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Abstract: The enzymatically synthesized poly (glycerol adipate) (PGA) has demonstrated all the
desirable key properties required from a performing biomaterial to be considered a versatile
“polymeric-tool” in the broad field of drug delivery. The step-growth polymerization pathway
catalyzed by lipase generates a highly functionalizable platform while avoiding tedious steps of
protection and deprotection. Synthesis requires only minor purification steps and uses cheap
and readily available reagents. The final polymeric material is biodegradable, biocompatible and
intrinsically amphiphilic, with a good propensity to self-assemble into nanoparticles (NPs). The free
hydroxyl group lends itself to a variety of chemical derivatizations via simple reaction pathways which
alter its physico-chemical properties with a possibility to generate an endless number of possible active
macromolecules. The present work aims to summarize the available literature about PGA synthesis,
architecture alterations, chemical modifications and its application in drug and gene delivery as a
versatile carrier. Following on from this, the evolution of the concept of enzymatically-degradable
PGA-drug conjugation has been explored, reporting recent examples in the literature.
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1. Introduction

Interest in the use of enzymes in polymer synthesis as a greener alternative to traditional chemical
polymerization has been growing for a number of years [1]. There are many advantages associated
with enzymatic synthesis, including but not restricted to: (a) mild reaction conditions, (b) catalysts
with low toxicity, high and tunable activity which are often recyclable, (c) the avoidance of toxic heavy
metal catalysts, (d) often good linearity of products due to steric hindrance at the enzyme active site,
(e) few by-products, and (f) less need for protection and deprotection steps [2–5].

The enzymatic synthesis of polyesters [6], and in particular poly (glycerol adipate) (PGA),
has resulted in an elegant, easy and versatile strategy to synthesize a functionalizable, biocompatible
(in vitro and in vivo) and biodegradable class of polymers [7,8]. PGA shows a precise amphiphilic
balance within the repetitive unit, allowing self-assembly into NPs in water by simple nanoprecipitation,
without the use of additional stabilizers. The chemo- and regioselectivity of lipase allows the hydroxyl
moiety of the PGA backbone to remain intact, without the need for tedious and complicated protection
and deprotection steps [9]. This hydroxyl moiety results in a polymer open to a variety of further
functionalizations via simple and accessible chemistry. Based on the promising properties of PGA for
drug delivery, a number of research groups have focused on establishing strategies for controlling the
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polymeric function and adding modifications to enhance material properties. This work has led to a
series of literature precedents/guidelines for future researchers interested in exploiting the advantages
of PGA, and these will be summarized briefly here.

2. Synthesis of PGA

Following a solvent free pathway, it has been demonstrated that, using divinyl adipate (DVA)
and glycerol, by tuning the reaction temperature it is possible to produce either highly linear or
densely branched PGA [10–13]. However, number-average molecular weights (Mn) lower than
5000 Da (<25 units) were observed even after over 24 h of reaction with lipase. Novozym 435 (Sigma
Aldrich), an acrylic lipase resin from Candida antarctica, was used for all synthesis. Kallinteri et al. had
the perception to dilute the reaction mixture with THF, with the aim to reduce the viscosity of the
system [14]. They also moved from a magnetic to a mechanical stirrer, in order to increase the size of
the reaction pot with a view to scale-up the synthesis and thus facilitate further functionalization [14].
In this work, Kallinteri et al. demonstrated that higher polymer molecular weight has a remarkable
effect on the encapsulation efficiency and drug loading of the nano-formulation.

Following these alterations, a range of molecular weights could be explored by simply changing the
reaction time. Based on these initial screenings, the Kressler and Garnett groups have been improving
reaction conditions and gaining an understanding of the effects of the reaction variables on the final
properties of PGA [15,16]. In particular, Taresco et al., through an extensive screening investigation,
established how the temperature of the reaction affects the final architecture of the polymer; at 40 ◦C
there was <5% of branching while at 70 ◦C; >30% of branching was detected [17]. They also evaluated
how this composition can alter thermal properties, such as the glass transition temperature (Tg),
and physical-chemical properties of the polymeric backbone, such as water contact angle and polymer
molecular weight (Figure 1).

