
Embodiment and Its Influence on
Informational Costs of Decision
Density—Atomic Actions vs. Scripted
Sequences
Bente Riegler 1*, Daniel Polani 1 and Volker Steuber2

1Sepia Lab, Adaptive Systems Group, School of Engineering and Computer Science, University of Hertfordshire, Hatfield,
United Kingdom, 2Biocomputation Research Group, School of Engineering and Computer Science, University of Hertfordshire,
Hatfield, United Kingdom

The importance of embodiment for effective robot performance has been postulated for a
long time. Despite this, only relatively recently concrete quantitative models were put
forward to characterize the advantages provided by a well-chosen embodiment. We here
use one of these models, based on the concept of relevant information, to identify in a
minimalistic scenario how and when embodiment affects the decision density. Concretely,
we study how embodiment affects information costs when, instead of atomic actions,
scripts are introduced, that is, predefined action sequences. Their inclusion can be treated
as a straightforward extension of the basic action space. We will demonstrate the effect on
informational decision cost of utilizing scripts vs. basic actions using a simple navigation
task. Importantly, we will also employ a world with “mislabeled” actions, which we will call a
“twisted” world. This is a model which had been used in an earlier study of the influence of
embodiment on decision costs. It will turn out that twisted scenarios, as opposed to well-
labeled (“embodied”) ones, are significantly more costly in terms of relevant information.
This cost is further worsened when the agent is forced to lower the decision density by
employing scripts (once a script is triggered, no decisions are taken until the script has run
to its end). This adds to our understanding why well-embodied (interpreted in our model as
well-labeled) agents should be preferable, in a quantifiable, objective sense.
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1 INTRODUCTION

Research in robotics, while dominated by kinematic and dynamic control laws, has increasingly
identified the importance of embodiment for effective operation (Brooks, 1991; Paul, 2006; Paul et al.,
2006; Pfeifer et al., 2007). Despite being closely related to the old historical research into cybernetics
for robotic control, the study of embodiment still ekes out a relatively marginal existence compared
to the mainstream techniques. Despite the obvious appeal of the postulate that well-constructed
embodiment considerably simplifies robotic tasks and impressive examples (McGeer, 1990; Collins
et al., 2001; Pfeifer et al., 2007; Beer, 2014), there has been no established overall agreed-upon formal
framework with which to characterize and quantify embodiment and to demonstrate the relevance of
this concept for robot design, expressed in objective metrics allowing to compare embodiment
designs with each other. Here, we use information-theoretic measures as cognitive cost to compare
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embodiments. In particular, we study the effect of the encoding of
actions and multistep action scripts (Riegler and Polani, 2019)
using the “twisted world” method (Polani, 2011) on the
informational cost of the agent.

1.1 Informationally Cheap Stimulus
Responses Through Embodiment
Much of the historical discussion and motivation for studying
good embodiment comes from studying biological examples
(Varela et al., 2016). Living animals interact with their
environment regularly, be it to find food or to escape their
predators. In order to act effectively, the animal needs to sense
its environment and take decisions based on the stimuli. Both
require neural activity which is energetically expensive. In
contrast to traditional AI/robotic systems, finding a
compromise between saving deliberative resources and
optimizing some explicit value function becomes an essential
component of any biologically plausible survival strategy
(Laughlin, 2001; Polani, 2009). However, given that the neural
system of animals is one of the main consumers of energy
(Vergara et al., 2019) (for a human, about 20% is used by the
brain alone while it only contributes about 2% of the body
weight), this implies that maximizing the efficiency of
information processing is a major route to minimize energy
consumption, argued in previous studies (Klyubin et al., 2004;
Genewein et al., 2015). Thus, in biologically plausible decision
modeling, the question of how to minimize deliberative cost
becomes paramount. In particular, each reduction of the amount
the agent needs to sense and to make decisions is an advantage for
the organism.

In recent years, several attempts have been made to formally
incorporate and measure the impact of embodiment on
information processing in artificial agents. In (Montúfar et al.,
2015), the authors show how controller complexity interacts with
physical and behavioral constraints and that controller
complexity can be reduced if the latter is suitably adapted,
meaning well-embodied. Another study defines embodiment
as how actions that have an effect on the world are encoded
or labeled in the internal representation of the controller (Polani,
2011) while keeping the agent’s external situatedness the same.
Under the assumption that the agent has limited information-
processing resources, it shows that this internal labeling can
drastically affect the performance of an agent, even if the actual
dynamics of the world is completely unchanged. Or, vice versa,
to achieve the same performance level, the required
information processing resources can drastically depend on
the embodiment in the sense of this model. Both papers,
despite their differences, approach the question of the
quality of an embodiment from the philosophy that any
type of decision-making takes not only the pure quality of
the decision into account but also the informational cost
required to achieve it. The central message is: A good
embodiment is one that makes decisions informationally
cheaper, less complex, and thus more robust. Hence, a good
embodiment reduces the agent’s (in our case: informational)
effort to take decisions. Throughout this paper, we will

therefore always take the information cost of decisions into
account.

1.2 Limited Amount of Stimulus Responses
Through Embodiment
In natural organisms, we find two other special mechanisms to
save information processing costs: reflexes and fixed action
patterns (Dewsbury, 1989). Cascades of multiple actions
triggered by only one signal reduce the decision density, as the
behavior, once started, progresses without requiring decisions
based on intermediate stimuli.

Reflexes are complex reactions which are triggered by simple
(often peripheral) neural control without the involvement of
higher brain areas (Hurteau et al., 2018). Many reflexes
involve just one body part, such as the eye-blink-reflex; others
like the withdrawal reflex coordinate multiple body parts
(Willows and Hoyle, 1969). These actions produce a
potentially complex behavior with very limited information
processing and fast processing speed due to directly linked
neurons (Hurteau et al., 2018).

Similarly, fixed action patterns require little or no sensory
input and are found often in biological organisms. Such behaviors
comprise complex movements across a whole species that vary
only in intensity (decided at the start of the movement) but not in
form (Páez-Rondón et al., 2018). One example is the final jump of
a cat to its prey (Schleidt, 1974; Dewsbury, 1989): The prey’s
(future) position is set as the target position when beginning to
jump and the cat will miss the prey if the latter moves
surprisingly. Variations exist across individuals but these are
fairly small. Importantly, fixed action patterns run until
completion once started, suggesting they are run by “hard-
wired” neural controllers. This indicates that regularly
executed actions and action sequences can therefore profit
from automation or “scripting” in organisms—being
condensed into a “ritualized” sequence that does not respond
to any feedback from the environment once triggered. Both,
reflexes and fixed action patterns are often specific skills,
required for a particular species or the current “life
circumstances” of an individual.

1.3 Embodiment Considering Both
Strategies to Save Information Processing
Under the assumption that organisms attempt to minimize
information processing (Laughlin, 2001; Klyubin et al., 2004;
Vergara et al., 2019), fixed action patterns would offer a natural
route to reduce the decision density and overall information
processing cost. We hypothesize significant savings on
informational cost, especially when combined with
embodiments minimizing the information processing per
single stimulus-response (decision). In the present paper, we
will develop a minimalistic quantitative model to study the
essential links between information parsimony, embodiment,
and artificial fixed action patterns.

Concretely, we approach action sequences by combining
already existing (basic) actions into larger “super”-actions that
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do not require sensor input while running and are thus similar to
the behaviors of fixed action patterns. These are what we call
“scripts”. We then investigate the efficacy of these action scripts
using the information-theoretic framework from (Polani et al.,
2006; Polani, 2011) and investigate in which way a “well-chosen”
agent-environment interaction structure, (i.e. embodiment in the
sense presented above) impacts the cognitive cost of actions and
scripts. We will see in the results that using scripts makes
decisions more costly in some cases but does not in others.
Furthermore, the results show that the embodiment of basic
capabilities has a large impact on the cognitive cost to employ
those scripts in any of our scenarios.

This work is organized as follows. Section 2 defines the
nomenclature and basic concepts we will revisit throughout
the paper. In Section 3 we define scripts, twisted worlds, and
the model for costing decisions formally. Section 4 presents the
methodology used to evaluate the models. In Section 5we present
the result which will be discussed in Section 6 and end with the
conclusion in Section 7.

