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SUMMARY

The dendritic tree of neurons plays an important role
in information processing in the brain. While it is
thought that dendrites require independent subunits
toperformmost of their computations, it is still not un-
derstood how they compartmentalize into functional
subunits. Here, we show how these subunits can
be deduced from the properties of dendrites. We
devised a formalism that links the dendritic arboriza-
tion to an impedance-based tree graph and show
how the topology of this graph reveals independent
subunits. This analysis reveals that cooperativity
between synapses decreases slowly with increasing
electrical separation and thus that few independent
subunits coexist. We nevertheless find that balanced
inputs or shunting inhibition canmodify this topology
and increase the number and size of the subunits
in a context-dependent manner. We also find that
this dynamic recompartmentalization can enable
branch-specific learning of stimulus features. Anal-
ysis of dendritic patch-clamp recording experiments
confirmed our theoretical predictions.

INTRODUCTION

Brain function emerges from the orchestrated behavior of billions

of individual neurons that transform electrical inputs into action

potential (AP) output. This transformation starts on the dendritic

tree, where inputs are collected, and proceeds to the axon initial

segment where APs are generated before they are transmitted to

downstream neurons through the axon. While axons appear to

merely communicate the neuronal output downstream, den-

drites collect and nonlinearly transform the input. This phenom-

enon, termed dendritic computation, has been shown to occur

in vivo and to be required for normal brain function (Grienberger

et al., 2015). In both experimental and theoretical work, an abun-

dance of dendritic computations have been proposed (London

and Häusser, 2005; Silver, 2010; Torben-Nielsen and Stiefel,

2010). Nearly all of them assume that dendrites are compartmen-

talized into independent subunits: regions on the dendritic tree

that can integrate inputs independently from other regions.
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The computational significance of these subunits arises from

their ability to support independent regenerative events, such

as N-methyl D-aspartate (NMDA), Ca2+, or Na+ spikes (Wei

et al., 2001). These events, where an initial depolarization is

enhanced supralinearly by subsequent synaptic inputs and/or

voltage-dependent ion-channel currents (Major et al., 2013),

significantly strengthen the computational power of neurons.

They enable the local decoding of bursts of inputs (Polsky

et al., 2009) and hence, through branch-specific plasticity (Gold-

ing et al., 2002; Govindarajan et al., 2011; Losonczy et al., 2008;

Weber et al., 2016), drive the clustering of correlated synaptic in-

puts (Gökçe et al., 2016; Larkum and Nevian, 2008; Lee et al.,

2016). A recent finding that distal apical dendrites can spike

10-fold more often than somata (Moore et al., 2017) suggests

an important role for this branch-specific plasticity. Independent

subunits furthermore allow different input streams to be discrim-

inated from each other (Johenning et al., 2009), and they facili-

tate sensory perception through feedback signals (Takahashi

et al., 2016).

When triggered independently, these local regenerative

events are predicted to enable individual neurons to function

as two-layer neural networks (Poirazi et al., 2003a, 2003b). This

in turn should enable neurons to learn linearly nonseparable

functions (Schiess et al., 2016) and implement translation invari-

ance (Mel et al., 1998). On the network level, independent sub-

units are thought to dramatically increase memory capacity

(Poirazi and Mel, 2001), to allow for the stable storage of feature

associations (Bono and Clopath, 2017), represent a powerful

mechanism for coincidence detection (Chua and Morrison,

2016; Larkum et al., 1999), and support the back-prop algorithm

to train neural networks (Guergiuev et al., 2017; Sacramento

et al., 2017; Urbanczik and Senn, 2014).

Thus, abundant data show that dendritic trees consist of a

multitude of subunits, and both experimental and theoretical

work suggests an important computational role for these sub-

units (Major et al., 2013). Nevertheless, to date, there is no crite-

rion to quantify the conditions under which regions on the

dendrite support the independent triggering of regenerative

events, and there is no clear idea about the number of such sub-

units that can coexist on a given dendritic tree. The most preva-

lent hypothesis likens dendritic subunits to individual branches

(Branco and Häusser, 2010).

In this work, we develop a computational method to answer

these questions. We link the dendritic arborization to an
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impedance-based tree graph and show how the topology of this

tree graph reveals independent subunits. We find that even

though voltage may decay sharply toward branchpoints, the re-

maining depolarization can still cause cooperative dynamics,

hence limiting the number of compartments that coexist on den-

dritic trees. We show that the degree of cooperativity between

synapses can be summarized with a single, measurable number,

which we term the impedance-based independence index ðIZÞ.
We compute this index from dendritic patch-clamp recordings

from basal dendrites of layer 5 (L5) pyramidal neurons in the so-

matosensory cortex (Nevian et al., 2007) and find the obtained

values to agree with our models. We finally demonstrate that

compartmentalization is not a static concept but can be regu-

lated dynamically, since balanced inputs or shunting inhibition

can modify the topology of the impedance-based tree graph

and increase compartmentalization in a global or a highly local

manner. This increase in compartmentalization can decorrelate

synaptic weight dynamics and hence enable the branch-specific

learning of stimulus features.

RESULTS

ADrastic Simplification of the ‘‘Connectivity Matrix’’ of a
Neuron
Formalizing the concept of a dendritic subunit requires studying

the generation of local regenerative events in conjunction

with the electrical separation between synapses. Consider the

following scenario: if we were to depolarize a dendritic branch

by an amount DV (for instance, by injecting a current), then we

would alter the probability for local synapses to elicit regenera-

tive events (for instance, through the voltage dependence of syn-

aptic currents such as the NMDA current; Jahr and Stevens,

1990a; MacDonald and Wojtowicz, 1982). If DV were small

enough, then the change in this probability would be negligible,

and the local synapses could be considered independent with

respect to the perturbation. In the brain, these changes in voltage

are caused by synapses elsewhere in the dendritic tree, which

may also elicit regenerative events themselves. Thus, we must

ask whether regenerative events elicited elsewhere are attenu-

ated to a sufficient level, allowing local synapses to elicit regen-

erative events independently.

However, under conditions in which many synapses are

active, it is difficult to untangle the loci of origin of the fluctuations

at any one dendritic site. Fluctuations that facilitated local regen-

erative events may have originated in nearby sibling branches,

more centripetal or centrifugal branches, or wholly different sub-

trees. Additionally, the degree to which these fluctuations prop-

agate to any other locus on the neuron is not fixed but depends

on all other inputs through synaptic shunting (Gidon and Segev;

2012). Thus, fluctuations at any one site are a tangled, context-

dependent combination of the inputs at all other sites. Here,

we solve this ‘‘tangling’’ problem by expressing the voltage in a

way that these fluctuations are never tangled in the first place:

we express the dendritic voltage as a superposition of voltage

components at different spatial scales (Figure 1A).

Our model of superimposed voltage components can be visu-

alized as a tree graph, which we term the neural evaluation tree

(NET), where each node represents such a component and inte-
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grates only inputs arriving into its subtree (Figure 1A, right). The

root node of the tree (yellow node in Figure 1A) integrates all in-

puts to the neuron, whereas the leaf nodes (pink and blue nodes

in Figure 1A) only integrate inputs in parts of local subtrees or

branches. In this tree, the locus of origin of fluctuations is readily

available: if fluctuations that influence regenerative events at

synapses 1 and 2 originated at synapse 3, then they would be

visible in the voltage component of the green node in Figure 1A.

Thus, if the green node contributed to regenerative events at

synapses 1 and 2, then these synapses could not be indepen-

dent from synapse 3. Conversely, if voltage fluctuations in the

yellow node do not contribute to regenerative events at synap-

ses 1 and 2, then these synapsesmust be independent from syn-

apses 4 and 5.

Both the shape and the electrical properties of the dendritic

tree determine the interplay between the voltage components;

we must accurately estimate the voltage change following any

one synaptic input throughout the whole dendritic tree. This sug-

gests starting from the impedance matrix associated with a

dendrite. This matrix (already hypothesized to be related to the

dendritic compartmentalization; Cuntz et al., 2010) can be

seen as the connectivity matrix of a neuron: Each element Zx0 ;x
describes how an input current at location x along the dendrite

will change the voltage at any location x
0
. In prior work, the values

Zx0 ;x of this matrix (termed input impedances when x = x
0
and

transfer impedances when xsx
0
) were used to shed light on

the processing properties of various cell types (Koch et al.,

1982, 1983) and interactions between synaptic conductances

(Gidon and Segev, 2012; Koch et al., 1990).

As we aim to approximate both the spatial and temporal neural

dynamics, the impedance matrix is in fact a matrix of temporal

kernels Zx0 ;xðtÞ. Each node must furthermore capture an average

interaction between synapses; in Figure 1A, the pink node cap-

tures interactions between synapses 1 and 2, the green node be-

tween 1 and 3 and between 2 and 3, the blue node between 4

and 5, and the yellow node between 1 and 4, 1 and 5, 2 and 4,

2 and 5, 3 and 4, and 3 and 5. Thus, we construct an impedance

kernel associated with a node as the average of the transfer

impedance kernels between synapses for which that particular

node captures the interactions. As we will see, the NET is con-

structed so that all interactions captured by a single node are

approximately equal in amplitude. Furthermore, impedance ker-

nels with equal steady-state impedance values share similar

timescales (Figure 1B) so that averaging indeed yields accurate

dynamics. While some variation is visible in these kernels on

timescales smaller than 0.5 ms, the effect of these variations

on the voltage dynamics is negligible, since input currents in gen-

eral vary more slowly.

We illustrate our NET derivation algorithm on a granule cell

(Figures 1C–1I). The dendritic impedance matrix, which is or-

dered by unraveling the morphology in a depth-first manner

(Russell and Norvig, 2003; Figures S1A–S1C), supports a tree-

like description; a relatively even blue surface covers most of

the matrix (Figure 1D), representing transfer impedances be-

tween main dendritic branches. Note that to a good approxima-

tion, these impedances indeed have similar magnitudes. Closer

to the diagonal, squares of light blue are present, representing

dendritic subtrees whose branches are electrically closer to



Figure 1. Construction of the NET

(A) Schematic depiction of the NET. The dendrite voltage is obtained as a superposition of voltage components (left) at different spatial scales. The structure of

this superposition can be represented graphically as a tree graph (right).

(B) Average impedance kernels for impedances within the indicated ranges on a granule cell.

(C) Granule cell dendrite with three inputs regions (numbers 1–3) and somatic readout.

(D) Impedance matrix associated with the granule cell (morphology is unraveled in a depth-first manner [Russell and Norvig, 2003]; see also Figures S1A–S1C).

Color encodes the impedance between each pair of points.

(E) Points in the impedance matrix of the granule cell where the impedance is between Zmin;0 (i.e., the minimal transfer impedance in the cell)

and Zmax;0ð= 135MU; chosen for illustrative purposesÞ are colored blue. The average of the impedance kernels associated with these points will constitute

the impedance kernel of the NET root.

(F) Input impedance (diagonal of the impedance matrix). Connected domains with input impedance larger than Zmax;0 are indicated on the x axis and denoted by

ci ; they will constitute the child nodes of the NET root.

(G) Impedancematrix with dendritic domains associatedwith each child node ci marked by a red square. These restrictedmatrices are used in the next step of the

recursive algorithm.

(H) Full NET for the granule cell. Nodes where inputs from regions 1 to 3 arrive are indicated in the corresponding color.

(I) Pruned NET obtained by removing all nodes that do not integrate regions 1–3.

(J) NET voltages components after an input to location 1 (left), 2 (middle), and 3 (right) (onset indicated with a vertical line, its color matching the input location in

(C)). Leaf voltage components ðN= 0; 1; 2; 3Þ are unique to the associated regions while other nodal voltage components (N= 12 and N = 0123) are shared

between regions.

(K) Dendritic voltages for the soma and input regions (r1-r3), obtained by summing the nodal voltage components on the path from root to associated leaf. NET

traces (dashed lines) agrees with the equivalent NEURON model (full lines).
each other than to other dendritic subtrees. On the diagonal, one

finds small squares of green and red colors representing individ-

ual terminal branches. First, the impedance kernel of the global

node (root node of the tree) is defined by averaging impedance

kernels that relate inputs on different main branches (Figure 1E).

Then, regions of the dendrite that are electrically closer to each
other than to other regions are identified as connected regions

where the input impedance is above the impedance associated

with the global node. Due to the depth-first ordering, these re-

gions show up as uninterrupted intervals on the diagonal of the

impedance matrix (Figure 1F). New nodes are then added as

child nodes of the root node (c0 to c5 in Figure 1F), and each of
Cell Reports 26, 1759–1773, February 12, 2019 1761



these child nodes integrates regions from within one uninter-

rupted interval. Next, for each of the child nodes, the impedance

matrix is restricted to its associated regions (which now corre-

spond to the dendritic subtrees; red squares in Figure 1G), and

the procedure is repeated until we reach the maximal value of

the impedance matrix, since at that point, the whole dendrite is

covered.