Naoluo et al. [18] suggested dimethyl adipate (DMA) may be more appropriate than DVA for
scaling up the synthesis of PGA, as DMA is cheap and readily available. DMA shifts the equilibrium of
the reaction towards the polymer; methanol is produced as a by-product and cannot be easily removed.
A complex experimental set up with molecular sieves in a soxhlet apparatus was employed to remove
the methanol during the reaction. The resultant polymer was found to have a lower molecular
weight than PGA produced with DVA, despite a longer reaction time being employed. Additionally,
Korupp et al. [12] and Iglesias et al. [19] produced PGA using adipic acid as a starting material;
as with DMA, the molecular weight of the PGA produced was significantly lower than that seen by
the Garnett group when producing PGA with DVA [14,17]. Korupp et al. also demonstrated that
optimizing reaction conditions, such as temperature, stirrer rate and reaction time, allows synthesis of
PGA batches of up to 500 g, with ~95% monomer conversion [12].
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Figure 1. Poly (glycerol adipate) (PGA) macromolecular structure with triol-substitution modalities. 
1H NMR spectrum of PGA synthesized at 70 °C. Inset: Effect of reaction temperature on PGA degree 
of branching. Reproduced from [17], Copyright Elsevier 2016. 
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1H NMR spectrum of PGA synthesized at 70 ◦C. Inset: Effect of reaction temperature on PGA degree of
branching. Reproduced from [17], Copyright Elsevier 2016.

3. Modifications of PGA

An interesting chemical variation of the PGA backbone during the contact period of the reaction
mixture with lipase has been introduced by the Hutcheon and Saleem groups. In one reaction
pot, they performed the usual enzymatic polycondensation between DVA and glycerol with an
enzymatic ring opening polymerization (ROP), adding ω-pentadecalactone (PDL) to the initial
mixture [20,21]. The resultant PGA-co-PDL polymer showed different physical properties to the
bare PGA, mainly in terms of thermal properties and amphiphilicity of the copolymer. To further
modify the hydrophobic/hydrophilic balance of the glycerolated polymer, PEG chains have been
introduced in the reaction mixture [22]. PGA-co-PDL and the PEGylated variation have shown good
propensity to be formulated into nanoparticles (NPs) or microparticles (MPs). These biodegradable
particles have been investigated for the encapsulation or adsorption of small active molecules, such as
indomethacin, ibuprofen and sodium diclofenac, and macromolecules such as proteins [23–27].

Jbeily et al. converted the PGA into an atom transfer radical polymerization (ATRP) macroinitiator,
and subsequently glycerol mono-methacrylate was polymerized by ATRP from the PGA backbone,
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yielding an amphiphilic graft copolymer able to self-assemble in water [28]. The free hydroxyl pendant
groups have also been employed as ROP initiators for the production of polycaprolactone-grafted-PGA
copolymers with recrystallizable side chains [29]. The subsequent “click” coupling of PEGylated chains
led to hybrid materials able to form worm-like nanoaggregates [30]. These synthetic tandem strategies
provide a facile opportunity to synthesize well-defined amphiphilic graft hybrid copolymers, with the
potential to simultaneously deliver hydrophilic and hydrophobic drugs [30].

The most pursued and most versatile strategy to tailor the characteristics of PGA for
specific applications, i.e., to alter the physical properties of the polymer as well as enhance its chemical
diversity and tune polymer (macro)molecule interactions, is the post-polymerization-functionalization.
Kallinteri and Garnett et al. [14] not only improved the reaction conditions for the synthesis of the
polymer backbone, but also had the intuition to move focus from the pure fundamental chemistry
of the polymeric backbone towards the functionalization of the side group, in order to enhance the
properties of the final material. Acylation of the backbone with 20–100% caprylic acid (C8) and stearic
acid (C18) produced a hydrophobic environment for nanoparticle formation and drug incorporation.
The acylation was shown to affect the particle size and encapsulation efficiency without significantly
affecting the viability of HL–60 and HepG2 cells (Figure 2).

