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Abstract: In this article an energy disaggregation architecture using elastic matching algorithms
is presented. The architecture uses a database of reference energy consumption signatures and
compares them with incoming energy consumption frames using template matching. In contrast
to machine learning-based approaches which require significant amount of data to train a model,
elastic matching-based approaches do not have a model training process but perform recognition
using template matching. Five different elastic matching algorithms were evaluated across different
datasets and the experimental results showed that the minimum variance matching algorithm
outperforms all other evaluated matching algorithms. The best performing minimum variance
matching algorithm improved the energy disaggregation accuracy by 2.7% when compared to the
baseline dynamic time warping algorithm.
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1. Introduction

In recent years, the world energy demand has increased due to the population growth and
economic development [1] and it is expected that it will further increase in the next decades [2].
The energy demand worldwide is annually increasing both in the residential and the industrial
sector with households consuming approximately 40% of the world’s consumed energy [3,4].
The technological development of the last decades has led to low costs for buying electrical appliances
and the automation of tasks and procedures both in industry and in households, thus it is estimated
that the electric power needs will further grow and the average number of electrical appliances per
household will significantly increase within the next two decades [4]. It is estimated that approximately
20% of the energy consumed in the residential sector could be saved by changing consumers’ behavior
and by improving the existing poor operational strategies [5,6]. Moreover, the development of smart
grids and energy demand management systems as well as the fluctuation of power generation due
to the increasing percentage of power generated by renewable energies units can confine the issue
of annually increasing energy demands [7,8]. These changes in energy demand and generation are
challenging for network operators and power generation units, since power needs are becoming less
stable and less predictable while at the same time energy demand increases [9,10]. To address the
above mentioned challenges, precise monitoring of electrical energy consumption in the residential
sector is needed [10], as well as proper energy demand prediction and management [9]. At the moment
energy consumption monitoring is mostly done by measuring the aggregated energy consumption in
the form of monthly bills and therefore does not address the above-mentioned issues.
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The measurement of energy consumption is performed using smart meters (SM). Smart meters
measure the voltage drop over a device or a circuit and the current flowing through it at a predefined
sampling rate with the sampling period varying from milliseconds to minutes [11]. The lower the
sampling period, the more accurate temporal information of the energy consumption signal is recorded,
however high sampling frequency increases the amount of data acquired per time unit and also requires
hardware supporting high sampling frequency A/D conversion, which in general increases the cost of
hardware [12] and might not lead to better disaggregation results [13]. Most commercial smart meters
must use a sampling rate in the order of seconds for the transmission and storage of energy data for
several months or years to be feasible and to keep the corresponding hardware costs relatively low.

Energy consumption should not be monitored at a household level but rather at the device level,
in order to detect faulty device operation and inefficient or suboptimal operational strategies and thus
maximize improvements in terms of energy savings as shown in [14]. To measure energy consumption
at device level, energy usage has to be measured either for each device separately using one smart
meter per device or the household aggregated energy consumption (sum of energy consumption
from several devices measured at one central point e.g., the power inlet of a household) has to be
disaggregated to device level using computational algorithms. When using only one sensor (smart
meter) to disaggregate the total consumed energy and to extract energy consumption on the appliance
level the task is called non-intrusive load monitoring (NILM) as introduced in [15]. In the NILM
approach the energy disaggregation task is expressed as a single-channel source separation problem,
where the smart meter is the only input channel measuring the total power consumption and the
goal is to find the inverse of the aggregation function to calculate the energy consumption per device.
In intrusive load monitoring (ILM) one smart meter per device is used, thus measuring the energy
consumption directly from each device. Compared to ILM, NILM has the advantage of requiring
less hardware (ILM uses one smart meter per device which is impractical for most households) as
well as meets consumers’ acceptability with respect to privacy conserving [7,16]. NILM approaches
assume that there is a single observation (smart meter measurements) and multiple unknowns (power
consumption of electrical devices) making the disaggregation problem highly under-determined and
difficult to solve without any further constraints.

