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Abstract 

1. L-citrulline, a co-product of nitric oxide synthase (NOS)-catalysed metabolism of 

L-arginine to nitric oxide (NO), is an important intermediate of the urea cycle and 

a precursor for L-arginine biosynthesis in vascular cells.  

2. In the present study, we have examined the characteristics of L-citrulline transport, 

regulation by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) and the ability of L-

citrulline to sustain NO synthesis in rat cultured aortic smooth muscle cells.  

3. L-citrulline transport was saturable with an apparent Km = 1.6 ± 0.2 mM and Vmax 

= 5.9 ± 0.6 pmol μg-1 protein min-1. Transport was pH-insensitive, partially Na+-

dependent and markedly inhibited by substrates selective for amino acid transport 

systems L and N but not by L-arginine or substrates for systems A, ASC, xc
- or 

XAG. Moreover, transport was not altered in cells treated with LPS (100 μg ml-1) 

and IFN-γ (50 U ml-1) for 0-24 h.  

4. Unlike L-arginine, L-citrulline could not sustain maximal NO production in cells 

expressing iNOS.  

5. Our findings provide the first evidence in vascular smooth muscle cells that L-

citrulline transport is mediated via a low affinity carrier with characteristics 

resembling systems L and N.  Moreover, in L-arginine deprived rat aortic smooth 

muscle cells, L-citrulline cannot sustain maximal NO release via iNOS.  
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Abbreviations used: AL, argininosuccinate lyase; AS, argininosuccinate synthase; BCH, 2-

aminobicycloheptane-2-carboxylic acid; CATs, cationic amino acid transporters; DMEM, 

Dulbecco's Modified Eagle's Medium; DON, 6-diazo-5-oxo-L-norleucine; IFN-γ, interferon-γ; 

iNOS, inducible nitric oxide synthase; LPS, bacterial lipopolysaccharide; MeAIB, 2-

methylaminoisobutyric acid; RASMC, rat cultured aortic smooth muscle cells; SMC, smooth 

muscle cells 
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Introduction 

Nitric oxide is synthesised from the cationic amino acid L-arginine via a series of oxidation 

reactions which produce L-citrulline as a co-product. In rat cultured aortic smooth muscle 

cells (RASMC), the metabolism of L-arginine to NO and L-citrulline is mediated by 

Ca2+/calmodulin-insensitive NO synthase (iNOS) (Knowles & Moncada, 1994; Alderton et 

al., 2001), which is induced following exposure of these cells to pro-inflammatory mediators 

(Wileman et al., 1995). Once induced, sustained synthesis of NO by iNOS is critically 

dependent on the availability of extracellular L-arginine (Escobales et al., 2000; Schott et al., 

1993) and, as a consequence, supply of L-arginine may become limiting for NO production. 

 Under physiological conditions most plasma L-arginine is derived from 

metabolism of L-citrulline by the kidneys (Windmueller & Spaeth, 1981; Dhanakoti et 

al., 1990), and is transported into cells via selective cationic amino acid transporters 

(Devés & Boyd, 1998; Palacin et al., 1998; Closs & Mann, 1999; Mann et al., 2003).  In 

vascular smooth muscle, L-arginine can also be generated endogenously from L-

citrulline. These cells, although lacking a complete urea cycle, express argininosuccinate 

synthase (AS) and argininosuccinate lyase (AL) (Hattori et al., 1994), which respectively 

catalyse the synthesis of argininosuccinate from L-citrulline and the cleavage of 

argininosuccinate to L-arginine and fumarate (Meijer et al., 1990). The capacity of these 

enzymes to regenerate L-arginine from L-citrulline may represent a rate-limiting 

mechanism in smooth muscle cells for maintaining substrate supply during sustained NO 

synthesis. Of direct relevance to this is the fact that AS, the rate limiting enzyme in the 

pathway, is markedly enhanced in smooth muscle cells expressing iNOS (Hattori et al., 

1994). Moreover, the induction of AS parallels that of iNOS indicating coordinated 

regulation of both proteins with perhaps a close functional relationship where enhanced AS 

expression drives the metabolism of L-citrulline to L-arginine, sustaining substrate supply 
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for iNOS. In agreement with this hypothesis, L-citrulline has been reported to induce NO-

dependent vasorelaxation in denuded aortic rings isolated from endotoxin treated rats 