To study interactions between a subset of input regions on the

dendritic tree, the full NET is pruned (see STAR Methods) so that

only nodes that integrate the regions of interest are retained (Fig-

ures 1H and 1I). Note that we employ two ways of visualizing the

NET. When we plot the full NET associated with a neuron, we

collapse all regions in a section without bifurcations onto a single

line, so that thegraphical structuremimics theoriginalmorphology

(Figure 1H). When we prune the NET so that the set of regions is

sufficiently small, we plot the full tree (Figure 1I). The vertical

lengths of the branches leading up to the nodes are plotted

proportional to the impedance associated with that node. This

gives a visualization of how electrically close regions on the

morphology are (as in the morpho-electric transform by Zador

et al., 1995).

We illustrate how the dendritic voltage at these regions of in-

terest is constructed by the NET. Each nodal voltage component

is computed by convolving the impedance kernel at that node

with all inputs to its subtree (Figure 1J). The local dendritic

voltage at a location is then constructed by summing the NET

voltage components of all nodes on the path from root to leaf

(Figure 1K), so that the local voltage is indeed a superposition

of both global and local components. Note that this local voltage

coincides with the voltage computed through simulating an

equivalent NEURON model (Carnevale and Hines, 2004) (dashed

versus full line in Figure 1K). The key observation here is that

the NET leafs (nodesN = 1; 2; 3) do not receive inputs from other

locations (Figure 1J), in contrast to the local voltages in the bio-

physical model (Figure 1K). Furthermore, while in this example

we have only implemented a-amino-3-hydroxy-5-methyl-4-iso-

xazolepropionic acid (AMPA) synapses, it is straightforward to

use other voltage dependent currents (i.e., NMDA or voltage-

gated ion channels).

In conclusion, by formulating the NET framework, we have

solved the tangling problem. We have introduced voltage com-

ponents at the NET leafs that only depend on local inputs while

being able to accurately model synaptic interactions. To assess

independence, we only have to quantify the influence of global

NET components on the voltage-dependent factors in the local

synaptic currents. After validating the NET framework, we will

turn our attention to this question.

Validation of the NET Framework
We derived NETs for three vastly different exemplar morphol-

ogies (a cortical stellate cell [Wang et al., 2002], a granule cell

[Carim-Todd et al., 2009], and a L5 cortical pyramidal cell [Hay

et al., 2011]; Figures 2A–2C). We then reconstructed the imped-

ance matrix of the NET (Figures 2A–2C, top right panels) and

compared it with the exact impedance matrix. The small value

of the root mean square error (RMSE) between both matrices

suggests that the NET will accurately reproduce the full neuronal

dynamics (Figure 2D). To ascertain this, we implemented a simu-
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lation algorithm for the NET (see Methods S1), equipped each

NET with somatic AP channels, and simulated it for 100 s while

providing Poisson inputs to 100 randomly distributed excitatory

and inhibitory synapses (see STARMethods for all the simulation

parameters). The resulting somatic voltage traces coincide with

the traces obtained from equivalent NEURON simulations (Car-

nevale and Hines, 2004) (Figures 2A–2C, bottom right panels).

Consequently, somatic RMSEs are low while spike prediction

is excellent (Figure 2E). Thus, the RMSE between the true imped-

ance matrix and its NET approximation is a good predictor of the

accuracy of the NET. While here the synapse distribution was

random, NETs are equally accurate when synapses are clus-

tered (Figures S1D and S1E). Furthermore, intra-dendritic dy-

namics and regenerative NMDA events are well reproduced by

NETs (Figures S1E and S1F).
A Single Number to Approximate the Degree of
Independence between Regions
We have established that NET leafs only receive local inputs.

These nodes hence only integrate local synaptic input currents

(modeled as the product between synaptic conductance and

voltage dependent factors IsynðtÞhgsynðtÞfðVðtÞÞ, the latter repre-
senting for instance driving force and/or NMDA activation). As

per the NET framework, the local dendritic voltage can be de-

composed as

VðtÞ=VglobalðtÞ+VLðtÞ; (Equation 1)

where VLðtÞ is the leaf voltage component and VglobalðtÞ is the

sum of all other voltage components on the path from root to

leaf (note that we denote NET-related quantities with a line

over the variable). The leaf voltage is computed by convolving

the synaptic input current with the impedance kernel ZLðtÞ asso-
ciated with the leaf node:

VL =ZLðtÞ � gsynðtÞf
�
VglobalðtÞ+VLðtÞ

�
: (Equation 2)

From this equation, it can be seen that VL will be independent

from all other synaptic inputs if the fluctuations in VLðtÞ are large

compared to the fluctuations in VglobalðtÞ. In such a case, regen-

erative events are elicited solely by reinforcing initial perturba-

tions in VLðtÞ. Conversely, if the fluctuations in VglobalðtÞ are size-

able compared to the fluctuations in VLðtÞ, there will be a large

degree of cooperativity between the region that leaf L integrates

and other regions.

We observe that voltage fluctuations at each node are approx-

imately proportional to the associated nodal impedances (Fig-

ure 2F). Thus, we expect fluctuations in VLðtÞ to be large

compared to fluctuations in VglobalðtÞ if the associated leaf

impedance ZL is large compared to all other impedances on

the path from root to leaf. When considering the mutual indepen-

dence of a pair of regions, the root node of the pruned NET is

the only node that integrates both inputs. Hence, for mutual inde-

pendence, the impedances associated with each leaf node must

be large compared to the impedance associated with the root

node. We thus propose the ‘‘impedance-based independence



Figure 2. Validation of the NET Framework and the Impedance-Based Independence Index IZ
(A) Cortical stellate cell.

(B) Hippocampal granule cell.

(C) Cortical L5 pyramidal cell. For each cell, morphology is shown on the left, the exact impedance matrix and its NET approximation on the top right, and the

somatic voltage traces from equivalent NET and NEURON simulations on the bottom right.

(D) RMSE between NET and exact impedance matrices for each cell.

(E) Subthreshold somatic voltage RMSE (blue) and spike coincidence factor (red).

(F) Size of fluctuations of each nodal voltage component (quantified by its SD) as a function of the associated nodal impedance. The black line is a linear least-

squares fit to the data.

(G) Voltage correlation between each pair of synapses on the three cells as a function of IZ . Lines are obtained from kernel regression.

See also Figure S1.
index’’ IZ to quantify pairwise independence as the ratio of leaf

over root impedance of the pruned NET:

IZ =
Z1 +Z2

2ZR

: (Equation 3)

We plotted the membrane voltage correlations between each

pair of synapses on our exemplar cells, obtained from our valida-

tion simulations (Figures 2A–2C), as a function of IZ . These cor-

relations decrease uniformly as a function of IZ (Figure 2G),
and the functional form of this decrease does not depend on

the morphology. Consequently, across cell types, IZ could be a

good predictor of the degree of independence between regions.

We then investigated a number of ways in which changes in

morphological and electrical factors could influence membrane

voltage correlations and found that their effect on these correla-

tions can be summarized entirely by their effect on IZ (Figures

S2F–S2H).

To speak of mutual independence between pairs of regions,

their layout needs to be somewhat symmetric, so that Z1 and

Z2 do not differ too much. If region 1 would, for instance, be
Cell Reports 26, 1759–1773, February 12, 2019 1763



Figure 3. Voltage Attenuation Makes Dendritic

Branches Look Highly Compartmentalized

(A) Example of a typical experimental situation. A

branch is stimulated through two-photon glutamate

uncaging (dashed circle, left), and a correlate of the

voltage (here Ca2+, right) is measured (adapted with

permission from Wei et al., 2001).

(B) Spatial voltage (computed with NEURON) in an ob-

lique apical fork 10 ms after supra-threshold stimulation

of an NMDA synapse at region 1. A rapid decrease of

the depolarization makes the branches seem highly

compartmentalized. IZ = 3 between regions 1 and 2.

(C) Trace of the depolarization at regions 1 and 2.

(D) Toy NET model, representing a dendritic fork, where

IZ could be varied at will (left). Depolarization at re-

gions 1 and 2 is shown as a function of IZ following an

input to region 1 (right).
much closer to a bifurcation than region 2, so that Z1 � Z2, then

a regenerative event at region 1 would propagate without much

attenuation to region 2. Hence, it would be impossible to inde-

pendently generate local spikes at region 2. On the other hand,

regenerative events at region 2 would substantially attenuate

to region 1, so that it might be possible to have independent

regenerative events at region 1. Thus, mutual independence

and IZ are only meaningful if the regions lie in a somewhat sym-

metric configuration around the nearest bifurcation.

We have defined IZ based on the NET framework. In the

familiar terminology of input and transfer impedances, ZR corre-

sponds to the transfer impedance Z12 between two regions, and

the NET leaf impedances Zi ði = 1;2Þ are related to the input im-

pedances Zi by Zi = Zi � Z12. Substituting this in Equation 3, we

obtain:

IZ =
Z1 +Z2

2Z12

� 1: (Equation 4)

Thus, IZ is nothing but the ratio of input over transfer impedance,

shifted so that IZ is zero when the regions are the same. IZ is thus

a measurable index and can be computed from experimental

data or traditional biophysical models.

The Threshold for Independence
Correlations between regions on the dendrite decrease in a

continuous fashion as a function of IZ (Figure 2G). We neverthe-

less wondered whether it is possible to find a threshold IZ above

which regions constitute independent subunits (i.e., where local

regenerative events are elicited independently from ongoing dy-

namics elsewhere).

Experimentally, the idea has emerged that every branch

can be considered as an independent computational subunit

(Branco and Häusser, 2010). Sharp drops in transfer impedance

across bifurcation points may lead to this idea, as delivering rela-

tively few stimuli to a single dendritic branch (for instance,
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through two-photon glutamate uncaging; Pet-

tit et al., 1997) leads to a marked attenuation

of the measured signal (typically Ca2+ dye

luminescence or voltage) across bifurcation
points (Wei et al., 2001) (Figure 3A). Nevertheless, inferring the

extent of the dendritic subunits in this way is somewhat problem-

atic. First, the Ca2+ signal itself is thought to be more local than

the voltage signal (Biess et al., 2011; Nevian and Sakmann,

2004; Simon and Llinás, 1985; Yuste and Denk, 1995) while

also being influenced by the nonlinear activation function of

voltage-dependent calcium channels (Almog and Korngreen,

2009). Second, even though there may be a relatively large

amount of voltage attenuation across bifurcation points (Figures

3B and 3C), the remaining depolarization can still cause cooper-

ativity between synapses during an ongoing barrage of inputs.

To test this idea, we constructed a toy model with two leafs

and one root representing, for instance, a single trunk that bifur-

cates into two child branches. This model allowed us to vary IZ
on a log scale between 0.1 and 100 (Figure 3D, left) by changing

the ratio of leaf versus root impedance while keeping the total

input impedance at each site constant. We then stimulated

synapse 1 with a supra-threshold conductance (strong enough

to elicit an NMDA spike) and measured the depolarization in

branch 1 and branch 2. It can be seen that there is substantial

voltage attenuation; at IZ = 1, only 50% of the depolarization in

branch 1 arrives at branch 2 (Figure 3D, right panel). Neverthe-

less, membrane voltage correlations decrease less as a function

of IZ , so that for IZ = 1, this correlation is still close to 1

(Figure 2G).

We thus aim at constructing a criterion for independence be-

tween dendritic regions that is valid when the dendritic tree re-

ceives an ongoing barrage of input. To do so, we construct a

control NET where the leafs are completely independent by re-

placing Vglobal (Equation 2), the sum of all voltage components

associated with nodes that integrated more than one region) in

the synaptic currents by their long-term average (here computed

as a 200 ms low-pass filter of the root voltage under Poisson

stimulation with a fixed rate). Consequently, in this independent

NET (iNET), leaf voltage components (and thus the synaptic

currents) only depend on the local inputs by construction.



Figure 4. The Impedance-Based Independence Index IZ Leads to a Systematic Characterization of Independent Subunits

(A) Toy model morphology and associated NET.

(B) Voltage associated with leaf node 1 for IZ = 3 (top) and IZ = 10 (bottom). iNET (red) and NET (blue) traces for a single input to synapse 1 (left) and for inputs to

synapses 1 and 2 (right). Vertical black lines indicate input arrival.

(C) Same model, but now both synapses receive Poisson inputs. Somatic voltage (here equal to VR, left) and node voltage (right) are shown for IZ = 3 (top) and

IZ = 10 (bottom).

(D) The correlation between leaf voltage components of NET and iNET (black), and their somatic RMSE (red), as a function of IZ . Same model as in (A)–(C).

(E) Same as in (D), but with 4 inputs regions selected on the L5 pyramidal cell in each simulation. The x axis represents the average IZ between regions.

(F) Correlation between leaf voltage components of NET (decreasing line) and iNET (flat lines) for different equilibrium potentials. Same model as in (A)–(C).

(G) Same as (F), but for different NMDA voltage dependences (0, STAR Methods Equation 9; 1, STAR Methods Equation 10; and 2, STAR Methods Equation 11)

(H) Cortical stellate cell.

(I) Hippocampal granule cell. For these cells, morphology is shown on the right and associated matrix of IZ values on the left.

(J) Cortical L5 pyramidal cell. Morphology (left) with color-coded independent regions at IZa10 and NET with the same color-coded independent subunits (right).

Note that individual compartments are always connected; color matches between separated compartments are accidental.

