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ABSTRACT
Galaxy morphology is a fundamental quantity, that is essential not only for the full spectrum of
galaxy-evolution studies, but also for a plethora of science in observational cosmology (e.g. as
a prior for photometric-redshift measurements and as contextual data for transient lightcurve
classifications). While a rich literature exists on morphological-classification techniques, the
unprecedented data volumes, coupled, in some cases, with the short cadences of forthcoming
‘Big-Data’ surveys (e.g. from the LSST), present novel challenges for this field. Large data
volumes make such datasets intractable for visual inspection (even via massively-distributed
platforms like Galaxy Zoo), while short cadences make it difficult to employ techniques like
supervised machine-learning, since it may be impractical to repeatedly produce training sets
on short timescales. Unsupervised machine learning, which does not require training sets,
is ideally suited to the morphological analysis of new and forthcoming surveys. Here, we
employ an algorithm that performs clustering of graph representations, in order to group im-
age patches with similar visual properties and objects constructed from those patches, like
galaxies. We implement the algorithm on the Hyper-Suprime-Cam Subaru-Strategic-Program
Ultra-Deep survey, to autonomously reduce the galaxy population to a small number (160)
of ‘morphological clusters’, populated by galaxies with similar morphologies, which are then
benchmarked using visual inspection. The morphological classifications (which we release
publicly) exhibit a high level of purity, and reproduce known trends in key galaxy properties
as a function of morphological type at z < 1 (e.g. stellar-mass functions, rest-frame colours
and the position of galaxies on the star-formation main sequence). Our study demonstrates
the power of unsupervised machine learning in performing accurate morphological analysis,
which will become indispensable in this new era of deep-wide surveys.
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1 INTRODUCTION

The measurement of galaxy morphology is a fundamental topic in
observational cosmology. Morphology is a strong function of the
dynamical state of a galaxy, encodes the physical processes that
dominate its evolutionary history (e.g. Martin et al. 2018a) and
is strongly aligned with physical properties like stellar mass (e.g.
Bundy et al. 2005), star-formation rate (e.g. Bluck et al. 2014;
Smethurst et al. 2015), colour (e.g. Strateva et al. 2001; Skibba
et al. 2009) and local environment (e.g. Dressler 1980; Dressler
et al. 1997; Postman et al. 2005). For example, bulge-dominated
galaxies typically have assembly histories that are richer in merg-
ers (e.g. Conselice 2006), with the strength of the bulge correlating
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with the number of mergers (e.g. Hatton et al. 2003). In compari-
son, the presence of a disc at the present day is a signature of a more
quiescent formation history, with the buildup of stellar mass likely
to be driven mainly by gas accretion and secular processes (Codis
et al. 2012; Kaviraj 2014a; Martin et al. 2018b). In a similar vein,
at a given stellar mass, lower surface brightnesses or redder colours
may indicate a larger role for tidal processes, like interactions and
ram-pressure stripping, in the evolution of the galaxy in question
(e.g. Dressler 1980; Moore et al. 1999; Weisz et al. 2011; Mar-
tin et al. 2019). Finally, morphological details, such as extended
tidal features, are signposts of recent mergers and/or strong inter-
actions (e.g. Kaviraj 2014b; Kaviraj et al. 2019), with the surface-
brightness of these tidal features typically scaling with the mass
ratios of the mergers in question (e.g. Peirani et al. 2010; Kaviraj
2010).

© 2019 The Authors
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In addition to its key role in the study of galaxy evolution, mor-
phological information is useful for a vast array of astrophysical
science. For example, it is used as a prior in photometric-redshift
pipelines (e.g. Soo et al. 2018; Menou 2018), forms key contextual
data in the classification of transient lightcurves (e.g. Djorgovski
et al. 2012; Wollaeger et al. 2018) and is important for identify-
ing the processes that trigger the onset of AGN activity in galaxies
(e.g. Schawinski et al. 2014). The measurement of accurate galaxy
morphologies, particularly in large surveys which underpin our sta-
tistical endeavour is, therefore, a critical exercise.

Over the past few decades a rich literature has emerged on
methods for measuring galaxy morphology, especially in large ob-
servational surveys. These methods range from parametric tech-
niques, which attempt to describe galaxy light profiles using small
sets of parameters (e.g. Sérsic 1963; Simard et al. 2002; Odewahn
et al. 2002; Lackner & Gunn 2012), to non-parametric methods that
reduce these light distributions to single values such as in the ‘CAS’
system (e.g. Abraham et al. 1994; Conselice 2003; Menanteau et al.
2006), the Gini-M20 coefficients (e.g. Lotz et al. 2004; Scarlata
et al. 2007; Peth et al. 2016) or other non-parametric statistics such
as the MID system (e.g. Freeman et al. 2013). Recent work has
increasingly harnessed the power of machine-learning to perform
morphological analysis. Although the use of machine-learning in
astronomy can be traced back at least as far as Lahav et al. (1995),
the recent literature has seen an explosion in the use of such tech-
niques applied to a wide variety of problems in astrophysics (e.g.
Huertas-Company et al. 2015a; Ostrovski et al. 2017; Schawinski
et al. 2017; Hocking et al. 2018; Goulding et al. 2018; D’Isanto
& Polsterer 2018; Siudek et al. 2018; An et al. 2018; Cheng et al.
2019; Ay et al. 2019).

While automated classification techniques, such as the ones
described above, are particularly well-suited to efficiently process-
ing large survey datasets, they are typically benchmarked against
visual inspection (e.g. Kaviraj 2010; Lintott et al. 2011; Simmons
et al. 2017), which produces arguably the most powerful and ac-
curate measures of galaxy morphology. While time-consuming to
perform, the development of the Galaxy Zoo (GZ; Lintott et al.
2011) platform has, in recent years, revolutionized the collection
of visual classifications for large surveys. Using more than a mil-
lion citizen-science volunteers, GZ has classified several contem-
porary surveys, like the SDSS and the HST legacy surveys (e.g.
Lintott et al. 2011; Willett et al. 2017). Automated methods, es-
pecially those that exploit machine-learning, have been routinely
benchmarked against visual classifications from databases like GZ,
and are now commonly deployed on large-scale survey data (e.g.
Huertas-Company et al. 2015a; Dieleman et al. 2015; Beck et al.
2018; Walmsley et al. 2019; Ma et al. 2019).

Notwithstanding the variety of techniques on offer, forthcom-
ing ‘Big Data’ surveys, e.g. from the LSST, present unprecedented
challenges for performing morphological classification (Robertson
et al. 2017). The sheer volume of data makes such surveys in-
tractable for visual inspection, even via massively-distributed plat-
forms like GZ. New techniques, which either combine visual and
automated classification (e.g. Beck et al. 2018; Dickinson et al.
2019) or perhaps remove the need for visual classification alto-
gether (e.g. Siudek et al. 2018; Hocking et al. 2018; Hendel et al.
2018; D’Isanto et al. 2018), will be crucial in dealing with the un-
precedented data volumes expected from these new surveys. The
short cadence of rapidly-changing datasets, from instruments like
the LSST, represents an additional hurdle and could make su-
pervised machine-learning techniques challenging to deploy, as it
may become impractical to repeatedly produce large, reliable train-

ing sets on short timescales, as the survey becomes progressively
deeper.

Unsupervised machine-learning (UML) algorithms are ideally
suited to the morphological analysis of Big Data surveys. Unsuper-
vised techniques do not require visually-classified training sets and
can, in principle, rapidly and autonomously compress an arbitrar-
ily large galaxy population into a small number of ‘morphological
clusters’ comprised of galaxies with similar properties (e.g. Hock-
ing et al. 2018). These groups can then be benchmarked against
visual classification which, if the number of groups is relatively
small, becomes tractable even for individual researchers (and can
be tackled easily using distributed systems like GZ).

In this paper, we employ such a UML algorithm, which works
by grouping pixels with similar properties and objects constructed
from those pixels, like galaxies. Originally developed using Hub-
ble Space Telescope (HST) data from the CANDELS (Koekemoer
et al. 2011) survey (Hocking et al. 2017; Hocking et al. 2018), we
apply the algorithm to the Ultradeep layer of the Hyper Suprime-
Cam Subaru-Strategic Program (HSC-SSP) Data Release 1 (DR1).
We release a catalog of morphological classifications which can
be used in conjunction with the HSC-SSP DR1 catalogue, explore
the robustness of these classifications and discuss the applicabil-
ity of the algorithm to surveys from forthcoming instruments like
LSST (whose deep-wide-fast dataset will reach the same depth as
the HSC-SSP Ultradeep survey after ∼10 years). We also plan to
release catalogues of morphological classifications based on both
forthcoming HSC-SSP data releases and datasets from future in-
struments like LSST will be released as data becomes available.

This paper is structured as follows. In Section 2, we describe
the unsupervised graph-clustering algorithm that underpins this
study. In Section 3, we outline the properties of the HSC-SSP and
the ancillary data used in this study. In Section 4, we describe the
benchmarking of the algorithm outputs using visual classification,
the completeness of the resultant morphological catalogue and the
contents of the released data products. In Section 5, we explore
the robustness of the classifications, by comparing the properties of
galaxies in different morphological groups to known trends in these
properties as a function of morphology, at z < 1. We summarise our
results in Section 6.

2 THE HYPER SUPRIME CAM SUBARU STRATEGIC
PROGRAM (HSC-SSP)

2.1 Survey description

The HSC-SSP (Aihara et al. 2018a) is a multi-layered imag-
ing survey in grizy (and 4 narrow-band filters), using the Hyper
Suprime-Cam (HSC, Miyazaki et al. 2012) on the 8.2m Subaru
Telescope. HSC has a 1.5 degree diameter field of view and a
0.168 arcsec pixel scale, with a median i-band seeing of ∼0.6 arc-
sec. The survey, which began in 2014, is being carried out us-
ing 300 nights over 5-6 years. The fields are chosen to be low
in Galactic dust extinction and to have overlap with several well-
known multi-wavelength data-sets, including SDSS/BOSS (Eisen-
stein et al. 2011), X-ray surveys from XMM (Jansen et al. 2001)
and eROSITA (Merloni et al. 2012) and near-/mid-infrared imag-
ing surveys e.g. VIKING/VIDEO (Jarvis et al. 2013) and UKIDSS
(Lawrence et al. 2007).

The final HSC-SSP dataset (expected in 2021) will provide
three layers: a ‘Wide’ layer covering an area of 1400 deg2 with a
target i-band depth of 26.2 mag arcsec−2, a ‘Deep’ layer covering
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an area of 27 deg2 with a target i-band depth of 27.1 mag arcsec−2

and an ‘Ultradeep’ layer covering an area of 3.5 deg2 with a target i-
band depth of 27.7 mag arcsec−2 (Aihara et al. 2018a). The layers
are nested, so that the Ultradeep layers are included in the Deep
fields and the Deep regions are included in the Wide fields.

Here, we use the HSC-SSP DR11, which has released
108 deg2, 26 deg2, and 3.5 deg2 in the Wide, Deep and Ultradeep
layers, with current depths of i ∼ 26.4, ∼26.5, and ∼27. mag, re-
spectively (5σ for point sources) (Aihara et al. 2018b). The survey
is split into a number of 1.5 deg wide square ‘tracts’, each covering
approximately a single HSC pointing. Each tract is further sepa-
rated into 9× 9 patches, consisting of approximately 4200× 4200
pixels. Here we use stacked, sky-subtracted images, with WCS co-
ordinate corrections applied and calibrated magnitude zero-points.