2 NOMENCLATURE

2.1 Probabilistic Quantities
We use uppercase letters for random variables A, S, lower case
letters to define a concrete value a, s and s, A for their respective
domain. In this paper all domains are finite. The probability for a
random variable S to assume a value s ∈ s is denoted as P(S � s)
or directly p(s) when there is no ambiguity. When two different
random variables have the same domain such as s, we will define
the random variables S and ~S or p(s) and ~p(s) for their
distributions to distinguish them. We will write St for a
random variable at time t (and st for its value). Its successor
state will be denoted as st+1. Sometimes we will use the common
shorthand version s and s′ in its place, especially when the
particular time t is not of importance.

2.2 Markov Decision Process
We use Markov Decision Processes (MDPs) to model the
perception-action cycle assuming that the world state can
be—in principle—fully known.

For the definition of an MDP we follow (Sutton and Barto,
2018). Given a state set s and for every state s ∈ s an action set
A(s), an MDP is given by a tuple (Ps′

s,a,R
s′
s,a) which for all s, s′ ∈ s

and all a ∈ A(s) defines a probability of performing action a in
state s and ending in state s′ in Ps′

s,a. R
s′
s,a defines a reward function,

mapping a certain reward to the agent when this particular
transition occurs. Note that the reward will in general depend
on the resulting state s′ and not only on the initial state s and
action a chosen.

A policy is denoted as follows π(a|s), the action a to choose in
the state s. Following the behavior specified by the policy, the
agent will accumulate a reward depending on the state st . For
π(a|st) the resulting reward is dependent upon the tuple (st , at ,
st+1) and given by rt . Following the policy to a goal state (an
absorbing state where no further reward is accumulated,

i.e., effectively a run stops there) will accumulate a certain
return Gt � ∑∞

t rt .
We will assume episodic tasks throughout the paper.

Therefore, we do not need to include a discount factor in the
cumulated reward (we ignore possible pathological “runaway”
phenomena, and limit our experiments to finite worlds). We see
the policy that maximizes the future expected return (the value
function Vπ(s)) for whichever state s ∈ s the agent is in give
policy π.

We further will write Vg(s) to be the value function induced
when g is specified as goal state (or set of goal states G). We
assume a negative transition reward, (i.e. a cost) for each
transition, except once the goal is reached, when the agent
stops and the episode ends. Vg(s) which is given by the
optimal value from state s to state g with respect to the reward
function and measures a type of (negative) distance from s to g
(or G).

The Q-function Q(s, a) permits this to be expressed as a value
assigned to a state/action pair instead of only a state:

Qπ(s, a) � ∑
s′ ∈ S

Ps′
s,a · [Rs′

s,a + Vπ(s′)]. (1)

From Q(s, a) one obtains directly the policy π(a|s).
Throughout the paper we use only the optimal value V(s) to
calculate Qp(s, a), and thus the resulting policy is the optimal
policy and thus the solution of the MDP.

2.3 Shannon Information and Mutual
Information
Shannon’s information theory describes the potential
information content of a random variable using its entropy
which measures the uncertainty about the outcome before the
actual value has been observed. Throughout the paper we will use
extensively use the concept of the mutual informationmeasuring
how much information Y provides about X (and vice versa)
defined as:

I(X;Y) � DKL(P(X,Y) ‖ PX⊗PY), (2)

where DKL is the Kullback–Leibler divergence of X and Y. This
quantity is non-negative and vanishes if and only if X and Y are
independent, that is when X does not provide any information
about Y and vice versa. For further details see (Cover and
Thomas, 1991).

3 MODELS

3.1 Scripts
Based on the basic action (Ab) of an agent, scripts are an extension
of the action space of the MDP framework, a construct similar to
fixed action patterns as found in biology. As such, Scripts are
completely independent of the state space of the MDP. Once
created, we assume the scripts to be available in every state as new
actions available to the agent. Scripts do not create new
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capabilities for the agent since they are completely built upon the
existing basic actions.

Scripts combine multiple actions originally taking one time
step into one new action. From the agent’s point of view, the time
steps inside the scripts are not accessible. Thus, scripts provide a
temporal abstraction similar to options (Sutton et al., 1999) and
sub-goals (van Dijk and Polani, 2011). Unlike scripts, these
approaches are also dependent on the state space as the
ending condition of an option and sub-goal are linked to
specific states of the MDP.

3.1.1 Definition of Scripts
Agents in reinforcement learning are assumed to have some basic
(atomic) actions. These actions vary depending on the task and
the granularity of the model (Sutton and Barto, 2018). Here we
adopt this assumption and call the set of basic actions Ab.

We define scripts as a sequence of n> 1 basic actions with
strictly more than one action:

Scripts � {(Ab)n}. (3)

This defines a single script as an ordered tuple, or better, a
sequence of all its components, for example
script � (a0, a1, a2, . . . , an−1). We do not consider the basic
actions on their own to be scripts. A script has to have a finite
length. Scripts do not introduce interaction modalities that were
not available before but instead, the agent gets the ability to decide
on the compound behavior at a single point in time, namely the
time when the script is triggered. This is especially suitable to
carry out basic actions which always follow each other in a fixed
sequence such as the dive of a falcon (Schleidt, 1974).

The new actions space in our model contains all basic actions
and all scripts up to a certain length:
Ab∪(Ab)1∪(Ab)2∪ . . .∪(Ab)n. In our model, there is no
mechanism to add or remove a script to or from the action
space. Of course, the algorithmmay decide to effectively remove a
script or action from use by setting its selection probability
to zero.

3.1.2 New Perception-Action Loop
The scripts now modify the Bayes Network of the perception-
action loop. As in a perception-action loop with no scripts
available, the state of the world changes every time step,
depending on its previous state and the basic action
performed by the agent (see Figure 1, top). The agent, though
performing a basic action every time step, only takes decisions at
some time steps and is only perceiving the world at these defined
times as the script runs fully in open-loop fashion (Distefano
et al., 2012), a major difference to options (Sutton et al., 1999).
The possibility to augment this with conditions to interrupt a
script is not studied here. The scripts create a new layer in the
perception-action loop allowing one to sequentially perform
actions impacting the world but without taking into account
any perception by the agent (see Figure 1, bottom).

With this, the intermediate layer in the form of scripts, this
layer now takes care of the sequence of actions and the timing of
when to perform these. We emphatically shall not consider the
processing and management cost required for running the script
itself once it started and assume the necessary hardware (such as
in the form of a suitable control circuit) is part of the agent’s given
design.

3.1.3 Hidden Temporal Abstraction
With the basic actions unchanged, scripts containing more basic
actions take more time steps to complete than shorter scripts or
basic actions. Thus, scripts provide a form of temporal
abstraction.

As a consequence, this forms a semi-MDP as the time steps of
the world no longer match the time steps (actually decision steps)
of the agent. For simplicity reasons, we will not model the length
of the scripts in time. Instead, we will only model the time steps
when the decision of the agent occurs and hide the difference in
“world-time-steps” in the reward (in our case, cost) function: A
script simply gives as much reward as if all basic actions it
contains were executed in sequence, implying it took longer.
From the agent’s perspective, this is just a different cost but with

FIGURE 1 | Top: Bayes Network of the perception-action loop of an agent with only basic actions. During every time step, the agent perceives the world. Bottom:
The Bayes Network of the agent’s perception-action loopwith an intermediate script-layer. The agent is only able to perceive and react to the world at some points in time
after the script is finished.
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one time step. Effectively, the agent is only aware of those time
steps in which it has to decide, even though the world itself has
finer time steps. Hence, by only modeling the time steps of the
agent, we can treat it as an MDP instead of a semi-MDP.

3.1.4 Effects on Value Optimization
Considering the scripts plainly as extensions of the action space,
they all follow the definition of an action in the traditional MDP-
framework with all state transitions being defined as (s′, r|a, s).
For every pair of state and (super-)action the agents moves to a
state and gets a reward as defined in the previous section. This
permits us to use value iteration in the precisely same way with or
without scripts, by either including or excluding the scripts with
length n> 1 in the set of actions.

