc.

5.2 Triaxial velocity field

We can conduct a similar symmetrization procedure for the veloc-
ities but this requires more care. First, we lack one component of
the velocity (the line-of-sight velocity) which we must infer from
the transverse velocity measurements at a set of similar points. As
we are viewing the equivalent velocities in the bar frame at slightly
different angles, we can infer the missing component. Secondly, the
symmetry of the velocity field of the bar is more complicated than
the triaxial density structure. We assume the bar is in equilibrium
and thus satisfies the continuity equation. Expressed in inertial
disc coordinates aligned with the triaxial bar structure (x, y, z),
the continuity equation for a tracer density ρ rotating with steady
pattern speed �p reads

∂ρ

∂t
+ ∇ · (ρv) = �p

[
y

∂ρ

∂x
− x

∂ρ

∂y

]
+ ∇ · (ρv) = 0. (15)

Here, vi are mean velocities in the inertial bar frame. Neglecting
vertical flows (vz = 0), we write this expression as

∂

∂x
(ρ(vx + �py)) = − ∂

∂y
(ρ(vy − �px)). (16)

Under the transformation x → −x, the density is triaxial so ρ → ρ

and the equation reads

− ∂

∂x
(ρ(vx + �py)) = − ∂

∂y
(ρ(vy + �px)). (17)

Clearly, the transformation vy →−vy recovers the original equation.
By the same argument, there is the symmetry y → −y and vx →
−vx. This symmetry is equivalent to the z-component of the angular
momentum being equal at all ieght symmetry points (± x, ±y, ±z).

For the second-order moments σ 2
ij , we introduce the potential 

and write the Jeans equation as (equation 4.209, Binney & Tremaine
2008)

ρ
∂vj

∂t
+ ρvi

∂vj

∂xi

= −ρ
∂

∂xj

− ∂

∂xi

(
ρσ 2

ij

)
. (18)

The mean velocity field vj is static in the rotating frame allowing us
to write for j = x

(vx + �py)
∂vx

∂x
+ (vy − �px)

∂vx

∂y
+ ∂

∂x
=

− 1

ρ

( ∂

∂x
(ρσ 2

xx) + ∂

∂y
(ρσ 2

xy) + ∂

∂z
(ρσ 2

xz)
)
. (19)
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Kinematics of the Galactic bar-bulge 5201

Figure 12. Mean velocity (reflex-corrected, top) and dispersion (bottom) for fields from spectroscopic surveys (left-hand panels), and the transverse velocities
from this study (middle: longitude �, right: latitude b). Note in the top right-hand panel the mean velocities have been multiplied by 5 for visibility.

Figure 13. Kinematic difference between the split red clump for a minor
axis field (�, b) = (0, −8) deg: The number counts (blue histogram) and
model (samples from which shown in black) are shown along with the
average proper motion (computed using a median in blue and using a mixture
model in green). Stars associated with the fainter peak have more negative
μ�. The red lines show the magnitude of red clump stars at the Galactic
Centre and the proper motion of Sgr A∗.

If the potential satisfies the triaxial symmetry e.g.  →  for x
→ −x (reasonable if composed of an approximately axisymmetric
disc potential plus the triaxial bar potential), then under the
transformation x → −x, ρ → ρ, vy → −vy and  →  all terms
on the left-hand side change sign while only the first term on the
right-hand side changes sign. This implies the diagonal terms of
the dispersion tensor are symmetric e.g. σ 2

xx → σ 2
xx while the cross-

terms are antisymmetric e.g. σ 2
xy → −σ 2

xy .
The matrix relating the bar-aligned coordinates (right-handed

with positive x corresponding to � > 0 and positive z towards the
North Galactic Pole) to Galactic velocities (vlos, v�, vb) is

R =
⎛
⎝− cos α sin α 0

− sin α − cos α 0
0 0 1

⎞
⎠
⎛
⎝cos � cos b − sin � − cos � sin b

sin � cos b cos � − sin � sin b

sin b 0 cos b

⎞
⎠.