2.2 Data

For object centroids and observed photometry, we use cModel

magnitudes (Stoughton et al. 2002), which are released as part of
the HSC-SSP DR1 forced catalogue. These are computed using
the HSC-SSP reduction pipeline, using the i-band as the primary
reference wavelength. We additionally calculate surface bright-
nesses using the Kron radius, by dividing the flux within this radius
by the area of the aperture.

In order to infer physical properties and photometric redshifts
for the galaxies in our sample, we use results from the MIZUKI

(Tanaka 2015) template-fitting code, that have been released as part
of the HSC-SSP DR1 (Tanaka et al. 2018). Redshifts are derived
purely from HSC g, r, i, z and y band cModel magnitudes, for
all primary objects detected in at least three bands. The MIZUKI

code uses spectral energy distribution (SED) fitting to templates
generated from the Bruzual & Charlot (2003) stellar population
synthesis models, in order to self-consistently estimate redshifts
and physical properties of individual galaxies. Redshift-dependent
Bayesian priors are applied to physical parameters like stellar mass
and the star-formation rate (SFR). We use values from the pub-
lic HSC-SSP DR1 photoz_mizuki catalogue for photometric red-
shifts, SFRs, stellar masses and rest-frame magnitudes and colours.
For full details of the HSC-SSP DR1 we direct readers to Aihara
et al. (2018b).

3 AN UNSUPERVISED ALGORITHM FOR
MORPHOLOGICAL CLASSIFICATION BASED ON
THE CLUSTERING OF GRAPH-BASED
REPRESENTATIONS

The graph-clustering algorithm that underpins this study is de-
scribed in detail in Hocking et al. (2017) and Hocking et al. (2018).
The primary application of this algorithm is to provide a means
of efficiently classifying large quantities of unseen data into small
groups of visually similar objects, so that the groups can be bench-
marked against visual classifications. The ability to do so quickly,
without relying on pre-existing training sets, is essential in the
LSST era, as the high survey cadence, rapidly evolving data and
the new parameter spaces it will explore will make it challenging
to construct the unbiased training sets that will be required.

The technique has been previously tested on other astronom-
ical datasets. Hocking et al. (2018) has demonstrated this method

1 https://hsc.mtk.nao.ac.jp/ssp/data-release/

Table 1. Parameters used for the feature extraction step.

Parameter Description Value

r Side length of a square sub-image patch in pixels 16
n Number of bins in the radial power spectrum 8

applied to HST data from CANDELS. In this work, the algorithm
has been validated by showing that the characteristics of objects,
separated into different morphological clusters, show consistency
in terms of their basic properties and structural parameters (mag-
nitude, M20, colours), as well as strong concordance with classi-
fication data from GZ (e.g. smoothness, disciness etc). Separately,
the algorithm has been shown to efficiently separate ellipticals and
spirals, when benchmarked against expert human classifiers, and
shows promise in identifying lensed galaxies (Hocking et al. 2017).

In the following sections, we describe the main components
of the algorithm.

3.1 Feature selection

The ultimate aim of the method is to automatically identify differ-
ent groups of galaxies using HSC pixel data. Although the source
data may be used directly, it is more useful to transform the data
in a way that removes any irrelevant information. As our aim is
to morphologically classify galaxies, we transform the data so that
irrelevant information like galaxy orientation is removed.

Importantly, the selected features must avoid redundancies or
over-fitting, and also remain invariant to galaxy rotation, scale and
orientation. Simplicity in the features selected is also desirable, in
order that the results of the algorithm remain human-interpretable.
Below, we outline the feature extraction process, which is also de-
scribed in Hocking et al. (2017) and Hocking et al. (2018).

We first extract r× r pixel sub-image patches around each de-
tected pixel in each HSC tract, where r is the patch size (Table 1).
In order to reduce the time that the algorithm takes to run, and to
avoid including pixels that contain no useful information, we only
extract pixels that are 1σ above the noise level, determined by a
simple sigma-clipping (e.g. as implemented by Bertin & Arnouts
1996; Robitaille et al. 2013, but see Appendix A for a discussion of
potential improvements).

Following the initial detection and extraction step, we produce
a rotationally invariant representation of each patch, by evaluating
the radially averaged pixel intensity power spectrum, with n bins
(Table 1) for each of the five bands (g, r, i, z, y). This is done by first
calculating the 2D Fast Fourier transform (FFT; Ballard & Brown
1982) for each patch and then multiplying it by its conjugate. The
zero frequency component is then rearranged to the centre of the
2D matrix and the azimuthally averaged radial profile calculated.
It is important that the patch size is large enough to sample the
spatial scales over which the data varies (e.g. that it is larger than
the PSF). Other common feature representations, including Rota-
tionally Invariant Feature Transform (RIFT), spin intensity images
(Lazebnik et al. 2005) and histogram of gradient (HoG; Birk et al.
1979) were trialed (Hocking et al. 2017), with the power spectrum
representation found to have the best performance and efficiency
for separation of late-type and early-type galaxies, when compared
to human expert classifications of CANDELS data.

Each n element power spectrum is concatenated into a 5× n
element feature vector, p, which effectively encodes pixel intensity,
colour and spatial frequency information for each sub-image patch
in a rotationally invariant manner. Each feature vector is then com-
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Table 2. Parameters used for the growing neural gas (GNG)s, hierarchical
clustering (HC)s and morphological classification steps.

Parameter Description Value

N Maximum number of nodes in the graph 200,000
λ Samples processed before new node added 100
amax Maximum age before an edge is removed 50
εb Size of the adjustment in step (i) 0.2
εn Size of adjustment for neighbours in step (i) 0.006
α Error reduction to node with the largest error 0.5
β Error reduction to all nodes 0.995
Ng Target number of HC groups 1500
k Number of groups produced by k-means 160

bined into a patch data matrix, P, which contains the feature vectors
for every patch. Table 1 presents the values of r and n used for this
feature extraction step.

We note briefly that an alternative approach to the engineered
feature description detailed above, where the optimum feature rep-
resentation is instead learned (e.g. Coates et al. 2011; Cheriyadat
2013; Tao et al. 2015) could also be used. While it is possible that
this approach could produce better results, such an approach would
also produce outputs that are difficult to interpret. Additionally, this
could have significant implications for the speed of the algorithm,
as it would introduce an additional learning step and also increase
the dimensionality of the feature space that must be explored in
later steps. This could potentially significantly increase the time re-
quired to produce classifications. Since we aim to be able to quickly
and repeatedly produce classifications for rapidly changing datasets
(e.g. from the LSST), and produce outputs where each step can be
easily validated by human inspection, slowing down the algorithm
and obfuscating the outputs in not desirable, even if it produces an
improvement in the quality of the classifications.

3.2 Feature extraction

The next step is to use clustering methods to learn an accurate
topological map (model) of the patch data matrix, P, and then sub-
divide the nodes within this map into coarser groups of feature vec-
tors, thus producing a library of distinct ‘patch types’.

3.2.1 Growing neural gas

We use a growing neural gas (GNG, Fritzke 1995) algorithm to
learn the optimal representation of the data, based on the patch data
matrix, P. The GNG algorithm produces a graph representation of
the data, by iteratively growing a graph of nodes with topological
neighbouring nodes in the graph connected by edges. The result
is a topology-preserving map with an induced Delaunay triangula-
tion (Okabe et al. 2009). Edges that are no longer part of the in-
duced Delaunay triangulation must, however, be removed. This is
achieved by removing edges that have reached a given age, amax,
without being connected to another node. The GNG algorithm is
applied to P using the following steps:

(i) First, two nodes are initialized with positions using two ran-
domly selected feature vectors from the patch data matrix, P. Each
node is, therefore, located within a 5×n dimensional feature space
with the same dimensionality as the number of elements of p. A
new random feature vector, p′, is then drawn from P and the fol-
lowing steps applied:

• The two nearest nodes to the feature vector, whose posi-
tions in the feature space we designate s0 and s1, are identified
such that the Euclidean distance from p′, is minimised. s0 is the
closest node to p′ and s1 is the second closest.
• If an edge connecting the two nodes, s0 and s1, does not

already exist it is created. The two connected nodes are called
topological neighbours. Whenever two nodes are connected by
an edge, the edge is also assigned an age, a, which is initially
set to 0, and the age of all other edges connected to s0 are incre-
mented by 1.
• The closest node to p′, s0, is assigned an error equal to the

square of their separation:

σ(s0) = ||p′− s0||2. (1)

• s0 and its direct topological neighbours (i.e. those directly
connected by edges) are all moved towards p′ by a fraction (εb
and εn respectively) of their separation from p′, thus causing
adaptation of the map towards the input data:

∆s0 = εb(p′− s0)
∆sn = εn(p′− sn).

(2)

• All edges with ages larger than the maximum age (where
a > amax) are removed. Any nodes that no longer have topologi-
cal neighbours are also removed.

(ii) This procedure is repeated until λ feature vectors have been
processed, after which:

• A new node, sr, is inserted at the mid-point between the
node with the highest error, sq, and its highest error topological
neighbour, s f .
• The edges connecting the two nodes are removed and new

edges are created connecting sq and s f to sr.
• The error of sq and s f is decreased by multiplying their er-

rors with the parameter, α , and the error of sr is initialised with
the same error as sq.
• The error of every node is decreased by multiplying their

errors with the parameter β .

(iii) This is continued until the stopping criterion is met (i.e. N
nodes has been reached).

The accumulation of errors in step (ii) ensures that the algo-
rithm places new nodes in areas of the parameter space where the
mapping from the model to the data is poor. Once the stopping
criterion is met, we take a matrix containing the final positions of
all the nodes within the feature space, N, as the output. Table 2
presents the values of the parameters used for the GNG step. We
note that the exact value of these parameters is not important for the
outcome, but does affect the time it takes for the graph to converge.
Any sensible choice of parameters will always result in adaptation
towards the input data, but a poor choice of parameters may result
in inefficient performance, requiring a large number of iterations to
finish.

3.2.2 Hierarchical clustering

Agglomerative (‘bottom-up’) hierarchical clustering (HC; Johnson
1967) of the GNG output is used to produce a hierarchical represen-
tation of the nodes in the topological map. At each iteration, the HC
algorithm initially tries to cluster the most similar nodes into pairs,
with similarity measured, in this case, by the Pearson correlation.
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Patch extraction Clustering Feature vector

Figure 1. A schematic view of the morphological classification process.
Patches are extracted around detected pixels in survey images and clustering
methods are used to group these patches into a library of patch types. Galaxy
feature vectors can then be constructed by creating a histogram for each
object which describes the frequency of each patch ‘type’.

The Pearson correlation between the nodes a and b is calculated
by comparing their position vectors and given by their co-variance
divided by the product of their standard deviations:

ρ(a,b) =
cov(a,b)

σaσb
, (3)

where cov(a,b) is the co-variance between the two node po-
sition vectors, given by Σn

i (ai − a)(bi − b) and σa and σb are
simply the standard deviation of each position vector, given by√

Σn
i (ai−a)2 and

√
Σn

i (bi−b)2 respectively.
At each subsequent iteration the algorithm merges clusters

into pairs of similar clusters and so on, until only a single clus-
ter remains. A particular advantage of this method is that it enables
us to select the desired level of detail that we use to segment the
GNG graph. The clusters can have disparate sizes and separations
and therefore the method makes no assumptions about the structure
of the data.