With scripts available, every path can either be achieved by a
script moving along the full path or shorter scripts and basic
actions each only moving along part of the path. This is also true
for every optimal path. Hence, the resulting value-optimal
policies exhibit multiple optimal actions (basic action or
scripts) in every state and could be probabilistically selected
even though they might use the same basic action, whether on
its own or inside a script.

The new action space is also significantly bigger. In fact, the
potential action space can grow exponentially with the maximum
script length permitted. Hence, the computation time will thus
grow as well. This renders the optimization over the whole action
space that would contain every possible script infeasible for
longer script lengths. This also makes identifying ‘good’ and
‘bad’ scripts and preselecting the relevant actions and scripts in
the action space accordingly an important topic for the future.

3.2 Twisted World
The state space of an MDP does not have an initial interpretation
as anything else than a set of discrete, a priori unrelated states.
Linking these states using labeled actions often introduces
additional semantics in the labels of the states and actions. In
typical scenarios, e.g., in navigation, the same action label always
leads to the “same” (or an analogous) change of the state. This
injects a semantics into the labeling which is not part of the core
MDP formalism. The goal of the twisted world, defined by
(Polani, 2011), and subject of this section, is to investigate the
bias of a particular internal labeling, and thus any embodiments.

In traditional MDP models as previously defined, any state
could have its own distinct action set. Thus, the sets of available
actions are purely local in the MDP formalism. In other words,
each state could have its own private action labels. When
modeling an embodied agent, though (which is the typical
application of such models), the agent “takes its actions with
it” (Polani, 2011), so here all or most of the actions transfer from
state to state. It therefore makes sense to model them either as
identical or at least similar especially when the effect is the same
or at least similar across different states. We reiterate that this is in
contrast to the core MDP which assumes neither the label sets to
be the same across states, nor actions with the same labels across
states having an analogous effect. In the following, we will make
heavy use of this freedom to label action inconsistently.

3.2.1 Semantics in the Action Labels
We will now discuss the issue of the action labels in more detail.
One finds that action labels are often linked closely to the
designed task. For a coffee-cooking task these labels would
describe the interaction with certain ingredients or cookware,
while in navigation each action label often corresponds to a
specific global direction of the world the agent would move in,
while in particular, this direction usually is set by the model
designer to be coherent across states, such as selecting action
north always moves the agent toward the global northwards
direction. However, we emphasize that this is an assumption
that, while sometimes true, cannot be generally made.

One finds in real life multiple examples for action labels which
do not follow global properties and reflect local ones instead.
Hiking paths for example are often presented to a hiker using
signposts pointing to the local direction one is required to take to
reach particular goals. In order to follow one particular hiking
path on the mountain, hikers follow a provided identifier of the
path, for example, a location name which identifies the action to
follow the path independently from its relation to global
directions. This way the information to follow this particular
path is provided by the design of the action label (the path
identifier). To reach the goal, this identifier is what the agent has
to look for, and thus constitutes the information it needs to
process.

Different agents can have different action labels while existing
in the same world and having the same goal, making them look
for different clues in the world. Two hikers could follow the exact
same path, one using a globally oriented map and a compass to
follow the global properties while the other uses the local
signposts. The decision of whether to follow choose the next
path based on the global direction or follow the signposts
critically depends on the particular choice of embodiment. In
a way, the coherent label arrangement in global navigation can be
considered a well-adapted choice of labeling or an embodiment. It
corresponds to a well-chosen link between action labels and the
effect this has on the world dynamics or the task.

The agent’s choice of its internal labeling of its actions can thus
contain information about the world or its task. As an external
observer, we cannot make a definite assumption about the
internal labeling. As an example, the action “going along a
certain street” leading to the factory and the train station
might have a different label for the factory worker (way to
factory) and the commuter (way to station). In other words, a
“natural” link between action label and the expected effect on the
agent in its world may be present, but is always an additional
assumption which we—in our model—aim to study separately.
We will now construct a formalism that enables us to separate out
the implicit assumptions made in typical MDPs, especially those
embedded into a geometrical context, which is called “Twisted
World”.

3.2.2 Twisted World: Formalization
The Twisted World is a modification of a given MDP that aims to
locally remap the action labels onto the transitions. During this
process, we ensure that all actions lead to different transitions and
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all transitions remain feasible. Thus, in terms of action
possibilities and under a traditional MDP perspective where
each state s has its own—possibly singular—action set, the
problem to solve the MDP remains precisely equivalent.
However, it will turn out that this change has significant when
we consider the informational cost of the resulting policies, as
these look substantially different after the remapping (Polani,
2011).

We now formalize the concept of twisted world and follow the
formalism of (Polani, 2011). Let σs, a permutation A→A, on the
action set be defined for all states s of the MDP (Ps′

s,a,R
s′
s,a); σs is in

general different for different states s. Then, define the twisted
MDP (~Ps′

s,a, ~R
s′
s,a), by ~Ps′

s,a � Ps′
s,σs(a) and ~R

s′
s,a � Rs′

s,σs(a). Note that this
keeps the action edges in the state transition graph untouched and
remaps only the action labels.

The relabeling affects any actions taken; in the case of action
scripts the function σ is applied to every basic action a in the
script: (σs1(a1), σs2(a2) . . . σsn(an)) where si is the state of the
agent before the ith step of the script is carried out and action ai is
about to be taken to obtain its effect on the twisted scenario. In
particular, the length of the scripts remains unchanged.

Note that twisting does not change the optimal value for a
given state s: ~V(s) � V(s), and optimizing the MDP will find the
same value. The effectively executed state transitions of optimized
policies for both scenarios, twisted and untwisted, will be the
same, but the policies, as seen by the agent’s perspective (who
selects the actions by their labels) need to be remapped. This
remapping affects the Q-function of the new MDP: since the
policy ~π(s, a) � π(s, σs(a)), the resulting Q-function becomes
~Q(s, a) � Q(s, σs(a)).

The well-adaptedness of labels with respect to the embedding
in the world is an implicit assumption on the structure of the
world. In fact, it is a type of information that pervades the whole
state space, as it implies a coherent orientation across states. The
“twisted world”model permits us to limit or remove this implicit
assumption. Beginning with a well-adapted action labeling, we
will now consider twists σ of different degree. One consequence is
that in these twisted states the action labels do no longer denote
actions with a globally consistent effect, removing any
assumption of action consistency throughout the world. We
call all states s where σs is not the identity twisted states and a
world containing at least one twisted state a twisted world.

3.2.3 Twistedness of a World
We now define the twistedness (degree) of a twisted world to be
the ratio of the number of twisted states (|stwisted|) and the total
number of states (|s|).

Twistedness � |stwisted|
|s| . (4)

The twistedness of the world shows how much of one state’s
perception-action loop is transferable to the other states. An
intuitive example for a partly twisted embodiment is how
keyboard shortcuts change their meaning when a human
switches from one software to another one. While control + z
might mean undo in both programs, another shortcut might

mean to different things, such as control + d meaning delete in
program one while meaning duplicate in program two.

3.2.4 The Perfect Twist
Twisting the world allows for an interesting anomaly: perfect
twists. A perfectly twisted world is a world in which the agent can
follow just one action label to reach the desired outcome we
assume to be fixed. In a world in which all actions are linked to the
global directions, the agent cannot move into different directions
following just one action label. In a twisted world, this is possible.
Carefully selected twists can create direct paths leading the agent
to the desired outcome from any state using just one action label.

In randomly selected twists, however, it is, of course, highly
unlikely that such a perfectly goal-adapted twist occurs. On the
other hand, in nature, we observe many behaviors that can be
derived by following a simple gradient or feature of a sensor
stimulus such as optical flow, angle to a light source for flying
insects or similar (Srinivasan, 1994). In this case, the sensor can
be seen as implicitly activating the “same” action for as long as the
stimulus exists. With nature setting the example, this technique
has been adapted to be used in artificial unmanned aerial vehicles
(Miller et al., 2019). Of course, the organism needs the ability to
sense the gradient or a suitable proxy for it to generate such a label
which obviously is easier for some tasks than for others. Also note
that in general, such policies will be simple, and informationally
cheap, but not be perfectly optimal in terms of traditional
rewards.