(20)

We seek the velocities in the positive octant e.g. v(x > 0, y >

0, z > 0) = (vx, vy, vz) using (reflex-corrected) data v′
�, v

′
b (and

uncertainties 
�, 
b) from all octants. Additionally, we recover
the ‘true’ Galactic velocities vg = (vlos, v�, vb). We use the sequen-
tial quadratic programming algorithm (SLSQP) implemented in
scipy.optimize to minimize

8∑
i=1

(
v�,i − v′

�,i

)2


2
�,i

+
(
vb,i − v′

b,i

)2


2
b,i

(21)

subject to the constraints

sgni · v − R(�i, bi) · vgi = 0 for all octants i. (22)
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5202 J. L. Sanders et al.

Figure 14. Triaxial density and mean velocity fields: each row of panels shows slices along the minor axis z (except the second row which is sliced along
the intermediate axis y) through the bar distribution obtained by imposing triaxiality. The top two rows show the density field (ρ95 denotes the 95th density
percentile) and the bottom two rows the mean velocity field (in the Galactocentric rest frame [top] and the frame rotating with the bar [bottom]). The black
contours show two equidensity curves (at the ∼30th and ∼85th percentiles of the density) and grey lines show the region within which the recovery should be
reliable. The black arrow points along � = 0.

Here, i indexes the octants (where we only consider octants with
data) and sgni is a 3-vector of ±1 enforcing the previously derived
symmetry (for z we use the symmetry z → −z and vz → −vz

although we expect vz = 0).
We symmetrize the dispersion field in a similar way. Using

unprimed to denote ‘true’, primed observed, and 
 the uncertainties,

we minimize

8∑
i=1

(
σ 2

�,i − σ 2′
�,i

)2


2
σ�,i

+
(
σ 2

b,i − σ 2′
b,i

)2


2
σb,i

+ (ρ�b,i − ρ ′
�b,i)

2


2
ρ,i

, (23)
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Kinematics of the Galactic bar-bulge 5203

Figure 15. Triaxial dispersion fields: each panel is a slice in Galactic height z (labelled above plot) through the dispersion field in the bar frame. The top row
of panels is coloured by the major axis length of the in-plane dispersion tensor (only showing pixels where more than two symmetry points are observed in
the z slice) and the shapes of the velocity ellipsoids at each location are overlaid. The bottom row is coloured by the vertical dispersion. Overlaid in white are
equi-density contours. The black arrow points along � = 0.

subject to the constraints

sgnSi · σ 2 − R(�i, bi) · σ 2
gi · RT (�i, bi) = 0 for all octants i, (24)

where σ 2
gi is the true dispersion tensor in Galactic coordinates, σ 2

the tensor in Cartesian bar-aligned coordinates and sgnSi a tensor of
±1 enforcing the required symmetry. Again we use SLSQP to find
the optimum. However, in this case we find there are local minima
and the result depends sensitively on the initial guess of σ 2

los. We
therefore run SLSQP on a small grid of initial guesses for σ 2

los.

We carry out these procedures on a rectangular grid in bar-
aligned coordinates interpolating the required quantities at each
position. We take ρ�b as constant in distance for each on-sky
position (due to the limitations of our modelling procedure in
Section 3).

5.2.1 Results

In the bottom panels of Fig. 14, we show the velocity field in the bar
frame, both inertial and co-rotating. We observe a clear cylindrical
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rotation signature in the inertial velocities with the magnitude of
the velocities increasing smoothly with radius from the centre. As
we move up through the bar, the rotation decreases in amplitude.
When we move to the frame co-rotating with the bar (using a pattern
speed of 40 km s−1kpc−1, Portail et al. 2017), we see the rotation is
not purely cylindrical but there is net flow along the bar. The shape
of the velocity field is pinched approximately tracing the density
field. We interpret this as the effect of the x1 orbits – the dominant
bar-supporting orbits which rotate in the prograde sense (Binney &
Tremaine 2008). At higher Galactic heights the amplitude of the
streaming along the bar increases.