PGA acylation with fatty acids has been intensively investigated both in terms of physical
properties, self-assembling in NPs and for delivery of lipophilic and hydrophilic drugs [31–34].
The variation of both the fatty acid nature (butyrate, octanoate, laurate, stearate, behenate and
oleate) and degrees of substitution have been analyzed for their influence on the final polymer
amphiphilic balance, affecting NP shape, drug interactions, NP metabolism and cell uptake [33,35,36].
Weiss et al. [33] reported that a low substitution of lauric, stearic or behenic acid decreased nanoparticle
size relative to unmodified PGA, suggesting interactions of fatty acid chains in the particle core
enhanced the packing of particles (Table 1). These particles were found to have non-spherical shapes
with an internal lamellar-like structure. At higher substitutions particles tended to be ellipsoidal or
spherical with an increased particle size, reflecting either an increase in the space taken up by the acyl
groups or an increase in aggregation number (Figure 2). Interestingly, the chain length had no clear
impact on the particle size.

Table 1. Influence of substitution degree on polymer aggregation [33]. Here, the effect of substitution
degree on the aggregation of the polymer in water and the nature of the resulting colloidal system is
summarized. Copyright 2012 Elsevier.
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Figure 2. Transmission electron micrographs of nanoparticles [33]. The morphology of nanoparticles 
produced with a range of polymers is shown here. The white scale bars indicate 100 nm. a–c: PGA-
stearate 20%, stained with uranyl acetate. d: PGA-behenate 45%, stained with uranyl acetate. e + f: 
PGA-stearate 50%, e: Stained with uranyl acetate; f: Freeze fractured. g: PGA-stearate 65%, freeze 
fractured. h: PGA-behenate 65%, freeze fractured. i: PGA-stearate 85%, freeze fractured. Copyright 
2012 Elsevier. 

The ability of bare PGA, and PGA with the polymer backbone substituted with varying amounts 
of pendant C18 (stearate) and C8 (octanoate) chain length acyl groups, to encapsulate the water soluble 
drug dexamethasone phosphate (DXMP) into NPs was investigated in two papers from the Garnett 
group [14,37]. In both papers, polymers modified with C8 were found to give the greatest 
improvement in encapsulation efficiency, with the level of substitution also proving to be a key factor 
(Figure 3). Puri et al. noted that the level of substitution affected the release of the DXMP, with a 
controlled release profile observed from particles made of PGA with a 100% C8 substitution [14,37]. 
An agreement with the experimental trend in encapsulation efficiency has been found for a series of 
acylated PGAs modelled computationally. In particular, while C18 chains promote favorable 
interactions with DXMP, having too many C18 chains decreases solubility, preventing the polymer 
from interacting with surrounding DXMP molecules. It was therefore clear that the 
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Figure 2. Transmission electron micrographs of nanoparticles [33]. The morphology of nanoparticles
produced with a range of polymers is shown here. The white scale bars indicate 100 nm.
a–c: PGA-stearate 20%, stained with uranyl acetate. d: PGA-behenate 45%, stained with uranyl acetate.
e + f: PGA-stearate 50%, e: Stained with uranyl acetate; f: Freeze fractured. g: PGA-stearate 65%,
freeze fractured. h: PGA-behenate 65%, freeze fractured. i: PGA-stearate 85%, freeze fractured.
Copyright 2012 Elsevier.

The ability of bare PGA, and PGA with the polymer backbone substituted with varying amounts
of pendant C18 (stearate) and C8 (octanoate) chain length acyl groups, to encapsulate the water soluble
drug dexamethasone phosphate (DXMP) into NPs was investigated in two papers from the Garnett
group [14,37]. In both papers, polymers modified with C8 were found to give the greatest improvement
in encapsulation efficiency, with the level of substitution also proving to be a key factor (Figure 3).
Puri et al. noted that the level of substitution affected the release of the DXMP, with a controlled release
profile observed from particles made of PGA with a 100% C8 substitution [14,37]. An agreement
with the experimental trend in encapsulation efficiency has been found for a series of acylated PGAs
modelled computationally. In particular, while C18 chains promote favorable interactions with DXMP,
having too many C18 chains decreases solubility, preventing the polymer from interacting with
surrounding DXMP molecules. It was therefore clear that the hydrophilic/hydrophobic balance of the
grafted copolymers was fundamental in the encapsulation efficiency and drug release [37,38].
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and (B) is a C18 pendant acyl chain. The degree of acylation has a clear effect on the encapsulation
efficiency of dexamethasone phosphate, as does the polymer molecular weight. Copyright 2005
American Chemical Society.