See also Figures S2–S4.
Convergence between the iNET and the normal NET then indi-

cates independence between input regions. We illustrate the

iNET in a toy model with two leafs and one root (Figure 4A).

When a synaptic input arrives at synapse 1, an NMDA event

will be generated in branch 1. The leaf voltage associated with
this event is shown in the leftmost panels in Figure 4B. The effect

of a strong input at synapse 2 on the dynamics in branch 1 de-

pends on IZ ; for IZ = 3, the shape of the NET voltage trace at

leaf 1 is drastically modified, whereas at IZ = 10, there is little

change (Figure 4B, rightmost panels). In the iNET, the traces at
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leaf 1 with or without input to synapse 2 are identical by con-

struction. Hence, when the dynamics of the NET converge to

those of the iNET, the associated input regions constitute inde-

pendent subunits. We stimulated both input sites with Poisson

inputs, and at IZ = 3, the iNET voltage traces at soma and leafs

deviate significantly from their NET counterparts (Figure 4C, top).

The cooperative dynamics between input sites are thus nonne-

gligible. At IZ = 10, the iNET and NET dynamics agree very

well (Figure 4C, bottom). Analyzing the correlations between

both leaf voltage components confirms this finding; for IZa10,

the NET correlation approaches the iNET value of zero (Fig-

ure 4D). The RMSE between the somatic traces also vanishes

for IZa10. These results generalize to realistic neuron models

and multiple input regions; analysis of leaf voltage correlations

and somatic RMSEs for NETs obtained by distributing four input

regions on the pyramidal cell morphology (Figure 2C) yields

similar results (Figure 4E; x axis represents the average IZ be-

tween the input regions). Furthermore, these results are robust

for different equilibrium potentials (Figure 4F) and different

voltage dependencies of the NMDA current (Figure 4G). We

thus conclude, as a rule of the thumb, that for IZa10, pairs of

dendritic regions can be considered independent.

We then analyzed the asymptotic equilibrium points of the

NMDA dynamics. With these points, the dynamic aspects of

NMDA spikes can be fully understood (Major et al., 2008), as

they represent the voltage a dendritic branch is trying to reach

given the input to NMDA synapses. Nevertheless, influence of

neighboring inputs on these points has never been investigated.

We developed a method to compute these points for any input

configuration (see Methods S1) and studied at which IZ values

a fully developed NMDA spike can form independently in a

branch (Figure S2B). We also asked at which IZ values two

NMDA spikes would sum together, as they would for indepen-

dent subunits (Figure S2C). Finally, we investigated the effective

shift in potentiation threshold as a function of IZ (Figures S2D

and S2E). These analyses corroborated our conclusion that, for

IZa10 dendritic regions function as independent subunits.

A Formal Definition of Dendritic Compartmentalization
Next, we asked howmany independent regions could maximally

coexist along a dendritic tree, as well as what their location

would be. We constructed an algorithm that divides the dendritic

tree into regions separated by a minimal IZ (see STAR Methods).

For the stellate and granule cells, we did not identify any com-

partments, as there were no IZ values greater than 10 in these

cells (Figures 4H and 4I). In the pyramidal cell, the number of

compartments for IZR10 was far less than the number of den-

dritic terminals (Figure 4J). Even at lower IZ values, there are still

much fewer independent subunits than dendritic terminals (Fig-

ure S3; see, for instance, compartment numbers for IZR3). Note

in this context that compartment numbers are fairly robust with

respect to the biophysical parameters (Figure S4A); increasing

axial resistance and membrane conductance, as well as adding

a spine correction factor, increase compartment numbers

slightly, whereas increasing the dendritic radii results in amoder-

ate decrease of compartment numbers. We conclude that

because cooperativity between synapses decreases less than

voltage attenuation as a function of electrical separation, the
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number of independent subunits that can coexist on a dendritic

tree is lower than the number of dendritic branches. Our results

thus contradict the notion that every branch constitutes an inde-

pendent electrical subunit.

Comparison of the Model to the Electrical Properties of
Basal Dendrites
In order to validate if the predicted Iz values, and thus the degree

of electrical compartmentalization, are physiologically plausible,

we reanalyzed dual dendritic patch-clamp recordings from the

basal dendrites of neocortical L5 pyramidal neurons (Nevian

et al., 2007). We computed IZ between dendritic branches with

similar electrical properties emanating from the soma (Figure 5A).

We corrected the recorded traces for experimental inaccuracies

in access resistance compensation (Figure S5) and extracted

steady-state responses during hyperpolarizing current pulses

to infer input and transfer impedances (Figures 5B and 5C). Error

bars on the input impedance values were determined from the

accuracy of the access resistance fit to estimate the experi-

mental variability (Figure S5C). The uncompensated recordings

gave quantitatively similar results. We estimated IZ according

to Equation 4 and found that the values agreed well with predic-

tions from the L5 pyramidal cell model (Figure 5D). We conse-

quently conclude that our predictions on compartment numbers

(as long as the threshold of IZa10 predicted by the models is

correct) are compatible with experimental data.

Dendritic Compartmentalization Can Be Modified
Dynamically by Inputs
As neurons perform different input-output transformations at

different moments in time, such as during up- and down-states

(Wilson and Kawaguchi, 1996), we hypothesized that the number

of compartments in dendrites can be modified dynamically by

input patterns—an idea corroborated by recent experimental re-

sults (Cichon and Gan, 2015; Poleg-Polsky et al., 2018). In prin-

ciple, shunting inputs could mediate such a change. Indeed, a

voltage component with impedance kernel ZðtÞ, a shunting

conductance gshunt, and excitatory conductances ge:

V =ZðtÞ �
"
� gshuntV +

X
e

ge fðVÞ
#

(Equation 5)

can be reinterpreted in the following way (see Methods S1):

Vz
ZðtÞ

1+ZðtÞ � gshunt

�
"X

e

ge fðVÞ
#
; (Equation 6)

so that the shunt effectively reduces impedance (note that this

relation is approximate, since, by rewriting Equation 5 in this

way, we took V in the shunt term out of the convolution). When

shunts are placed on the dendrite in such a way that they primar-

ily affect shared nodes, independence between branches would

increase.

In the high-conductance state (Destexhe et al., 2003), a state

occurring in vivo when many synapses are randomly activated,

the conductance of the membrane is increased over the whole



Figure 5. Estimating IZ from Dendritic Patch-

Clamp Data

(A) Schematic depiction of the analysis. Input and

transfer (both dendrite to soma and soma to

dendrite) impedance values were estimated from

simultaneous dendritic and somatic voltage re-

cordings. Input current steps were either injected at

the dendritic or the somatic electrode. The ex-

tracted impedances were then used to compute

what IZ would be between the dendritic electrode

site and a site at equal distance from the soma on a

hypothetical dendritic branch with similar electrical

properties.

(B) Example voltage response traces. Voltage dif-

ference was computed as DV = Vstim � Veq, where

Vstim is the average access-resistance-corrected

voltage between 200 and 350 ms after stimulus

onset and Veq is the average voltage in the 50 ms

before onset.

(C) Impedance valueswere extracted from the slope

of the regression line between input current (here

delivered at the dendritic electrode) and DV (data

extracted from traces shown in B). Error bars were

determined from the access resistance fit (Fig-

ure S5).

(D) IZ as a function of the distance of the dendritic

electrode to the soma (red, experimental data; gray,

L5 pyramidal cell).

See also Figure S5.
dendritic tree, implementing a global shunt. A priori, two things

could happen: either the root impedance of the associated

NET could decrease more than the leaf impedances, in which

case the number of subunits would increase, or the root imped-

ance could decrease less than the leaf impedances, in which

case the number of subunits would decrease. Because the

root node of the associated NET integrates much more inputs

than more local nodes, the former tends to decrease more

than the latter. We illustrate this effect in the stellate cell, where

a NET was derived for three input locations (Figure 6A): once

at rest (Figure 6B, black NET) and once in the high conductance

state (Figure 6B, blue NET, computed by adding the time-

average conductance of the background synapses to the mem-

brane as static shunts). Because root impedance decreases

more than leaf impedance, electrical separation becomes stron-

ger between branches that only have the root in common, and

compartments emerge in the stellate cell (Figure 6C). The high-

conductance NET is accurate in reproducing the average volt-

ages; traces in Figure 6D (full colored lines) agree very well

with the average post-synaptic potentials computed during an

ongoing barrage of balanced excitation and inhibition (dashed

colored lines).

Since both theory (Gidon and Segev, 2012) and connectivity

data (Bloss et al., 2016) suggest the importance of the precise

location of synaptic inhibition, we investigate the influence of

precisely located inhibitory inputs on compartmentalization. In

the apical tree of the L5 pyramidal neuron (Figure 6E), we noticed

that the sibling branches in a particular apical fork did not consti-

tute separate compartments (locations 3 and 4 in Figure 6F).

Upon inserting inhibitory synapses near the branch point be-

tween the two terminal segments, they separate into indepen-
dent subunits (Figure 6F, bottom). The required inhibition (with

a time-averaged conductance of 5 nS) could be provided by

the somatostatin-positive interneuron pathways targeting the

apical tuft (Markram et al., 2015;Muñoz et al., 2017). This change

in compartmentalization can be quantified by the change in IZ
(Figure 6H). Note that the effect is location specific; indepen-

dence between locations 1 and 2 does not increase. We per-

formed simulations where each synapse pair received Poisson

inputs (Figure 6G; note that NET traces again agree with the

NEURON simulation) and computed the correlations between

both pairs of synapses (Figure 6I). The decrease in correlation

upon activation of the shunting inhibition is consistent with the

reduction in IZ .

Dynamic Compartmentalization Can Enable Branch-
Specific Learning
Recent experiments have demonstrated that inhibitory interneu-

rons are required for branch-specific plasticity (Cichon and Gan,

2015). Can a transient recompartmentalization, mediated by inhi-

bition, underlie this branch-specific learning? Before learning,

post-synaptic targeting is thought to be unspecific (Gerstner

et al., 1996). Hence, inputs coding different stimulus features

can arrive at the same branch, but with different strengths. We

askwhether sibling branches in the apical tree of the L5 pyramidal

neuron (Figure 7A) can learn tobecomeselective only to the stron-

gest initial feature (Figure 7A) using onlyNMDAspikes and noAPs

(Hardie and Spruston, 2009). If two branches receive different

synaptic activation (quantified as the product between input

impedance and synaptic conductance), then the voltage differ-

ence between these branches will be larger when they are sepa-

rated by a higher IZ (Figure 7B), and therefore the probability
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Figure 6. Dynamic Compartmentalization due to Spatiotemporal Input Patterns

(A) Stellate cell morphology with three input regions (numbers 1–3) and somatic readout.

(B) NET for the configuration in (A) at rest (black) and in the high-conductance state (blue).

(C) Compartmentalization for IZR10 in the rest state (top) versus the high conductance state (bottom).

(D) At the three regions of interest, a strong excitatory synapse was inserted. The average post-synaptic potential was computed over 100 trials (dashed line) and

coincides with the NET prediction (full line). Responses without background activity are plotted in black for reference.

(E) Apical tuft of the L5 pyramidal cell, where we studied the effect of inhibition on the compartmentalization.

(F) NET associated with the apical tuft, without (top) and with (bottom) inhibition (with an time-averaged conductance of 5 nS).

(G) Voltage traces at synapses 3 and 4 without (top) and with (bottom) shunting inhibition (black trace is the equivalent NEURON simulation).

(H and I) IZ change when inhibition is turned on (H), and associated change in membrane correlation when synapses in both branches were stimulated with

random Poisson trains (I).
increases to robustly potentiate the preferred branch while the

nonpreferred branch is depressed. For the selected branches,

activation of inhibitory synapses near the bifurcation point

increased IZ from 3.0 to 8.5 (Figure 7C, black versus blue tree).

The original IZ value was too low (Figures 7D and 7G), resulting

in a positively correlated weight evolution in the preferred and

nonpreferred branches (Figure 7F). Activation of inhibitory synap-

sesnear thebifurcationpoint increased IZ , thus anticorrelating the

weight evolution (Figure7F) andenablingbranch-specific learning

(Figures 7E and 7G).

DISCUSSION

In this work, we formalized electrical dendritic compartmentali-

zation. We have shown that dendritic regions are independent
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if the fluctuations in global NET voltage components are small

compared to the fluctuations in local NET voltage components.

Furthermore, the relative sizes of these fluctuations are tightly

related to the sizes of the associated NET impedances. We

have thus proposed IZ as a ratio of these impedances and

have shown that this number is a good andmeasurable predictor

of independence. We found that for IZa10, pairs of dendritic

sites function as independent subunits. Furthermore, we have

used the NET to design an algorithm that, given a threshold IZ ,

yields the maximal number of regions that can coexist on the

dendritic tree separated by at least this threshold IZ .