In Fig. 15, we display the in-plane and vertical velocity dispersion
field recovered with our method. The results appear reasonable
everywhere within the region expected by the analysis presented in
Appendix A. We observe the in-plane major axis dispersion decays
with Galactic height and along the bar major axis, while along the
bar intermediate axis the decay is a lot weaker or not clear. The
structure of the field appears to trace the density profile and there
is a suggestion of colder in-plane dispersion at the tips of the X-
shaped bar (in the 0.982 panel). The velocity ellipsoid appears to
be preferentially tangentially aligned nearly everywhere. At higher
latitudes, the axis ratio is smaller than at lower latitudes. At higher
latitudes the field becomes less structured.

The vertical dispersion exhibits similar features to the in-plane
dispersion decaying both vertically and radially. At low latitudes the
contours of equal velocity dispersion have an elliptical shape. At
higher latitudes, the dispersion is more uniform in x and y. At large
radii at high latitude, the dispersion is large. This is possibly due to
the disc component or due to unreliable dispersion recovery as these
field occur in the region where we have only two symmetry points.
However, our tests show the vertical dispersion is well recovered
even in these regions as this information is almost solely in σ b.

5.2.2 Tests of method

In Appendix A we test our method on a mock triaxial velocity
field. We find that the mean velocities are well recovered and when
three or four equivalent points in a single z slice are observed the
mean velocity uncertainties are similar to the input uncertainties.
Outside this region, the uncertainties are ∼3 times larger but not
significantly biased in the average. We obtain a similar result for
the dispersion field but when we have fewer than three equivalent
points in a z slice the x and y dispersions can be significantly biased.

As a further test of our method we can compare the recovery of
the line-of-sight mean velocity and dispersion to the spectroscopic
survey data. For each spectroscopic field, we interpolate the line-
of-sight velocity moments at a set of distances and find the mean
moments weighted by s2ρ (for the line-of-sight dispersion we sum
the mean dispersion with the dispersion in the mean). For the
dispersion, we only use points reconstructed from three or more
symmetry points (see Appendix A). We show the results in Fig. 16.
The agreement of the mean velocities is satisfying, particularly as
we have not attempted to match the distance distribution of the
spectroscopic studies. The velocity dispersion match is not as good.
At the high dispersion end, the match is adequate although with large
scatter, but at the low dispersion end the reconstruction dispersion is
approximately 15 km s−1 higher than the spectroscopic dispersion.
This is possibly a shortcoming of only using fields with more than
three symmetry points used in their reconstruction. This limits us
to more central fields and so overestimates the dispersion which
declines with distance from the Galactic Centre. Spectroscopic

Figure 16. Comparison of the measured spectroscopic velocity moments
with our triaxial velocity field measured from solely proper motions. Solid
black is a one-to-one line and dashed black is offset such that the recovery
is 15 km s−1 higher than the spectroscopic result.

surveys likely trace stars preferentially in front of the bulge (e.g.
fig. 3 of Gardner et al. 2014, for the BRAVA selection function)
where the dispersion is lower.

6 C O N C L U S I O N S

We have extracted the density and kinematics of ∼45 million bulge
giants from the near-infrared VVV survey complemented with
proper motions from Gaia DR2 and the VIRAC catalogue. We have
probabilistically measured the transverse velocity field as a function
of distance from the proper motion distributions as a function of
magnitude. We have used the transverse velocity field to construct
the full 3D kinematics under the assumption of triaxiality finding
good agreement with the corresponding spectroscopic observations.
Our conclusions are as follows:

(i) The transverse velocity distribution is consistent with viewing
a near end-on bar with the near end at positive longitudes. The proper
motion dispersions are in general larger at positive longitude. When
modelling the dispersions with distance, we find both dispersions
rise from ∼50 km s−1 at positive latitudes at distances of ∼6 kpc to
central dispersions of ∼130 km s−1 and then declines back down to
∼50 km s−1 at negative latitudes at distances of ∼11 kpc.