3.3 Constructing feature vectors

After a library of patch types has been produced from a subset of
the data by the GNG algorithm and then reduced via HC, it is pos-
sible to construct object feature vectors. Individual patches must
be assembled into objects, either using existing detection maps or,
as we use in this case, connected component labeling algorithms
(e.g. Galler & Fisher 1964). Each of the patches is assigned a patch
type, based on the closest node defined in the previous step. They
can then be described using a histogram of patch types i.e. an ob-
ject feature vector. The feature vector describes the frequency of
different patch types that the object consists of, thereby encoding
an easily manipulated description of that object.

The number of groups that patch types are clustered into, and
therefore the length of the feature vector, can be changed according
to the complexity of the data that is being classified. In this case it
has a value Ng = 1500, equal to the number of clusters produced
by the HC algorithm. The feature vector of an object should, there-
fore, encode the basic visual characteristics of that object, making
it possible to identify visually similar objects. Fig 1 illustrates the
process of extracting patches from multi-band survey data (Section
3.1), assembling a library of patch types (Section 3.2) and, finally,
constructing feature vectors for each object (Section 3.3).

3.4 Producing morphological clusters

In order to finally classify galaxies into morphological clusters, we
first define the similarity between feature vectors. Again, we use the

Pearson correlation (Equation 3), in order to define the distance be-
tween feature vectors in this new feature space, although other dis-
tance measures (e.g. Euclidean distance or cosine distance) may be
used and may accentuate different features. Additionally, we apply
‘term frequency-inverse document frequency’ (TF∗IDF, Rajaraman
& Ullman 2011) weightings when calculating the distance, in order
to increase the importance of patch types with the greatest discrim-
inatory power, and reduce the importance of patch types that are
relatively common between all objects.

Once we have produced a feature vector that encodes the vi-
sual characteristics of each object, and defined a distance measure
for these feature vectors, it is finally possible to group these ob-
jects by their visual similarity. This can be done either by direct
comparison, or a similarity search, of individual feature vectors e.g.
searching for other objects that are most similar, or closest in the
feature space, to the feature vector of a given object, or by applying
a clustering algorithm to the feature vectors in order to group them.

In order to ensure cleaner classifications, we exclude any ob-
jects that are comprised of fewer than 15 pixels. Using k-means
clustering (e.g. MacQueen et al. 1967), we separate our object fea-
ture vectors into k morphological clusters (in this paper we have
chosen k to be 160, which is intended to demonstrate the ability of
the algorithm to distinguish subtle visual differences, however ar-
bitrary values of k may be chosen). We calculate silhouette scores
for the objects in each morphological cluster, in order to evaluate
the overall quality of the clustering, as well as the correspondence
of individual objects to the average properties of the group they
are assigned to. The silhouette score for a given object is calculated
based on the level of similarity to both its corresponding cluster and
all other clusters (see Rousseeuw 1987). Silhouette scores range
from -1 to 1: a high silhouette score indicates that the object is well
matched to its own cluster and distinct from neighbouring clusters.
For more efficient visual classification it may be desirable to select
values of k that so that the mean silhouette score is optimised (see
Section 4.4). We calculate silhouette scores for individual objects,
as well as averages on a group and global level, which are included
in the catalogues presented in Section 4.4. With k = 160, we obtain
a global mean silhouette score of 0.26.

Using the parameters described above, the algorithm takes
around 40 ms per pixel in order to perform feature extraction, gen-
erate a model from training data and perform the classification. Fea-
ture extraction and classification, using an existing model applied to
unseen data, takes only around 1-2 ms per pixel, on a single thread
of execution on a contemporary desktop computer with an Intel
CPU. The feature extraction and classification steps can be easily
split up and executed concurrently (Herlihy & Shavit 2011). This
property makes the algorithm efficient, even on very large volumes
of data (e.g. surveys from instruments like SDSS or LSST).

The algorithm is implemented in a combination of C#, util-
ising .NET Core 2 libraries and Python, relying on the numpy,
astropy and scikit-learn modules (which are implemented in a
mixture of Python, C and Cython). Even without parallelization
of the extraction and classification steps, the algorithm performs
well on large datasets. For example, the entire 3.5 deg2 of the
HSC Ultradeep dataset used in this paper was processed in un-
der 40 CPU hours, including feature selection, extraction and clas-
sification. Scaling up to much larger data volumes will also be
possible. For example, under the conservative assumption that 1
per cent of the approximately 1012 pixels that make up the SDSS
are detected, the entirety of SDSS could be processed in under
3000 CPU hours (assuming a modeling/feature extraction step has
already been performed). Assuming the same set of assumptions
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for LSST (although LSST images will have more detected pixels
than SDSS due to greater depth), the smaller pixel size and larger
area of LSST would require around 16,000 CPU hours. This still
represents a relatively trivial amount of processing time on even a
modest high performance computing (HPC) cluster (e.g. around 1
day with 500 threads of execution).

3.5 Cross-matching objects from the algorithm with the
HSC-SSP

We cross-match the galaxy centroids from the HSC-SSP DR1
Ultradeep catalogue with the object centroids from the graph-
clustering algorithm, excluding objects that do not have a match
within 0.8′′, which is approximately the PSF of the worst HSC i-
band seeing (note that the median i-band seeing is 0.6′′). Of the
89,257 objects for which the algorithm produced classification,
53,003 have more than 15 pixels, which we consider to be large
enough for reliable classification, as a sufficient range of spatial
scales can be captured. Of these, 41,062 (77 per cent) have cen-
troids that match an object in the HSC catalogue within 0.8′′. Mis-
match between centroids arises because, at present, we use a sim-
ple connected component labelling algorithm to identify objects,
rather than the individual segmentation maps used by the HSC-
SSP pipeline. The mismatch becomes increasingly worse for very
large objects (see Fig A1) and is, therefore, principally a problem in
the very local Universe. However, in our analysis below, we study
more distant objects (z & 0.3), with much smaller projected sizes.
The fraction of matched objects is, therefore, much larger as, on
average 95 per cent of objects smaller than 100 pixels are success-
fully cross-matched (compared with 15 per cent of objects larger
than 1000 pixels).

4 MORPHOLOGICAL CATALOGUE

4.1 Benchmarking of morphological clusters via visual
classification

The unsupervised graph-clustering algorithm allows us to effec-
tively compress the galaxy population into a small number of
morphological clusters. Crucially, the number is small enough to
make visual classification of these clusters tractable for individ-
ual researchers. To generate a usable morphological catalogue, we
benchmark the outputs of the algorithm via visual classification of
each of the k = 160 morphological clusters. These classifications
are based on a subset of g-r-i images of the 10 highest silhouette-
score objects in each cluster, plus a sample of 10 objects selected at
random, in order to assess the morphological purity of the cluster.
We do not classify individual galaxies but perform visual classifi-
cation on the cluster as a whole.

We classify each cluster into one of three broad Hubble (Hub-
ble 1936) morphological types: elliptical galaxies, S0/Sa galaxies
and spiral galaxies. We also store finer morphological information,
e.g. the type of spiral morphology (Sb, Sc, Sd) and noteworthy
colour or structural features (e.g. when spirals appear unusually red
or show clumpy structure, or when elliptical galaxies appear unusu-
ally blue). Except in Section 4.2, we only consider objects which
are extended (based on the difference between the PSF magnitude
and the cModelMag magnitude; Eisenstein et al. 2001). We indi-
cate the total number of objects in each morphological cluster that
are not extended in Table B1. Figure 2 shows a random selection
of objects that are classified as having spiral, S0/Sa and elliptical

z=0.2-0.4 z=0.4-0.6

z=0.6-0.8 z=0.8-1.0

(a) Spiral galaxies.

z=0.2-0.4 z=0.4-0.6

z=0.6-0.8 z=0.8-1.0

(b) S0/Sa galaxies.

z=0.2-0.4 z=0.4-0.6

z=0.6-0.8 z=0.8-1.0

(c) Elliptical galaxies.

Figure 2. g-r-i false colour images showing a random selection of galaxies
from each major morphological group. The samples are further split into
bins of redshift, indicated by the label in the top right of each coloured
box. Panel (a) shows objects classified as spirals, panel (b) shows objects
classified as S0/Sa and panel (c) shows objects classified as ellipticals.

morphologies, split into four redshift ranges. Note that, although
a sample of individual objects in each cluster are visually classi-
fied in order to determine a morphological type for that cluster, the
majority of objects in each cluster are unseen.

Fig 3 shows some individual morphological clusters identified
by the algorithm. For example, cluster 10 contains galaxies iden-
tified as Sc/Sd Hubble types (Fig 3(a)), cluster 14 is comprised of
systems that appear to be high-redshift mergers (Fig 3(b)), cluster
122 contains galaxies which show blue ring-like features indicative
of the recent accretion of gas-rich satellites (Fig 3(c)) and clus-
ter 127 is composed of clumpy discs (Fig 3(d)). As described in
Section 4.4 below, the visual classifications of each morphological
cluster, and the average properties of objects in these clusters, are
presented in Appendix B and Table B1.

4.2 Star-galaxy separation

Figure 4 presents a colour-colour diagram, showing the g− r and
r− i colours for spirals (blue), S0/Sa galaxies (green), ellipticals
(red) and stars (orange). The stellar locus is clearly delineated, oc-
cupying a distinct region of colour-colour space compared to spi-
rals, ellipticals and S0/Sa galaxies. The objects that are morpho-
logically identified as stars by the graph-clustering algorithm oc-
cupy the same region as objects that are identified as being not ex-
tended by the HSC pipeline (as defined in Section 4.1). The region
of colour-colour space containing objects that are not extended is
indicated by a black contour, which contains 95 per cent of all such
objects in our sample.
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4"

(a) Cluster 10: Sc/Sd galaxies.

4"

(b) Cluster 14: High-z mergers.

4"

(c) Cluster 122: Discs with blue rings, possibly indicative of the re-
cent accretion of blue satellites.

4"

(d) Cluster 127: Clumpy discs.

Figure 3. Examples of interesting morphological clusters produced by the
algorithm: (a) Sc/Sd galaxies (b) merging systems at high-redshift (c) disks
with blue ring-like structures that might be the result of the recent accretion
of gas-rich satellites (d) clumpy disks in the nearby Universe. Spatial scales
are indicated by the white bar in the top-left panel of each cluster.

It is worth noting that optical colours alone may not encode
sufficient information to effectively separate stars from galaxies
(Fadely et al. 2012). However, the algorithm employed here is able
to distinguish between stars and resolved galaxies, even within the
region where they share the same colours, because resolved galax-
ies and unresolved stars do not share the same (spatial) power spec-

0.0 0.5 1.0 1.5 2.0
(g r)

0.0

0.5

1.0

1.5

2.0

(r
i)

Ellip.
Spiral
S0/Sa
Stars

Figure 4. The positions of ellipticals (red), spirals (blue), S0/Sa galaxies
(green) and stars (orange) in the rest-frame g− r vs r− i plane. The black
contour contains 95 per cent of objects classified as not extended in the
HSC-SSP catalogue.

tra or distribution of patch types, and therefore, do not fall into the
same morphological clusters.