(Raghavan & Dikshit, 2001) and to sustain maximal rates of NO production in cultured 

aortic smooth muscle cells activated with bacterial lipopolysaccharide (LPS) and 

interferon-γ (IFN-γ) (Hattori et al., 1994). In the latter study, it is worth noting that 

concentrations of L-citrulline required (EC50 = 600 µM) for optimal iNOS activity were 

however 20-fold higher than the predicted Km for purified AS (Meijer et al., 1990). This 

finding, together with the fact that vascular responses to L-citrulline developed slowly, 

requiring 45 min to reach a maximum (Raghavan & Dikshit, 2001), potentially highlights 

a limitation in cellular uptake of L-citrulline. 

Currently, transport of L-citrulline into vascular cells is poorly understood, with only two 

reports describing distinct pathways for L-citrulline transport in macrophages (Baydoun et al., 

1994) and neural cell cultures (Schmidlin et al., 2000). To our knowledge the mechanisms 

mediating L-citrulline transport in vascular smooth muscle cells have not been investigated. In 

view of the potential role of L-citrulline in regulating NO synthesis and vascular tone under 

physiological and pathophysiological conditions, we have characterized the system(s) 

mediating L-citrulline transport into smooth muscle cells cultured from rat aorta and investigated 

the dependency of iNOS on extracellular L-arginine and L-citrulline. Furthermore, we have 

examined whether L-citrulline transport is regulated by pro-inflammatory mediators by 

examining the effects of LPS in combination with IFN-γ. 
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Materials and Methods 

Materials 

Tissue culture reagents were purchased from Gibco (Paisley, UK).  Recombinant murine IFN-γ 

was from Genzyme (Cambridge, UK).  Monoclonal anti-α smooth muscle actin, L-citrulline, and 

LPS from Escherichia coli (serotype 0111:B4) were obtained from Sigma (Poole, UK).  Other 

chemicals were from Sigma or BDH and of the highest analytical grade obtainable. Radioactive 

tracers, L-[ureido-14C]citrulline (57.8 mCi mmol-1) and D-[3H]mannitol (49.3 mCi mmol-1) were 

obtained from New England Nuclear, Dreieich, Germany. 

 

Cell culture 

Smooth muscle cells (SMC) were isolated from rat aortic explants as described previously (see 

Wileman et al., 1995). Briefly, male Sprague-Dawley rats (250-300 g) were stunned and 

exsanguinated and the thoracic aorta dissected in Dulbecco's Modified Eagle's Medium (DMEM) 

supplemented with 4.4% NaHCO3, penicillin (100 units ml-1) and streptomycin (100 mg ml-1).  

Following removal of the adventitia and endothelium, each aorta was cut into 2 mm2 segments 

and placed in a T-25 tissue culture flask containing DMEM, supplemented with 2 mM glutamine 

and 10 % foetal calf serum.  Explants were left in culture for 14 days, after which migrating and 

rapidly dividing cells were harvested with trypsin/EDTA (0.01/0.02%) and cultured to 

confluence in a T-75 flask. Cell were identified and characterized as SMC by immunostaining of 

smooth muscle α-actin, using mouse anti-α-actin antibody and anti-mouse IgG FITC conjugate 

(Sigma, Poole, Dorset, UK), as described by Skalli et al. (1986). All experiments were performed 

using cells between passages 4 and 7.  
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Activation of cells with lipopolysacchride and interferon-γ 

Rat aortic SMC were plated into 96 well plates at a seeding density of 8x103 cells per well and 

allowed to grow to confluence. The culture medium was then replaced either with fresh 

medium or with medium containing LPS (100 μg ml-1) plus IFN-γ (50 U ml-1). Cells were 

incubated for a further 24 h, after which the supernatant was removed from each well and 

analysed for nitrite, and transport of L-[14C]citrulline (1 µCi ml-1, 37°C, 0-10 min) determined 

in cell monolayers incubated with Krebs solution (Wileman et al., 1995).  

To investigate the dependency of NO synthesis on extracellular L-arginine or L-

citrulline, confluent SMC monolayers in 96 well plates were activated for 24 h with LPS and 

IFN-γ in the presence of increasing concentrations of either L-arginine (0-1 mM) or in L-

arginine-free medium supplemented with increasing concentrations of L-citrulline (0-1 mM). 

Culture medium was removed after the incubation period and analysed for nitrite. Total protein 

content of each cell monolayer was determined using Brilliant Blue G reagent (Bradford, 1976). 