We have then performed this analysis on a number of cell clas-

ses (Figure S3) and found, in line with another recent study (Ujfa-

lussy et al., 2018), that many branches are not separated by IZ
values required for independence. Impedance drops across



Figure 7. Enabling Branch-Specific Learning with Shunting Conductances

(A) Sketch of the situation. Before learning, two sibling branches are both targeted by synapses coding for either an up stimulus Sð[Þ (orange) or a down stimulus

SðYÞ (green). One branch Bð[Þ receives more synapses of the former stimulus, and the other branch BðYÞ receives more of the latter stimulus. Branches should

learn to be sensitive only to the stimulus that was initially the most prevalent (the ‘‘preferred’’ stimulus).

(B) Difference in voltage across sibling branchesDV increases as a function of the difference in activationDA. For higher IZ , this increase is steeper. Consequently,

a given threshold DV (black dashed line) is reached for lower DA (colored vertical lines).

(C) Schematic of the NET without (black) and with (blue) shunt.

(D and E) The learning task without (D; effective IZ = 3:0) or with (E; effective IZ = 8:5) shunting inhibition. For each epoch, both stimuli are presented for 100 ms,

with 150-ms intervals in between them, for a total of 20 epochs. The initial and final epochs are shown.

(F) Correlation between the average weights of the synapses in the preferred and nonpreferred branches during stimulus presentation, averaged over all epochs

and 20 repetitions of the learning task.

(G) Bar plot of the weight difference after the final epoch for all repetitions of the learning task. The bar lengths denote the medians of the weight difference

distributions and the error bars the 25–75 percentiles.
dendritic bifurcations lead to large voltage attenuation (Figure 3),

and studying simple input scenarios may lead to the idea that

sibling branches automatically constitute independent subunits.

However, in realistic scenarios where both branches receive an

ongoing barrage of inputs, small transfer impedance values still

lead to a large degree of cooperativity between synapses (Fig-

ure 4). Only for large electrical separations ðIZa10Þ are branches
able to function independently. Although it is striking that a

simple ratio of impedances can predict whether responses will

be independent, earlier work has already hinted at the impor-

tance of impedances to explain dendritic response properties

(Vetter et al., 2001).

Experimental data on the electrical coupling in fine dendritic

branches, as required to support our theoretical findings, are

rare. Nevertheless, we wondered whether our predictions could

be validated. We found that existing recordings from fine basal

dendrites of L5 pyramidal neurons in the neocortex allowed for

the estimation of IZ between different main branches emanating

from the soma (Figure 5). The values we extracted agreed well

with predictions by our model, thus validating that the latter

lie within a biologically plausible range and confirming our pre-

dictions on compartmentalization. Ideally, to directly validate
our prediction of the relation between compartmentalization

and IZ , triple dendritic recordings of parent and higher-order

daughter branches would have to be combined with the focal

synaptic uncaging of glutamate to elicit local NMDA spikes or

other regenerative events. A related approach would be to

perform dual dendritic recordings in vivo to determine dendritic

independence in the most natural state, yet these experiments

are challenging and have not been performed so far.

We focused on electrical compartmentalization of dendrites

and not on chemical compartmentalization. The latter might be

more localized than the former, a classical example being the

localization of Ca2+ signals within the spine head but not

the neighboring dendrite (Nevian and Sakmann, 2004; Yuste

and Denk, 1995). Stronger chemical compartmentalization may

lead to localized plasticity (Govindarajan et al., 2011; Losonczy

et al., 2008; Weber et al., 2016) and small spine cluster sizes

(Frank et al., 2018; Fu et al., 2012; Gökçe et al., 2016) that could

not be explained by electrical compartmentalization alone.

The heterogeneity of brain states (Wilson and Kawaguchi,

1996) and the observation that the electrical length of nerve fi-

bers changes with the amount of background conductance (Se-

gev and London, 2000) led us to explore the possibility that the
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NET, and hence independence, could be modified dynamically

by spatiotemporal input patterns. Up states (Destexhe et al.,

2007) can increase membrane conductance across the neuron,

as shown by simultaneous dendritic and somatic recordings

in vivo (Waters and Helmchen, 2004). In such cases, the imped-

ance associated with the root node of the NET decreases more

compared to impedances associated with leaf nodes. This sug-

gests that independence across branches increases during up

states (Figures 6A–6D). Nevertheless, previous work on the dy-

namics in dendrites during such states (Farinella et al., 2014; Ru-

dolph and Destexhe, 2003) suggests that it in certain cases, it

becomes easier to elicit dendritic regenerative events and also

that the set of synapses required to trigger such an event can

be more spatially distributed. This apparent paradox is resolved

by realizing that branches can only act independently if the fluc-

tuations in the global voltage component are small compared

to fluctuations in the local voltage components (Equation 2). A

synaptic bombardment during the high-conductance state has

two effects: the increased synaptic conductance dampens

fluctuations in the global voltage components, decoupling den-

dritic regions, and random noise increases these fluctuations,

coupling dendritic regions. The final picture thus depends on

the balance between these two effects, which may change ac-

cording to brain state, region, and even across different regions

on the same cell.

The interaction of inhibition with NMDA spikes has been stud-

ied extensively. It is now known that inhibition is well suited to

veto NMDA-spike generation (Gidon and Segev, 2012; Rhodes,

2006), and allows for rapid switching between the on and off

states of the NMDA plateau (Doron et al., 2017). Our work

adds yet a third interaction to the repertoire, where inhibition

(located near dendritic bifurcations) can decouple NMDA-spike

generation in neighboring branches in a highly localized fashion,

resulting in a precise tuning of compartmentalization (Figures

6E–6H).

How many branches on the dendritic tree lie within in the

useful range for dynamic recompartmentalization? In pyramidal

cells, compartments numbers doubled for values of IZ between

3 and 10, and in smaller cells, these numbers increase 5-fold

(Figure S3). This suggests that global conductance input in-

creases the number of compartments 2- to 5-fold, depending

on the cell’s properties. Inspecting pairwise independence,

we determine that in pyramidal cells, 5% to 10% of terminal

pairs are separated by IZ values between 3 and 10 (mainly ter-

minals on the same main branches). In smaller cells, up to 60%

of pairs fall within these values. On average, these pairs are

made independent by shunting conductances of 5 to 15 nS

(Figure S3).

To explore the functional consequences of dynamic compart-

mentalization, we equipped synapses on dendritic sibling

branches with a voltage-based plasticity rule (Clopath et al.,

2010) and explored whether these synapses could learn inde-

pendently. Consistent with our prior observations, we found

that a value of IZx3 was too small for these branches to learn

independently. Nevertheless, shunting inhibition that increased

IZ to 8:5 allowed the synaptic weights in both branches to evolve

in an independent fashion. Interestingly, recent data suggest

such phenomena may occur in vivo (Cichon and Gan, 2015).
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Thus, the computation a neuron is engaged in may vary across

brain states; when background conductance is high, neurons

may prioritize in local dendritic learning, whereas otherwise,

they may favor associative output generation.

The NET framework relies on two approximations: that imped-

ance kernels with similar magnitudes share similar time-scales,

so that they can be averaged, and that centripetal voltage atten-

uation is small compared to centrifugal attenuation (Nevian et al.,

2007). We found these approximations to be true in all cortical

neuron types we modeled. Furthermore, the NET framework is

not restricted to the currents we modeled; Ca-spike generating

channels can be included as well (Larkum et al., 1999). NETs ex-

press the interaction of a (sub)set of synapses in a background

determined by the electrical properties of a morphology. Hence,

there is freedom in choosing which synapses to model explicitly

and which synapses to treat as background by including their

average effect in the NET. This choice depends on the problem

at hand. For instance, we have shown here that modeling shunt-

ing inhibition implicitly yields insight in the change in interaction

between NMDA synapses.

Finally, we have devised an efficient inversion algorithm (see

Methods S1), so that performant NET simulations can be

designed. While for full neuron models, the standard simulation

tools remain the preferable option (Carnevale and Hines,

2004), the NET framework allows for the definition of abstract

dendrite models so that hallmark dendritic computations can

be implemented in a minimal fashion. NETs may thus prove use-

ful to scientists exploring the effects of dendrites at the network

level.

Across the brain, neurons take on a wide variety of morphol-

ogies. We have shown here how these dendritic trees compart-

mentalize at rest and during dynamic input regimes. The behav-

ioral relevance of up states (Destexhe et al., 2007), the specificity

of inhibitory targeting (Bloss et al., 2016), and the importance of

interneuron activity for branch-specific learning (Cichon and

Gan, 2015) suggest that dynamic compartmentalization is ubiq-

uitous in normal brain function, with far-reaching consequences

for memory formation (Kastellakis et al., 2016) and capacity

(Poirazi and Mel, 2001). Taken together, the NET can be seen

as a computational description of the morphological neuron,

complementary to the well-known biophysical description, and

the algorithm to derive it as a translation from biophysics to

computation.
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Cortical L5 pyramidal cell Hay et al. (2011) ModelDB entry: 139653

Other cortical cells Markram et al. (2015) https://bbp.epfl.ch/nmc-portal/welcome
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00740-z

Other
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pyramidal cells

Nevian et al. (2007) N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagent should be directed to and will be fulfilled by the Lead Contact, Benjamin

Torben-Nielsen (btorbennielsen@gmail.com).

METHOD DETAILS

Biophysical modeling
Morphologies

Three exemplar morphologies were used for the analysis: a cortical stellate cell (Wang et al., 2002) (Figure 2A), a hippocampal granule

cell (Carim-Todd et al., 2009) (Figure 2B) and a cortical pyramidal cell (Hay et al., 2011) (Figure 2C). These morphologies were

retrieved from the NeuroMorpho.org repository (Ascoli, 2006), except the pyramidal cell, which was retrieved from the ModelDB re-

pository (Hines et al., 2004). Cell morphologies used in our wider cortical analysis were retrieved from the Blue Brain Project database

(Markram et al., 2015).

Physiological parameters

Physiological parameters for the morphologies were set according to Major et al. (Major et al., 2008): the equilibrium potential

was � 75 mV, the membrane conductance 100 mS=cm2, the capacitance 0:8 mF=cm2 and the intracellular resistance 100 U,cm.

To generate somatic APs, we used the fast inactivating Na+ current ðgNatÞ and the fast, non-inactivating K+ current ðgKv3:1Þ pre-
viously employed in cortical models (Hay et al., 2011). Channel densities were: gNat = 1:71 S=cm2 and gKv3:1 = 0:766 S=cm2. The

leak current was then fitted to yield a membrane timescale of 10 ms and an equilibrium potential of � 75 mV.

AMPA and GABA synaptic input currents were modeled as the product of a conductance profile, given by a double exponential

shape (Rotter and Diesmann, 1999), with a driving force (Jack et al., 1975):

IsynðtÞ=gðtÞ,ðEr � VðtÞÞ: (Equation 7)

For AMPA synapses, we used rise resp. decay times tr = 0:2 ms, td = 3 ms for the conductance window and a reversal potential

Er = 0 mV, while for GABA synapses we used tr = 0:2 ms, td = 10 ms and Er = � 80 mV. For N-methyl-D-aspartate (NMDA) chan-

nels (Jahr and Stevens, 1990a; MacDonald and Wojtowicz, 1982), the synaptic current had the form

IsynðtÞ=gðtÞ,ðEr � VðtÞÞsðVðtÞÞ (Equation 8)

and the rise resp. decay time were tr = 0:2 ms, td = 43 ms, and Er = 0 mV, while sðVÞ was the sigmoidal function employed by

(Behabadi and Mel, 2014) to model the channels’ magnesium block:

sðVÞ= 1

1+ 0:3 e�0:1 V
: (Equation 9)
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We also tested our results with the original gating function by Jahr and Stevens (1990b):

sðVÞ= 1

1+
e�0:062 V

3:57

(Equation 10)

and the voltage dependence of the NMDA conductance in spiny stellate cells (Lavzin et al., 2012):

sðVÞ= 1

1+ 0:25 e�0:08 V
: (Equation 11)

In the remainder of this work, we will refer to the voltage-dependent factors in the synaptic input current as the ‘synaptic voltage

dependence’ (SVD), denoted by fðVÞ. Hence, for AMPA or GABA synapses

fðVÞ=Er � V (Equation 12)

and for NMDA synapses

fðVÞ= ðEr � VÞsðVÞ: (Equation 13)

Note that whenwe refer to the conductance of a simple synapse, wemean themaximum value gmax of its conductancewindow. For a

synapse that has AMPA andNMDA components (to whichwewill simply refer as anNMDA synapse), the conductance is themaximal

value of the AMPA conductance window, and the conductance of the NMDA component is determined by multiplying the AMPA

conductance value with an NMDA ratio RNMDA, that was set to be either 2 or 3.

Plasticity

In our simulations with plasticity, we use a voltage dependent spike timing dependent plasticity rule (Bono and Clopath, 2017; Clo-

path et al., 2010) where the evolution of the weight wðtÞ of a given synapse depends both on the post-synaptic voltage and the pre-

synaptic AP inputs. This leads to a synaptic current of the following form:

IsynðtÞ=wðtÞgðtÞfðVðtÞÞ: (Equation 14)

In all our simulations the initial weight wðt = 0Þ was 1 and, during the simulation, the weight could fluctuate in the interval ½0;2�.
Compartmental models

To construct and simulate compartmental models of the cells, we used the NEURON simulator (Carnevale and Hines, 2004). Compart-

ment sizes were set to be smaller than or equal to the size given by the lambda rule (Carnevale and Hines, 2004).