We note that the relatively simple method used in Eisenstein
et al. (2001) (as described in Section 4.1) to determine extended-
ness is not always a good proxy for stellarity. Although star-galaxy
separation has traditionally used purely morphometric information
to classify stars and galaxies in optical survey data (e.g. Kron 1980;
Eisenstein et al. 2001; Henrion et al. 2011), new ground-based
deep-wide surveys, which contain many more unresolved galax-
ies than stars at faint apparent magnitudes (Fadely et al. 2012; Sou-
magnac et al. 2015), represent an emerging challenge. Further work
is therefore needed in order to determine whether the algorithm can
effectively distinguish faint, unresolved galaxies from stars in very
deep images. We note, however, that this does not affect the analy-
sis in this study, since we are focused on bright objects.

4.3 Completeness of the UML-classified galaxy sample

In Fig 5, we compare the distribution of i-band magnitudes from
the HSC-SSP DR1 Ultradeep survey (grey) and the distribution for
objects that are large enough to be classified by the graph-clustering
algorithm and then successfully matched to the HSC-SSP DR1 Ul-
tradeep catalogue (dark blue). The black line indicates the com-
pleteness, i.e. the fraction of all galaxies in each magnitude bin that
can be classified by the algorithm and then matched to the HSC-
SSP. The completeness values are indicated by the right-hand y-
axis.

While the completeness of the full sample only begins to
decline significantly around mi > 27 mag, a magnitude cut of
mi < 22.5 mag ensures that a majority (i.e. more than 50 per cent)
of objects in the Ultradeep survey have large enough sizes for ro-
bust morphological classification using the graph-clustering algo-
rithm. We note that this cut appears to vary as a function of galaxy
morphology, as demonstrated by the brighter limiting magnitudes
for some morphologies, particularly for ellipticals. This is likely
the result of different average projected sizes, with ellipticals being
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Figure 5. The i-band apparent-magnitude distribution in the HSC-SSP Ul-
tradeep catalogue (dashed grey histogram) and the distribution of the sub-
set of these sources that has been matched and classified by the graph-
clustering algorithm (solid dark-blue histogram). Light-blue, red and green
histograms indicate the distribution of objects that are identified as spirals,
ellipticals or S0/Sa galaxies respectively. The black solid line indicates the
completeness as a function of apparent magnitude (with values indicated on
the y-axis) and the grey hatching indicates the region where the complete-
ness falls below 50 per cent.

typically more compact than spiral galaxies that have similar mag-
nitudes, particularly at low luminosities (e.g. Lange et al. 2015). In
the subsequent figures in this section, we consider galaxies brighter
than this mi = 22.5 mag threshold. We also show that the size cri-
terion imposed by the algorithm does not produce biased galaxy
populations as a result of the classification and matching procedure.

Fig 6(a) shows the distribution of photometric redshifts de-
rived using the MIZUKI code, for the full Ultradeep catalogue (grey)
and the matched catalogue from the algorithm (dark blue). Dot-
ted grey and dark blue lines show the same for all galaxies with
i-band absolute magnitudes brighter than 22.5 mag for the full and
matched samples respectively. The lower panel shows the fraction
of galaxies with mi < 22.5 mag that are matched as a function of
photometric redshift. As might be expected, the matched sample,
the magnitude limited matched sample and the full magnitude lim-
ited sample all share similar distributions, but the matched sample
falls off more quickly compared to the full sample, as their pro-
jected sizes increase with redshift, making more objects unclassifi-
able.

Figs 6(b) and 6(c) show the corresponding analyses for stel-
lar masses and SFRs respectively. Again, the histograms show
the distributions of stellar masses and SFRs for the full HSC-
SSP Ultradeep catalogue (grey), the distribution for matched ob-
jects only (dark blue) and the full and matched distributions for
mi < 22.5 mag (shown using grey and blue dotted lines). The lower
panels again show the fraction of galaxies with mi < 22.5 mag that
are matched as a function of photometric redshift. While the red-
shift distributions of objects is influenced by the size cut, for objects
brighter than the magnitude cut, the full and matched samples have
very similar distributions of physical properties. This indicates that
the size cut does not introduce any bias in such galaxy properties
(e.g. high SFRs), so that a comparison of average properties as a
function of redshift is possible.
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Figure 6. Distributions of galaxy properties ((a) MIZUKI photometric red-
shifts, (b): stellar masses, (c): SFRs) in the full HSC-SSP Ultradeep cata-
logue (grey) and for the subset of galaxies that has been matched and clas-
sified by the algorithm (blue). Dotted blue and grey lines show the distribu-
tions for galaxies with mi < 22.5 mag. Bottom: The fraction of matched and
classified objects with mi < 22.5 mag as a function of photometric redshift.
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4.4 Released data products

The released data products for the HSC-SSP DR1 are contained in
two tables. The first table comprises a list of morphological clus-
ters with their associated visual classifications and median values of
key galaxy properties within the cluster (surface-brightness, stellar
mass, specific SFR, rest-frame (g− r) colour and absolute r-band
magnitude). This table is presented in its entirety in Appendix B.
The second table is a list of individual HSC-SSP galaxies with their
associated morphological cluster number and useful ancillary infor-
mation, including their coordinates, HSC-SSP DR1 ID, extended-
ness, size in pixels and silhouette score. Note that some morpholog-
ical clusters can have some contamination from stars. Users should
discard objects which are classified as not extended and which are,
therefore, likely to be stars. The first ten rows of this table is pre-
sented in Table B2 of Appendix B.

Both tables are available at the following URL: https://
github.com/garrethmartin/HSC_UML.

4.4.1 HSC-SSP DR2 release

More comprehensive data products will be made available for
the newer HSC-SSP DR2 UDEEP/DEEP data release at the
same URL (https://github.com/garrethmartin/HSC_UML).
We will provide multiple catalogues for different numbers of clus-
ters (values of k from 2 - 10, then increasing in increments of 10 up
to 200). We will give average silhouette scores for each catalogue
as a whole, in order to allow users to select the optimal number of
clusters if desired, as well as provide diagnostic and silhouette plots
for each cluster. We will provide the feature vectors for each galaxy
with code for performing searches on these feature vectors to find
similar objects (i.e. a ‘similarity search’, Hocking et al. 2018) as
well as code to run the entire algorithm on other data if desired.

5 GALAXY PROPERTIES AS A FUNCTION OF
MORPHOLOGICAL TYPE

In this section, we explore the robustness of the morphological clas-
sifications produced by our algorithm. We study the distributions
of key galaxy properties (e.g. stellar masses, star formation rates,
rest-frame colours) as a function of morphological type, as a test
of the veracity of our classifications. We demonstrate that the dis-
tributions of such galaxy properties in well-known morphological
groups follow expected trends from studies using traditional visual
morphological classification methods (e.g Menanteau et al. 2006;
Kelvin et al. 2014; Khim et al. 2015; Willett et al. 2017).

5.1 Sample selection and methodology

5.1.1 Redshift binning

We first bin our galaxies into three redshift ranges: 0.3 < z < 0.5,
0.5 < z < 0.7 and 0.7 < z < 0.9. A minimum redshift of z = 0.3 is
chosen to ensure that the 3.5 deg2 Ultradeep footprint encompasses
a cosmological co-moving area greater than 85 Mpc× 85 Mpc in
the lowest redshift bin, so that our galaxy populations are large
enough to be statistically representative, and unlikely to be signifi-
cantly biased by large-scale structure. For completeness, we do ad-
ditionally consider a lower redshift bin (0.1 < z < 0.3) when study-
ing stellar mass functions in Section 5.2, but this bin is likely to be
strongly affected by cosmic variance.

Fig 7 presents a scatter plot showing the distribution of median

0.0 0.2 0.4 0.6 0.8 1.0〈
z
〉

MIZUKI

8

9

10

11

12

lo
g 1

0

〈 M
/M

¯
〉 M

IZ
U

K
I

Median 1σ error

0 1zMIZUKI

N
 / 

dz

N = 28066

Figure 7. Main panel: The redshift and stellar mass distributions of our
sample for mi < 22.5 mag. The x- and y-axes indicate the median redshift
and stellar mass respectively, derived from the MIZUKI fits to the optical
SED of each object. Error bars indicate corresponding 1σ errors on the me-
dians in each of the redshift bins. Inset: the unweighted redshift distribution
of our sample. The thickness of the line indicates the 2σ confidence interval,
calculated using 10,000 draws from the redshift probability distribution of
each galaxy, assuming a two-sided Gaussian error around the median value.
Red, orange and green hatched regions indicate the three redshift bins used.

stellar masses of individual galaxies as a function of their median
redshifts. Points are colour coded by their redshift bin. Open circles
with error bars indicate the central redshift and median stellar mass
of each redshift bin and the 1σ error of these quantities in each
bin. The inset shows the redshift distribution of galaxies. The thick-
ness of the line indicates the 2σ confidence interval, derived using
10,000 draws from the redshift probability distribution, which as-
sumes a two-sided Normal error around the median redshift, with a
standard deviation equal to the upper and lower redshift errors.

5.1.2 1/Vmax weighting and simulation of uncertainties

In order to correct for Malmquist bias (Malmquist 1922), we weight
galaxy counts using 1/Vmax, the inverse of the maximum volume in
which it would be possible to detect an object of a given luminosity
(e.g. Schmidt 1968; Weigel et al. 2016). We do this by first making
10,000 random draws from the redshift probability distribution for
each object. We assume that the probability density function (PDF)
follows a two-sided Normal distribution, with a central value equal
to the median MIZUKI redshift, 〈z〉, but with different standard de-
viations (σupper and σlower) on either side of the central value. Each
redshift, zdraw, is therefore drawn from the following distribution:

zdraw ∼

{
N (z | 〈z〉,σ2

lower) if z≤ 〈z〉
N (z | 〈z〉,σ2

upper)× (σlower/σupper) if z > 〈z〉
(4)

where N (z | µ,σ2) is a Normal distribution with a central value
equal to the median MIZUKI redshift, 〈z〉, and a variance of σ2.
σupper is the 84th percentile of the redshift PDF, and σlower is the
16th percentile of the redshift PDF. The factor of σlower/σupper
ensures that the distribution remains continuous.
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In the MIZUKI fitting, the dominant source of uncertainty in
the inferred stellar mass and absolute magnitude is the luminosity
distance, rather than the model template weights or dust attenua-
tion. The equivalent absolute magnitude, Mi,draw, and stellar mass,
M?,draw, at a given redshift can therefore be well approximated by
only varying their values by the square of the ratio of the lumi-
nosity distance, DL(z), at the redshift of the draw and the median
redshift. We can therefore calculate the new stellar mass for each
drawn redshift as follows:

M?,draw ≈ 〈M?〉
[
DL(zdraw)/DL(〈z〉)

]2 (5)

and similarly for the absolute magnitude:

Mi,draw ≈ 〈Mi〉
[
DL(zdraw)/DL(〈z〉)

]2
. (6)

We then find the maximum redshift, zmax at which an object with
absolute magnitude Mi,draw will fall below the detection limit (the
redshift where the distance modulus, µ , is equal to mlim,i−Mi,draw)
and thus obtain Vmax, which is proportional to the co-moving vol-
ume out to zmax.