 

L-citrulline transport assay 

Cell monolayers were rinsed twice with a Hepes-buffered Krebs solution (mM: NaCl: 131; KCl: 

5.5; MgCl2: 1; CaCl2: 2.5; NaHCO3: 25; NaH2PO4: 1; D-glucose: 5.5; Hepes: 20; pH 7.4) 

maintained at 37oC. As described previously (Wileman et al., 1995), transport of L-

[14C]citrulline (1 μCi ml-1, 0.1 mM) was measured in confluent cell monolayers in the absence or 

presence of a 10-fold excess of a given inhibitor (1 mM). Kinetics of L-citrulline transport were 

assessed over a wide range of substrate concentrations (0.05 – 5 mM). The effects of pH on L-

citrulline transport (0.1 mM) were examined in Krebs solution titrated with 0.1N HCl or 5N 

NaOH to achieve pH values ranging between pH 5 - 8.  In sodium-free experiments, Krebs 

buffer was modified by replacing NaCl, NaHCO3 and NaH2PO4 with choline chloride, choline 

bicarbonate and KH2PO4, respectively. In some experiments an extracellular reference tracer, 
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D-[3H]mannitol, was included in the incubation medium and in these studies < 0.01% of D-

mannitol applied was recovered in cell lysates.  

 Tracer uptake was terminated by placing the 96 well plates on ice and rinsing the cell 

monolayers three times with 200 μl ice-cold Krebs containing 10 mM unlabelled L-citrulline. 

Cell protein was determined using Brilliant Blue G and radioactivity (dpm) in formic acid 

digests of the cells was determined by liquid scintillation counting. Transport was then 

calculated and expressed as pmol μg protein-1 min-1.  

 

Nitrite analysis 

Nitrite accumulation in the culture medium was determined colorimetrically by a diazotization 

reaction using the standard Griess reagent (Green et al., 1982; Wileman et al., 1995). 

 

Analysis of intracellular amino acid concentrations  

L-arginine and L-citrulline concentrations in rat cultured aortic smooth muscle cells were 

determined by reversed-phase hplc. Confluent monolayers from unstimulated or LPS (100 mg 

ml-1) plus IFN-γ (50 U ml-1) treated cells were incubated in either L-arginine-containing or L-

arginine-deprived medium.  Following a 24 h incubation period, the culture medium was 

removed, and the cell monolayer washed twice with ice-cold PBS, lysed with 0.5 ml ice-cold 

methanol and stored at -20°C for analysis, as described previously (Baydoun et al., 1990). 

 

Statistics 

Data are expressed as means ± S.E.M. of measurements in at least three different cell cultures 

with 5-6 replicates per experiment. Statistical analyses were performed using either an unpaired 

Student's t-test or by analysis of variance when necessary with the overall confidence levels set at 

95% (0.05). 
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Results 

Time-course and kinetics of L-citrulline transport 

Transport of L-citrulline (0.1 mM) into rat aortic smooth muscle cells (RASMC) was time-

dependent and linear for up to 30 min (see Fig. 4B in Wileman et al., 1995). Cells 

accumulated <0.5 pmol L-citrulline per µg protein in 1 min. In all subsequent experiments, 

transport was measured over a 10 min incubation period to maximize tracer activity in smooth 

muscle cell digests. In unstimulated smooth muscle cells, transport of L-citrulline (0.05 – 5 

mM) was fitted best by a single Michaelis-Menten  equation, with an apparent Km of 1.6 ± 0.2 

mM and Vmax of 5.9 ± 0.6 pmol μg-1 protein min-1 (Fig. 1).  Pretreatment of smooth muscle 

cells with LPS (100 mg ml-1) plus IFN-γ (50 U ml-1) for 24 h had no significant effect on either 

Vmax (6.9 ± 0.9 pmol μg-1 protein min-1) or Km (2.4 ± 0.4 mM).  