Green’s function and the separation of variables

To derive NETs, we rely on the Green’s function (GF) (Koch, 1998; Wybo et al., 2013, 2015) Zðx;x0
; tÞ. The GF is a function of three

variables: two locations x and x
0
along the dendritic arborization and a temporal variable t. We compute the GF in an exponential

basis:

Z
�
x; x

0
; t
�
=
XN
k = 0

fkðxÞfk

�
x

0�
e
� t
tk (Equation 15)

by using the separation of variables (SOV) method (Major and Evans, 1994; Major et al., 1993). Note that it is a property of the cable

equation that the GF is symmetric in the spatial coordinates (Koch, 1998), so that Zðx;x0
;tÞ = Zðx0

;x;tÞ. Usually, a fixed set of discrete

locations relevant for the problem at hand is chosen on the neuron. Hence, the GF only needs to be evaluated at these locations, and

a discrete set of temporal kernels is obtained. A member of this set will be denoted as Zx;x0 ðtÞ, to highlight the difference between the

now discrete indices x and x
0
and the continuous variable t.

To compute the output voltage VxðtÞ at location x for a given input current Ix0 ðtÞ at location x
0
, one needs to compute the convolution

of the GF evaluated at x and x
0
with this input current (Koch, 1998):

VxðtÞ=
ZN
0

ds Zx;x
0 ðsÞ Ix0 ðt � sÞ (Equation 16)

for which we will use the shorthand

VxðtÞ=Zx;x
0 ðtÞ � Ix0 ðtÞ: (Equation 17)

Since Zx;x0 ðtÞ converts current into voltage, wewill refer to it as an ‘impedance kernel.’ The total surface under the impedance kernel is

the steady state impedance:

Zx;x
0 =

ZN
0

dt Zx;x
0 ðtÞ: (Equation 18)
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In the rest of the text, it will be understood that Zx;x0 without temporal coordinate refers to the steady state impedance – which we will

simply call ‘the impedance’ for brevity – while Zx;x0 ðtÞ is the temporal impedance kernel. To unclutter the notations, we will not make

this distinction for other variables; the temporal dependence will be omitted by default. Following this convention, Equation (17) will

be written as Vx = Zx;x0 ðtÞ � Ix0 , where it is implied that both Ix0 and Vx are time dependent quantities since Zx;x0 ðtÞ is the temporal

impedance kernel. Conversely, writing Vx =Zx;x0 Ix0 means that Zx;x0 is the steady state impedance value, and thus Ix0 and Vx will

be steady state values too. Note that currents in this text will be expressed in nano ampere (nA) and voltages in milli volt (mV). Conse-

quently, impedances will be in mega ohm (MU).

Synaptic activation

The eventual steady state voltage Vx obtained after activating a synaptic conductance at location x depends for a large part on the

input impedance Zx;x. Following (17), it can be obtained as a solution of the equation

Vx =Zx;x g fðVxÞ: (Equation 19)

This solution D is thus a function of the product of impedance and conductance:

Vx =DðZx;x gÞ: (Equation 20)

We refer to this product as the synaptic activation Ax =Zx;x g and note that it is a dimensionless quantity. Consequently, it is a conve-

nient quantity that does not depend on local morphological constraints to determinewhether an input will be strong enough to reach a

certain voltage threshold, for instance to elicit an NMDA spike or to potentiate a synapse.

Neural Evaluation tree
Mathematical formulation

In the NET framework, the voltage at a node can be expressed as:

VNðtÞ=ZNðtÞ �
X
r˛RN

X
s˛Sr

gsðtÞ fs
 X

M˛N r

VMðtÞ
!
; (Equation 21)

whereRN is the set of all input regions a node N integrates, Sr the set of all synapse types at region r (with gs their conductance and

fsð,Þ their SVD) andN r the set of all nodes that integrate region r. ZNðtÞ resp. VNðtÞ denote the impedance kernel resp. voltage at node

N. Note that at the NET leafs, each node integrates inputs from only one region. Note furthermore that the matrix associated with

this system can be inverted in OðnÞ steps (with n the number of nodes), so that efficient NET simulations can be designed (see

Methods S1).

Derivation

To derive the NET, we order all locations along the dendritic arborization in a depth-first manner (Russell and Norvig, 2003) (Figures

S1A–S1C), so that the impedance matrix (Cuntz et al., 2010) has a highly organized structure (Figures 1C and 1D). Generally an even

blue surface covers most of the matrix, representing the transfer impedances between the main dendritic branches. There are also

smaller square regions of light blue or green closer to the diagonal, representing sibling branches that are electrically closer to each

other than to different main branches. Finally, the small squares along the diagonal colored yellow and red are the thin dendritic tips

with high input impedances. Consequently, dendritic tips that lie within the same light blue or green square are closer together elec-

trotonically than tips within different squares, as the transfer impedances connecting them are much higher. A NET tree graph struc-

ture hence imposes itself naturally: the dendritic tips constitute the leafs of the tree, their parent node combinesmultiple adjacent tips

and the root node in turn binds all these nodes together. To derive the NET tree graph, we define an impedance stepDZ and execute

the following recursively:

1. Let k denote the step number.We assume that a valueZmin;k is at our disposition. In the first step this value is 0, in later steps it is

given by the previous steps. A value Zmax;k is also determined, in the first step as the somatic input impedance (Z00 with our

depth-first ordering of the impedance matrix) and in later steps by Zmax;k = Zmin;k + DZ.

2. The kernel of the current node is constructed as the average of all impedance kernels associated with points in the impedance

matrix for which Zmin;k%Zij < Zmax;k (colored blue in Figure 1E). This approach is justified, as impedance kernels of similar

magnitude have similar timescales (Figure 1B). Then, the kernels of all nodes on the path from the current node’s parent

node to the root node are subtracted from this average kernel.

3. The current node’s child nodes are determined from the input impedance, located on the diagonal of the impedance matrix.

Due to the depth-first ordering, new nodes can be identified as uninterrupted intervals on this diagonal where Zii > Zmax;k (Fig-

ure 1F). For each of these intervals, a new child node is constructed by repeating step 1 with the impedancematrix restricted to

the interval (indicated in Figure 1G by the red squares) and with Zmin;k +1 = Zmax;k . When Zmax;k >maxiZii, the algorithms does

not continue and the current node remains a leaf node.

Generally, one aims to study a subset of ‘‘regions of interest’’ on the dendritic tree. In such cases, the original NET can be pruned so

that a strongly reduced NET is obtained. The pruning consist of two operations: First, nodes that do not integrate regions of interest

are removed. Second, nodes that integrate the same subset of the regions of interest are combined into a single node, whose
e3 Cell Reports 26, 1759–1773.e1–e7, February 12, 2019



impedance kernel is the sum of the impedance kernels of the original nodes. This reduced NET is then the minimal structure that

faithfully captures the interactions between the regions of interest. As an example, if we would reduce the set of inputs

f1;2;3; 4; 5g in Figure 1A to f1;2; 4; 5g, the pink and green nodes both integrate the identical subset f1;2g. Hence, in the reduced

NET, these nodes can be combined into a single node by the aforementioned procedure.

The NET framework can thus be understood as a discretization in ‘‘impedance,’’ instead of in space (as is the case for classical

biophysical models). The average error of the NET approximation depends on DZ – in analogy to the average error in classical bio-

physical models, which depends on Dx. Nevertheless, because of the inherent approximations present in the NET framework, the

average error does not go to zero but reaches a minimum value for DZ(20 MU (Figure S4B). 20 MU is thus a good choice for DZ.

In order to simulate in the NET framework, we have derived an efficient simulation algorithm for Equation (21) (see Methods S1 for

details)

Distal and proximal regions

The aforementioned algorithm successfully constructs NETs of dendritic arborization where the variations in transfer impedance be-

tween branches are small compared to their average values (Figures S4C–S4E). If these variations are large, as is the case in pyra-

midal cells (Figure S4E), interactions between proximal and distal dendritic domains are overestimated. In pyramidal cells, distal do-

mains are only connected to the soma by one or a few large dendritic branches. Hence, there aremany points of low soma to dendrite

impedance Z0x, many of high Z0x, and relatively few of intermediate Z0x. By consequence, the histogram of all dendrite to soma trans-

fer impedances has two main modes, whose boundary (Delon et al., 2007) indicates the domains. Any region with Z0x above this

boundary will belong to the proximal domain (node c0 in Figure S4E), whereas connected regions with Z0x below this boundary

will constitute distal domains (colored red in Figure S4E, node c1). Algorithmically, we determine the kernel of the root node as

the average of all transfer impedance kernels between proximal and distal branches. Then, we start the recursive procedure as

before, but with the impedance matrices restricted to the different domains ci.

Predicting spikes: linear terms

The effective NET transfer impedance between dendrite and soma is either constant or can take on a proximal and a distal value.

Spike prediction is refined further by defining linear terms that capture the precise transfer impedance between input regions and

soma. These kernels only contribute to the voltage at the soma, and thus have no influence on the intra-dendritic synaptic interac-

tions. Mathematically, their contribution to the somatic voltage can be written as:

Vlin =
X
r

ZrðtÞ �
"X
s˛Sr

gsf

 X
M˛N r

VM

!#
: (Equation 22)
Independence and compartmentalization
Independence

The leafs of the NET only receive inputs from a single region. Nevertheless, they are not per se independent from the other synapses,

since the SVD in their input current still depends on all nodal voltages on the path to the root:

Ig;L
�
V
�
=
X
s˛SL

gs fs

 
VL +

X
N˛N LfLg

VN

!
: (Equation 23)

This current will become truly independent from all other synapses if

dVL >C
X

N˛N LfLg
dVN; (Equation 24)

with C a (large) number that has to be determined empirically and dV denoting the short term fluctuations of V around a long term

average hVi. Here, short term means the time-scale on which neurons convert electrical inputs to output. As NMDA synapses

have a decay time constant of 43 ms, this averaging time-scale should be at least somewhat larger than the NMDA time constant

(we chose � 200 ms). Then (23) can be approximated as follows:

Igs ;L
�
VL

�
=
X
s˛SL

gs fs

 
VL +

* X
N˛N LfLg

VN

+!
: (Equation 25)

The long-term average in this equation is only influenced very little by the instantaneous values of the synaptic conductances and can

hence be seen as a constant, i.e., a fixed parameter in the equation:

VL =ZLðtÞ �
"X
s˛SL

gs fs

 
VL +

* X
N˛N LfLg

VN

+!#
: (Equation 26)

Consequently, the solution for VL will not depend on the instantaneous values of the synaptic conductances at other locations.
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Estimating independence

Whether condition (24) holds depends on the structure of the NET as well as the relative size of the synaptic inputs. We assume that

synaptic conductances in physiological regimes are of similar magnitude. In this case, condition (24) becomes a condition on the

impedances:

ZL >C
X

N˛N LfLg
ZNjRN j ; (Equation 27)

where jRN j denotes the number of regions node N integrates. When we are interested in determining whether a pair of regions ri
(integrated by the leafs Li, i = 1;2) can act independently, we can consider a reduced tree with two leafs, obtained by pruning all

nodes associated with other regions. The new tree then has leaf impedances Zi =
P

N˛N Li
=ðN L1

XN L2
ÞZN (i.e., a sum over impedances

of nodes that integrate one region but not the other) and a root impedance ZR =
P

N˛ðN L1
XN L2

ÞZN (i.e., a sum over impedances of

nodes that integrate both regions). Then, regions ri are independent if:

ZLi > 2 C ZR: (Equation 28)

For mutual independence between r1 and r2, this equation has to hold for both i = 1 and i = 2. To summarize these two conditions in a

single expression, we defined the ‘ impedance-based independence index’ ðIZÞ:

IZ =
Z1 +Z2

2 ZR

: (Equation 29)

Then, if (28) holds for both regions, the following condition also holds:

IZ > 2 C: (Equation 30)

Note that this is a necessary, but not a sufficient condition for mutual independence. However, as shown throughout the main manu-

script, when asymmetry is not too high IZ is, despite its simplicity, a surprisingly accurate measure.

Compartmentalization

Previously we discussed the conditions under which a single input site can be considered independent from the rest of the input

regions. Nevertheless, when inputs are distributed in an almost continuous fashion along the dendritic arborization, such sites may

not exist. It can be expected, however, that the structure of the dendritic tree favors a grouping of inputs, such that inputs

belonging to different groups are all mutually independent but inputs belonging to the same group are not. A grouping of this

type for homogeneously distributed inputs along the dendritic arborization, and where inputs belonging to different groups

have an IZ above a certain threshold, will be called a compartmentalization of that dendritic tree for that given IZ . Note that in

such a compartmentalization, not all input sites can belong to a group, as there will have to be at least some space between

compartments.

How can such a compartmentalization be found? First, we remark that there is no unique answer to this question. Consider a forked

dendritic tip. It may happen that inputs within each sister branch are independent from the rest of the dendritic tree, but the branches

are not independent from each other. Furthermore, because of a steep impedance gradient within the branch, inputs at the bifurca-

tion point may not be independent from the rest of the tree. Because of the first constraint, both tips can not form separate compart-

ments, whereas because of the second constraint, they can not be grouped into a single compartment either. Hence only one branch

can be chosen, and either choice forms a valid compartmentalization.