Vmax ∝ Dc(zmax)
3, (7)

where Dc(z) is the comoving distance at z.
Note that the minimum size (15 pixels) that we impose influ-

ences the limiting apparent magnitude. Since the average size of
objects at a given magnitude varies between morphological types,
we use different values of mlim,i when calculating zmax, correspond-
ing to the limiting magnitude found for the morphological type in
question (e.g. as in Fig 5). Since we are primarily interested in the
relative distribution of galaxy properties between morphological
types, rather than the exact normalisation of the number density,
we do not take into account the area of the survey when calculating
Vmax.

Following the method of weighting and simulating uncertain-
ties described above, we take 10,000 draws from the redshift distri-
bution for individual objects in each morphological type. For each
of the 10,000 draws, we calculate new stellar masses and i band ab-
solute magnitudes and thus the value of Vmax for each galaxy. After
binning our sample into four redshift bins, based on the draws from
the redshift distribution (with central redshifts of 0.2 0.4, 0.6 and
0.8), we use 1/Vmax weighted univariate Gaussian kernel density
estimation (e.g. Klein & Moeschberger 2006) with a kernel band-
width of 0.1 dex to produce a galaxy stellar mass function for each
redshift bin. We use the median value and 1 and 2 σ dispersions
(defined by the central 68 and 95 per cent of values around the
median) to characterise the galaxy stellar mass function and its un-
certainty for each morphological type.

5.2 Stellar mass distributions as a function of morphological
type

Fig 8 shows the evolution of the galaxy stellar mass function (left-
hand column) and the evolution of the morphological fractions
(right-hand column) as a function of redshift. We include a redshift
bin in the range 0.1 < z < 0.3 for completeness, however we avoid
drawing any conclusions at these epochs, as the volume of this sub-
sample is not large enough to be statistically representative, since it
is likely to be strongly affected by cosmic variance. The light dotted
lines in the second to top panel of the right hand column indicate the
elliptical, S0/Sa and spiral fractions from Kelvin et al. (2014, Fig 3)
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Figure 8. Left: Galaxy stellar mass functions for spirals (blue), S0/Sa
galaxies (green) and ellipticals (red) in four redshift bins with arbitrary nor-
malisation. Light and dark coloured regions indicate the 1σ and 2σ confi-
dence intervals respectively, based on 10,000 draws from the redshift dis-
tribution of each galaxy. To enable comparison between the stellar mass
functions at various redshifts, the pale dashed lines show the stellar mass
function for the 0.3 < z < 0.5 bin, normalised to the mass function in each
redshift bin. Right: The evolution of the spiral, S0/Sa and elliptical fractions
between z = 0.1 and z = 0.9. Blue, green and red lines show the fraction of
galaxies that are spirals, S0/Sa and ellipticals, calculated from the galaxy
stellar mass functions on the left. Light and dark coloured regions indicate
the 1σ and 2σ confidence intervals respectively, based on 10,000 draws
from the redshift distribution of each galaxy. Fractions are only plotted up
to the point where the stellar mass function remains complete. Lighter dot-
ted lines in the second to top panel indicate the elliptical, S0/Sa and spiral
fractions from Kelvin et al. (2014, Fig 3) at z < 0.06.
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at z < 0.06. We note that the comparison is not perfect due to dif-
ferent definitions of morphological type, redshift range as well as
cosmic variance. We attempt to create an equivalent definition for
spirals by combining the LBS (little blue spheroid), Sab-Scd and
Sd-Irr definitions from Kelvin et al. (2014, Fig 3). The inclusion of
irregular galaxies in (Kelvin et al. 2014) may also be responsible for
some of the discrepancy. However, regardless of any discrepancy,
the general trend in spiral, elliptical and S0/Sa fractions remains
the same, in agreement with other work (e.g. Conselice et al. 2008;
Vulcani et al. 2011)

As shown in previous work (e.g. Conselice et al. 2008; Il-
bert et al. 2010; Conselice et al. 2014), there is a general trend
for elliptical and S0/Sa fractions at a given stellar mass to increase
towards lower redshifts. These systems increasingly dominate the
number density at high stellar masses towards the present day (e.g.
Wilman & Erwin 2012; Kelvin et al. 2014), as spiral galaxies are
quenched to form S0/Sa systems and/or undergo morphological
transformation via mergers to form ellipticals. In the highest red-
shift bin (0.7 < z < 0.9), ellipticals almost entirely dominate at
masses greater than 1011M�, whereas S0/Sa galaxies become more
important in the same mass range towards lower redshifts.

While S0/Sa galaxies and ellipticals share similar mass func-
tions, at least at lower redshifts, the dominance of ellipticals at
high stellar mass in the early Universe indicates that a distinct,
more gradual, evolutionary channel may be responsible for pro-
ducing the S0/Sa populations. In particular, ellipticals likely form
at epochs that predate those where the mechanisms that produce
S0/Sa populations (e.g. Dressler et al. 1997; Cerulo et al. 2017; Oh
et al. 2019) are most efficient. This is likely to be particularly true
for the most massive ellipticals, which must have formed rapidly at
high or intermediate redshift (e.g. Jaffé et al. 2011; Tomczak et al.
2014; Huertas-Company et al. 2015b).

The high-mass end of the elliptical mass function does not
evolve significantly over redshift and is already in place in the
highest redshift bin. The S0/Sa mass function appears instead to
be built up from lower-mass systems, indicating a different evolu-
tionary channel from their elliptical counterparts. At all redshifts,
S0/Sa type galaxies typically dominate at intermediate masses, be-
tween spirals and ellipticals (e.g. Vulcani et al. 2011; Kelvin et al.
2014), with the peak of the S0/Sa fraction moving towards lower
stellar masses at lower redshifts.

5.3 Star formation rates and rest-frame colours as a function
of morphological type

Figs 9 and 10 show the star formation main sequence and the Mi
vs. rest-frame g− i colour-magnitude diagram, for three redshift
bins (with central redshifts of 0.4, 0.6 and 0.8). Contours show the
density of objects weighted by 1/Vmax. Galaxies classified as spi-
rals inhabit a well-defined main sequence (Fig 9), while ellipticals
dominate a cloud below this sequence. S0/Sa galaxies lie some-
where between these two populations. Many S0/Sa galaxies are not
quenched and remain on the main locus of the star formation main
sequence, with a small number lying further below. Similarly, the
colour-magnitude diagram (Fig 10) shows a clear bi-modality, with
galaxies classified as ellipticals occupying the ‘red sequence’ and
galaxies classified as spirals occupying the ‘blue cloud’ (e.g Baum
1959; Visvanathan 1981). S0/Sa galaxies inhabit both parts of the
diagram, but largely occupy the space in between the two distribu-
tions defined by the spiral and elliptical populations.

The histograms above each panel in Fig 9 show the distribu-
tion of stellar masses for each morphological type. In agreement
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Figure 9. Scatter plots with contours overlaid, showing the distribution
of galaxies as a function of SFR and stellar mass, for galaxies classified
as elliptical (red), S0/Sa (green) and spiral (blue). The dots show individ-
ual galaxies, while contours show the 1/Vmax weighted density, with log10
distributed levels. Each panel shows a different redshift range (using the
MIZUKI derived photometric redshifts) which is indicated in the top-left
corner. Histograms at the top and right-hand side of each panel show the
distributions of stellar mass and SFRs respectively, for each morphological
type. Coloured triangles indicate the 1/Vmax weighted median SFRs for el-
lipticals, S0/Sa galaxies and spirals. The number in the bottom right corner
of each panel indicates the total number of objects in each redshift bin.
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with other studies (e.g. Kelvin et al. 2014), we find that the stellar
mass function of S0/Sa galaxies is much closer to that of ellipticals
than spirals. Spirals are much less massive, on average, than el-
lipticals and S0/Sa galaxies, while S0/Sa galaxies have marginally
lower stellar masses than ellipticals.

The histograms on the right-hand side of each panel in Fig 9
show the distributions of SFRs. Coloured arrow heads indicate the
1/Vmax weighted median values (e.g. Edgeworth 1888) of the SFRs
in each population. While S0/Sa galaxies typically have SFRs that
are comparable to spirals and higher than those found in ellipticals,
they are typically more massive and therefore inhabit an intermedi-
ate range of values of specific SFRs. They remain redder and less
star-forming than the majority of spirals, although the majority re-
tain fairly high levels of star formation compared to ellipticals (e.g.
Thronson et al. 1989; Pogge & Eskridge 1993).

The histograms above each panel in Fig 10 show the distribu-
tions of absolute i-band magnitudes for each morphological type,
while the histograms to the right of each panel show distributions
of rest-frame g− i colours. Again, coloured arrow heads indicate
the 1/Vmax weighted median values for each population. Galaxies
classified as ellipticals and spirals inhabit opposite ends of a bi-
modal distribution in g− i colour, with galaxies classified as S0/Sa
typically lying between the two populations (e.g Wilman & Erwin
2012; López Fernández et al. 2018).

Given that different morphologies show some separation in
integrated properties (e.g. stellar mass and SFR), it may be tempt-
ing, particularly when faced with the data volumes expected from
future surveys, to use these properties as proxies for morphology.
However, as previous studies have shown (e.g. Fadely et al. 2012;
Vika et al. 2015), spatial frequency information is essential for the
robust morphological classification of both stars and galaxies (see
also Section 4.2). We use our morphological classifications to ex-
plore this point in more detail.

Fig 11 shows the positions of a random selection of ob-
jects classified as ellipticals, spirals and S0/Sa galaxies within
the colour-colour (Fig 11(a)), colour-magnitude (Fig 11(b)),
magnitude-magnitude (Fig 11(c)) and stellar mass-SFR (Fig 11(d))
planes. Regions of contiguous colour in each plot indicate parts
of the parameter space which are dominated by objects of a given
morphological type i.e. the parameter space is colour-coded by
the modal group in each hexagonal bin. It is clear that a signifi-
cant fraction of objects of different morphology can fall into the
same regions of parameter space, regardless of the exact plane be-
ing considered. Thus, a large degree of overlap exists in the in-
tegrated properties of S0/Sa galaxies, spirals and ellipticals, not
only in colour-colour, colour-magnitude and magnitude-magnitude
space, but also in physical properties like stellar mass and SFR.
Such integrated properties alone are therefore not sufficient to sep-
arate objects morphologically. The spatial information contained in
the power spectrum of each patch type, as well as the spatial distri-
bution of patch types across each object, are essential ingredients
of accurate morphological classification.

6 SUMMARY

Morphology is a fundamental quantity that encodes the principal
mechanisms that drive the evolution of individual galaxies. Essen-
tial for the full spectrum of galaxy-evolution studies, morphology
is an important parameter for an array of topics in astrophysics,
e.g. as a prior in photometric redshift pipelines and as contex-
tual data in transient lightcurve classifications. A rich literature ex-
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Figure 10. Contour plots showing the distribution of galaxies as a function
of g− i colour and rest-frame i-band absolute magnitude, for galaxies that
have been classified as elliptical (red), S0/Sa (green) and spiral (blue). Dots
show individual galaxies, while contours show the 1/Vmax weighted density
with log10 distributed levels. Each panel shows a different redshift range
(using the MIZUKI derived photometric redshifts) indicated in the top left
corner. Histograms at the top and right hand side of each panel show the dis-
tribution of rest-frame i-band magnitudes and g− i colours respectively, for
each morphological type. Coloured triangles indicate the 1/Vmax weighted
median g− i colours for ellipticals, S0/Sa galaxies and spirals. The num-
ber in the bottom right corner of each panel indicates the total number of
objects in each redshift bin.
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Figure 11. Morphological clusters as a function of various parameters. Contiguous hexagonal bins with the same colour indicate regions in the parameter space
which share the same dominant group. We show the most frequent morphological clusters in colour-colour (a), colour-magnitude (b), magnitude-magnitude
(c) and stellar mass vs. star formation rate (d) space. Open red circles, blue squares, green diamonds and orange stars show the positions of a random sample
of 200 ellipticals, spirals, S0/Sa galaxies and stars within each parameter space.

ists on morphological-classification techniques, with methods rang-
ing from automated classification (e.g. via parametric and non-
parametric reductions of galaxy images and machine-learning tech-
niques) to direct visual classification by human classifiers, which is
typically used to benchmark automated algorithms.