 

Characteristics of L-citrulline transport 

In both unstimulated and LPS/IFN-γ activated cells, transport of L-citrulline was partially 

dependent on extracellular Na+ but unaffected by changes in extracellular pH ranging from 5-

8 (Table 1). Transport was significantly inhibited by a 10-fold excess of unlabelled L-

citrulline (Ki = 0.4 mM), 2-aminobicycloheptane-2-carboxylic acid (BCH; model substrate for 

system L; Ki = 0.2 mM) or 6-diazo-5-oxo-L-norleucine (DON; model substrate for system N; 

Ki = 0.8 mM).  In contrast, 2-methylamino-isobutyric acid (MeAIB) and L-glutamate (L-Glu), 

substrates for systems A and xc
-/XAG respectively, were ineffective inhibitors, whilst L-arginine, 

a substrate for cationic amino acid transporters (CATs), caused only marginal (18 %) inhibition 

(Table 2).  

Detailed analysis of the inhibition of L-citrulline transport by L-citrulline, BCH or DON 

revealed that each compound inhibited transport in a concentration-dependent manner, reducing 

L-citrulline uptake by 67 ± 4%, 76 ± 2% and 80 ± 0.4% at 5 mM (Fig 2). In contrast, the 
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marginal inhibition caused by 1 mM L-arginine was not further enhanced by increasing 

extracellular L-arginine to 5 mM (Fig 2).  

 

 

Dependency of nitrite production on extracellular L-citrulline  

To investigate whether extracellular L-citrulline could sustain NO production by iNOS, 

RASMCs were activated with LPS (100 μg ml-1) and IFN-γ (50 U ml-1) for 24 h in an L-

arginine-free medium containing increasing concentrations of L-citrulline (0 -1000 μM).  In 

parallel experiments, the effects of extracellular L-arginine were examined over a similar 

concentration range. There was no detectable nitrite in the culture medium obtained from 

LPS/IFN-γ activated smooth muscle cells in the absence of extracellular L-arginine or L-

citrulline.  

Activation of cells in the presence of exogenous L-arginine caused a concentration-

dependent increase in accumulated nitrite levels. This response was near maximal at plasma L-

arginine concentrations (~100 µM, see Baydoun et al., 1990; Hallemeesch et al., 2002; Mann et 

al., 2003), leveling off at 300 μM nitrite (Fig 3). In contrast to L-arginine, increasing 

concentrations of L-citrulline failed to sustain maximal NO production. More importantly, there 

was no detectable nitrite produced at plasma concentrations of L-citrulline (~30 µM, see Castillo 

et al., 1993) and at 1 mM, the maximum levels of nitrite detected in the culture medium were 

approximately one third those produced in the presence of the same concentration of L-arginine 

(Fig 3).  

 Chromatographic analyses of cell lysates obtained from smooth muscle cells deprived of 

L-arginine for 24h revealed a decrease in intracellular L-arginine levels from 1.43 mM to 260 

μM (Table 3). In cells activated with LPS and IFN-γ for 24h, intracellular L-arginine levels 

decreased to 760 μM whilst intracellular L-citrulline levels increased to 3.19 mM, consistent 
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with an enhanced production of NO via iNOS. In the absence of extracellular L-arginine, 

intracellular L-arginine and L-citrulline levels decreased and were maintained at 300 μM and 40 

μM, respectively following activation (Table 3).  
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Discussion 

L-citrulline has emerged as an important amino acid both as a product of the urea cycle and as 

a precursor for L-arginine biosynthesis within the vasculature. In vivo citrulline is synthesized 

and released from the intestine as an end product of L-glutamine nitrogen metabolism 

(Windmueller & Spaeth, 1981). Once in the circulation L-citrulline is rapidly cleared by the 

kidney and subsequently metabolised and released as L-arginine (Windmueller & Spaeth, 

1981; Dhanakoti et al., 1990).  In addition to this pathway, various cells within the 

vasculature possess a truncated urea cycle, expressing both argininosuccinate synthase and 

argininosuccinate lyase, which respectively catalyze the metabolism of citrulline to 

argininosuccinate and then L-arginine. The presence of these enzymes has led to the 

suggestion that cells may be able to recycle L-citrulline, thereby maintaining cellular 

concentrations of L-arginine for sustained NO synthesis (Hattori et al., 1994; Raghavan & 

Dikshit, 2001). Consistent with this hypothesis, conversion of L-citrulline to L-arginine is 

enhanced in endothelial cells stimulated to release NO (Hecker et al., 1990a; Hecker et al., 

1990b), and in macrophages (Baydoun et al., 1994; Wu & Brosnan, 1992) and smooth muscle 

cells (Hattori et al., 1994) generating NO following activation with pro-inflammatory 

mediators.  