(ii) The on-sky dispersions decline with |�| and |b|. They produce
and extend trends seen in previous studies. The � dispersion forms
a more boxy profile than the more collimated b dispersion. The
decline along the minor axis flattens beyond 5 deg.

(iii) There is a large-scale X-structure in the on-sky σ �/σ b maps
with typical values on the minor axis of 1.1 increasing to 1.2–1.3
outside |�| ≈ 3 deg and then increasing significantly in the disc
plane. Removing the rotational broadening, we find the dispersion
ratio decreases from 1.1 to ∼0.9 along the minor axis away from the
Galactic Centre, but the large-scale X morphology persists. Slicing
through in distance shows this X is orientated along the bar.

(iv) The �, b proper motion correlation has a clear on-sky
quadrupole signature with amplitude ∼0.2 and is approximately
radially aligned across the bulge region. The correlation is weaker
at negative � due to geometric effects.

(v) The cylindrical rotation signature observed in the spectro-
scopic surveys of the bulge is confirmed by the transverse velocity
field. The � transverse velocity field is clearly asymmetric in � and
corresponds well to a dynamically formed bar model. The line-of-
nodes is orientated at approximately 77.5 deg to the � = 0 line.

(vi) The transverse velocity dispersions exhibit a similar lobed
structure to that seen in the spectroscopic surveys of the bulge. The
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amplitude of the line-of-sight dispersion is typically larger than the
longitudinal dispersion which in turn is larger than the latitudinal
dispersion.

(vii) The double peak magnitude distribution of minor axis bulge
fields displays different kinematics for the brighter and fainter
peaks. This is confirmation of the X-shaped bulge where the brighter
peak is rotating differentially with respect to the fainter peak.

(viii) The 3D rotation field constructed by assuming triaxiality
exhibits a near-cylindrical structure but in the co-rotating frame
streaming along the bar is evident and indicative of x1 orbits. The
corresponding in-plane velocity dispersion field exhibits tangential
bias across most of the bulge region.

The results presented in this paper provide constraints for Milky
Way bar models. In a companion paper (Sanders, Smith & Evans,
submitted, Paper II), we use the results obtained in this work to
estimate the pattern speed of the bar using the continuity equation.
Detailed kinematics are an essential part of dynamical modelling,
and hence extraction of the underlying Galactic potential in the
central regions of the Galaxy. For instance, the provided transverse
velocity moments can be used to constrain Made-to-Measure
models of the Galactic bar-bulge (e.g. Portail et al. 2017). To-date
proper motions have primarily been used as an a posteriori check of
any modelling that has been fitted using spectroscopic observations.
Proper motions open the possibility of stricter kinematic constraints
and hence tighter estimates of the bulk properties of the bar.
However, more data are expected to test the assumptions required
for dynamical modelling. For instance, the bar is unlikely to be
truly triaxially symmetric. Full 3D kinematics from a combination
of proper motions and spectroscopic data will allow stricter tests
of the equilibrium nature of the bar. Furthermore, the combina-
tion of proper motions with spectroscopic surveys allows for the
separation of different bar populations by chemical abundances
(Portail et al. 2017) providing constraints on the formation of the
bar.

AC K N OW L E D G E M E N T S

JLS thanks the Science and Technology Facilities Council, the
Leverhulme Trust, the Newton Trust and Christ’s College, Cam-
bridge for financial support. We acknowledge the simultaneous
work by Clarke et al. (2019), who also used an absolute proper
motion catalogue derived from VVV and Gaia DR2 to study
the kinematics of the bulge. The authors of both publications
were aware of each other’s work, but arrived at their conclusions
independently. We acknowledge useful conversations with Chris
Wegg, Jonathan Clarke, Ortwin Gerhard, Eugene Vasiliev, and the
Cambridge Streams Group. We thank the anonymous referee for a
close reading of the paper. This research was supported in part by the
National Science Foundation under Grant No. NSF PHY-1748958.