Several approaches for NILM have been proposed in the literature. In these approaches
one or multi-state electrical devices have been modeled by finite-state machines, i.e., with steady
energy consumption behavior per operational state [15,17,18]. In contrast to one/multi-state devices,
there is no established approach in detecting appliances with continuous power consumption or with
non-linear behavior and a highly-varying power signature [19,20]. Researchers have addressed this
issue by using high frequency features or wavelets to detect transient device behavior, however,
these have the drawback of a higher cost in hardware and an increased computational power
needed [12,20,21]. Therefore most approaches use disaggregation algorithms with sampling rates
in the order of seconds to minutes, in addition with temporal information (e.g., factorial hidden
Markov models (FHMM) [22,23]) to identify appliances with varying power consumption [12,24].
Furthermore, special filtering techniques (e.g., Kalman filters [25]) with time-varying coefficients and
probabilistic approaches using appliance grouping [26] have been proposed to address the issue of
modeling devices with continuous or non-linear characteristics. The NILM approaches can briefly
be classified into methods with and without source separation (SS). Approaches without SS are
based on the decomposition of the aggregated signal to a sequence of feature vectors, which will be
classified to device labels by a machine learning (ML) algorithm (e.g., artificial neural networks
(ANN) [27], cecision trees (DT) [28], hidden Markov models (HMM) [22], k-nearest neighbors
(KNN) [29], support vector machines (SVM) [30]) or by a predefined set of rules and thresholds [31,32].
Furthermore, recent research in deep learning and big data has led to a significant increase of use
of data-driven approaches using large scale datasets (e.g., AMPds [33]). Approaches based on
convolutional neural networks (CNNs) [34–36], recurrent neural networks (RNNs) [37,38] and long
short time memories (LSTM) [37,39] have been proposed in the literature, while denoising autoencoders
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(dAEs) [40] and gate recurrent units (GRUs) [36] have also been used. Approaches with SS are
based on single-channel source separation algorithms (e.g., non-negative matrix factorization [41],
sparse component analysis [42]) to extract the consumption of each device from the aggregated signal
by using additional constraints (e.g., sparseness or sum-to-one [43]) during the optimization procedure.
The features extracted from the aggregated signal in approaches with and without SS strongly depend
on the sampling frequency, with either macroscopic (for low sampling frequency) or microscopic
(for high sampling frequency) features being extracted. Macroscopic features are mainly active and
reactive power, while statistical values from the active or reactive power (e.g., mean, median, variance
or energy) can be estimated as well [44]. Microscopic features can be current harmonics or transient
energy [31,45] and require high-sampling frequency to be calculated (1 kHz and above).

In addition to the above-mentioned machine learning-based NILM solutions, approaches using
template matching have been proposed. More specifically, in [46] dynamic time warping (DTW) was
used to detect transient signatures for NILM and a weighted DTW was proposed and evaluated for
different sampling frequencies. In [47] a hybrid detection approach utilizing FHMMs and DTW-based
iterative subsequence clustering was introduced for generating subsequences to refine initial estimates
provided by the FHMM. In [48] load disaggregation was performed using subsequence searching
by utilizing DTW and iteratively disaggregate one appliance at a time in order of decreasing energy
consumption. In [49] a DTW-based pattern matching approach was proposed and its performance was
compared to HMMs and DTs.

In this paper, an architecture based on elastic matching algorithms for non-intrusive load
monitoring is proposed. In contrast to machine learning-based approaches which require significant
amount of data to train a model, elastic matching-based approaches do not have any model training
process but perform recognition using template matching. Except for a few papers [46–49] that have
used only the DTW algorithm for NILM, no previous work on the evaluation of elastic matching
algorithms for energy disaggregation has been published in the literature. In the proposed architecture,
excluding DTW, several other elastic matching algorithms such as the global alignment kernel, the soft
dynamic time warping, the minimum variance matching and the all common subsequences have been
used. The remainder of this article is organized as follows. In Section 2 five different elastic matching
algorithms are reviewed. In Section 3 the proposed architecture for energy disaggregation using elastic
matching is presented. In Sections 4 and 5 the experimental setup and evaluation results are described,
respectively. In Section 6 we conclude this work.

2. Elastic Matching Algorithms

In the context of energy disaggregation five different elastic matching algorithms, which can be
used to compare any two time series of unequal lengths, are reviewed. These are the DTW algorithm,
which has been used before in the NILM task [46–49], as well as the global alignment kernel (GAK),
the soft dynamic time warping (sDTW), the minimum variance matching (MVM) and the all common
subsequences (ACS), which have not been used before in the NILM task. GAK, sDTW, MVM and
ACS algorithms were chosen as they offer additional degrees of freedom on the warping path [50–52]
comparing to the DTW algorithm.

Considering the aggregated power consumption signal Pagg(t)∀t : t ∈ {1, · · · , T} acquired by a
smart meter let Pa = [p(i)p(i + 1) · · · p(i + N)] be a sequence of length N where p(i) is the ith sample
of Pagg and let Pb = [p(j)p(j + 1) · · · p(j + M)] be a second sequence of length M where p(j) is the jth

sample of Pagg and N < M. Furthermore let ∆(Pa, Pb) = [δ(pn
a , pm

b )]i,j ∈ RNxM be an arbitrary cost
matrix, where δ(·) is a distance metric e.g., Euclidean distance, Manhattan distance or Kullback–Leibler
(KL) distance and 〈A, ∆(Pa, Pb)〉 being the inner product of matrix A with the cost matrix ∆(Pa, Pb),
where A is an alignment matrix with An,m being the alignment score between the nth and the mth

element of Pa and Pb respectively.
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2.1. Dynamic Time Warping

Based on the above, using the cost matrix ∆(Pa, Pb) and the different alignment matrices A,
DTW(Pa, Pb) is the minimum accumulated cost between Pa and Pb for all possible warping paths in
the (N, M) search space. Accordingly the minimum cost is defined as in Equation (1) and the recursive
update rule for finding the optimal warping path is given in Equation (2) [51,53].