It would appear however that the effectiveness of L-citrulline to maintain adequate 

substrate supply for NOS may be limited by its ability to enter cells. Transport of L-citrulline 

into rat aortic smooth muscle cells (RASMC) is slow, remaining linear over a period of up to 

30 min. At physiological plasma concentrations, initial rates of L-citrulline transport are 3-

fold lower than rates measured previously for L-arginine (Wileman et al., 1995).  Unlike L-

arginine, kinetic analysis revealed that transport is mediated via a low affinity carrier (Km 

~1.6 mM), which may limit uptake from plasma in the presence of other circulating 

competitor amino acids. The lower rate of transport together with the relatively low affinity of 
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the transporter could explain the slow onset of action of L-citrulline in inducing relaxation of 

preconstricted aortic rings (Raghavan & Dikshit, 2001) and could also account for the 

significantly high concentrations of exogenous L-citrulline required to sustain maximal iNOS 

activity in cultured smooth muscle cells (Hattori et al., 1994).  

Kinetic cross-inhibition experiments suggest that the transporter for L-citrulline in 

RASMC is distinct from the cationic amino acid transporters mediating L-arginine entry in 

this cell type. First, transport of L-citrulline was not significantly altered by a 10-50 fold 

excess of L-arginine. Second, transport was also unaffected by LPS and IFN-γ, which are both 

known to increase L-arginine transport in various cell types including rat aortic smooth 

muscle cells (Wileman et al., 1995; Durante et al., 1995). The insensitivity of L-citrulline 

transport to pro-inflammatory mediators is consistent with our previous findings in J774 

macrophages (Baydoun et al., 1994) and with reports in neuronal cell cultures (Schmidlin et 

al., 2000). 

The fact that L-arginine failed to cause a significant modulation of L-citrulline 

transport in RASMC also rules out a role for the broad-scope amino acid transporters such as 

the Na+-dependent system Bo,+ or the Na+-independent system bo,+ capable of transporting 

both neutral and basic amino acids (Van Winkle et al., 1988; Van Winkle et al., 1985). 

Moreover, the low affinity for L-citrulline transport excludes a significant contribution of the 

high affinity system y+L identified in several different cell types (reviewed by Devés & Boyd, 

1998; Devés & Boyd, 2000; Wagner et al., 2001) including a recent study in human 

endothelial cells (Sala et al., 2002). Instead, our findings suggest that transport of L-citrulline 

in RASMC may be mediated predominantly via a carrier with characteristics similar to system 

L. 

The classical Na+-independent transport system L is most reactive with branched chain 

and aromatic neutral amino acids and is often characterised using the selective 
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nonmetabolisable analog BCH (Christensen et al., 1969; Shotwell et al., 1983). Transport via 

system L is trans-stimulated by intracellular substrates of this carrier and in some cases may 

be increased by lowered extracellular pH. Studies in rat glioma cells, primary astroglial cells 

and lymphocytes suggested that 4F2hc serves as a necessary component for expression of 

system L-like transport activity (Bröer et al., 1995). Co-expression of 4F2hc and LAT-1 or 

LAT-2 (system L transporters) in oocytes induces Na+-independent transport with a broad 

specificity for small and large zwitterionic amino acids and sensitivity to trans-stimulation 

(Kanai et al., 1998; Pineda et al., 1999). The marked inhibition of L-citrulline transport by 

BCH and the trend for increased transport at lowered pH implicates system L as the major 

transporter L-citrulline uptake in RASMC. This may not however be the only system that is 

involved. Depletion of Na+ from the transport buffer resulted in a reduction (33%) in L-

citrulline influx indicating a partially Na+-dependent mechanism of entry. This was further 

investigated by examining the effects of substrates specific for known Na+-dependent 

transporters including DON (system N, see Goldstein, 1975), MeAIB (system A; Gazzola et 

al., 1980) and L-glutamate (systems xc
-/ XAG, see Dall'Asta et al., 1983). L-citrulline transport 

was virtually unaffected by a 10-fold excess of either MeAIB or L-glutamate, markedly 

inhibited by DON and not decreased at lowered extracellular pH. It is therefore likely that the 

Na+-sensitive component of L-citrulline transport was mediated via system N.  Inhibition of 

L-citrulline transport by L-glutamine and inhibitory actions of L-glutamine (and its metabolite 

glucosamine) on the pentose cycle (Wu et al., 2001) may well account for the reduction of 

NO synthesis reported in both intact cell systems (Hecker et al., 1990a; Wu & Meininger, 

1993) and blood vessels (Swierkosz et al., 1990).  