We implemented an algorithm that proposes, using the NET and given an IZ , a compartmentalization that maximizes the number

of compartments. Intuitively, the algorithm works by removing one leaf branch of a pair when the pair does not form separate com-

partments. By continuing this until every pair of leaf branches forms separate compartments, a maximal compartmentalization has

been found. We note that if a node N in the NET tree forms a valid compartment, all nodes in the subtree of N are part of the same

compartment, since their IZ to other compartments will be higher than the IZ of N. Hence, our algorithm will simply return a set of

nodes, where it is understood that a compartment associated with a node from this set is its whole subtree. Our algorithm proceeds

in three steps:

1. We determine a ‘tentative’ compartmentalization. For each node N in the NET tree, we examine the bifurcation nodes B on the

path N N from N to the root. We check whether the following condition holds
IZ <

X
K˛N NyN B

ZKX
K˛N B

ZK

; (Equation 31)
e5 Cell Reports 26, 1759–1773.e1–e7, February 12, 2019



2. withN b the path from B to the root. If this condition is true for two nodes N andM that have B on their respective paths to the

root, and where ðN N=N BÞXðNM=N BÞ = B, these nodes will be separated by at least the required IZ . Hence, we say thatN is a

tentative compartment with respect to B.

3. In a second step, we remove all leafs from the tree that could not possibly be separate compartments. To do so, we look at the

highest order bifurcation B and its child leafs. Then, if at least two child leafs are tentative compartments with respect to B, the

other leafs are removed. Otherwise, all child leafs but the one with largest impedance are removed. Note that in the latter case,

B is not a bifurcation anymore and consequently will not induce tentative compartments. We continue to cycle through the

bifurcation nodes of highest order until no more nodes can be removed.

4. In a final stepwe assign the compartments. Aswe are now sure that every leaf is part of a separate compartment, we start at the

leaf, find the nearest bifurcation node in the NET tree, and then recursively find the lowest order node that is still a tentative

compartment of B. This node will be a compartment node in the final compartmentalization.

Extracting IZ from patch-clamp data
Extrapolating from two-electrode recordings

Although there was only data available from two-electrode patch clamp setups with one dendritic and one somatic electrode, it is still

possible to extrapolate what the value of IZ would be between two dendritic locations, if the second location ðD2Þ would be on a

branch with similar electrical properties and at a similar distance from the soma as the first location ðD1Þ. From the dendritic current

injection, we can calculate the input impedance ZD1D1
and the dendrite-to-soma transfer impedance ZSD1

by fitting a regression line to

the IV-curve. Conversely, from the somatic current injection, we can calculate the somatic input impedance ZSS as well as the soma-

to-dendrite transfer impedance ZD1S in a similar manner. We then assume that ZD2D2
zZD1D1

, ZSD2
zZSD1

and ZD2SzZD1S. IZ between

these two sites is given by:

IZðD1;D2Þ=ZD1
+ZD2

2ZR

; (Equation 32)

withZD1
= ZD1D1

�ZR,ZD2
=ZD2D2

� ZR andZR =ZD1D2
the transfer impedance between both dendritic sites. The latter impedance can

be estimated from the transitivity property (Koch, 1998):

ZD1D2
=
ZD1S ZSD2

ZSS

z
ZD1S ZSD1

ZSS

: (Equation 33)
Estimating the dendritic access resistance
Full compensation of whole-cell current clamp recordings are difficult due to the positive feedback of the electronic compensation

circuitry that can lead to ringing and disruption of the giga seal (Brette and Destexhe, 2012). This is particularly the case when high

resistance pipettes have to be used as in the case of recordings from the basal dendrites of pyramidal neurons. The compensation of

capacitance and access resistance during the experiment was performed following standard procedures aiming optimal compen-

sation, while avoiding overcompensation and ringing. Additional offline compensation was achieved by fitting the initial change in

membrane voltage at the dendritic and somatic recording site with a double exponential function function (Anderson et al., 2000;

De Sa and MacKay, 2001):

fðtÞ= c1 e
� t
t1 + c2 e

� t
t2 (Equation 34)

to the voltage transient after stimulus onset. To do so, we minimized a weighted sum of squares error

Eðc1; t1; c2; t2Þ=
X
t

ðwðtÞðfðtÞ � VðtÞÞÞ2; (Equation 35)

where the weights were given by wðtÞ= 1=ð1+ t=tÞ (with t = 1 ms), a function chosen to prioritize accuracy at small t values (Figures

S5A and S5B). The resulting fit fðtÞ contained one fast and one slow time-scale (let us index the fast time-scale with 1), and we

equated the superfluous voltage drop due to the access resistance to the prefactor of the fastest exponential:

DVaccess = c1: (Equation 36)

It can be seen that this analysis yielded a co-linear set of values for the different injected current amplitudes in each experiment (Fig-

ure 5C). An estimate of the access resistance was then obtained from the slope of the regression line betweenDVaccess and the ampli-

tude of the injected current step.

To estimate the variability of our approximations of the access resistance, we also performed the same procedure at the soma,

where the access resistance for each experiment could be determined from the standard bridge-balance procedure. We then

compared fitted resistances with the values yielded by bridge balance (Figure 5D) and found good agreement within the limits of

experimental variability. The distribution of these values then provided an estimate of the variability in our fit (Figure S5D), which al-

lowed us to compute the uncertainty of our access resistance fit and yielded the error flags (Figure S5E).
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Simulation-specific parameters
Parameters Figure 1.

We evaluated the impedance matrix in panel B at 10 mm intervals. In the simulation depicted in panels J and K, the synapses con-

tained only an AMPA component with gmax = 10 nS and no active channels were inserted in the soma.

Parameters Figure 2.

100 NMDA (gmax = 4 nS and RNMDA = 3) and 100 GABA (gmax = 2 nS) synapses were inserted on the morphology and activated with

Poisson spike trains of 1 Hz.

Parameters Figure 3.

The synapse at region 1 was an NMDA synapse with gmax = 1 nS and RNMDA = 3. The synapse received 5 input spikes in a 2.5 ms

interval in order to trigger an NMDA spike

Parameters Figure 4.

For the simulations in panels C-D, NMDA synapses (RNMDA = 3) were used. Their gmax and incoming Poisson rate were optimized

to utilize the full range of the NMDA non-linearity. For the simulations in panel E, NMDA (gmax = 2 nS and RNMDA = 2) and GABA

(gmax = 1 nS) synapses were used and their rates were also optimized to utilize the full range of the NMDA non-linearity.

Parameters Figure 6.

For the simulations in panel C, the main synapses contained only an AMPA component with gmax = 5 nS. To simulate the high-

conductance state, 200 AMPA and 200 GABA synapses (gmax = 0:5 nS) were distributed evenly across the neuron. Each AMPA syn-

apse was stimulated with a Poisson spike train of 5 Hz. The rate of stimulation for the GABA synapses was tuned to achieve a

balanced input. To recompute the tree structures for panels B and D, the time-averaged conductances of all background synapses

were inserted in the morphology as static shunts.

The inhibitory synapse in panels E-H had gmax = 2:3 nS andwas activated at a steady rate of 200Hz, so that it’s total time-averaged

conductance was around 5 nS. For the simulations in panel H, we inserted NMDA synapses (RNMDA = 3) in both branches and

stimulated them with a rate of 200 Hz. Note that these inputs could come from multiple presynaptic cells. Due to the linearity of

the conductance dynamics however all spikes can be taken to add to the same conductance and can hence be modeled as a single

synapse. The maximal conductance gmax of the NMDA synapse was optimized to obtain an average depolarization of�40± 2:5 mV

in each branch, a target value which yields parameters that allow exploitation of the full range of the NMDA non-linearity.

Parameters Figure 7.

In both simulations with and without shunting inhibition, noise was implemented at all three locations using AMPA (gmax = 0:1 nS)

and GABA (gmax = 0:2 nS) synapses. Both were stimulated with Poisson spike trains of resp. 33 Hz and 83.1 Hz (tuned to achieve

balance). The shunting inhibition in the parent branch was implemented by a GABA synapse (gmax = 2 nS) receiving a Poisson train

with a rate of 277 Hz (tuned to reach a time-averaged conductance of 12 nS) during the 100ms learning intervals. Note that this single

conductance could again represent multiple synapses.

Stimulus-specific innervation patterns were: Sð[Þ to Bð[Þ: 5 synapses, Sð[Þ to BðYÞ: 2 synapses, SðYÞ to Bð[Þ: 2 synapses and

SðYÞ to BðYÞ: 5 synapses. These synapses were all NMDA synapses (gmax = 0:6 nS;RNMDA = 2) that where activated in the learning

intervals with Poisson trains at a rate of 33.3 Hzwithout the shunting inhibition and 39.8 Hzwith the shunting inhibition (to compensate

for the loss in input impedance in both branches).

Parameters Figure S1.

For the simulation in panels D-F, 10 clusters of 10 excitatory (gmax = 4 nS and RNMDA = 3) and 10 inhibitory (gmax = 2 nS) synapses

where inserted at random, and within each cluster excitatory and inhibitory synapses where evenly spaced at 4 mm intervals. Syn-

apses were activated with Poisson spike trains of 3 Hz.

Parameters Figure S2.

In panel D, synapse 1 was a non-plastic NMDA synapse (gmax = 1 nS;RNMDA = 3) and synapse 2 a plastic synapse with the same

parameters. When on, synapse 1 received a tonic spike train with a rate of 113 Hz (to yield a time-averaged activation A1x15). Syn-

apse 2 received rates ranging from 0 to 113 Hz, corresponding to the data points at different activations in the figure in the figure. For

the simulations in panel H, we insertedNMDA synapses (RNMDA = 3) in both branches and stimulated themwith a rate of 200Hz. Their

maximal conductance gmax was optimized to obtain an average depolarization of �40 ± 2.5 mV in each branch.

DATA AND SOFTWARE AVAILABILITY

Code for the derivation of NETs from biophysical neuron models can be found online as part of the NEural Analysis Toolkit (NEAT,

https://github.com/WillemWybo/NEAT). We provide scripts to reproduce results from this paper (https://github.com/WillemWybo/

Electrical_compartmentalization_in_neurons). To run these scripts, NEAT’s NEURON extension is also needed (https://github.

com/WillemWybo/NEAT_NEURON_extension).
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Figure S1. Unravelling of morphologies and validation with clustered input (related to Fig 1, Fig 2). A-C: When
unravelling the morphologies on a one-dimensional axis, we use a depth-first ordering (Russell and Norvig, 2003): We pick a leaf
at random, and first place the regions between the root and that leaf on the x-axis from (with the root on the left and the leaf on
the right). We then move back from the leaf to the nearest bifurcation, and plot the regions between that bifurcation and another
leaf (in the subtree of the bifurcation) on the x-axis (again, bifurcation on the left and leaf on the right). We then repeat this
procedure, until all leafs in the subtree of the bifurcation are passed once. Then, we move back to the next bifurcation closer to
the root, and repeat the procedure again, and continue thusly until all leafs have been passed exactly once. We visualize this
unravelling for all three morphologies (A: granule cell, B: stellate, C: L5 pyramid) by color coding the branches, and colouring the
corresponding regions on x-axis in the same color. D: We validated the NET-framework also in case of clustered synapses: to
that end, we distributed 10 clusters at random on the morphology (the cluster centroids represented by the coloured circles).
Each cluster consisted of 10 excitatory and 10 inhibitory synapses at 4 µm intervals. We then stimulated each synapse with
random Poisson inputs at 1 Hz. E: The RMSEs at the cluster centroid for each cluster. Spike coincidence Γ and somatic RMSE
are also shown. F: Comparison of voltage trace between NET (coloured dashed lines) and NEURON model (black lines) for the
soma (top) and three of the clusters (line colour corresponds to cluster).