This paper made used of the Whole Sky Data base (wsdb) created
by Sergey Koposov and maintained at the Institute of Astronomy,
Cambridge by Sergey Koposov, Vasily Belokurov and Wyn Evans
with financial support from the Science & Technology Facilities
Council (STFC) and the European Research Council (ERC).

Based on data products from observations made with ESO
Telescopes at the La Silla or Paranal Observatories under ESO
programme ID 179.B-2002. This work has made use of data
from the European Space Agency (ESA) mission Gaia (https:
//www.cosmos.esa.int/gaia), processed by the Gaia Data Processing
and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web
/gaia/dpac/consortium). Funding for the DPAC has been provided

by national institutions, in particular the institutions participating
in the Gaia Multilateral Agreement. This publication makes use
of data products from the Two Micron All Sky Survey, which is
a joint project of the University of Massachusetts and the Infrared
Processing and Analysis Center/California Institute of Technology,
funded by the National Aeronautics and Space Administration and
the National Science Foundation. Funding for the Sloan Digital Sky
Survey IV has been provided by the Alfred P. Sloan Foundation, the
U.S. Department of Energy Office of Science, and the Participating
Institutions. SDSS-IV acknowledges support and resources from
the Center for High-Performance Computing at the University of
Utah. The SDSS web site is www.sdss.org. SDSS-IV is managed
by the Astrophysical Research Consortium for the Participating
Institutions of the SDSS Collaboration including the Brazilian
Participation Group, the Carnegie Institution for Science, Carnegie
Mellon University, the Chilean Participation Group, the French
Participation Group, Harvard-Smithsonian Center for Astrophysics,
Instituto de Astrofı́sica de Canarias, The Johns Hopkins University,
Kavli Institute for the Physics and Mathematics of the Universe
(IPMU) / University of Tokyo, the Korean Participation Group,
Lawrence Berkeley National Laboratory, Leibniz Institut für Astro-
physik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA
Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching),
Max-Planck-Institut für Extraterrestrische Physik (MPE), National
Astronomical Observatories of China, New Mexico State Univer-
sity, New York University, University of Notre Dame, Observatário
Nacional / MCTI, The Ohio State University, Pennsylvania State
University, Shanghai Astronomical Observatory, United Kingdom
Participation Group, Universidad Nacional Autónoma de México,
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M., Krzemiński W., 1997, ApJ, 477, 163
Sumi T. et al., 2004, MNRAS, 348, 1439

Vieira K. et al., 2007, AJ, 134, 1432
Vásquez S. et al., 2013, A&A, 555, A91
Walt S. v. d., Colbert S. C., Varoquaux G., 2011, Comput. Sci. Eng., 13, 22
Wegg C., Gerhard O., 2013, MNRAS, 435, 1874
Wegg C., Gerhard O., Portail M., 2015, MNRAS, 450, 4050
Williams A. A. et al., 2016, ApJ, 824, L29
Wilson J. C. et al., 2010, in McLean I. S., Ramsay S. K., Takami H., eds, Proc.

SPIE Conf. Ser., Vol. 7735. Ground-based and Airborne Instrumentation
for Astronomy III. SPIE, Bellingham, p. 77351C

Zhao H., Spergel D. N., Rich R. M., 1994, AJ, 108, 2154
Zoccali M., Renzini A., Ortolani S., Bica E., Barbuy B., 2001, AJ, 121, 2638
Zoccali M. et al., 2014, A&A, 562, A66

APPENDI X A : R ECONSTRUCTI NG A MO CK
TRI AXI AL VELOCI TY FI ELD

In this appendix, we test our method for recovering a triaxial velocity
field from transverse velocity data. We construct a very simple mean
velocity and dispersion field according to

vx(x) = v0
a2y√

b4
r x

2 + a4y2
, vy(x) = v0

−b2
r x√

b4
r x

2 + a4y2
,

σi(x) = σi0 exp
(

− x2

a2
− y2

b2
− z2

c2

)
,

(A1)