DTW(Pa, Pb) := min
A∈An,m

〈A, ∆(Pa, Pb)〉, (1)

D(n, m) = δ(pn
a , pm

b ) + min





D(n− 1, m)

D(n− 1, m− 1)

D(n, m− 1)

, (2)

where D(n, m) = ∑L
k=1 δ(pn

a , pm
b ) is the accumulated cost associated with any warping path a =

(a1, a2, . . . , ak, . . . , al) from (i, j) to (i + N, j + M) with path-length L and point ak = (nk, mk) ∈ {i, i +
1, · · · , i + N}{j, j + 1, · · · , j + M}. Furthermore the initial conditions for the accumulated cost are set
as follows: D(0, 0) = 0, D(n, 0) = ∞ for n > 0 and D(0, m) = ∞ for m > 0.

2.2. Global Alignment Kernel

Extending the previous definition of DTW in Section 2.1 the global alignment (GA) kernel is
defined as the exponentiated soft-minimum of all alignments distances and can be written as in
Equation (3) [50]

kγ
GA := ∑

A∈An,m

e−〈A,∆(Pa ,Pb)〉/γ, (3)

where γ > 0 is the smoothing parameter of the kernel. Compared to DTW, kγ
GA incorporates the whole

spectrum of costs 〈A, ∆(Pa, Pb)〉 and thus provides a richer representation than the absolute minimum
of set A, as considered by DTW [50].

2.3. Soft Dynamic Time Warping

As described in [51] Equations (1) and (3) can be computed using a single algorithm.
The generalized minγ operator, with the smoothing parameter γ ≥ 0 can be written as in Equation (4)
and is referred to as soft dynamic time warping dtwγ.

dtwγ := minγ{〈A, ∆(Pa, Pb)〉 A ∈ An,m}, (4)

minγ{a1, · · · , an} :=

{
mini≤nai γ = 0

−γlog ∑n
i=1 e−ai/γ γ > 0

, (5)

where the original DTW score is recovered by setting γ = 0, while for γ > 0 a scaled version of GAK
can be written as dtwγ = −γ log kγ

GA.

2.4. Minimum Variance Matching

In contrast to DTW, sDTW and GAK, MVM tries not to find the optimal alignment between the
two sequences Pa and Pb, but also considers the alignment of subsequences. Thus MVM tries to find a
subsequence P

′
a of length N such that Pb best matches P

′
a. To formally describe MVM the difference

matrix r between the two sequences Pa and Pb and is defined as follows [52]:

r = (rnm) = (pn
a − pm

b ). (6)
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Furthermore, rnm is treated as a directed graph with the following links [52]:

rnm ↔ rkl where k− n = 1 and m + 1 ≤ m + N −M. (7)

Using Equations (6) and (7) the least-value path in terms of the linkcost and pathcost can be
written as described by Equations (8) and (9).

linkcost(rnm, rkl) =




(rkl)

2 = (pk
b − pn

a )
2 i f k = n + 1 and m + 1 ≤ l ≤ m + 1(N −M)− (m− n)

∞ otherwise
, (8)

linkcost(n, m) =





(rnm)2 i f k = n + 1

min(pathcost(n, m), pathcost(n− 1, k) + linkcost(r(n−1)k, rnm))

i f 2 ≤ i ≤ M, n ≤ k ≤ n + N −M, k + 1 ≤ j ≤ k + 1 + (N −M)

∞ otherwise

. (9)

2.5. All Common Subsequences

As proposed in [54] the number of all common subsequences acs(Pa, Pb), of any two sequences Pa

and Pb, can be found using dynamic programming. Specifically let N(n, m) be the number of common
subsequences then:

N(n, m) = N(n− 1, m− 1) · 2, i f pn
a = pm

b , (10)

N(n, m) = N(n− 1, m) + N(n, m− 1)− N(n− 1, m− 1), i f pn
a 6= pm

b , (11)

and consequently acs(Pa, Pb) = N(|Pa|, |Pb|).