In our examples, we limit ourselves to—in principle—fully
observable worlds, so the sensor does not contribute to the
simplicity of the action selection. In this sense, the perfect
twists are the perfectly adapted embodiment, purely in terms
of action labeling, to the world and the task.

3.3 The Cost of Decisions
Introducing scripts allows an agent to make a single decision and
multiple actions. Hence, the agent can execute actions without
deciding on it in every time step of the world. This allows us to
pinpoint at which states in the world the agent takes a decision
and where it does not. This further, allows us to model the cost of
a decision only when one occurs. We consider two aspects when
putting a “cost tag” on decisions, one is our informational costing
of decision-making, and secondly, achieving a more refined
analysis also permits the inclusion of an explicit cost for
taking a decision at all. This will be a cost, expressed in value
units which encompasses the sensory cost, information
processing, and the process of initiating the decision itself.
Note, this cost is separate from the informational treatment
and we will model it as an abstract cost in the reward
function. As in other mentioned work, the informational cost
of the decision will, in contrast, be quantified in terms of Shannon
information using the relevant information formalism (Polani
et al., 2006).

3.3.1 Definition of a Decision
To define the cost of a decision we first define “decision” in our
context. Usually, people using the term “decision” mean the
trigger point of a plan or an action after considering multiple
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possibilities (Endsley et al., 1997). The information to choose the
action has to be actively searched for, then being processed
and the action has to be triggered. However, in nature there
many examples of actions triggered by pure stimulus
response, such as the reflexes of a cat trying to balance
itself (Hurteau et al., 2018) or even to flee (Willows and
Hoyle, 1969). Those triggers are suspected to be directly
linked in the neural controller from the sensor to the
actuators. However also in those cases, the sensor is
collecting information which is then processed and the
result triggers an action. Thus, these action triggers not
“free” in terms of cost. Both triggers require information
processing and energy to keep the neural system running. We
abstract the internal structure of the decision making and
consider both cases a decision and model them as a stimulus
response in the MDP framework.

3.3.2 Relevant Information
An agent in the MDP framework needs to decide on an action
based on the state it is in and thus needs to know in which state it
is. Thus, the agent needs a certain amount of information about
which state the current state is. Essentially, the cost is expressed
here as the “per-step” relevant information that the agent needs to
process about the current state to select the appropriate action
which can be seen as the actual coding cost for the message sent
from the sensor to the actuator (Tanaka and Sandberg, 2015;
Tanaka et al., 2016). When an action (more precisely, action
distribution, as the policies are permitted to be stochastic) is
common among multiple states, these states do not need to be
distinguished since this does not affect the decision. Not having to
distinguish such two states reduces the information the agent
needs for the decision. For instance, in an extreme case where the
optimal action for the agent would be everywhere the same the
information necessary to be processed for a decision vanishes.
Where zero information cannot be achieved, our assumption is
that the necessary information will still be minimized. Relevant
information as a measurement was introduced in (Polani et al.,
2006) and quantifies the minimal amount of information that
needs to be processed during a decision given a certain
(minimum) value constraint. The individual probabilities of all
actions are defined by the policy. The mutual information
between state and action is a quantity depending on the policy
and the probability of being in a given state.

Formally, the relevant information of an MDP has been
defined as the minimal amount of Shannon information
required about the current state to select an action and
achieve a given average utility E[Q(S,A)] (Polani et al., 2006).
As the agent has no memory in this formalism, it has to acquire
new information about its current state at every step. The relevant
information is defined as the minimally achievable average of
such information to be acquired across all states of theMDP, even
though the specific amount of information necessary might differ
from state to state. For the purposes of this paper, we will limit
ourselves to optimal utilities only:

min
π(A|S)s.t.Eπ[Q(S,A)] �! Qp(s,a)

I(S;A), (5)

where I(S;A), the mutual information of the states and actions, is
minimized in the policy and Qp(s, a) is the optimal value the
agent can possibly achieve in a state s, taking action a. Therefore,
relevant information finds the policy with the smallest mutual
information among all policies achieving the optimal value.

This is a constrained optimization, which we solve by
introducing Lagrangian factor β:

min
π
(I(S;A) − βE[Qp(S,A)]), (6)

β needs to tend to the infinite limit to achieve optimality of the
value. The expectation E is taken over the joint distribution of all
states S and all actions A given by p(s, a) � π(a|s)p(s). Since,
I(S;A) is a concave function of p(x) for a fixed p(y∣∣∣∣x) and a
convex function of p(y∣∣∣∣x) for a fixed p(x), the current
minimization problem is similar to the rate-distortion problem
(Berger, 2003) with a different fixed point. Hence, we use the
same algorithm, the Blahut-Arimoto fixed-point iteration
(Arimoto, 1972; Blahut, 1972) to solve the problem and to
find the information-optimal policy which allows for the
minimal channel capacity, as in traditional information theory,
between sensors and actuators. Note that this means that, even for
an—in principle—fully observable world, the sensor does only
have to have this capacity and it needs to be tuned only to the
relevant features to achieve optimal performance. It is important
to note that the formalism only measures the amount of
information, not the individual features. The minimized
mutual information of state and action I(S;A) defined by (2)
and obtained by the aforementioned Blahut-Arimoto algorithm is
defined as the relevant information of the MDP solution and as
such the minimal channel capacity necessary (Polani et al., 2006).
If the agent does not have sufficient channel capacity from its
perception of the world state to selecting its action, the optimal
policy can not be reliably carried out.

Throughout this paper, we will assume a uniform distribution
p(s) of the states for which the decisions are being taken for these
calculations. Hence, every state is equally probable and actions
occurring only in a small number of states or even only one
contribute a lot to the mutual information. If these are not
absolutely necessary, these actions will be removed during the
minimization process. Thus, assuming the states to be uniformly
distributed, the relevant information analyzes how uniform the
actions across all states can be.

3.3.3 Non-Informational Decision Cost
Knowing when decisions occur allows us to analyze them further.
We do this by introducing a new component to the reward-
function, which depends on the occurring decisions. Combining
both rewards, we get a new reward function of:

r(s, a) � raction(s, a) + rdecision(s, a). (7)

This function allows to create a cost for a decision in addition
to the cost of performing an action. We will use this reward
function throughout the paper where, depending on the study, we
will set rdecision(s, a) to be zero (without decision cost) or one
(with decision cost). The magnitude of the decision reward
compared to that of carrying out an action is a model
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FIGURE 2 | Resulting policies for the different goal sets with and without decision cost. Different colors denote different actions (basic actions or scripts). Thus all
states with a differently colored action are the ones that need to be distinguished while the states with the same color can be interpreted by the agent as a single super-
state which does not need to be further resolved.
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decision, and we currently do not have a principled way of
choosing it. One could consider this cost as the actual
energetic cost of actually running a decision as compared to
the informational cost, which we propose to interpret as the
allocation of limited, but pre-existing computational resources to
take it.

4 METHODOLOGY

4.1 Scripts in Untwisted (“Well-Structured”)
Worlds
After introducing scripts as an extension to the action space
for RL we will investigate how this changes the agents’
behavior in a simple grid-world navigation task how the
cost of decision factored into the reward function will
affect this.

4.1.1 The World
During the following experiments, we will consider a small grid
world of 5 × 5 states, one start state, at least one goal state, and the
set of basic actions A � {north, east, south,west}. The MDP thus
is defined on the full Cartesian product of states and actions, in
other words, each state has the same selection of available action
labels. The basic actions are interpreted as a movement toward
the respective global direction indicated by the label unless stated
otherwise. The agent carries no internal orientation and is thus
always globally oriented (i.e. it does not keep to track of a
direction it points to). A scenario with these properties will be
henceforth called “well-structured”. Furthermore, we assume
there exists a goal state or a set of multiple goal states with
the properties defined in Section 2.2, effectively interrupting
ongoing scripts. We model all transitions costs as rewards
with the same value −1, and the cost of a script as the total
reward accumulated during the running of the script (unless
interrupted by reaching a goal state, see Section 3.1.3). The grid is
finite and its outer borders consist of “walls” preventing the agent
from leaving. An action causing the agent to walk into the wall
leaves the agent’s state unchanged but still incurs the usual cost of
1. Since here we only consider optimal policies, no agent will
waste effort walking into walls.