Notwithstanding the array of techniques on offer, the forth-
coming era of ‘Big Data’ deep-wide surveys poses unique chal-
lenges for measuring galaxy morphologies. The sheer volume of
data expected from surveys like LSST and Euclid makes visual
classification intractable for such datasets (even via massively-
distributed systems like Galaxy Zoo) and makes some degree of
automation essential for this exercise. The short cadence of surveys
like LSST presents an additional challenge, because repeatedly

producing training sets, that are required for supervised machine-
learning techniques, on short timescales may be impractical.

Unsupervised machine-learning (UML) offers an attractive
solution to these problems and an ideal route for the morpholog-
ical classification of galaxies in next-generation surveys. An ef-
fective UML algorithm can autonomously compress an arbitrarily
large galaxy population into a small set of morphological clusters
whose members have similar morphology. If the number of clus-
ters is small enough (e.g in the hundreds or less), then this makes it
tractable to benchmark them using visual classification by individ-
ual researchers. The resultant classifications can thus combine both
the speed of automation and the accuracy of visual classification.

Here, we have employed such a UML algorithm, which au-
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tomatically identifies distinct groups of galaxy types from survey
pixel data, to separate galaxies in the HSC-SSP DR1 Ultradeep
layer into 160 morphological clusters. This technique extracts sub-
image patches from multi-band HSC data, each of which are trans-
formed into a rotationally-invariant representation of a small region
of the survey data, efficiently encoding colour, intensity and spatial
frequency information. Utilising growing neural gas and hierarchi-
cal clustering algorithms, it then groups patches into a library of
patch types, based on their similarity, and assembles feature vectors
for each object, which describe the frequency of each patch type.
A k-means algorithm is then used to separate objects into morpho-
logical clusters, based on the similarity of their feature vectors.

We have visually inspected a representative sample of objects
in each morphological cluster to classify them into three broad
morphological types: elliptical galaxies, S0/Sa galaxies and spi-
ral galaxies. We also provide finer morphological information e.g.
the type of spiral morphology (Sb, Sc, Sd) and noteworthy colour
or structural features (e.g. when spirals appear unusually red or
show clumpy structure, or when elliptical galaxies appear unusu-
ally blue). To test the robustness of the classifications, we have
shown that galaxies in different morphological classes reproduce
known trends in key galaxy properties as a function of morphologi-
cal types at z< 1, e.g. stellar mass functions, rest-frame magnitudes
and colours and the position of galaxies on the star formation main
sequence.

Our study demonstrates the potential of UML in the morpho-
logical analysis of forthcoming deep-wide surveys. The combina-
tion of initial UML-driven automation, followed by benchmarking
via visual classification, is likely to become an optimal tool for the
morphological analysis of surveys like LSST. While this study has
focused on bright galaxies at z < 1, it is worth noting that a sig-
nificant fraction of objects, especially at low masses, inhabit the
low-surface-brightness (LSB) Universe (e.g. Martin et al. 2019).
In forthcoming work, we will optimize the algorithm for the mor-
phological classification of LSB galaxies and the detection of LSB
structures, such as faint merger-induced tidal features, which will
be routinely detectable in future surveys like those from the LSST.
Furthermore, while our morphological classifications are limited to
z < 1, due to the ground-based nature of the HSC images, imple-
mentation of this UML algorithm on forthcoming higher-resolution
data, e.g. from Euclid, will enable virtually all-sky morphological
classification of galaxies out to high redshift.
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Figure A1. The grey dotted histogram indicates the cumulative number
of objects within a single tract, with sizes larger than 10 pixels, that are
detected by the algorithm as a function of their size in pixels. The blue
solid histogram indicates the same for objects whose centroid is matched to
within 0.8′′ of an object in the HSC-SSP DR1 catalogue. The shaded region
shows the difference between the two histograms.

of their size. The size of each object is measured by the number
of pixels it consists of, which is determined by the number of con-
nected components above the sigma-clipping level in each object.
The grey dashed histogram shows the cumulative number of ob-
jects larger than 10 pixels detected by the algorithm. The blue solid
histogram indicates the cumulative number of these objects whose
centroids can be matched to objects in the HSC-SSP DR1 catalogue
within 0.8′′. Although the number of objects successfully matched
is close to the total number of objects detected by the algorithm for
small sizes (npixels . 50), objects with larger sizes are significantly
less likely to be matched.

The mismatch between centroids becomes a significant prob-
lem for large objects, with almost no objects with sizes larger than
200 pixels being matched. We note, however, that this mismatch
does not present a significant problem for our analysis, as we con-
sider only intermediate redshift (z > 0.3) objects, which typically
have small sizes. It would, however, be advantageous to select de-
tected pixels from the object footprints taken directly from a cata-
logue that we hope to match to (i.e. in this case, from the stacked
calexp images from HSC-SSP DR1) – as discussed at the be-
ginning of Section 5. This is likely to yield more reliable cross-
matching, especially for large, nearby objects and might be neces-
sary for a perfect one-to-one matching.

APPENDIX B: RELEASED DATA PRODUCTS - LISTS OF
MORPHOLOGICAL CLUSTERS AND INDIVIDUAL
GALAXY PROPERTIES

In this Appendix, we present the tables that form the data release
from this paper (https://github.com/garrethmartin/HSC_
UML). Table B describes the morphological clusters with their asso-
ciated visual classifications and median values of key galaxy prop-
erties within the cluster (surface-brightness, stellar mass, specific
SFR, rest-frame (g− r) colour and absolute r-band magnitude).

Table B2 (only the first ten rows are shown here) provides a list
of individual HSC-SSP galaxies with their associated morpholog-
ical cluster IDs and ancillary information. As noted above, users
should discard objects which are classified as not extended, as they
are likely to be stars.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–16 (2019)
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Table B1. Average quantities (and their 1σ dispersions) for objects in individual morphological clusters (the cluster ID is indicated by the first column, #).
Columns are as follows: (a) the number of matched objects in the morphological cluster, (b) the number of objects identified as extended by the HSC-SSP
pipeline, (c) median redshift, (d) median surface brightness in mag arcsec−2, (e) median stellar mass, ( f ) median sSFR in M� yr−1, (g) median rest-frame
g− r colour, (h) median g-band absolute magnitude. The final columns detail the dominant classified morphology (Hubble type or ‘St’ for star or ’Sp’ for
spirals where specific Hubble type could not be decided) of each morphological cluster including any other notable features and the median silhouette score.