3. NILM Using Elastic Matching

Considering a set of M-1 known devices each consuming power pm with 1 ≤ m ≤ M,
the aggregated power Pagg measured by the sensor will be

Pagg = f (p1, ..., pM−1, g) =
M−1

∑
m=1

pm + g =
M

∑
m=1

pm, (12)

where g = pM is a ‘ghost’ power consumption (noise) consumed by one or more unknown devices
and f is the aggregation function. In NILM the goal is to find precise estimations p̂m, ĝ of the power
consumption of each device m using an estimation method f−1 with minimal estimation error and
p̂M = ĝ, i.e.,

P̂ = { p̂1, p̂2, ..., p̂M−1, ĝ} = f−1(Pagg)

s.t. argmin
f−1

{(Pagg −
M

∑
m=1

p̂m)
2}

(13)

In the proposed approach the minimization is performed using a database of power consumption
signatures built from frames of the aggregated signal Pagg and their corresponding ground-truth
information for each appliance, providing estimates p̂m for each pm. The block diagram of the
proposed NILM architecture is illustrated in Figure 1.
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Figure 1. Block diagram of non-intrusive load monitoring (NILM) architecture using elastic matching.
Smart meters are denoted with SM and preprocessing steps with PP.

As illustrated in Figure 1 the proposed approach consists of three steps, namely preprocessing,
framing and template matching using an elastic matching algorithm. During the training phase
the energy consumption of each of the M devices, pm, of a household and the aggregated
consumption, Pagg, are recorded from smart meters (denoted as SM). The acquired measurements
(M+1 time-synchronous signals) are preprocessed using a filter to remove outliers and static noise from
the smart meters, frame blocked in frames wm

n , wm
n ∈ RL, of constant length L = ||w|| with 1 ≤ n ≤ N

being the number of frames and grouped, i.e., every stored aggregated energy consumption frame
(reference frame) is stored together with the corresponding time-synchronous energy consumption
frames of each of the M devices, into a table Wn, Wn ∈ R(M+1)xL. Finally all tables Wn are stored in
a database W : Wn, 1 ≤ n ≤ N. During the operational phase only the aggregated signal Pagg is
measured from a (central/main) smart meter. Similarly to the training phase, the aggregated signal
Pagg is initially preprocessed and frame blocked in frames of the same constant length L = ||w||, with t
being the number of the frame of the aggregated signal during operation. Each frame wagg

t is then
compared against all aggregated power consumption reference frames wagg

n stored in the database
W using an elastic matching algorithm g() and from the best matching reference frame the M device
frames are used for numerical estimation, P̂ = p̂m, of the power consumption of each of the M devices
as described in Equations (14) and (15).

k(t) = argmin
W:Wn ,1≤n≤N

{g(wagg
t , wagg

n )}, (14)

P̂t = { p̂1 =
1
L ∑

L
w1

k(t), p̂2 =
1
L ∑

L
w2

k(t), · · · , p̂M =
1
L ∑

L
wM

k(t)}. (15)

In both the training and operational phase, only the active power samples of the device and
aggregated signals were used since not all elastic matching algorithms can align multidimensional
time-series data [52,54].
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4. Experimental Setup

The NILM architecture using elastic matching presented in Section 3 was evaluated using the
datasets, parameters and elastic matching algorithms described below.

4.1. Databases

To evaluate the proposed architecture the reference energy disaggregation dataset (REDD) [55]
database has been used. The REDD database contains energy consumption recordings from home
devices together with the aggregated energy consumption measurements from six households in the
United States. Details of the datasets in the REDD database, one dataset per household, are tabulated
in Table 1 with the number of appliances denoted in column ‘#App’ and the maximum number of
appliances working in parallel denoted in column ‘#ParaApp’. The next three columns in Table 1 show
the sampling period ‘Ts’, the duration ‘T’ in days, ignoring the gaps in the measurements [56], and the
appliance types appearing in each evaluated dataset. The appliances type categorization is based on
their operation as described in [17,57]. Previous publications [56,58,59] have excluded REDD-5 dataset
from their experimental setup because of the significantly shorter duration of provided data compared
to the rest of the REDD datasets, however in the present evaluation all six datasets have been used in
order to evaluate the performance of the proposed architecture also under limited available training
data conditions.

Table 1. Overview of considered public available datasets and their properties.