We will sometimesmodel an explicit decision cost. In this case,
we define the cost of every single decision to be −1 (see Section
3.3.3). With this reward function, the agent has the incentive to
make as few decisions as possible, while still taking the shortest
path. This minimal model is sufficient to separate the effect of
embodiment and of scripts to give insights into the effects of the
internal encoding of the basic actions.

4.1.2 Goal State Sets
We will look at four different goal setup, either single states
or a set of states of varying informational hardness (for
basic actions), which will permit exploring how different
aspects of our (admittedly minimalistic) problem
“morphology” changes affect the information balance of
the problem. The individual goal state sets are shown in red
in Figure 2.

Northern Border: This goal is composed of all northernmost
states of the world. With only basic actions available, the
relevant information is zero as the optimal action in all
states is the same, going north.
Central State: Only the central state, the state furthest from any
border of the grid, is a goal state. Reaching the goal requires
different actions from different sectors on different quadrants
of the goal. Thus the relevant information is comparably high
with 1.28 bits.
Center Line: Here a whole line running through the center is
set as goals. With only basic actions, the policy contains only
two of the four different basic actions driving the agent toward
the goal with a relevant information of 0.80 bits.
Corner State: Here, the goal is one state in one of the corners of
the world. The policy for this task contains two actions and a
relevant information of 0.25. As with the “Center Line”-setup,
we only require two actions to reach the goal, but one of the
actions is far more likely than the other, to achieve a lower
mutual information.

4.2 Scripts in Twisted World
For the next experiments, we will remove the well-structured
internal labeling of the actions by employing “twisted worlds”
with varying degrees of twistedness (explained in Section 3.2).
The general setup of the world stays the same: a grid world of
5 × 5 states with the Cartesian product of states and actions and
the goal setups described in the last section. We here furthermore
apply a twist σ to a subset of the states. We ensure that these
twists, while randomly chosen, are selected ahead of any actual
runs, and thus are fixed throughout an experimental series.

At the center of this experiment is the question of how the level
of twistedness affects the information processing cost and the use
of scripts for the given tasks. Keeping in mind that different twist
at the same level of twistedness can be favorable to a task or not
(see Section 3.2.4), we will average over multiple random twists
with the same twistedness.

4.3 Single-Action Trajectories
We now explore a special type of policies: Zero-Information
policies. In a way, these policies can be considered as providing a
“fingerprint” of the dynamics of the world and, in case of a twisted
world, the precise structure of the twists. Concretely, here, we will
investigate how close to potential goals the actions (basic actions
and scripts) lead under a Zero-Information policy. More
precisely, instead of specifying a goal, and computing the cost
of an optimal goal-directed policy at minimum information, we
take the converse approach: we select a Zero-Information
deterministic policy and establish how close to potential target
destinations the agent can get following these in a twisted world.
The idea of this experiment is to measure how effectively an agent
can traverse a world using no information, i.e. sensory input, that
is, in open-loop mode.

4.3.1 Zero-Information Policy
Formally, a Zero-Information policy is a policy for which the
mutual information is zero I(S;A) � 0. Effectively the agent
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decides to do the same every time step. Though, this can be a
probabilistic policy allowing the agent to choose between
different actions, as long as these choices are equally probable
at every point, for our analysis, we require a deterministic policy:
using a single deterministic action in every given state. For each
individual action (or script), there is exactly one deterministic
Zero-Information policy. Furthermore, a script can contain
multiple different basic actions within it, while still adhering
to the above open-loop requirement effectively repeating the
same sequence of basic actions over and over.

4.3.2 Open-Loop Trajectories
While traversing the world in an open-loop manner given a fixed
action, the agent follows a certain trajectory. We will characterize
the coverage of the state space for these “skeleton” trajectories
through the world using two different metrics for each potential
goal state.

The coverage of the Zero-Information trajectories is measured
in the following way: For each state s and possible goal g, we
consider the trajectory generated by a deterministic Zero-
Information policy and extract for each state on the trajectory
how much the optimal cost (Vg(s) distance to a possible goal in
units of MDP cost) for each of these states is and also how far
(steps along the trajectory) one has to move to minimize this cost.
In other words, if the generated trajectory (assuming the
movement is deterministic) consists of the states
(s0 � s, s1, s2, . . . sk . . .), we define the two characteristics as
minl[−Vg(sl)], the minimal distance (note that the distance is
always the negative of the value in our scenario) from the open-
loop trajectory at decision points to the given goal, and
argminl[−Vg(sl)], how many steps the agent needed to take to
get to the point of above minimum distance from its starting
point s0. Note that the agent can only leave a trajectory in states it
“stops on” and takes a decision. Thus, all distances to possible
goal states are measured only from these decision points which
are not necessarily the best state to branch off from, (i.e. having
the highest value of Vg(s)) on the trajectory. These two numbers
are the metrics we investigate in the following. Smaller values
indicate better coverage.

4.3.3 Experimental Setup
For this experiment we will use a grid world as before but this
time of the size 10 × 10. The (comparatively) larger world allows
the agent to take multiple steps on the Zero-Information policy
without reaching the end of the world. The coverage will be tested
with all actions and different levels of twistedness. For the
coverage experiment, the agent is not expected to reach a
specific goal but simply traverse it according to its open-loop
policy. Thus the world does not contain a goal. All states are
evaluated based on their distance as per the above metrics.

5 RESULTS

As general observation, the results show that, while scripts reduce
the decision density, this only rarely does not incur additional
informational costs while employing scripts usually either leads to

a higher information cost in goal-directed tasks or leads to a loss
in value when following open-loop trajectories. In twisted worlds,
scripts are typically informationally more costly, but in rarer cases
counteract the effect of the twists. We will start with the results
comparing basic actions and scripts for goal-directed behaviors in
well-structured worlds. Then, we proceed with the results in
twisted world including a newly found phenomenon similar to
the perfect twist which we will discuss below as “special twists”.
Subsequently, we will present the coverage of worlds when using
Zero-Information policies.

5.1 Scripts in Untwisted Worlds
For all experiments we only considered policies achieving the
optimal value as defined in Section 2.2. Note that for some goal
setups there can be multiple optimal solutions due to the grid
nature and high level of symmetry of the graph. This is still the
case after optimizing for relevant information.

Adding scripts to the action space without adding a separate
decision cost does not change the relevant information for any of
the goal sets as compared to only having basic actions available.
The optimized policies for the “Northern Border” setup and the
“Center Line” setup both contain scripts. The policies for the
“Central State” setup and “Corner State” setup which constitute
more localized goals only use basic actions (see Figure 2). Adding
a decision cost to the reward function changes these results, as the
optimal value is only achieved when the number of decisions is
minimized, and thus the agent is forced to use scripts in every
policy. For the “Northern Border” setup and the “Center Line”
setup, the actions too short to reach the goal from any state are
removed from the policy, but the relevant information does not
change as it does not become necessary to distinguish between
more groups of states than before. For the other two setups, the
relevant information increases: from 1.28 to 2.14 bits for the
“Central State” setup and from 0.25 to 0.66 bits for the “Corner
State” setup. This means there are nowmore states that need to be
distinguished from one another. In Figure 2, one can see that for
the corner goal there without the decision cost two types of
actions were used while the setup with decision cost uses four. For
the “Central State” setup the agent needs to distinguish between
even more states.

5.2 Scripts in Twisted Worlds
For the experiments in twisted worlds, we considered the same
world size and goal sets but every world contained a certain
percentage of twisted states. We are interested in the relevant
information and the occurrences of scripts in resulting policies,
this time depending on the twistedness. Overall, the relevant
information and the use of scripts becomes more similar across
the goals with increasing twistedness of the world. The exact
results are shown in Figure 3, left without and right with a
decision cost and the colors indicating the different goal sets:
Border Goal in blue (solid), Central State in green (dotted),
Center Line in cyan (dash-dotted) and Corner State in
magenta (dashed).