Figure S2. Additional analysis of independent electrical compartments (related to Fig 2, Fig 4). Study of the behaviour
of the asymptotic equilibrium points of the NMDA dynamics (A-E) at different levels of synaptic activation (where the activation is
defined as the product of input impedance and synaptic conductance, a dimensionless quantity – see methods). A: Toy model
morphology and associated NET. B: Test whether an independent NMDA spike can be generated in branch 2 when there already
is an NMDA spike in branch 1. A hallmark of the NMDA-spike is the low and high line of asymptotic equilibrium points as a
function of the synaptic activation (inset, blue line – large separation of IZ = 15 between sites, Major et al. (2008)). When the
synaptic activation increases sufficiently, the low line of equilibrium points disappears and the voltage jumps to the high line of
equilibrium points, generating an NMDA spike. Hence, the amplitude of the jump at site 2 (∆V2 in the plot) determines whether
an independent NMDA spike can exist at site 2. At IZ = 1 (red line), there is no jump and there can be no independent NMDA
spike at site 2. The amplitude of this jump is plotted in the main panel and reaches 80% of its maximum for IZ ≥ 10. Colour
indicates the amplitude of the activation at synapse 1. The lines for different activations A1 overlap substantially, indicating that
the amplitude of the jump mainly depends on IZ and not on the precise activation at synapse 1 (as long as A1 is strong enough to
generate an NMDA spike at site 1). C: Summation of NMDA events in separate branches depends on IZ . When branches are
independent, NMDA events are expected to sum perfectly in the root voltage V R . In other words, when synapse 1 and 2 are
activated above the NMDA spike threshold, the surplus ∆V R (inset) should be equal to the root voltage when only synapse 1 is
activated (here denoted by V R ). Their ratio indeed converges to one, independently from the precise activation of the synapses
(colour coding), and reaches 80% of its maximum for IZ ≥ 10. D: Measuring local voltage allows quantification of the influence
local branches exert on each other during learning. To do so, we measure the threshold synaptic activation AT required to
potentiate synapse 2, once when synapse 1 is off and once when it is on (inset). For independent synapses, there would be no
shift in AT upon activation of synapse 1 and ∆AT would be 0. The weight change is shown after 300 ms of tonic stimulation at
synapse 2 when synapse 1 was off (blue) and on (red) (IZ = 1). The computed shift in threshold activation ∆AT required to
potentiate synapse 2 is indicated. E: The aforementioned shift in threshold activation as a function of IZ . This shift can not be
larger than the threshold activation for potentiation (∆AT ,max , grey line): When IZ is very small, the voltage at synapse 2 will
always be above the threshold for potentiation when synapse 1 is on. The amplitude of this shift again depends only weakly on
the precise level of A1 (colour coding). For IZ ≥ 10, the shift is less than 20% of its maximum value. F: We modify IZ by either
adding a static shunt conductance to the parent branch or by increasing its radius. The original NET is shown on the left, the NET
for an additional static shunt conductance in the middle and the NET for an increased radius on the right. Note that modifying IZ
by increasing the radius is not realistic in this case: to obtain a sizeable increase in IZ , the radius had to be multiplied by an
unrealistically high factor. G: The increase in IZ by the aforementioned manipulations is determined by the increase in
conductance in the parent branch. H: The voltage correlation for both ways of increasing IZ . The inputs were tuned to use the full
range of the NMDA non-linearity. I: Analysis for the pyramidal cell of the change in compartmentalization when the threshold IZ
between compartments is altered.



Figure S3. Analysis of five classes of cortical cells (related to Fig 4). Five M-types from the BBP column were selected
and analysed in detail. Three groups of properties were computed: morphometric, electrical and NET-related properties. As
morphometric properties we selected the number of terminal branches, the number of main branches emanating from the soma
and the total dendritic length. As electrical properties we selected the somatic input impedance Zsoma, the maximal input
impedance Zin along the dendritic arborization and the minimal transfer impedance Ztrans between any pair of locations.
Regarding the NET-related properties, we calculated the average number of compartments at different values of IZ (= 1,3,10,30).
We also computed the percentage of terminal pairs that are separated by an IZ between 3 and 10, the average IZ of these pairs
and the shunting conductance required to increase the IZ of these pairs to 10. To check whether the NET approximation yielded
accurate results, we also computed the root mean square error RMSEZ of the approximated impedance matrix with respect to
the exact matrix. As can be seen, the error values we found are within similar ranges as those found for our three prototype cells
(see Fig 1I). For each quantity, its average value and standard deviation is shown.



Figure S4. Extra information on compartment numbers and the derivation of a NET (related to methods). A: Analysis
of the dependence of compartment numbers on a range of parameters for the L5 TTPC1 class of Fig S3. The x-axis represents
the relative parameter value (compared to our standard set of parameters, see methods). cm is membrane capacitance, ra axial
resistance, gm membrane conductance, fspines a spine correction factor (multiplied simultaneously to gm and cm in dendritic
segments with radii below 0.6 µm to model the membrane surface increase due to spines) ddend the diameter of the dendritic
segments. B: The RMSE of the NET impedance matrix approximation compared to the true impedance matrix, as a function of
∆Z . C-E: For each row (C: stellate cell, D: granule cell and E: pyramidal cell), the morphology is shown on the left, the bottom
row of the impedance matrix (i.e. the somatic transfer impedance Z0x ) in the middle, and a histogram of these impedance values
on the right. The x-axis of the middle panel is coloured according to the corresponding region on the morphology. The
background colouring indicates the different dendritic domains that will become nodes ci in the NET, as found from the
histograms on the right.



Figure S5. Estimation of the access resistance at the dendritic electrode (related to Fig 5). A-B: A double exponential
(red dashed line) was fit to the transient part of the voltage response at the current injection electrode (black line, A resp. B for
dendritic resp. somatic injection). The resulting fit was a combination of a fast and a slow exponential. The amplitude of the fast
exponential was taken to be the voltage drop caused by the access resistance. At the somatic injection site (panel B) this
amplitude was compared to the correction applied by the amplifier (height of blue square). C: Validation of the access resistance
fit: for each recording, we extracted the voltage drop independently for all injected current amplitudes. We then compared the
standard deviation of the access resistances obtained from each individual measurement (σR , obtained by dividing each point in
the inset plot by the corresponding injected current) with the access resistance obtained from the slope of the best fit line (µR ).
We then plotted a histogram of the ratio of these values (where small numbers indicate co-linearity). D: Histogram of the ratios
between the access resistance correction values applied by the amplifier and the values extracted from the double exponential fit
at the somatic injection site. Mean (red line) and standard deviation (red rectangle) of this distribution were used to correct the
access resistance values at the dendritic site obtained from the double exponential fit, and yielded the errorbars in voltage and
input impedance (Fig 5C). E: Obtained access resistance values as a function of distance to soma.
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Methods S1 (related to STAR methods)

Description of NET matrix inversion algorithm

On the one hand, the NET allows efficient simulation of the neuronal dynamics, and on the other hand
it can be used to compute attractor points of these dynamics. The latter yield insight into the asymptotic
behaviour of the neuron as a dynamical system and can be used to extract information about com-
partmentalization: for an instantaneous set of synaptic conductances g1(t), ... ,gn(t), the instantaneous
solution of the attractor point will be what the full dynamical system is trying to reach. Hence, if com-
ponents of the attractor point solution behave independently from other components, the full dynamics
will behave independently too. Both the full simulation and attractor point solution involve solving linear
systems by matrix inversion. The NET tree graph structure allows this to be done in O(n) steps, as
opposed to O(n3) steps for arbitrary linear systems. We will first describe how the non-zero elements in
this matrix are constructed for each solution method. Then we will describe the solution algorithm.
We will order the node voltages in the NET tree in a reversed depth-first manner (so that the root voltage
comes last) and group them in a vector V. Similarly, the node impedances will be grouped in a vector
Z. With each node N we will associate the set RN containing all input regions that a node integrates.
Furthermore, with each input region r we will associate the set Sr of all synapse types present in the
input region and the set Nr of all nodes that integrate inputs from that region. Although not strictly
necessary, we assume for simplicity that each leaf only integrates inputs from one region and that each
input region is first integrated by a leaf. With these assumptions, the sets Nr always constitute paths
from leaf to root, as is illustrated in Fig M1A. The general form of the synaptic input current at node N is
then given by:

IN(t ,V(t)) = ∑
r∈RN

∑
s∈Sr

gs(t) fs( ∑
M∈Nr

V M(t)). (1)

We thus sum over all regions integrated by node N and all synapse types in these input regions, and the
voltage in the SAD is given by the sum over all node voltages that integrate these input regions. Note
that besides V(t), the only other temporal dependence in I(t ,V(t)) is through the synaptic conductances
(gs(t), grouped in a vector g). When convenient, we will therefore sometimes write Ig(t)(V(t)). Finally,
we remark that the set Nr always denotes a direct path from leaf to root.

The full dynamical system.

The full dynamical system associated with the NET can be written in vector form as:

V(t) =
∫ t

−∞

ds Z(t−s)� I(s,V(s)). (2)

where� denotes element-wise multiplication. To solve a system of this form for V(t+h) when I(t−kh,V(t−kh))
is known for k = 0,1,2, ..., one can assume a linear interpolation between the grid points. Since the
impedances Z N(t) are known as sums of exponentials, they can be integrated analytically in combina-
tion with the linear interpolation to obtain an accurate quadrature rule (section 2.2 in Wybo et al. (2015)).
Grouping all terms that do not contain V(t +h) in a term F(t) , one obtains:

V(t +h) = Z(0)� I(t +h,V(t +h))+F(t), (3)

where Z(0) is a vector based on the impedance kernels that follows from the quadrature rule. Taylor
expanding IN around V(t) gives:

IN(t +h,V(t +h))≈ I(t +h,V(t))+∑
M

∂ IN

∂V M

∣∣∣
t+h,V(t)

[
V M(t +h)−V M(t)

]
. (4)
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Moving all terms containing components of V(t +h) to the left hand side then gives a system of the form

A(t +h)V(t +h) = B(t +h), (5)

which can be solved for the node voltage. In this system, the vector B(t +h) contains:

BN(t +h) = Z
(0)
N

[
IN(t +h,V(t))−∑

M

∂ IN

∂V M

∣∣∣
t+h,V(t)

V M(t)

]
+F N(t) (6)

and the elements of matrix A(t +h) are given by:

ANM(t +h) = δNM −Z
(0)
N

∂ IN

∂V M

∣∣∣
t+h,V(t)

, (7)

with δNM the Kronecker delta.

The attractor points.

The attractor points associated with (2) follow from the equality:

V = Z� Ig(V) (8)

or equivalently:
H(V) := V−Z� Ig(V) = 0 (9)

and can be found from the Newton iteration (with k the iteration index):

AH(Vk )
Vk+1 = Bk , (10)

with AH(·) the Jacobian of H(·) and the right-hand side of this equation given by:

Bk =−H(Vk )+AH(Vk )
Vk . (11)

The elements of the Jacobian are:

ANM = δNM −Z N
∂ Ig,N

∂V M
(Vk ). (12)

The matrix inversion.

From (7) and (12) it can be seen that systems (5) and (10) have the same structure, the only difference
being that in (7) constants Z

(0)
N are employed that follow from the quadrature rule whereas in (12) the

node impedances Z N are used. The NET tree now imposes a very special structure on the matrix A
that allows it to be inverted in O(n) steps. First, the algorithm performs a single down sweep that sets
all elements under the diagonal to zero. Then, a single up sweep is performed to set all elements above
the diagonal to zero. To construct A, we start from the identity matrix and then subtract

Z N
∂ Ig,N

∂V M
= Z N ∑

r∈RN

 ∑
s∈Sr

gs f ′s( ∑
K∈Nr

V K )

 ∑
K∈Nr

δKM

 (13)
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A B C

Figure M1. Schematic representation of the inversion algorithm. A: A schematic of a simple NET
with four nodes L1,L2,N and R, two input regions r1 and r2, and the two paths Nr1 and Nr2 coloured red
and blue respectively (mixed colour purple indicates that the two paths overlap). B: The structure of the
associated matrix A as obtained from equation (13). C: By a recursive series of row operations the
sub-diagonal elements of A are set to zero, while the diagonal elements are at the same time set to
one. After the down sweep, the root voltage can be computed directly. Other voltages are then
computed during the up sweep.

for all N,M. Here, f ′s denotes the derivative of fs. Dissecting this, we see that for each path Nr , the
rows corresponding to the nodes N ∈Nr contain a term −Z N

[
∑s∈Sr gsf ′s(∑K∈Nr V K )

]
at each column

associated with a node in Nr . This leads to a structure that is depicted in Fig M1B. To simplify the
notation, we will denote the term in square brackets by:

a(Nr ) := ∑
s∈Sr

gs f ′s( ∑
K∈Nr

V K ). (14)

We will also group all terms in columns associated with Nr in row N of the matrix in a vector R(N)
∣∣
Nr

,
that thus contains (

R(N)
∣∣
Nr

)
K
= δNK −Z N a(Nr ), for K ∈Nr . (15)

For instance, in Fig M1B, R(L1)
∣∣
Nr1

is given by the red elements on the first line of the matrix, and

similarly for nodes N and R. In turn, rows R(·)
∣∣
Nr2

associated with Nr2 are coloured blue for nodes L2,N
and R.
Finally, we introduce for formal reasons a term b(Nr ) that is zero in the first step of the algorithm, so that
the elements of the vector B become:(

B
)

N
= BN −Z N ∑

r∈RN

b(Nr ), (16)

and similarly to R(N)
∣∣
Nr

, we will take
(

B
∣∣
Nr

)
to signify the restriction of B to terms only in Nr :(

B
∣∣
Nr

)
N
= BN −Z Nb(Nr ). (17)

First, we describe the steps of the down sweep phase of the algorithm.

1. We take the leaf L of a path Nr , divide row L by its diagonal element and obtain:

(
R(L)

∣∣
Nr

)
K
=

 −Z L a(Nr )

1−Z La(Nr )
if K 6= L

1 if K = L,
(18)
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Correspondingly, (
B
)

L
=

BL−Z Lb(Nr )

1−Z L a(Nr )
. (19)

On all rows N ∈Nr \{L} we effectuate the row operation

R(N)→ R(N)−
(

R(N)
∣∣
Nr

)
L

R(L)(
B
)

N
→
(

B
)

N
−
(

R(N)
∣∣
Nr

)
L

(
B
)

L
.