Dataset
Parameters

#App #ParaApp Ts T Appliance Type

REDD-1 18 9 3s 14d One-state/multi-state/ continuous
REDD-2 9 5 3s 11d One-state/multi-state
REDD-3 20 9 3s 14d One-state/multi-state/ non-linear
REDD-4 18 8 3s 14d One-state/multi-state/ continuous/ non-linear
REDD-5 24 11 3s 3d One-state/multi-state/ non-linear
REDD-6 15 9 3s 12d One-state/multi-state/ continuous/ non-linear

4.2. Preprocessing and Parametrization

During preprocessing the aggregated signal was initially processed by a median filter of five
samples as proposed in [60] and then was frame blocked in frames of L = 25 samples with overlap
between successive frames equal to 15 samples. The optimal framelength was selected after grid search
on a bootstrap subset from the REDD database, using the active power samples and DTW-based elastic
matching as the baseline system. In detail the first five days from each REDD-x dataset were used,
except for REDD-5 where only the first day was used, to create a bootstrap dataset and all results were
calculated using estimation accuracy (EACC) as defined in [55]. The results are tabulated in Table 2.

Table 2. Energy disaggregation performance in terms of estimation accuracy (EACC) for different
framelengths using dynamic time warping (DTW) as the classifier.

Dataset
Framelength L

10 25 50 100 200 500

REDD-1 74.41% 76.73% 73.96% 62.76% 63.60% 60.37%
REDD-2 81.88% 82.31% 81.37% 79.42% 75.32% 69.34%
REDD-3 71.36% 71.80% 71.43% 72.83% 71.81% 72.37%
REDD-4 83.28% 84.10% 83.39% 84.56% 84.78% 78.65%
REDD-5 77.71% 79.56% 81.25% 78.22% 64.43% 34.29%
REDD-6 83.42% 83.13% 82.97% 83.69% 83.20% 82.24%

AVG 78.67% 79.61% 79.06% 76.91% 73.86% 66.21%
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As can be seen in Table 2 the highest average performance across all datasets was reached using a
framelength of L = 25 samples resulting in a disaggregation accuracy of 79.61%. In detail REDD-1,2,5
reached their highest performance using L = 25 samples, while REDD-3,4,6 reached a slight higher
accuracy for L = 100/200 samples, but not significantly higher than L = 25 samples, thus L = 25
samples was selected as optimal frame length.

4.3. Elastic Matching Algorithms

For the elastic matching stage the five elastic matching algorithms presented in Section 2 were
evaluated namely DTW, GAK, sDTW, MVM and ACS. The free parameters of each elastic matching
algorithm were empirically optimized after grid search on a bootstrap training subset as described in
Section 4.2. The best performance corresponding to the optimal values of each regression model is
shown in bold. In detail all grid searches used as optimal framelength L = 25 as estimated for DTW
(baseline architecture) in Section 4.2. Firstly, two different restrictions on the DTW warping path were
evaluated, namely the Sakoe and Itakura as proposed in [53,61]. The results are tabulated in Table 3.

Table 3. Energy disaggregation performance in terms of EACC for different restrictions on the DTW
warping path.

Dataset
Restrictions on DTW

None Sakoe Itakura

REDD-1 76.73% 74.31% 74.20%
REDD-2 82.31% 79.53% 81.38%
REDD-3 71.80% 69.88% 71.59%
REDD-4 84.10% 77.28% 77.97%
REDD-5 79.56% 74.01% 76.82%
REDD-6 83.13% 61.66% 60.60%

AVG 79.61% 72.78% 73.76%

As can be seen in Table 3 any restriction on the DTW warping path leads to a significant reduction
of the energy consumption disaggregation accuracy with Itakura showing an average performance
reduction of 5.8% and Sakoe of 6.8%, respectively. Based on the above evaluation results were
calculated without any restrictions in the warping path. Secondly, different distance metrics, namely the
Euclidean (Equation (16)), Manhattan (Equation (17)), Square (Equation (18)) and Kullback–Leibler
(KL) (Equation (19)) were evaluated. These metrics for two K-dimensional signals Pa and Pb are given
in Equations (16)–(19) and the evaluation results are tabulated in Table 4.

δ(Pa, Pb) =

√√√√ K

∑
k=1

(pn
a − pm

b ) · (pn
a − pm

b ), (16)

δ(Pa, Pb) =
K

∑
k=1
|pn

a − pm
b |, (17)

δ(Pa, Pb) =
K

∑
k=1

(pn
a − pm

b )
2, (18)

δ(Pa, Pb) =
K

∑
k=1

(pn
a − pm

b ) · (log pn
a − log pm

b ). (19)
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Table 4. Energy disaggregation performance in terms of EACC for different distance metrics’ using DTW.