The relevant information rises for three (Northern Border,
Central Line, Corner State) of the four goals and only goes down
for the last one (Central State) which is not affected by adding a
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decision cost. This means that the untwisted world is the “easiest”
world for three of our setups and the hardest for the goal in the
center. In particular, the untwisted world proves to be unsuitably
twisted for this particular goal.

Without a decision cost, scripts appear less often in the policies
navigating the twisted world. Furthermore, the development of
the relevant information for the “Central Line”-setup and the
“Corner State”-setup is surprisingly similar. However the use of
scripts is very different: The “Corner State”-setup uses scripts
rarely, independently of the twists, while the “Central Line”-setup
still uses scripts in the fully twisted world.

Interestingly, we see that the goals containing five states are
equally difficult in the fully twisted world which is also the case for
the two goal setups containing only one state. Thus, showing
goals consisting of an equal number of states seem equally
difficult to reach in a fully twisted world.

In the plot with decision costs, we see that all goals have a
higher relevant information in a fully twisted world compared to
those without it. Note, the scales of both plots are different. Since
the agent is incentivized to minimize the number of decisions,
every policy contains scripts. An interesting observation is that
the “Northern Border”-setup (blue) which is not harmed by the
decision cost in the untwisted world becomes the most difficult
one in a fully twisted world. The “Center Line”-setup (cyan),
initially not affected by the decision cost as well, shows a different
behavior: It becomes the easiest setup in terms of relevant
information on average at 100% twistedness.

Generally, the development of the setups with and without
decision cost appears similar, but, on closer analysis, one finds
that the decision cost has a big impact on the behavior in twisted
worlds.

5.2.1 Special Twists
Interestingly, there are “special” twists allowing the agent to use
scripts without affecting the relevant information compared to
the relevant information when only basic actions are available.

These particular scripts fully negate the effect of the σs(a), and
thus, that of the twists, by encoding the relabeled action directly in
the script.

An example of such a special twist for the “Northern Border”
setup is shown in Figure 4. In this twist all states of each row have
the same action label leading to the agent moving north (also
indicated by the colors), concretely: green: σ(east) � north,
yellow: σ(west) � north, purple: σ(north) � north and blue:
σ(south) � north. Hence, when the agent takes a decision in
any of the green (or any other single color) states it will experience
the same twists on its path to the goal. Thus, this world is divisible
into five different paths with the same regular occurrences of
certain twists from the southernmost states to the goal. A script
can model the future steps easily, in fact as easily as basic actions
can. In this way, the scripts and basic actions next to the rows in

FIGURE 3 | Relevant information depending on the twistedness of the world for the different goal setups: Border Goal in blue (line), Central State in green (dotted),
Center Line in cyan (dash-dotted) and Corner State in magenta (dashed). Note, the scale for the value of relevant information is different in both plots.

FIGURE 4 | Example of a specific special twist for the “Northern Border”
setup: All fields with the same color have the same twist regarding the action
north (green: east → north, yellow: west → north, purple: north → and blue:
south → north). Thus all five paths to the goal are the same and the
resulting policy containing the scripts shown on the right side in information
optimal.
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Figure 4 show an information-optimized policy for this twist.
Of course, the policy containing in each row only the first basic
action is also an information-optimal policy but it is
interesting that the scripts here are part of an information-
optimal policy despite the high level of twistedness (at
least 60%).

However, when those exact same twists do not occur all in the
same row but are scattered in the world, the information-optimal
policy only contains basic actions. It is important to note that this
policy still has the same relevant information as with the ordered
twists. Thus, we observe that scripts require more regularity to be
used in an information-optimal fashion.

FIGURE 5 |Comparison of the single action trajectory of the basic action (west) in blue (•), the script (west, west) in green (▲) and the script (west, north) in magenta
(▼) from the southeast corner of the world. Top, the average distance (Vg) of the possible goal states, (e.g all states) per step on the trajectory. Second, number of states
with a given distance Vg from the agents movements for the basic action (west). Third, number of goals with a given distance Vg from agents movement for the script
(west, west). Fourth, number of goals with a given distance Vg from agents movement for the script (west, north).
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5.3 Single-Action Trajectories
Themain objective of these experiments is to investigate the effect
of twists on the coverage of the environment if a deterministic
open-loop policy is run (either a single fixed basic action or a
repeated application of a fixed script).

The effect of this depends on both the twist and the action
(basic action or script) selected. In general, we find that the scripts
get to the other states in fewer decisions and that the distances in
twisted worlds tend to be higher. The detailed results are shown in
the following subsections.

5.3.1 Untwisted World
First, we compare a basic action to two different scripts shown in
Figure 5. In all cases the agent started in one particular state, the
southeast corner to make sure the setups are as similar as possible.
Then the agent executed either the basic action (west), shown in
blue (108), the script (west, west) shown in green (115), or the
script (west, north) shown in magenta (116). Using any of these
actions, the average distance to the possible goal states, (e.g all
states) decreases when moving until the wall around the world is
reached which stops further coverage. The basic action and the
script (west, west) both move along the same trajectory. Both
actions visit the ten states directly shown by distance zero as
shown in the second and third plots of Figure 5, which shows the
number of states at a given distance after reaching the wall.
However, compared to the basic action, the script has fewer states
with a distance of Vg � 1 but some with a distance of Vg � 10.
This is due to the fact that the agent cannot branch off the

trajectory in any state but only at decision points. Thus, we
observe in the first plot that the distances per decision decrease
more with every decision for the script but it does not reach the
same distances overall because of the missing decision points. For
every other state as the fixed start state, this looks similar, though
the wall is often reached in fewer steps.

Now, we look at a script that actually includes different basic
actions, a capability only possible after the introduction of scripts,
here (west, north). In the last plot of Figure 5, we show the
number of states at a certain distance for this script. This script
visits 19 states directly (Vg � 0) which is far more than the other
two actions. Furthermore, this script also achieves Vg � 1, Vg � 3,
and Vg � 4 for more states than both other actions, and thus
achieves a lower average distance shown in the first plot in
magenta (▼).

Next, we compare two scripts we found to achieve a dissimilar
coverage of the environment: In Figure 6, we compare two scripts
(west, east, west, east), shown in magenta (▼), and (west, north,
east, north), shown in green (▲). Again the agent started in the
southeast corner. Further, the basic action (in blue (C)) from five
is added as a baseline. The first graph shows that the magenta (▼)
action does not get any closer to the other states after the first
executed step while the green (▲) one does. In Figure 5, the script
traversed the world faster than the basic action. However, this is
not the case for the script (west, east, west, east), in fact, this
scripts only ever visited two states. We will refer to scripts with
this behavior as “non-traversing” in the future. The script (west,
north, east, north) on the other hand achieves smaller distances to

FIGURE 6 | Comparison of the single action trajectory of the script (west, east, west, east) in magenta (▼) and the script (west, north, east, north) in green (▲) from
the south east corner of the world. Top, the average distance (Vg) of the possible goal states per step on the trajectory. Middle, number of goals with a given distance for
the script (west, east, west, east). Bottom, number of goals with a given distance for the script (west, north, east, north).
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many states than the basic action. In fact, from the third plot, we
see that 20 states are directly visited by this script.

Both of these scripts are extreme cases found during the
experiments with all scripts. Thus, the other scripts fall
somewhere in between those extremes. This shows, however,
that the different scripts are of highly different usefulness for
traversing the world.

Lastly, we compared scripts of different lengths using the
average distances per step averaged over all scripts of a certain
length and all states of the world as starting states. The blue (C)
line in Figure 7 shows the performance of all scripts with a length
of two. Motivated by the results from the last paragraph, we
removed all scripts with the worst performance (never visiting
more than two states) from the script space. The resulting
distances drop significantly and are shown in green (▲).