# Na Next
b z c 〈µg〉Kron

d log10(M?/M�) e log10(sSFR) f (g − r)g Mg
h comment score

0 1379 1122 0.41±0.14 23.05±0.41 10.52±0.40 −13.11±2.00 0.67±0.09 −21.09±0.94 E 0.41
1 110 110 0.76±0.18 24.60±0.55 10.77±0.56 −10.41±1.03 0.64±0.15 −22.08±1.14 S0/Sa 0.11
2 418 418 0.72±0.24 24.08±0.37 10.02±0.46 −9.45±0.55 0.37±0.10 −21.36±1.13 S0/Sa 0.23
3 267 267 0.52±0.19 23.70±0.33 9.94±0.47 −9.53±0.64 0.39±0.11 −20.74±2.89 Sp 0.13
4 107 88 0.31±0.16 21.87±0.36 10.17±0.41 −9.62±1.28 0.45±0.12 −20.81±4.58 E 0.07
5 169 168 0.28±0.33 23.70±0.50 9.09±0.48 −9.37±0.43 0.25±0.07 −19.08±1.45 Sb/Sc 0.04
6 519 507 0.34±0.11 22.55±0.29 9.89±0.43 −9.53±0.47 0.39±0.10 −20.54±1.15 Sa/Sd 0.24
7 171 148 0.35±0.06 22.44±0.25 10.73±0.21 −13.65±1.77 0.70±0.05 −21.35±0.56 S0 0.16
8 87 83 1.06±0.57 25.80±1.40 10.17±0.89 −9.68±1.57 0.40±0.19 −21.61±1.98 Sp, diffuse -0.01
9 443 440 0.72±0.22 24.29±0.54 10.66±0.46 −9.85±0.46 0.54±0.10 −22.06±1.06 Sb/Sc 0.08
10 253 253 0.20±0.19 22.71±0.43 9.47±0.46 −9.52±0.38 0.33±0.10 −19.43±1.43 Sc/Sd 0.05
11 1383 1349 0.54±0.16 23.88±0.44 10.62±0.49 −11.52±1.95 0.67±0.09 −21.42±2.08 E 0.48
12 0 − −±− −±− −±− −±− −±− −±− St −
13 755 371 0.32±0.31 22.24±0.55 9.36±0.72 −9.35±2.30 0.27±0.13 −19.74±6.73 St 0.50
14 308 299 1.09±0.78 24.63±0.73 9.52±1.12 −9.26±0.49 0.23±0.12 −21.00±3.04 Sp, disturbed 0.38
15 726 720 0.29±0.47 23.92±0.53 8.93±0.83 −9.30±0.26 0.23±0.08 −18.71±2.39 Sa/Sb/Sc, many edge-on 0.21
16 1921 1918 0.76±0.40 24.35±0.56 9.79±0.72 −9.38±0.53 0.32±0.12 −21.07±1.79 Sp 0.34
17 307 59 0.04±0.68 19.10±0.82 9.22±0.89 0.00±4.05 0.36±0.14 −16.92±20.93 St 0.64
18 210 209 0.44±0.14 23.06±0.65 10.43±0.41 −9.69±0.88 0.53±0.09 −21.25±1.06 S0/Sa 0.01
19 2513 2396 0.46±0.24 23.15±0.42 9.68±0.60 −9.42±0.72 0.31±0.12 −20.38±2.17 Sa/Sb/Sc 0.39
20 83 4 0.26±0.13 20.47±1.33 9.05±0.96 −9.13±3.99 0.23±0.06 −19.88±3.31 St 0.32
21 19 19 0.09±0.64 22.73±1.20 8.72±1.12 −9.10±0.67 0.19±0.14 −18.43±3.71 St 0.12
22 996 139 0.23±0.32 21.55±0.73 9.45±1.10 −9.33±3.14 0.28±0.16 −19.60±10.42 St 0.83
23 1 0 -±- -±- -±- -±- -±- -±- St −
24 29 7 0.00±0.27 21.19±0.56 10.29±1.66 0.00±4.46 1.21±0.40 21.31±19.45 St 0.31
25 628 109 0.41±0.25 22.71±0.81 10.83±0.54 −14.62±2.47 0.70±0.21 −21.56±4.52 St 0.65
26 114 114 0.14±0.08 20.83±0.54 10.45±0.52 −10.48±2.09 0.64±0.12 −20.43±3.92 Sp 0.09
27 596 596 0.42±0.23 23.63±0.42 9.84±0.53 −9.45±0.36 0.35±0.09 −20.60±1.37 Sa/Sb 0.16
28 215 213 0.65±0.26 23.93±0.32 10.06±0.47 −9.47±0.37 0.38±0.11 −21.19±1.11 Sp, asymmetries 0.06
29 582 578 0.91±0.66 25.15±0.92 9.63±0.89 −9.41±0.81 0.28±0.14 −20.79±2.26 Sp, diffuse 0.34
30 276 275 0.80±0.14 24.10±0.41 11.08±0.31 −10.11±0.75 0.61±0.10 −22.83±0.66 S0/Sa 0.27
31 172 172 0.29±0.07 22.14±0.52 10.96±0.25 −14.65±1.80 0.73±0.05 −21.53±0.68 E 0.10
32 22 22 0.50±0.26 24.59±0.62 9.33±0.66 −9.43±0.17 0.31±0.09 −19.78±1.67 Sb/Sc, asymmetries 0.32
33 322 313 0.49±0.13 23.32±0.47 10.50±0.47 −10.48±2.21 0.62±0.09 −21.32±1.09 S0/Sa 0.40
34 112 110 0.79±0.21 25.24±0.75 11.09±0.55 −11.21±1.71 0.70±0.14 −22.48±1.02 S0/Sa, asymmetries 0.17
35 229 229 0.38±0.41 23.53±0.52 9.17±0.89 −9.24±0.33 0.22±0.10 −19.48±2.52 Sb/Sc 0.19
36 28 19 0.08±0.59 18.69±0.24 8.96±0.66 0.00±5.06 0.36±0.12 −18.69±17.99 St 0.44
37 22 16 0.18±0.14 19.82±0.78 10.86±0.46 −10.35±4.83 0.71±0.24 −20.41±19.18 St 0.19
38 97 94 0.90±0.42 25.19±0.79 10.77±0.50 −10.35±0.97 0.59±0.13 −22.35±1.20 Sp, red 0.06
39 546 45 0.21±0.37 20.83±1.78 9.64±0.98 −9.55±4.01 0.37±0.19 −19.95±13.89 St 0.40
40 178 152 0.35±0.67 23.02±0.74 8.81±1.28 −9.08±0.96 0.15±0.13 −19.15±3.91 E, blue 0.60
41 0 − −±− −±− −±− −±− −±− −±− St −
42 186 186 0.36±0.10 22.83±0.21 10.74±0.37 −10.46±1.64 0.67±0.06 −21.35±0.95 Sa/Sb 0.12
43 404 402 0.56±0.15 23.72±0.31 10.81±0.44 −10.03±0.96 0.62±0.09 −21.97±1.04 Sa 0.14
44 274 138 0.00±0.40 20.79±1.16 11.77±0.82 0.00±5.45 1.21±0.36 20.71±21.99 St 0.57
45 275 270 0.89±0.49 25.02±0.67 10.11±0.75 −9.52±0.76 0.40±0.14 −21.33±1.76 Sa/Sb/Sc 0.33
46 275 20 0.12±0.55 20.76±0.88 8.88±1.14 −9.08±4.09 0.25±0.21 −18.11±12.01 St 0.63
47 544 522 0.74±0.35 24.81±0.59 10.91±0.52 −11.01±1.67 0.68±0.15 −22.23±2.39 E 0.46
48 179 179 0.20±0.13 22.83±0.29 8.90±0.54 −9.37±0.24 0.23±0.07 −18.47±1.60 Sc/Sd 0.16
49 192 192 0.84±0.30 24.64±0.78 10.64±0.46 −9.84±1.24 0.51±0.13 −22.13±1.00 Sa/Sb 0.44
50 191 191 0.18±0.18 21.80±0.30 9.27±0.53 −9.39±0.79 0.26±0.09 −19.33±1.76 Sp 0.16
51 248 248 0.36±0.11 22.63±0.27 10.49±0.34 −9.80±1.08 0.56±0.09 −21.11±1.08 Sa 0.13
52 271 270 0.42±0.29 23.85±0.39 9.41±0.70 −9.38±0.25 0.28±0.10 −19.89±1.83 Sb/Sc 0.32
53 363 362 0.28±0.22 22.95±0.44 9.29±0.74 −9.40±0.23 0.27±0.11 −19.51±1.88 Sa/Sb 0.28
54 456 454 0.47±0.14 23.49±0.34 10.83±0.45 −10.35±1.30 0.67±0.09 −21.73±1.09 S0/Sa 0.05
55 1 1 0.05±0.00 24.13±0.00 7.47±0.00 −9.42±0.00 0.25±0.00 −14.34±0.00 St 0.04
56 4 4 0.30±0.29 20.14±0.38 11.26±1.48 −10.06±4.43 0.55±0.22 −19.59±17.41 St 0.38
57 260 256 1.01±0.41 24.82±0.72 10.84±0.61 −10.00±0.92 0.56±0.14 −22.69±1.38 S0/Sa 0.41
58 173 173 0.49±0.38 24.12±0.48 9.50±0.79 −9.39±0.29 0.29±0.09 −20.28±2.15 Sb/Sc 0.20
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Table B1 – continued

# Na Next
b z c 〈µg〉Kron

d log10(M?/M�) e log10(sSFR) f (g − r)g Mg
h comment score

59 40 40 0.12±0.24 23.09±1.41 9.44±0.85 −9.63±1.25 0.39±0.15 −19.02±2.16 St -0.01
60 85 80 0.87±0.67 25.32±0.87 9.60±0.91 −9.44±0.51 0.30±0.15 −20.60±2.27 Sp, diffuse 0.38
61 2184 2176 0.66±0.22 23.98±0.39 10.17±0.52 −9.62±0.70 0.45±0.12 −21.30±1.56 E 0.41
62 111 109 0.25±0.21 21.92±1.00 10.96±0.38 −14.76±1.83 0.73±0.09 −21.54±0.83 St 0.02
63 3 3 1.49±0.54 24.39±1.00 11.59±0.57 −11.31±0.89 0.28±0.06 −26.10±2.11 Sb/Sc 0.39
64 196 196 0.65±0.21 24.31±0.44 9.89±0.42 −9.41±0.32 0.34±0.09 −21.02±1.02 St 0.08
65 91 43 0.00±0.34 21.30±0.20 11.98±0.03 0.00±4.55 1.37±0.30 21.58±18.31 Sa 0.74
66 162 160 0.21±0.09 22.02±0.44 10.68±0.35 −13.13±2.05 0.73±0.08 −20.60±0.94 St 0.06
67 1 1 0.02±0.00 nan±nan 7.45±0.00 −11.45±0.00 0.54±0.00 −12.37±0.00 S0/Sa -0.01
68 102 100 0.89±0.36 25.18±0.95 10.90±0.53 −10.59±1.43 0.64±0.13 −22.49±1.20 Sa/Sb/Sc 0.39
69 420 419 0.36±0.15 22.62±0.40 9.81±0.42 −9.48±0.42 0.35±0.10 −20.43±1.19 Sc/Sd 0.05
70 202 199 0.62±0.51 23.55±0.58 9.28±1.07 −9.17±0.52 0.21±0.11 −20.74±3.06 Sp, asymmetries 0.14
71 358 334 0.22±0.11 21.72±0.39 10.27±0.42 −9.83±1.21 0.53±0.12 −20.39±1.32 S0/Sa 0.18
72 57 56 0.12±0.12 20.76±1.97 10.57±0.67 −13.64±2.19 0.74±0.16 −20.42±1.23 E 0.11
73 0 − −±− −±− −±− −±− −±− −±− St −
74 507 507 0.70±0.29 24.47±0.42 9.78±0.64 −9.39±0.43 0.32±0.11 −20.94±1.53 Sb/Sc 0.11
75 128 125 0.82±0.31 23.42±0.69 10.02±0.77 −9.23±0.61 0.26±0.11 −22.02±2.22 Sa/Sb 0.45
76 71 71 0.30±0.79 24.37±0.70 8.72±1.09 −9.22±0.28 0.21±0.11 −18.27±3.09 Sc/Sd 0.45
77 0 − −±− −±− −±− −±− −±− −±− St −
78 194 194 0.16±0.06 21.55±0.33 9.79±0.38 −9.64±0.81 0.40±0.12 −19.86±0.79 Sa/Sb 0.09
79 314 314 0.25±0.41 23.66±0.39 8.75±0.73 −9.29±0.28 0.21±0.07 −18.27±2.21 Sc/Sd 0.22
80 147 147 1.03±0.23 25.16±0.72 10.64±0.53 −10.00±0.97 0.51±0.13 −22.26±1.13 Sp, red 0.37
81 419 417 0.52±0.27 23.49±0.37 10.38±0.43 −9.67±0.51 0.50±0.09 −21.29±1.11 S0/Sa 0.10
82 843 842 0.68±0.20 24.26±0.42 10.49±0.43 −9.92±0.57 0.54±0.10 −21.67±1.06 S0/Sa 0.19
83 15 13 0.70±0.46 24.52±1.40 11.20±0.44 −11.81±2.34 0.68±0.18 −22.49±0.63 St -0.03
84 229 229 0.38±0.17 22.89±0.29 10.09±0.34 −9.55±0.58 0.42±0.10 −20.92±0.94 Sa 0.19
85 0 − −±− −±− −±− −±− −±− −±− St −
86 276 267 0.22±0.16 22.62±0.46 9.13±0.47 −9.39±0.61 0.25±0.08 −19.05±2.87 S0/Sa, blue 0.16
87 35 33 0.31±0.84 24.47±1.49 9.41±0.90 −9.39±0.62 0.26±0.16 −20.04±2.82 E, blue 0.15
88 131 131 0.13±0.06 21.09±0.76 10.61±0.44 −11.45±2.01 0.71±0.10 −20.36±1.15 S0/Sa 0.05
89 2 2 1.12±0.00 nan±nan 11.33±0.00 −11.31±0.00 0.31±0.00 −25.24±0.00 St 0.35
90 430 429 0.34±0.27 23.43±0.45 9.56±0.62 −9.44±0.31 0.31±0.10 −20.05±1.62 Sc/Sd 0.06
91 436 434 0.33±0.13 22.65±0.39 10.14±0.37 −9.62±0.40 0.46±0.09 −20.87±1.07 Sb/Sc 0.00
92 3 3 0.55±0.06 21.78±0.56 11.41±0.35 −14.62±2.45 0.76±0.16 −22.98±0.19 St 0.43
93 93 91 1.19±0.98 25.28±1.10 9.15±1.06 −9.26±0.52 0.23±0.14 −20.05±2.94 Sb/Sc/Sd, diffuse 0.35
94 235 235 0.18±0.08 22.17±0.46 10.26±0.38 −9.95±1.70 0.56±0.12 −20.16±0.99 Sb/Sc 0.10
95 205 171 0.34±0.12 22.43±0.45 10.34±0.36 −10.16±1.69 0.62±0.10 −20.92±1.04 E 0.22
96 900 893 0.44±0.11 23.27±0.42 10.74±0.39 −10.75±1.85 0.68±0.09 −21.46±0.92 S0/Sa 0.11
97 152 152 0.29±0.11 22.56±0.29 10.74±0.36 −10.29±1.93 0.70±0.10 −21.17±1.10 Sa 0.02
98 284 284 0.46±0.29 23.79±0.46 9.56±0.66 −9.37±0.28 0.29±0.10 −20.29±1.73 E 0.48
99 602 593 0.54±0.24 23.88±0.49 10.72±0.43 −10.71±1.69 0.67±0.11 −21.63±0.98 Sp, clumpy 0.16
100 55 12 0.71±0.43 24.46±1.20 10.35±1.04 −9.70±1.71 0.42±0.22 −21.86±2.09 St 0.69
101 161 161 0.18±0.06 21.28±0.23 10.44±0.33 −11.79±1.96 0.68±0.09 −20.42±0.85 Sa 0.13
102 23 22 0.07±0.39 20.38±1.23 10.49±0.56 −11.64±2.23 0.74±0.17 −19.67±1.42 saturated 0.16
103 244 244 0.51±0.31 23.88±0.37 9.57±0.53 −9.32±0.25 0.29±0.08 −20.44±1.43 Sb/Sc/Sd 0.11
104 350 347 0.38±0.19 23.15±0.39 9.79±0.65 −9.42±0.76 0.33±0.09 −20.50±1.72 Sb/Sc 0.12
105 0 − −±− −±− −±− −±− −±− −±− St −
106 0 − −±− −±− −±− −±− −±− −±− St −
107 60 56 1.10±0.66 25.94±1.33 10.52±0.62 −10.47±1.85 0.55±0.18 −22.01±1.75 E 0.46
108 0 − −±− −±− −±− −±− −±− −±− St −
109 152 152 0.15±0.07 21.93±0.40 9.57±0.59 −9.54±0.85 0.33±0.13 −19.56±1.53 Sp, clumpy 0.11
110 73 71 0.43±0.21 23.16±0.65 10.28±0.56 −9.59±1.32 0.44±0.14 −21.21±1.54 Sb/Sc 0.26
111 4 3 1.95±0.65 25.74±0.84 9.92±0.26 −9.00±0.09 0.13±0.05 −22.63±0.62 S0/Sa 0.29
112 80 78 0.80±0.16 24.19±0.51 11.16±0.57 −10.38±0.81 0.64±0.15 −22.82±0.96 saturated 0.32
113 719 49 0.37±0.37 21.52±1.27 11.16±1.14 −9.37±5.19 0.76±0.45 −20.56±21.43 Sa/Sb, red 0.73
114 344 325 0.34±0.19 22.42±0.47 9.65±0.58 −9.45±0.78 0.33±0.10 −20.15±2.83 St 0.22
115 45 34 0.13±0.86 19.02±0.31 9.61±0.59 0.00±4.48 0.41±0.20 −19.86±20.14 saturated 0.27
116 312 312 0.33±0.15 23.05±0.41 9.97±0.47 −9.58±0.93 0.41±0.12 −20.49±1.19 St 0.06
117 171 171 0.58±0.52 24.46±0.60 9.22±0.92 −9.27±0.57 0.23±0.12 −19.93±2.41 Sb/Sc 0.09
118 262 261 0.48±0.14 23.28±0.25 10.47±0.35 −9.66±0.33 0.50±0.07 −21.50±0.94 Sb/Sc/Sd 0.15
119 442 441 0.48±0.38 24.10±0.36 9.31±0.75 −9.30±0.33 0.25±0.09 −19.95±2.08 S0/Sa, asymmetries,Sb/Sc 0.13
120 155 77 0.24±0.10 21.55±0.35 10.70±0.23 −14.28±4.42 0.71±0.19 −20.78±12.86 E 0.34
121 141 141 0.82±0.42 24.49±0.43 9.72±0.80 −9.37±0.27 0.28±0.10 −21.08±2.07 Sp, companions -0.01
122 123 123 0.11±0.05 21.04±0.44 9.78±0.65 −9.61±1.13 0.38±0.14 −19.87±1.50 Sa/Sb/Sd, blue ring 0.09
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Table B1 – continued