Dataset
Distance Metric

Euclidean Manhattan Square Kullback–Leibler

REDD-1 76.73% 76.73% 76.68% 76.51%
REDD-2 82.31% 82.31% 82.19% 81.95%
REDD-3 71.80% 71.80% 71.57% 71.39%
REDD-4 84.10% 84.10% 83.40% 83.49%
REDD-5 79.56% 79.56% 80.51% 80.14%
REDD-6 83.13% 83.13% 82.28% 82.54%

AVG 79.61% 79.61% 79.44% 79.34%

As can be seen in Table 4 there is no significant influence in terms of accuracy on the distance
metric. However both Euclidean and Manhattan slightly outperform Square and KL, having the
highest average performance for five out of the six bootstrap datasets, thus in the following evaluation
all results are calculated using Euclidean distance. Regarding the free parameters of GAK, sDTW and
MVM were selected using the bootstrap dataset of REDD-1 while using the optimal framelength
L = 25, with no restriction on the warping path and Euclidean distance metric as determined above.
In detail the optimal values for the smoothing parameter γ of GAK and sDTW and the number of
samples that can be left out by MVM were determined using grid search. The results are tabulated in
Table 5.

Table 5. Energy disaggregation performance in terms of EACC for the free parameters of global
alignment kernel (GAK), soft dynamic time warping (sDTW) and minimum variance matching (MVM).

GAK

γ 1 2 5 10 100 500

59.44% 64.48% 70.89% 70.94% 69.85% 65.74%

sDTW

γ 1 2 5 10 100 500

72.87% 72.93% 73.11% 73.06% 72.06% 69.27%

MVM

v 5 10 15 20 25 30

71.56% 71.56% 71.56% 71.56% 71.56% 71.56%

As can be seen in Table 5 the optimal parameter values for the evaluated elastic matching
algorithms are γ = 10 for GAK, γ = 5 for sDTW, while for MVM the number of samples left out were
found to have no influence on the performance of MVM thus it was arbitrarily set to its default value
v = 10.

5. Experimental Results

The performance was evaluated in terms of estimation accuracy (EACC) considering device
operation in state level with a double counting of errors as proposed in [55], i.e.,

EACC = 1− ∑T
t=1 ∑M

m=1 | p̂m
t − pm

t |
2 ∑T

t=1 ∑M
m=1 |pm

t |
, (20)

where T is the number of disaggregated frames and M the number of appliances including the ‘ghost’
device. The five different elastic matching algorithms described in Section 2 were evaluated on the
REDD database using all houses and all available data. Specifically a 10-fold cross validation protocol
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was followed, with 90% of the data being used for building the signature database and 10% of the
data for evaluating the proposed elastic matching-based NILM architecture. The evaluation results are
tabulated in Table 6.

Table 6. Energy disaggregation performance in terms of EACC for different datasets of the reference
energy disaggregation dataset (REDD) database using different elastic matching algorithms (average
results are provided with and without considering REDD-5).

Dataset
Elastic Matching Algorithm

DTW sDTW MVM GAK ACS

REDD-1 73.01% 74.24% 75.12% 74.33% 62.63%
REDD-2 81.58% 84.65% 87.58% 76.45% 71.79%
REDD-3 71.67% 72.03% 73.55% 72.70% 63.96%
REDD-4 80.59% 81.84% 83.00% 81.81% 79.17%
REDD-5 80.02% 80.19% 82.13% 75.75% 63.72%
REDD-6 82.24% 80.72% 84.18% 82.00% 75.14%

AVG1−6 78.19% 78.95% 80.93% 77.17% 69.40%
AVG1,2,3,4,6 77.82% 78.70% 80.69% 77.46% 70.54%

As can be seen in Table 6 MVM outperforms all other evaluated elastic matching algorithms
across all datasets as well as on average increasing disaggregation accuracy approximately 2.7%
resulting in an absolute average disaggregation accuracy of 80.93%. Furthermore sDTW offered a
slight improvement with respect to the DTW baseline system with a performance increase of 0.8% and
a total disaggregation accuracy of 78.95%. Moreover, GAK’s average performance was slightly lower
than the baseline DTW (−1.0%), with the REDD-2 and REDD-5 datasets performing significantly lower
than DTW. ACS was observed to perform significantly lower than DTW across all houses as well as in
average, which is probably owed to the fact that ACS forces matching of subsequences and has neither
a soft a margin as sDTW/GAK nor can it skip outliers like MVM [62]. It is worth mentioning that the
energy disaggregation accuracy of the REDD-5 dataset is above 80% for both DTW and MVM despite
the limited amount of available data for this household.

Furthermore results on the device level are presented for house two of the REDD database.
REDD-2 was chosen as all appliances were metered over the whole recording period and there
are no gaps in the measurements. For the purpose of direct comparison with previous studies
we additionally tested our proposed methodology on five selected loads from the REDD database,
so called deferrable loads, defined in [63]. These loads (reported as deferrable loads), namely the
refrigerator, the lighting, the dishwasher, the microwave and the furnace (not available in REDD-2),
were proposed as they contain a significant amount of the total consumed energy and were used in
previous publications [56,63]. For evaluating estimation accuracy on device level Equation (20) is
modified by eliminating the summation over M appliances resulting to Equation (21).