The magenta (▼) points refer to the average distances
achieved with scripts of length three. With these the distances
not only decrease in fewer steps but also decrease further
compared to the scripts of length two. This is due to the fact
that this action space includes very far moving actions such as
(west, west, west) but also those which only effectively move one
step such as (north, south, west). The second type of action
traverses the world more slowly but actually improves the
distances to some possible goals. Furthermore, there are no
scripts of length three visiting only one or two states in all
start states. Thus, we cannot prune low-performing scripts of
length three as simply as with scripts of length two. All longer
scripts behave similarly with the evenly long scripts including
some non-traversing ones and the unevenly long scripts not.

5.3.2 Twisted World
Twisting the world creates different paths the agent takes when it
always repeats the same action. Thus, it can visit different states
than before. Furthermore, the twists make it likely that the agent

will visit a state multiple times after an initial transient. A typical
trajectory is therefore composed of an initial transient and an
“attractor”which in general will be a cycle, but can degenerate to a
cycle of size one, that is, a fixed point. On the other hand, there
always exists a perfect twist (see Section 3.2.4), in the sense that
one can create a path visiting every state by always repeating the
same action. As the agent has to visit all states, including the four
corners which only have two possible basic actions allowing them
to leave, the other two basic actions must leave the agent in the
corner. Thus, there cannot be a twist creating “all-covering” Zero-
Information trajectories for every action. Hence, when averaging
over every available action and all states as starting state the
perfect twist for one action is negated by the performance of the
others.

During the first experiment, the agent was only able to use its
original basic actions. In Figure 8 the average distances per step of
five different levels of twistedness (0% (blue (108)), 20% (green
(115)), 30% (magenta (116)), 50% (cyan (72)) and 100% (red
(58))) are shown. For the starting state, all worlds have the same
distances to possible goals. After the first step, the average
distances are still the same. The reason for this is that the
agent either moves to a new field or walked into a wall.
However, the number of actions leading into a wall does not
change because of a twist and thus the same amount of first steps
move into the wall. In the following steps, the average distance
decreases until the agent, independently of the start state, does not
move any further. The coverage of the environment highly
depends on the twistedness, as the agent traverses the fully
twisted world the least and the untwisted world the most as
the latter achieves the lowest values in our metrics. Worlds with
intermediate twist ratios fall in between.

Traversing the twisted worlds with scripts (shown in Figure 9)
shows a similar result to the basic actions: The more twisted the
world is, the less the agent traverses the world. Interesting is that

FIGURE 7 | Average distance (Vg) of the possible goal states per step
on the trajectory for all scripts of length two in blue (C), all scripts of length
three in magenta (▼) and the scripts of length two when removing all scripts
only oscillating between two states in green (▲).

FIGURE 8 | Average distance (Vg) of the possible goal states per step
on the trajectory for all basic actions in worlds with different twistedness: 0% in
blue (C), 20% in green (▲), 30% inmagenta (▼), 50% in cyan (+) and 100% in
red (+).
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removing the previously bad scripts (see Figure 7) only achieves
comparably little improvements in terms of the distances,
especially for highly twisted worlds.

The reason for this is shown in Figure 10 on the left. Here we
again compare the scripts (west, east, west, east) and (west, north,
east, north) from Figure 6. There the bad script ((west, east, west,
east)) is evaluated and actually becomes more viable with more
states being twisted. It did not reach more coverage than the
previously good script ((west, north, east, north)) in Figure 10 but
far more than in the untwisted world. The previously good script,
in the right in Figure 10, is affected very differently by individual
twists and thus sometimes getting worse with twists but other
times better with the twists. Since the red (58) curve is very low,
we suspect that here many almost perfect twists occur for a fully
twisted world (see Figure 10).

The achieved distances of the bad script show it is getting
better the more the world is twisted. Interesting is also that the
good script works exceptionally well in the 100% twisted world.
This is due to the fact that for this script many possible good
twisted world exist.

To summarize all results, twisting the world leads to less
coverage of the world independently of whether basic actions
or scripts are used. Furthermore, in the twisted world, it is less
easy to clearly separate between “bad scripts” and “good scripts”
because the twist can turn originally advantageous scripts into
ineffective ones and vice versa.

6 DISCUSSION

This paper contains three major points. First, the formalism for
the creation of scripts from basic abilities to reduce the decision
density; second, whether there exist scenarios in which scripts
incur no additional control complexity for goal-directed
navigation in both untwisted and twisted worlds; third, the
merits of scripts for traversing the state space in general again
comparing untwisted and twisted worlds. In all cases, we explored
if and how scripts save resources for the agent and how the
internal coding, the embodiment, of the basic actions impacts the
cognitive cost.

FIGURE 9 | Average distance (Vg) of the possible goal states per step on the trajectory for all scripts with length two (left), pruned scripts with length two (middle)
and scripts with length three (right) for worlds with different twistedness: 0% in blue (C), 20% in green (▲), 30% in magenta (▼), 50% in cyan (+) and 100% in red (+).

FIGURE 10 | Comparison of the trajectory of the script (west, east, west, east) on the left and the script (west, north, east, north) in the right in worlds with different
twistedness: 0% in blue (C), 20% in green (▲), 30% in magenta (▼), 50% in cyan (+) and 100% in red (+). The achieved distances of the bad script show it is getting
better the more the world is twisted. Interesting is also that the good script works exceptionally well in the 100% twisted world. This is due to the fact that for this script
many possible good twisted world exist.
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6.1 Scripts
The core concept of a script is combining different basic actions
to an action sequence accessible as a whole. Thus, the script is a
composite action built out of basic capabilities to a new more
complex capability. In reinforcement learning, the option
framework comes to mind as achieving something similar:
combining multiple actions to an option (Sutton et al., 1999).
Both approaches (scripts and options) create new actions
lasting over multiple time steps but are triggered only once
and then executed. However, the execution of these actions is
fundamentally different: While an option is a sub-policy,
constantly processing information, and reaching certain
termination criteria, a script does not take in any feedback
from the world and terminate after executing all actions. Thus,
the goal of both concepts is different: An option reaches a
subgoal; a script executes pre-defined actions in a pre-
defined order.

Scripts are modeled after fixed action patterns which are
highly specific to the animal (Schleidt, 1974). Many of these
patterns have their individual neural sub-controller, often found
in the spinal cord of animals (Desrochers et al., 2019). Similarly,
we assume the scripts themselves to be generated by a different
control unit to which the agent can delegate the detailed
execution (see Section 3.1.2), but which does not require
deliberative resources. In this case, we consider the agent to be
able to “outsource” this computation from its main decision
making unit to the sub-controller of the scripts. How exactly to
include external processing in the consideration of information
cost is not discussed in the present paper and will be investigated
in future work.

6.2 Goal-Directed Behavior
In an untwisted world, adding scripts to the action space has
shown to be informationally optimal for some setups but not for
others. In Section 5.1 the “Northern Border”-setup and the
“Center Line”-setup have both shown to make use of scripts
without a rise in relevant information. Thus, the agent can save
decisions and does not need to process more information
allowing one to save resources. For other goal setups chosen
(“Central State” and “Corner State”), however, scripts are not
selected after the optimization. So, the usefulness of scripts
depends on the setup, that is, the task, even for a minimalistic
one like this. Both setups (“Northern Border”, “Center Line”)
using scripts result in a relevant information below 1 bit. This
leads to the hypothesis that a low relevant information leads to
the use of scripts. However, the “Corner State”-setup which does

not use scripts has a low value of relevant information as well.
Thus, the value of relevant information does not directly indicate
whether scripts are useful or not.

For some setups, forcing the use of scripts by adding the
decision cost to the reward increases the relevant information. In
other words, the agent needs more precise knowledge
(information processing) to take the decision what to do in a
future step before it actually occurs, as seen in the results in
Table 1 with decision cost for the “Central State”-setup and the
“Corner State”-setup. This suggests that in some of these cases,
taking a decision late on the path and increasing the number of
decisions might be informationally cheaper in total, though this
needs further investigation in the future. The difference of
relevant information with and without the decision cost gives
us an idea of whether scripts can be easily used for a particular
setup. However, what causes the different goal setups to be script-
friendly or not will be part of our future work.