where (a, b, c) = 4(1, 0.7, 0.6) kpc, br = 2.1 kpc, σ 0 =
(140, 100, 100) km s−1, v0 = 150 km s−1. vz, and the cross-
terms in the dispersion tensor are set to zero. In this model the
dispersions and the total velocities are constant on ellipses for fixed
z. This by eye produces mocks that resemble the data. We sample
the model on a 20 by 20 by 20 grid in −3.5 < x/ kpc < 3.5,
−1.5 < y/ kpc < 1.5 and −1 < z/ kpc < 1 applying the on-sky
VVV bulge footprint. We transform to observables 〈μ�〉 etc.
using an assumed bar angle of 28 deg and we add uncertainties in
the mean velocities and dispersions of 20 km s−1 and 10 km s−1,
respectively, and in the correlation of 0.03 (typical values from
our fits to the data) . We then apply the methodology outlined in
Section 5.

A slice through the results of the mean velocity field fits are
shown in Fig. A1. In the top row we display the true input field,
middle the recovery, and bottom the difference (recovery minus
truth). We have overlaid grey lines showing the selection volume
reflected in the symmetry axes. We observe that the overall structure
is well reproduced with smaller uncertainties at the centre than in
the outskirts and nowhere are the results significantly biased. We
can understand this structure by inspecting the number of equivalent
points used at each (x, y) which is displayed in Fig. A2. At each point
we measure two velocity components and need to compute three
components. Therefore, we require at least two symmetry points.
Within the central diamond there are four equivalent points in the z

slice and there are extensions where three points are used as we lose
the x > 0, y < 0 quadrant (in reality we use eight and six equivalent
points as we assume symmetry ±z but these additional points do
not give an independent view of the velocity field).The two regions
correspond to accurate recovery of (17, 9, 8) km s−1 for the median
absolute deviation. This is comparable to the input uncertainties
of 20 km s−1. Outside these regions we primarily only have two
observations (and only one for the four points at (x, y) = (± 3.5,
±0.6) kpc). Within these regions the median absolute deviations are
(60, 32, 11) km s−1 although the deviation distribution has fat tails.
We find that on average the recovery of the mean velocity field is
unbiased to less than 1 km s−1.

In Fig. A3 we show a slice through the velocity dispersion

MNRAS 487, 5188–5208 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/487/4/5188/5523139 by U
niversity of H

ertfordshire user on 13 August 2019

http://dx.doi.org/10.1051/0004-6361/201220842
http://dx.doi.org/10.1051/0004-6361/201117601
http://dx.doi.org/10.1093/mnras/stx3073
http://dx.doi.org/10.1051/0004-6361/201833718
http://dx.doi.org/10.1086/118116
http://dx.doi.org/10.1093/mnras/stx1655
http://dx.doi.org/10.1051/0004-6361/200913757
http://arxiv.org/abs/1111.4246
http://dx.doi.org/10.1088/0004-637X/702/2/L153
http://dx.doi.org/10.1046/j.1365-8711.2000.03242.x
http://www.scipy.org/
http://dx.doi.org/10.1111/j.1365-2966.2006.10487.x
http://dx.doi.org/10.1086/342540
http://dx.doi.org/10.1088/0004-6256/143/3/57
http://dx.doi.org/10.1093/mnras/stv1980
http://dx.doi.org/10.1051/0004-6361/201832727
http://dx.doi.org/10.1051/0004-6361/201628763
http://dx.doi.org/10.1088/0004-637X/724/2/1491
http://dx.doi.org/10.1016/j.newast.2009.12.002
http://dx.doi.org/10.1051/0004-6361/201732099
http://dx.doi.org/10.1088/2041-8205/721/1/L28
http://dx.doi.org/10.1093/mnras/sts629
http://dx.doi.org/10.1093/mnras/stt533
http://dx.doi.org/10.1088/0004-637X/696/2/1407
http://dx.doi.org/10.1088/0004-637X/776/2/76
http://dx.doi.org/10.1093/mnras/stw2819
http://dx.doi.org/10.1111/j.1365-2966.2007.11851.x
http://dx.doi.org/10.1086/424960
http://dx.doi.org/10.1088/0004-6256/142/3/76
http://dx.doi.org/10.1051/0004-6361/201118407
http://dx.doi.org/10.1046/j.1365-8711.2002.05917.x
http://dx.doi.org/10.1093/mnras/sty2490
https://arxiv.org/abs/1903.02009
http://dx.doi.org/10.1111/j.1365-2966.2010.16253.x
http://dx.doi.org/10.1088/0004-637X/730/1/3
http://dx.doi.org/10.1088/2041-8205/720/1/L72
http://dx.doi.org/10.1093/mnras/stx1832
http://dx.doi.org/10.1086/498708
http://dx.doi.org/10.1093/mnras/stx2789
http://dx.doi.org/10.1086/521098
http://dx.doi.org/10.1051/0004-6361/201117339
http://dx.doi.org/10.1086/116061
http://dx.doi.org/10.1086/303702
http://dx.doi.org/10.1111/j.1365-2966.2004.07457.x
http://dx.doi.org/10.1086/520813
http://dx.doi.org/10.1051/0004-6361/201220222
http://dx.doi.org/10.1093/mnras/stt1376
http://dx.doi.org/10.1093/mnras/stv745
http://dx.doi.org/10.3847/2041-8205/824/2/L29
http://dx.doi.org/10.1086/117227
http://dx.doi.org/10.1086/320411
http://dx.doi.org/10.1051/0004-6361/201323120