EACC = 1− ∑T
t=1 | p̂m

t − pm
t |

2 ∑T
t=1 |pm

t |
. (21)

The results are tabulated in Table 7, with the last row presenting the average disaggregation
accuracy computed according to Equation (21) and the second column presenting the percentage of
the total energy consumed by each appliance.
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Table 7. Energy disaggregation performance on device level in terms of Em
ACC for the REDD-2 dataset

using different elastic matching algorithms.

Appliance Energy Distribution All Loads Deferrable Loads
DTW sDTW MVM GAK ACS DTW sDTW MVM GAK ACS

kitchen-outlets 2.68% 48.84% 49.34% 59.96% 54.99% 54.51% - - - - -
lighting 11.55% 66.23% 69.72% 74.58% 25.95% 52.13% 72.12% 81.33% 82.59% 74.29% 80.26%
stove 0.63% 70.60% 75.51% 36.39% 21.37% 38.45% - - - - -
microwave 6.63% 85.09% 85.32% 85.80% 83.33% 59.18% 89.11% 89.32% 89.59% 90.16% 71.54%
washer-dryer 0.93% 89.03% 89.77% 88.59% 88.99% 81.73% - - - - -
kitchen-outlets 4.48% 74.81% 69.90% 72.94% 52.31% 37.60% - - - - -
refrigerator 34.48% 82.71% 82.70% 84.89% 79.18% 81.18% 93.24% 94.49% 95.21% 93.85% 93.17%
dishwasher 3.91% 81.94% 82.61% 82.52% 77.27% 47.07% 87.25% 86.77% 89.01% 88.21% 80.38%
disposal 0.03% 82.51% 81.22% 81.06% 76.31% 33.10% - - - - -
ghost 34.98% 85.25% 88.94% 90.96% 85.20% 78.41% - - - - -
AVG 100.00% 81.58% 84.65% 87.58% 76.45% 71.79% 88.95% 90.85% 91.86% 89.85% 86.24%

As can be seen in Table 7 DTW in general offers good performance for appliances with
one/multi-state behavior (e.g., refrigerator, microwave or dishwasher) and performs poorly for device
operating for long duration and without many state changes (e.g., lighting or kitchen-outlets), which is
in agreement with the evaluation results in [49]. MVM was found to improve the disaggregation
accuracy of appliances with long operational duration due to its ability of matching subsequences
without being restricted in aligning the corresponding first and last samples of the two sequences as
in the case of DTW alignment. Furthermore as stated in [64] MVM allows the skipping of outliers
that are present in the test series wagg

t and thus is able to handle noisy data better compared to DTW.
In detail lighting and kitchen-outlets showed the largest improvements with 11.1% (10.5%) and 8.3%,
respectively. Moreover the detection of ghost power, which usually appears in the aggregated signal
and has a high variance due to possibly several unknown devices working in parallel was further
improved achieving disaggregation accuracy of 90.96%.

The best performing MVM elastic matching algorithm is compared to other methods proposed in
the literature that have been evaluated on the REDD database. It is worth mentioning that the number
of datasets used across previous studies was not the same thus MVM performance has been calculated
for each dataset setup (datasets 1,2,3,4,6; dataset 2; referable loads of dataset 2; fridge of dataset 2).
Also the split of the data to training/test subsets is not the same in the literature thus only rough
comparison is possible. The results are tabulated in Table 8.

As can be seen in Table 8 the best performing elastic matching algorithm MVM outperforms all
other reported approaches on the REDD-1/2/3/4/6 dataset setup. Similarly the results of REDD-5
dataset setup showing the advantage of elastic matching over machine learning-based approaches
when limited available training data exit. Considering the REDD-2 dataset setup with deferrable loads,
which was initially proposed in [63], the proposed methodology using elastic matching outperforms
all reported methodologies. The exception is the method of Makonin et al. [56] that utilized HMM
sparsity, which performed 2.9% better than our proposed MVM, however the approach in [56] is
specifically designed for deferrable loads and performances using all appliances of each house of the
REDD database are not reported. Considering the latest deep learning techniques using CNNs, our
MVM-based elastic matching approach performed 7.3% better for the fridge only REDD-2 dataset
setup in [38].
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Table 8. Comparison of EACC (%) values for recently proposed NILM methodologies (methods marked
with an asterisk are not directly comparable because of a dataset transferability setup used in [36] and
the reduced number of appliances in [65]).