With the introduction of the twisted world, we removed the
well-ordered labeling of the basic actions and thus any specific
external design regarding the information about global directions,
pervading the whole world. The twists decouple the encoding of
triggering actions (in our interpretation of the concept of
“embodiment”) and their effect on the world and thus,
removes the morphological computation aspect of the
environment. We now consider how these automatic open-
loop scripts interact with the environmental twists and under
which circumstances a good twist can reduce the agent’s
cognitive cost.

In general, the results in Section 5.2 have shown the agent is
required to control its actions more precisely and needs to process
more information. For most of the tasks, the informational cost of
the policies increases independently of the availability of scripts,
the more the world is twisted. However, for the “Central State”-
setup, the twists made the policies easier in terms of information.
In fact, the “well-labeled” world required the most information,
suggesting that the obvious (“trivial”) label is not necessarily the
best for all cases. The action following a specific basic action is less
predictable in a twisted world and thus, scripts are less used in
twisted worlds even when available. When forced through a
decision cost, the relevant information increases. A high value
of the relevant information indicates that scripts are not easy to
use for a particular task.

Even though most twists make scripts difficult, some twists
allow for the use of scripts. When the twists occur with a certain
regularity, the scripts are actually able to represent twists within
itself. Hence, scripts can embody this regular irregularity created

TABLE 1 | Relevant information and occurrences of scripts for the different goal setups.

Without Decision Cost With Decision Cost

Setup Relevant
information In bits

Scripts used? Relevant
information In bits

Scripts used?

Northern Border 0 Yes 0 Yes
Central State 1.28 No 2.14 Yes
Center Line 0.80 Yes 0.80 Yes
Corner State 0.25 No 0.66 Yes
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by a particular twist along all paths to the goal (see Figure 4).
Furthermore, all states from which this particular irregularity
begins can be grouped, as they are in Figure 4, with different
lighter colors. In fact, the informationally optimized policy
directly creates these groups of states with the assigned
actions. Additionally, the scripts require the twists to appear
with a certain regularity along the paths but basic actions do not
require this. Thus, we hypothesize that scripts need more
regularity in the world to be information-optimal than the
basic actions. Hence, a regular embodiment is even more
important when we want to reduce the decision density.

From these results for goal-directed behavior in twisted worlds
in Section 5.2, we definitely see the importance of well-labeled
actions, that is what we interpreted as “embodiment”, being
adapted to the world and the goals. In cases when the label of
an action corresponded to the same direction in every state, the
actions are linked to a global feature of the world. We interpret
this as the embodiment of the agent representing a semantic
global feature of the world. In Figure 3 we see that breaking this
embodiment more and more results in higher information
processing for three of the setups. However, we also see this is
not the case for the “Central State”-setup. Thus, the agent needs to
process less information for multiple goal setups in an untwisted
world but not for all.

Note here that the setups previously using scripts were not
using the scripts anymore when the world was changed to a
twisted one. Hence, to use scripts in an information-
parsimonious context and thus, take fewer decisions, the
embodiment of the agent and particularly its basic actions are
important.

6.3 Traversing the World
In contrast to the previously discussed results, here the question
was whether an agent reached a goal or how closely it could
approach it without any information processing whatsoever.
Next, we will discuss the affect of scripts and twists on the
agent’s capability to traverse and cover the state space with
limited information processing.

We observe a difference between an agent with scripts and one
with basic actions: The first was able to traverse the world with
fewer decisions. However, the average distance to the states which
were not visited in this case was larger for the script repeating the
same basic action. The reason for this is that the agent cannot
branch off at any state of the trajectory but only when a decision is
made. Thus, scripts allow the agent to move with fewer decisions
but are in the above sense, less accurate. The other script (west,
north) (see Figure 5) shows the potential of scripts containing
different basic actions, visiting more states directly and achieving
lower distances overall.

During all experiments with a twisted world, the agent came
close to fewer states than in an untwisted world. Hence, twists of
the labeling of the basic action make traversing and covering the
world harder, independently from the availability of scripts. In
twisted worlds, the agent ended up visiting the same states over
and over, creating the projected trajectories composed of an
initial transient and an “attractor” the agent never leaves.
Thus, we can say that a well-chosen labeling of basic actions

plays a major role in the coverage of a state space with Zero-
Information policies.

This task cannot only evaluate an agent as a whole but also its
individual actions, in other world evaluate a script. Using
consistent labeling, scripts not traversing the state space are
easier to spot. Since these scripts provide little value for
navigation (only reaching two states in however many steps),
these scripts can easily be identified as bad choices for the task,
and thus adding a new sub-controller for it is a useless effort. Its
potential relevance for modeling biological control mechanisms is
that it is very important to know what not to spend resources on
or into which skills not to invest. Hence, the information that a
certain script is useless ahead of time is valuable information.
However, in a twisted world, this decision is much harder. Almost
every script has at least some merit somewhere in the world. In
fact, the more the world is twisted, the more “traversing” all
previously non-traversing scripts became. Hence, in an untwisted
world non-traversing scripts are far easier to identify than in a
twisted world.

7 CONCLUSION

We studied relevant information in the framework of
reinforcement learning and action scripts as well as untwisted
(well-labeled) and twisted (ill-labeled) worlds. We were especially
interested in the effect combining actions to scripts has on the
relevant information. We further studied the importance of the
embodiment of the basic action labels by comparing the
untwisted world to varyingly twisted worlds.

We defined a script, a fixed sequence of basic actions, as an
extension to the reinforcement learning framework. A script
creates new skills from the existing ones to composite actions,
does not take feedback into account, is open-loop, and is
similar to a fixed action pattern. Adding these to an agent,
it now can decide on multiple future actions at once. However,
adding all possible scripts creates a huge action space, and
which scripts should be added to the action space, is an open
question.

We have analyzed the changes in information processing
when using the new action space in goal-directed tasks We
clearly see that there are cases for which the introduction of
scripts allows the agent to save decisions without processing more
information for an average decision. For other cases, we see this is
not possible. This suggests that, depending on the task, scripts can
save decisions at no additional cost.

We then tested the scripts against a label-wise twisted world,
that is, what we interpret in the abstract transition graph model of
our world, as a different basic embodiment. Independently from
the use of scripts or basic actions, the agent had to process far
more information per decision. In most cases, the scripts would
be used as little as possible. Overall, a high value of relevant
information, whether because of the selected goal or the
twistedness, makes the use of scripts less attractive.
Interestingly, scripts have shown to work well with some
special “ordered” twists in Section 5.2.1. This leads us to the
conjecture that scripts need to exploit some sort of ordered
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feature of the world to be effective. In these cases, the script
embodies the irregularity of the world.

Limiting the agent to a Zero-Information policy while
traversing the world, we clearly see scripts needing fewer
decisions than basic actions. Still, trajectories generated by
scripts are less accurate compared to basic actions. A twisted
world is generally badly covered, independently of the use of
scripts. This shows that a consistent labeling of basic actions
which provides a kind of orientational semantics to the
embodiment is important to save information processing
during the tasks. This technique further allows us to evaluate
an action with respect to its use for traversing the state space.
Non-traversing scripts are easily spotted when the world is well-
structured, a step toward reducing the action space to good
scripts. In a twisted world, however, these “bad actions” are
no longer as obviously bad and therefore harder to spot. Thus,
a consistent labeling allows to identify more easily which scripts
are useless to have in the repertoire. A well-adapted labeling of the
basic actions allows one to make decisions more easily
(informationally cheaply). This is further enhanced by the
ability to create scripts which reduce the number of decisions
overall.

Among other, the results show that scripts are in general more
sensitive to twists than basic actions. Why this is the case and
what exactly causes it is a question for the future. We suspect that
understanding this phenomenon will also give further insight into

the cause when special twists as observed here occur which are
then exploitable by scripts. In general, we see only some scripts
being used at all. Thus, one goal of future research will be to
predict such useful scripts (especially if they apply to more than
one goal), and only adding these to the action space and thereby
reducing the huge action space that the current method requires.
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