To further remark on the versatility of the acylated PGA modification, Tchoryk et al. developed a
revolutionary method to monitor NP penetration through 3D spheroid cell cultures [39], building on
previous work in 3D models carried out by Meng et al. [40,41] Interestingly, NPs of around 100 nm,
prepared from PGA–C18 end functionalized with a PEGylated chain, showed the same penetration
as much smaller (50 nm) commercial model polystyrene NPs, suggesting the advantages of material
flexibility shown by PGA. This flexibility effect, combined with the in vivo distribution of PGA NPs [7]
and the exceptional ability of acyl-PGA alterations to encapsulate hydrophobic and hydrophilic drugs,
opens up a wide range of possible applications in drug delivery [39].

4. Polymer Drug Conjugates

More recently, polymer-drug conjugates using PGA have been actively studied and designed
as advanced drug delivery systems. The first example of this application was the conjugation of
PGA–co–PDL to ibuprofen, where it was shown that most of the drug was attached to the polymer
in a stable manner when incubated in physiological buffer [42]. PGA has also been directly coupled
to indomethacin, producing a polymeric pro-drug composite able to self-assemble into NPs and to
release the drug cargo in a sustained and controlled way, showing potential to improve therapy of
inflammation and associated diseases [43,44].

By coupling PGA with a small number of aromatic N-acetyl amino acids, a novel class of
biodegradable grafted polyesters with tunable physical properties have been developed, with the
intention to widen the range of possible interactions with drugs and biological macromolecules [45].
This approach towards modifying the polymer was used by Suksiriworapong et al., who reported for
the first time a polymer-anticancer drug conjugate based on PGA through the successful conjugation of
methotrexate (MTX), avoiding the use of intermediate linkers. MTX–PGA conjugates were formed in a
controlled manner, with various molar ratios of MTX [46]. The MTX–PGA conjugate self-assembled
into nanoparticles with a size dependent on the amount of conjugated MTX and the pH of medium.
NPs were chemically stable against hydrolysis at pH 7.4 over 30 days but were susceptible to enzymatic
hydrolysis, thus selectively releasing free MTX. The 30% MTX-PGA nanoparticles exhibited only
slightly less potency than free MTX in 791T cells. This was a significant improvement compared to
previous reports of human serum albumin-MTX conjugates which were only one three hundredth the
potency of free MTX. In addition, the MTX nanoparticles showed 7 times higher toxicity to Saos-2 cells
than MTX in 2D and 3D cell experiments (Scheme 1) [46]. These easily fabricated PGA–MTX conjugates,
where the enzymatic degradability has replaced the need for a linker group, may become an effective
new strategy for the development of polymeric pro-drug formulations.
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in a range of enzymes has been extensively characterized by Swainson et al. [50] (Scheme 2). 
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Scheme 1. Easy single step synthesis of methotrexate (MTX)–PGA conjugates with high molar
MTX content. The polydrug self-assembled into physically stable nanoparticles. The MTX release was
sustained in buffer pH 7.4 but accelerated by esterase enzyme. MTX–PGA NPs had lower potency in
791T but higher toxicity to Saos-2 cells than MTX. On the other hand, MTX–PGA NPs showed higher
potency in 791T cells than well-known HSA–MTX bioconjugates. Reprinted with permission from [46].
Copyright 2018 Elsevier.