Entry via systems L and N or, an as yet unidentified, carrier with properties similar to 

system L and/or N, could explain why, in the absence of extracellular L-arginine, L-citrulline 

was not able to maintain maximal rates of NO production in our studies. Several other amino 
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acids utilise systems L and N for entry into cells. Some of these amino acids, including L-

phenylalanine and L-glutamine are present in high concentrations in various culture media, 

including Dulbecco’s modified Eagle’s medium. Thus under standard experimental 

conditions, uptake of L-citrulline will be impaired by competing amino acids, with their 

combined effect causing marked inhibition of L-citrulline transport. Under these conditions, 

the capacity of cells to recycle L-arginine from L-citrulline would also be limited because 

other neutral amino acids will inhibit uptake of L-citrulline by competing for the same 

transporter(s) that facilitate entry of citrulline into cells. As a result, regeneration of L-

arginine would not be efficiently maintained to match the consumption by NOS, even if the 

capacity of argininosuccinate synthase and argininosuccinate lysase to generate L-arginine 

from L-citrulline may be sufficient for maintaining maximal rates of NO synthesis (Hattori et 

al., 1994). The finding that in LPS and IFN-γ activated cells with depleted intracellular L-

citrulline and L-arginine levels (Table 3), only limited nitrite is released in the presence of 1 

mM extracellular L-citrulline (Fig. 3), indicates that L-citrulline transport cannot maintain 

maximal NO synthesis.  It is also possible that L-citrulline available to arginosuccinate 

synthase and arginosuccinate lyase is compartmentalized and not readily exchangable with 

transported L-citrulline.  

Activation of L-arginine transport in vascular smooth muscle cells by pro-

inflammatory cytokines (Wileman et al., 1995; Durante et al., 1995) provides a mechanism 

for sustaining L-arginine supply during enhanced utilisation by iNOS.  Even though low 

intracellular L-arginine levels (300 μM) in L-arginine deprived cells would be expected to 

sustain NO synthesis, it is possible that as in macrophages (Closs et al., 2000) a non-freely 

exchangeable L-arginine pool is not accessible to iNOS. Under these conditions, and as 

demonstrated in the present study, transport of L-arginine becomes rate-limiting for NO 

production. This hypothesis is further supported by the finding that iNOS mediated NO 
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production is reduced significantly in macrophages from CAT2-,- mice (Nicholson et al., 

2001). This report and our present findings strongly suggest a functional association between 

CAT2 and iNOS, with a critical dependency of NO production on L-arginine delivery.  

The inability of cytokines to stimulate L-citrulline transport in RASMC suggests that 

delivery of L-citrulline will not occur at a sufficiently high rate to maintain adequate levels of 

L-arginine for optimal iNOS activity. L-citrulline would therefore be far less effective than L-

arginine in supporting NO synthesis, maintaining, at best, a fraction of the maximal rate of 

NO synthesis induced by L-arginine, as demonstrated in this and other studies in macrophages 

(Baydoun et al., 1994; Wu & Brosnan, 1992). The lack of potentiation of L-citrulline 

transport by pro-inflammatory cytokines is another limiting factor worth taking into account 

when evaluating the potential of L-citrulline in maintaining the generation of NO via iNOS. 

In summary, our findings establish that uptake of L-citrulline by RASMC is mediated 

via amino acid transport systems with properties characteristic of systems L and N.  Inhibition 

by circulating amino acids will restrict the entry of L-citrulline into vascular cells and thereby 

limit the amount of intracellular L-arginine generated from this source. As a result, L-

citrulline has only a limited ability to sustain maximal rates of NO synthesis both in vitro and 

in vivo. 
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Table 1.  The effects of extracellular sodium and external pH on L-citrulline transport.  
 