(20)

This operation sets sub-diagonal elements
(

R(N)
∣∣
Nr

)
L

to zero. For the non-zero elements M 6= L
we obtain:

(R(N)
∣∣
Nr

)M = δNM −Z Na(Nr )−
(
−Z Na(Nr )

) −Z La(Nr )

1−Z La(Nr )

= δNM −Z N
a(Nr )

1−Z La(Nr )
,

(21)

while (
B
∣∣
Nr

)
N
= BN −Z Nb(Nr )−

(
−Z Na(Nr )

) BL−Z Lb(Nr )

1−Z L a(Nr )

= BN −Z N
b(Nr )−BLa(Nr )

1−Z L a(Nr )
.

(22)

Let P be the parent node of L in the path Nr . If all sub-diagonal elements for paths associated with
regions in RP have been set to zero, one can move on to step 2 with node P. Otherwise repeat
step 1 with a different leaf and path until such is the case.

2. Consider all r ∈RP . We will denote the restriction of the path Nr to nodes from P to the root as
N P↓

r . The tree structure imposes that all these paths are the same:

N P↓
r1

= N P↓
r2

, ∀r1, r2 ∈RP . (23)

Hence we will use the shorthand:
NP := N P↓

r . (24)

As a consequence of step 1, it holds for all N ∈NP that:

(R(N)
∣∣
NP

)M = δNM −Z N ∑
r∈RP

a(Nr )

1−Z Lr a(Nr )
, (25)

where Lr signifies the leaf associated with the path Nr , and that:(
B
∣∣
NP

)
N
= BN −Z N ∑

r∈RP

b(Nr )−BLr a(Nr )

1−Z Lr a(Nr )
. (26)

We can now define
a(NP) := ∑

r∈RP

a(Nr )

1−Z Lr a(Nr )
(27)

and

b(NP) := ∑
r∈RP

b(Nr )−BLr a(Nr )

1−Z Lr a(Nr )
. (28)
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With these substitutions, we are now able to formally proceed with the algorithm as if P was a leaf
and NP the path to it. We may thus return to step 1, unless P was the root of the tree, in which
case its associated voltage is known:

V p =
BP −Z P b(NP)

1−Z P a(NP)
. (29)

The structure of the matrix after the down sweep is illustrated in Fig M1C.

Note that the efficiency of the algorithm lies in the fact that we do not have to do the row operation (20)
explicitly for each node N on the path to the root. It suffices to compute the quantities a(NP) and b(NP)
once for each node that is not a leaf.
For the up sweep of the algorithm, we assume that we have a node P for which the voltages associated
with nodes in NP (i.e. the path from P down to the root) are known. Then performing, for all nodes N in
the sub-tree of P, the row operation:

R(N)→ R(N)−
(
R(N)

)
P R(P)(

B
)

N
→
(

B
)

N
−
(
R(N)

)
P

(
B
)

P

(30)

sets the supra-diagonal elements
(

R(N)
∣∣
Nn

)
P

to zero. Repeating this operation with the child nodes C

of P sets their associated supra-diagonal elements
(

R(N)
∣∣
Nn

)
C

to zero, with N now in the sub-tree of
C. Continuing so until the leaves are reached diagonalizes the whole matrix.
Key here is that we do not have to do all the row operations explicitly either; from equation (25) it follows
that all supra-diagonal elements on a given row are the same. Hence, the voltage associated with a
node N with parent P is given by:

V N =
BN −Z N b(Nn)

1−Z N a(Nn)
+

Z N a(Nn)

1−Z N a(Nn)

 ∑
K∈NP

V K

 (31)

and recursion can proceed with the child nodes of N.
To conclude, we summarize the algorithm in the pseudo code in Fig M2.

Matrix inversion with linear terms.

To extend the matrix inversion algorithm to the system with linear terms (LinT), we note that the rows in
the Jacobian associated with nodes that integrate the AP current receive extra terms. For each region
r , and for all nodes K on the path Nr , the following terms are added to rows associated with all nodes
N integrating the AP current: (

R(N)
∣∣
Nr

)LinT

K
=−Z N I ′AP ∑

r
Z r a(Nr ), (32)

For ease of notation we will define a quantity αr :

αr = ∑
r

Z la(Nr ), (33)

as well as a term βr that is zero in the first step of the down sweep algorithm,(
B
∣∣
Nr

)LinT

N
=−Z N I ′APβr . (34)

The steps of the down sweep phase of the extended inversion algorithm proceed in the same way as in
the normal inversion algorithm, but with the following additional operations:
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Procedure Down sweep(leaf L)
1 if L is true leaf then
2 compute a(Nl)
3 b(Nl)← 0

end
4 compute BL according to integration

paradigm
5 store BL,a(Nl),b(Nl) at node L
6 if L not root then
7 retrieve parent P
8 a(NP) += a(Nl )

1−Z La(Nl )

9 b(NP) += b(Nl )−BLa(Nl )

1−Z l a(Nl )

end
10 if all children of P have been passed

then
11 if P is not root then
12 L← P
13 Down sweep (L)

end
14 else
15 Stop recursion

end
end

16 else
17 L← next leaf
18 Down sweep (L)

end

Input: leaf L
Down sweep(L)

Procedure Up sweep(node N, voltage
VP)

1 V N ←
BN−Z N b(Nn)

1−Z N a(Nn)
+ Z N a(Nn)

1−Z N a(Nn)
VP

2 a(Nn)← 0, b(Nn)← 0, BN ← 0
3 for childnodes C of N do
4 Up sweep(C, VP +V N)

end

Input: root R
Up sweep(R, 0)

Figure M2. Pseudocode for the up and down sweep phases of the matrix inversion algorithm. During
both phases, each node is passed exactly once.
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1. After dividing the row associated with the leaf l of the path Nr by its diagonal element, as in (18),
we effectuate the following row operation on all rows associated with nodes N that integrate the
somatic input:

R(N)→ R(N)−
(

R(N)
∣∣
Nr

)LinT

L
R(L)(

B
)

N
→
(

B
)

N
−
(

R(N)
∣∣
Nr

)LinT

L

(
B
)

L

(35)

which sets the term
(

R(N)
∣∣
Nr

)LinT

L
to zero. The remaining non-zero terms in row N are then:

(
R(N)

∣∣
Nr

)LinT

K
=−Z N I ′APαr

(
1− a(Nr )

1−Z La(Nr )

)
(36)

and (
B
∣∣
Nr

)LinT

N
=−Z N I ′AP

(
βr −

αr BL

1−Z La(Nr )

)
. (37)

2. In step 2, we then define the following additional quantities associated with node P:

αp := ∑
r∈RP

αr

(
1− a(Nr )

1−Z La(Nr )

)
(38)

and

βp := ∑
r∈RP

(
βr −

αr BL

1−Z La(Nr )

)
. (39)

The up sweep phase of the algorithm then proceeds in the same way as before for the nodes that do not
integrate the somatic region.
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Analytical results with conductance-based synapses

The terms in Ig(V) corresponding to AMPA and GABA synapses depend linearly on the voltage through
the driving force. When only such synapses are present, the Newton iteration (10) yields the true node
voltages in a single step, while at the same time providing insight in the input/output relation of the
neuron. We describe this input/output relation in the next paragraph for the case where only a single
synapse type is present, although the extension to multiple synapse types is possible. Furthermore,
we show that in certain cases, a shunting input can be seen as reducing the impedance associated
with specific nodes in the NET tree. We also discuss the relation with the shunt level, a quantity used
previously to quantify shunting interactions in dendritic trees (Gidon and Segev, 2012).

A simple input/output transformation.

When a single synapse type with linear voltage dependence is present on the dendritic tree, equation
(1) becomes:

IN,g(V) = ∑
r∈RN

gr

Er −Veq− ∑
K∈Nr

V K

 , (40)

where Er denotes the synaptic reversal potential and Veq the equilibrium voltage. For the sake of brevity,
we will group these time-independent potentials in a single variable :

E := Er −Veq (41)

The elements of matrix A in (10) have the form:

ANM = δNM +Z N ∑
r∈RN

gr ∑
K∈Nr

δKM (42)

whereas for the contents of vector B (with V0 = 0) we find:

BN = ZN ∑
r∈RN

gr E . (43)

For the rows of A, this means that:(
R(N)

∣∣
Nr

)
K
= δNK +Z Ngr , for K ∈Nr . (44)

In step 2 of the down sweep algorithm, with these simplifications it holds that:

(R(N)
∣∣
NP

)M = δNM +ZN ∑
r∈Rp

gr

1+ZLr gr
(45)

and (
B
∣∣
Nr

)
N
= BN − ∑

r∈∇P

Z Ngr
ZLr gr E

1+ZLr gr

= Z N ∑
r∈RP

gr E − ∑
r∈RP

Z Ngr
ZLr gr E

1+ZLr gr

= Z N ∑
r∈RP

gr

1+Z Lr gr
E .

(46)
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A BDown sweep Up sweep

Figure M3. Solution for a single synapse type. A: In the down sweep phase, the conductances are
rescaled by a shunt factor. B: The up sweep sets all the node voltages.

This suggest that instead of equation (27), we can now define:

gp := ∑
r∈RP

gr

1+Z Lr gr
, (47)

and, since this factor occurs both in (45) and (46), we may consider it as a synaptic conductance asso-
ciated with node P. With respect to the downward recursion, P then formally becomes a leaf of the tree.
If P is the root of the tree, its voltage is given by:

V P = Z p
gP

1+Z PgP
E . (48)

The up sweep then proceeds as in the full algorithm, but instead of equation (31), we find:

V N = Z N
gN

1+Z NgN

E − ∑
K∈NP

V K

 . (49)

This solution is depicted in Fig M3 for a simple NET tree. It can be seen that the conductance associated
with the root node is given by a combination of shunting non-linearities

FZ (g) =
g

1+Zg
(50)

and linear sums (Fig M3A), and that the root voltage can be computed directly from knowledge of the
associated conductance. This parallels the way the output is constructed in artificial neural networks
(ANN’s). The amount of shunting in a node is furthermore proportional to the impedance in that node. If
conductance and/or impedance are small, so that Zg� 1 in all nodes, the root voltage is simply a linear
sum of all the inputs. If local voltages need to be known, the up sweep is straightforward to compute, as
depicted in Fig M3B.

Shunting.

Shunting inhibition has proven to be a powerful tool to modulate the output of regions in the dendritic
arborization (Gidon and Segev, 2012). The influence of this shunt on other dendritic regions can be
quantified by the shunt level SL, i.e. the relative reduction in input impedance:

SL =
∆Zin

Zin
. (51)



10

Figure M4. SL in a subtree of a
stellate cell. A: Schematic NET
with a region of excitation rE and a
region of shunting rS . The shunt
can be eliminated from the NET by
rescaling the conductance of the
root R. B: The dendritic subtree. C:
SL computed according to the
normal definition (labelled
∆Zin/Zin), the exact two location
NET (labelled 2Loc) and an
approximate NET pruned from the
full NET tree (labelled full). Colours
correspond to the colour code in B.

A

B

C

It is instructive to understand the analytical NET formula for this shunt level. The original NET system
has the following form:

V E = Z E gE · f (V R +V E )

V S =−Z S gS · (V R +V S)

V R = Z R

[
gE · f (V R +V E )−gS · (V R +V S)

]
,

(52)

where the subscript E denotes a node associated with only excitation, S a node with only shunting
inhibition and R the root node that combines both synapses. Solving for shunt-related terms gives:

V E = Z E gE · f (V R +V E )

V S =− Z S

1+Z SgS
gSV R

V R =
Z R

1+Z R
gS

1+Z SgS

[
gE · f (V R +V E )

]
.

(53)

Formally, the first and last equations in this system can now be seen as an NET with a single input region
and a root impedance that is modified due to the shunt conductance gS , as is illustrated in Fig M4A.
From the original input impedance at the excitatory synapse Z E +Z R and the new input impedance
Z E + Z R

1+Z R
gS

1+ZSgS

, the shunt level can be computed:

SL =

1︷ ︸︸ ︷
Z RgS(

1+
Z E

Z R

)
︸ ︷︷ ︸

2

(
1+(Z R +Z S)gS

)
︸ ︷︷ ︸

3

. (54)
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It can be seen from factor 1 in the above formula that SL is proportional to the impedance in the common
node as well as the shunt conductance. However, SL can not grow indeterminately, due to the saturation
factor 3. The maximal shunt level is thus inversely proportional to the input impedance at the shunting
synapse, Z R +Z S . Finally, due to factor 2, the amount of shunting also depends on the ratio between
impedance at the excitatory node versus impedance at the root node. We computed SL for a subtree of
a stellate cell (Fig M4B), once using the definition (51), and once using the NET derived for two locations.
Since this NET is exact, these two lines coincide perfectly. We also computed SL once for an NET tree
obtained from the recursive algorithm by pruning all unneeded regions. This approximate tree agrees
very well with the true SL, thus serving as a further validation that our full NET tree can capture the
interactions within a dendritic arborization accurately.
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