# Na Next
b z c 〈µg〉Kron

d log10(M?/M�) e log10(sSFR) f (g − r)g Mg
h comment score

123 0 − −±− −±− −±− −±− −±− −±− St −
124 12 7 0.00±0.29 20.20±0.22 11.62±0.23 0.00±4.77 1.20±0.20 20.26±21.78 St 0.58
125 1 1 0.28±0.00 19.87±0.00 11.34±0.00 −10.72±0.00 0.80±0.00 −22.08±0.00 St 0.18
126 209 208 0.31±0.09 22.36±0.24 10.50±0.32 −10.59±1.72 0.65±0.08 −21.02±0.93 E 0.12
127 158 154 0.13±0.06 22.59±0.41 9.05±0.69 −9.38±0.38 0.25±0.11 −18.94±1.76 Sc/Sd 0.18
128 146 146 0.11±0.29 23.20±0.89 8.57±0.85 −9.32±0.47 0.21±0.11 −17.83±2.48 Sd 0.11
129 301 275 0.47±0.62 23.99±1.80 10.02±1.16 −9.48±2.43 0.35±0.24 −20.86±7.33 Sp -0.08
130 193 193 0.35±0.08 22.73±0.34 10.99±0.43 −12.47±2.01 0.73±0.07 −21.75±1.04 E 0.05
131 1 1 1.53±0.00 24.35±0.00 11.38±0.00 −10.04±0.00 0.63±0.00 −24.35±0.00 St 0.01
132 183 174 0.26±0.07 22.04±0.30 10.62±0.33 −14.23±1.74 0.70±0.06 −20.76±0.84 E 0.10
133 1 0 -±- -±- -±- -±- -±- -±- saturated −
134 271 238 0.18±0.25 22.72±0.42 8.94±0.70 −9.36±1.12 0.23±0.10 −18.60±4.32 Sp 0.18
135 82 81 1.24±0.32 25.20±1.19 10.62±0.60 −9.47±1.32 0.45±0.16 −22.64±1.26 Sp 0.23
136 1 1 1.07±0.00 27.54±0.00 9.53±0.00 −9.61±0.00 0.31±0.00 −20.33±0.00 saturated 0.14
137 1 1 0.02±0.00 20.93±0.00 7.45±0.00 −11.45±0.00 0.54±0.00 −12.39±0.00 St 0.16
138 931 930 0.40±0.20 23.52±0.33 9.67±0.53 −9.44±0.27 0.33±0.09 −20.19±1.36 Sa/Sb/Sc 0.20
139 141 141 0.63±0.20 24.47±0.47 10.85±0.37 −11.21±1.57 0.69±0.11 −21.98±0.80 E, asymmetries 0.15
140 148 141 0.42±0.08 23.06±0.35 10.92±0.38 −14.58±1.87 0.71±0.08 −21.70±0.72 E, companions 0.13
141 154 154 0.33±0.29 23.96±0.38 8.99±0.77 −9.35±0.47 0.25±0.08 −18.85±2.18 Sp, companions 0.22
142 2 2 0.21±0.17 27.62±0.00 8.11±0.15 −10.46±1.49 0.30±0.23 −16.26±1.71 saturated 0.04
143 117 116 0.91±0.58 24.76±0.76 10.05±0.95 −9.35±0.81 0.31±0.13 −21.46±2.38 Sb/Sd/Sc 0.14
144 129 129 0.95±0.23 24.18±0.46 10.63±0.48 −9.37±0.55 0.44±0.12 −22.67±1.01 Sp, clumpy, red 0.12
145 59 58 0.89±0.34 25.28±0.55 10.45±0.69 −9.67±1.21 0.49±0.15 −21.62±1.69 S0 0.04
146 258 257 0.74±0.32 24.57±0.60 9.86±0.68 −9.39±0.27 0.32±0.11 −21.15±1.59 Sa/Sb/Sc, companions 0.09
147 400 64 0.31±0.26 22.00±0.75 10.42±0.41 −12.13±1.84 0.65±0.13 −20.87±1.29 St 0.56
148 248 64 0.00±0.83 20.04±0.69 10.38±0.33 0.00±5.62 0.74±0.27 19.82±21.41 St 0.38
149 0 − −±− −±− −±− −±− −±− −±− St −
150 1 1 0.15±0.00 20.58±0.00 8.67±0.00 −8.98±0.00 0.09±0.00 −18.63±0.00 St 0.10
151 252 252 0.39±0.09 22.88±0.41 11.03±0.26 −14.65±1.81 0.73±0.05 −21.90±0.61 E 0.09
152 1307 1303 0.42±0.20 23.36±0.46 9.64±0.50 −9.42±0.28 0.31±0.10 −20.20±1.26 Sp, companions 0.24
153 88 86 1.11±0.83 24.86±1.06 9.78±1.08 −9.34±0.45 0.25±0.11 −21.28±3.02 Sd, asymmetries 0.01
154 39 18 0.70±0.33 24.44±0.57 11.42±1.29 −11.63±2.44 0.71±0.19 −23.05±2.73 St 0.64
155 244 244 0.22±0.15 22.11±0.29 9.64±0.45 −9.51±0.28 0.35±0.10 −19.67±1.23 Sa/Sb 0.14
156 116 107 0.60±0.13 23.91±0.38 11.17±0.50 −14.91±1.87 0.70±0.09 −22.52±1.08 E 0.10
157 141 140 0.88±0.47 25.28±0.79 9.76±0.69 −9.44±0.77 0.30±0.13 −20.93±1.77 Sb/Sc/Sd, asymmetries 0.14
158 0 − −±− −±− −±− −±− −±− −±− St −
159 353 353 0.82±0.37 24.71±0.59 9.97±0.63 −9.46±0.70 0.36±0.12 −21.23±1.53 Sp -0.01

Table B2. Example of 10 entries from the catalogue showing the position and morphological cluster membership individual galaxies. Columns are as follows:
(a) the RA of the centroid from the UML detection, (b) the declination of the centroid from the UML detection, (c) the RA of the centroid for the matched
HSC object, (d) the declination of the centroid for the matched HSC object, (e) the ID of the matched HSC object, ( f ) whether the matched HSC object is
extended or not, (g) the morphological cluster membership of the object, (h) the number of pixels that make up the UML detection, (i) the silhouette score for
the object. Where there is no matching object in within 0.8′′ in the HSC catalogue, the 3rd to 6th columns are left blank.

UMLRA
a UMLDEC

b HSCRA
c HSCDEC

d HSC ID e extended f cluster # g npix
h score i

35.0484 -5.3316 − − − − 33 116 0.16
35.0484 -5.4808 35.0485 -5.4808 37489923418246937 False 132 112 -0.10
35.0480 -5.4613 35.0479 -5.4612 37489923418227875 True 98 19 0.11
35.0472 -5.3657 35.0471 -5.3657 37489923418254158 True 91 232 0.08
35.0475 -5.3088 35.0475 -5.3086 37489923418258428 True 16 30 0.19
35.0445 -5.3545 35.0444 -5.3544 37490060857210025 True 10 91 -0.05
35.0438 -5.4894 35.0437 -5.4894 37490056562236660 True 75 50 0.39
35.0436 -5.4011 − − − − 152 53 0.00
35.0433 -5.3099 35.0432 -5.3099 37490060857213384 True 79 67 0.13
35.0429 -5.4777 35.0428 -5.4776 37490060857201353 True 58 26 0.36
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