Kinematics of the Galactic bar-bulge 5207

Figure A1. Recovery of the mean velocity field from mock transverse
velocity observations for a slice at z = 0.37 kpc. Each column corresponds
to a different velocity component in the bar frame (x, y, z). The top row is
the mock ‘truth’, the middle the recovery, and the bottom the residuals. In
the top two rows we have multiplied the z component by 10. The grey lines
show the selection volume limits reflected about the symmetry axes and the
arrows show the observation direction.

Figure A2. Number of equivalent points in the bar frame observed by the
VVV footprint in a slice in z. The grey lines delineate the different regions.
The arrow shows the observation direction.

Figure A3. Recovery of the dispersion field from mock transverse velocity
observations for a slice at z = 0.37 kpc. Each column corresponds to a
different velocity component in the bar frame (x, y, z). The first row is
the mock ‘truth’ σ i, the second the recovery, the third the residuals, and
the fourth the recovery of the correlations (zero in the mock data and
labelled by the inset). The grey lines show the selection volume limits
reflected about the symmetry axes and the arrows show the observation
direction.

field. As with the mean velocities in Fig. A1 we observe structure
associated with the selection volume. We measure three components
of the velocity dispersion tensor which we use to find six unknown
components. Therefore, we expect two independent observed sym-
metry points is sufficient for recovery of the field. In the regions
where we have three or four observed symmetry points we well
reproduce the structure of the dispersion field with uncertainties
of 
σi ≈ (16, 4, 5) km s−1 comparable to the input uncertainties
of 10 km s−1. Our mock field has zero cross-terms everywhere.
In the recovery we find the amplitude of the variation in ρ ij is
(0.1,0.02,0.01) for (xy, xz, yz) with no significant bias. In the regions
where we have fewer than three observed symmetry points the
recovery of the dispersion field is poor, as expected. The median
absolute deviations of the diagonal terms is (54, 18, 5) km s−1 but
they are biased by ∼20 km s−1 in σ x (recovery larger). Similarly the
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correlations are poorly reproduced with median absolute deviations
of (0.6,0.11,0.06) and biases of ∼0.1 in ρxy (negligible bias in the
other two components). We argued that two symmetry points was
sufficient for recovery, which is not the case in practice. Two of
our components inform us about the dispersion in the near vertical
direction (b) while only one gives significant information about the
in-plane field. Therefore, we expect that to compute three in-plane
components from one component measured at each symmetry point

we require at least three observed symmetry points. In conclusion,
the recovery of the dispersion field in regions where we have
fewer than three observed symmetry points should be treated with
caution.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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