NILM Method Publication Year Dataset EACC MV M

Greedy Deep SC [66] 2017 REDD-1/2/3/4/6 62.6%

80.7%

Exact Deep SC [66] 2017 REDD-1/2/3/4/6 66.1%
General SC [67] 2010 REDD-1/2/3/4/6 56.4%

Discriminating SC [67] 2010 REDD-1/2/3/4/6 59.3%
Powerlets-PED [68] 2015 REDD-1/2/3/4/6 72.0%
Temporal ML [69] 2011 REDD-1/2/3/4/6 53.3%

Gibbs Sampling [70] 2013 REDD-5 55.0%
82.1%Unsupervised GSP * [65] 2018 REDD-5 65.0%

Supervised GSP * [65] 2018 REDD-5 79.0%

SIQCP [71] 2016 REDD-2 (deferrable loads) 86.4%

91.9%
Sparse HMM [56] 2015 REDD-2 (deferrable loads) 94.8%

F-HDP-HSMM [63] 2013 REDD-2 (deferrable loads) 84.8%
F-HDP-HMM [63] 2013 REDD-2 (deferrable loads) 70.7%
EM-FHMM [63] 2013 REDD-2 (deferrable loads) 50.8%

CNN-RNN [38] 2019 REDD-2 (1 appliance: fridge) 87.9%
95.2%GSP [65] 2018 REDD-2 (1 appliance: fridge) 85.0%

CNN * [36] 2019 REDD-2 (1 appliance: fridge) 83.5%

For the purpose of direct comparison of the above-presented evaluation results with the previous
evaluation of the DTW algorithm, the approach presented in [49] using a DTW and evaluated in houses
REDD-1,2,6 was used. In detail, the approach presented in [49] uses a train/test data splitting, with the
first week of every dataset used for training and the rest for testing as well as a lower sampling rate of
1 min, thus the results have been recalculated according to the setup of [49]. Furthermore the approach
is event-based thus performance is measured using the F1-score as defined in Equation (22),

F1 = 2 · TP
2 · TP + FN + FP

, (22)

and a set of thresholds is used to decide if a device is operating within each frame or not.
In Equation (22) TP, FN and FP are the True Positives, False Negatives and False Positives for
each identified turned on appliance combination. As thresholds are not explicitly given for all devices
in [49] for our evaluation the decision threshold was empirically selected to 25 W as also in [48,72].
The results are tabulated in Table 9.

Table 9. Comparison of DTW proposed in [49] with five different elastic matching algorithms using
F1-score as defined in Equation (22).

Dataset
Elastic Matching Algorithm

DTW [49] DTW sDTW MVM GAK ACS

REDD-1 82.28% 82.74% 84.95% 86.85% 83.68% 74.39%
REDD-2 87.04% 88.40% 89.56% 90.19% 86.44% 84.38%
REDD-6 89.17% 88.82% 86.02% 90.53% 88.65% 78.57%

AVG 86.16% 86.66% 86.84% 89.19% 86.26% 79.11%

As can be seen in Table 9 the F1-scores of [49] and of our DTW implementation are almost
identical with only 0.5% difference in average, most probably owed to the different preprocessing and
threshold settings (the parameter values of them are not given in [49]). In this experiment MVM also
outperforms all other elastic matching algorithms and improves the average disaggregation accuracy
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by 2.4%, resulting in an total average disaggregation accuracy of 89.19% in terms of the F1-score.
In agreement with the previous evaluations presented in Table 9 sDTW again offers slight performance
improvement, while GAK performs slightly worse compared to the baseline DTW, achieving average
disaggregation accuracies of 86.84% and 86.26%, respectively. Furthermore, ACS shows a significant
performance decrease when compared to DTW, resulting in an average disaggregation accuracy of
79.11%. The highest performance increase is observed for the REDD-1 dataset, improving the energy
disaggregation F1-score by 4.2% when using MVM as the elastic matching algorithm.

6. Conclusions

In this paper an energy disaggregation architecture using elastic matching was presented. In the
experimental evaluation five different elastic matching algorithms, namely the dynamic time warping
(DTW), the soft-DTW, the global alignment kernel (GAK), the minimum variance matching (MVM)
and the all common subsequences (ACS) were evaluated. The experimental results showed that
elastic matching algorithms can successfully be used for energy disaggregation, and more specifically
it was observed that the minimum variance matching (MVM) algorithm offers the highest energy
disaggregation precision both in terms of energy disaggregation accuracy (87.58%) and in terms of
F1-score (89.19%).

The architecture was evaluated on several datasets with different characteristics and duration,
demonstrating that it performs equally well in cases where not many data are available. Specifically the
competitive performance of elastic matching-based approach shows that it can offer complementary
information to the machine learning-based and the source separation-based NILM approaches,
especially in cases when the available data are not enough to train robust NILM models.
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