5. Recent Experiments with PGA from Literature

More recently, PGA was used to evaluate the validity of commonly used solubility parameters [47].
The choice of PGA for this experimental work was due to the wide range of physicochemical properties
which can be obtained by simple polymer modification. Both experimental and in silico methods
were employed in parallel using a large varied data set that looked into the miscibility of a range of
drugs with different polymers, amongst which was PGA, PGA–C4, PGA–C8 and amino acid-modified
PGA–Phe. Due to the high number of possible combinations, a miniaturized high throughput screening
was performed using a 2D inkjet assay [48] to assess the miscibility limits of the polymer-drug mixtures.
The in-silico study using ab initio methods was unable to predict the drug-polymer compatibility,
demonstrating the need for new computational methods. PGA in turn provides a large library of
polymers for possible use in the high throughput screening developed in this paper to select the most
appropriate polymer for further studies in a range of different applications. In addition, PGA and
its modifications have shown good propensity to produce printable polymeric ink, even at relatively
high concentration and in different printing scenarios: both in a solid state and for nanosuspension
screening [49].

It has often been suggested that PGA will undergo enzymatic degradation as a result of the
presence of an ester bond in the polymer backbone and the enzymatic synthesis used to produce the
polymer which uses the reverse reaction of a degradative enzyme. Recently, the degradation of PGA in
a range of enzymes has been extensively characterized by Swainson et al. [50] (Scheme 2). Nanoparticles
produced with unmodified PGA and PGA modified with amino acids, carboxyfluorescein and PEG
were exposed to six enzymes and the change in size monitored over time by dynamic light scattering.
A clear difference in the susceptibility of these particles to enzymatic degradation was observed.
Following this, the release of a conjugated fluorescent dye, carboxyfluorescein, was seen to increase in
the presence of lipase and elastase. Finally, the structural changes to the polymer were studied using
fourier transformed infra-red spectroscopy (FTIR), gel permeation chromatography (GPC) and nuclear
magnetic resonance (NMR), to gain an understanding of the way PGA breaks down in the presence of



Polymers 2019, 11, 1561 8 of 11

lipase, elastase and esterase. The degradation behavior evidenced in this work suggests the initial
hypotheses about the degradation of PGA were correct and highlights the potential of this polymer,
both modified and unmodified, as a drug delivery platform.
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Scheme 2. Characterization of the enzymatic degradation of PGA. The breakdown of PGA at
a nanoparticle level, was studied using dynamic light scattering and the release of a conjugated
fluorescent dye, carboxyfluorescein. NMR, gel permeation chromatography (GPC) and FTIR were
used to follow the structural changes to the PGA following incubation with the enzymes lipase,
elastase and esterase. Reprinted from [50] with permission. Copyright Elsevier 2019.

6. Clinical Outlook

As yet, there are no reports of PGA use in clinical trials. Taresco et al. reported that unmodified
PGA was well tolerated in a chronic oral dosing study in rats, with the no observed adverse effect level
reported to be 1000 mg/kg/day [17]. It should be noted, however, that this data was not published, and
there are no published examples of PGA applications tested in vivo. The previous in vitro studies in
which PGA was shown to have no negative effect on cell viability [8,14], coupled with the promising
results of studies such as that by Suksiriworapong et al. [46], suggest that progression towards in vivo
studies, and ultimately clinical trials, can be expected in the near future; PGA shows great potential as
a drug delivery platform, but as yet this potential is unrealized.

7. Conclusions

In the present manuscript we have extensively retraced the evolution of the enzymatic synthesis
of PGA, discussing and summarizing the most relevant literature to shine a light on the underlying
physical-chemical properties of PGA and its promising use as a carrier polymer in drug delivery.
Critical chemical modifications making use of the PGA free hydroxyl side group to enhance the
material properties have been discussed in this work. This is a key advantage of PGA compared to
other readily available biodegradable polymers, as it has the potential to expand the range of drugs
which can be easily encapsulated and retained within drug delivery systems. Furthermore, the ready
biodegradability of PGA in comparison with other polymers, opens up new ways of using this polymer
in drug delivery, e.g., in more effective polymer drug conjugates. Consideration of these factors results
in a brief but detailed guideline for future research groups interested in using PGA in different fields.
Taking into account all the relevant physicochemical and biological properties of NPs (or achievable
devices) based on PGA and PGA chemical alterations, combined with the exceptional ability of PGA
and its alterations to encapsulate/amorphously stabilize hydrophobic and hydrophilic drugs, it is
clear that PGA has great potential for a wide range of possible applications in drug delivery and
personalized medicine, many of which remain to be explored fully.
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