 _____________________________________________ 

 Conditions  L-citrulline transport (% Control)
 _____________________________________________ 

 Na+-free      67 ± 5* 

 pH 5      112 ± 6 

 pH 6      106 ± 5 

 pH 8       89 ± 1 

 _____________________________________________ 

Dependency of L-citrulline transport on extracellular sodium or varying pH was examined 

using either nominally Na+-free Krebs or buffers with pH values ranging from 5-8. Transport 

of L-citrulline (0.1 mM) was measured in unstimulated cells over a 10 min period. Data are 

expressed as a % of the influx rate obtained in normal Na+-containing Krebs maintained at pH 

7.4 (100% = 0.31 ± 0.04 pmol μg protein-1 min-1). Values denote the means ± S.E.M. of 

experiments in 3 different cell cultures with 5 replicates in each experiment. *P<0.05 

compared to control. 
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Table 2.  Selectivity of L-citrulline transport in rat aortic smooth muscle cells. 
 
 
 
 
Inhibitor (1 mM) 

 
System 
Selectivity 

 
L-citrulline transport 
        (% Control) 
 

L-arginine y+    82 ± 4* 

L-citrulline ?    62 ± 4** 

BCH L    32 ± 2** 

MeAIB A    92 ± 2 

DON N    46 ± 2** 

L-glutamate xc
- or XAG    99 ± 3 

____________________________________________________________ 
 

Transport of L-citrulline (0.1 mM) was measured over 10 min in the absence or presence of a 

10 fold excess (1 mM) of various system selective amino acid substrates. Data are expressed 

as a % of the influx rate in control cells (100 % = 0.44 ± 0.05 pmol μg protein-1 min-1). Values 

denote the means ± S.E.M. of experiments in 3 different cell cultures with 5 replicates in each 

experiment. *P<0.05 and **P<0.01 compared to control. 
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Table 3.  Intracellular concentrations of L-citrulline and L-arginine in unstimulated and 

LPS/interferon-γ stimulated aortic smooth muscle cells. 

 

 
 
Amino Acid 

 
Control 

 
Control  
(- L-arginine)

 
LPS + IFN-γ 

 
LPS + IFN-γ 
(- L-arginine) 

L-arginine (mM) 1.43 ± 0.36 0.26 ± 0.01* 0.76 ± 0.10 0.30 ± 0.03♦ 

L-citrulline (mM) 0.16 ± 0.03 0.49 ± 0.29 3.19 ± 0.11* 0.04 ± 0.04♦ 

____________________________________________________________________ 
 
Unstimulated and activated aortic smooth muscle cells (100 μg ml-1 LPS + 50 U ml-1 IFN-γ, 

24 h) were extracted and intracellular L-arginine and L-citrulline concentrations determined 

by reverse phase hplc. Results are expressed as intracellular amino acid concentration (mM) 

assuming an intracellular water space of 1 pl ml-1. Data denote the means ± S.E.M. of 

determinations in 3 different cell cultures. *P < 0.05 versus control, ♦P <0.05 versus LPS + 

IFN-γ.  
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Figure legends 

 
Figure 1.   Kinetics of L-citrulline transport in rat aortic smooth muscle cells.  

Kinetics of L-citrulline transport (0.05 - 5 mM) were examined over a 10 min incubation 

period in unstimulated aortic smooth muscle cells and following activation of cells with 

LPS(100 µg ml-1) plus IFN-γ (50 U ml-1) for 24 h.  Values denote the means ± S.E.M. of 

experiments in 4 different cell cultures with 5 replicate measurements in each experiment.  

 
Figure 2.   Specificity of L-citrulline transport in rat aortic smooth muscle cells.  

Inhibition of L-citrulline transport was measured in unstimulated cells incubated with Na+ 

containing Krebs buffer with increasing concentrations (0.25 - 5 mM) of either L-arginine, L-

citrulline, DON or BCH. Transport of L-citrulline (0.1 mM) was measured over 10 min, and 

expressed as a % of the transport rate determined in the absence of an inhibitor amino acid. 

Values denote the means ± S.E.M. of experiments in 3 different cell cultures with 5 replicate 

measurements in each experiment. 

 

Figure 3.  Dependency of LPS plus interferon-γ stimulated nitrite release from rat aortic 

smooth muscle cells on extracellular L-arginine or L-citrulline.  

Confluent smooth muscle cells were activated with LPS (100 μg ml-1) and IFN-γ (50 U ml-1) 

for 24 h in L-arginine-depleted DMEM supplemented with increasing concentrations of either 

L-arginine or L-citrulline.  Nitrite accumulation in the culture medium was assayed using the 

Griess reaction.  Values denote the means ± S.E.M. of experiments in 3 different cell cultures 

with 5 replicate measurements in each experiment. 
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Fig 2
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Fig 3 
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